
Quantifying Interpretability in CLIP Models with Concept Consistency

Avinash Madasu♡ Vasudev Lal♡ Phillip Howard♢†

♡Intel Labs ♢Thoughtworks
{avinash.madasu, vasudev.lal}@intel.com phillip.howard@thoughtworks.com

Abstract

CLIP is a widely used foundational model for vision-
language tasks, yet its internal mechanisms remain poorly
understood. To address this we introduce Concept Consis-
tency Score (CCS), a new interpretability metric that quan-
tifies how strongly individual attention heads align with
coherent visual concepts. Using in-context learning with
ChatGPT and an LLM-as-a-judge framework, we assign and
validate concept labels across six CLIP models of varying
sizes, data types, and patch sizes. Our experiments show
that high CCS heads are crucial for maintaining model per-
formance, especially in out-of-domain detection, concept
reasoning, and video-language tasks. These findings high-
light CCS as an effective tool for interpreting and analyzing
CLIP-like models.

1. Introduction

Large-scale vision-language (VL) models like CLIP [29]
have driven significant advances in visual understanding
tasks and are now widely used in downstream applications
such as video retrieval, image generation, and segmenta-
tion [4, 13, 21, 24, 25]. Their flexibility has enabled inte-
gration with other foundation models, resulting in powerful,
compositional systems. However, this increased complex-
ity also amplifies the need for interpretability tools that can
reveal how such models make predictions—especially in
high-stakes or domain-sensitive applications. Given CLIP’s
foundational role in VL systems, developing robust inter-
pretability techniques to understand its internal mechanisms
is both timely and essential.

In this work, we introduce a novel interpretability metric
for CLIP models through the lens of visual concept learning.
Building on prior work [15] that decomposes CLIP’s image
representations into contributions from individual attention
heads, we focus on identifying the specific visual concepts
that each attention head represents. To achieve this, we ana-
lyze the heads in the last four layers of the model using the

†Work completed while at Intel Labs.

TEXTSPAN algorithm [15], which retrieves descriptive text
spans that best capture each head’s behavior. These spans are
then grouped and labeled with the help of ChatGPT through
in-context learning, where a few manually labeled exam-
ples guide the automated assignment of conceptual labels
to remaining heads. This process reveals interpretable, se-
mantically meaningful structures across the attention heads,
allowing us to view CLIP’s inner mechanisms through the
lens of learned visual concepts.

Leveraging the resulting text descriptions of attention
heads, we introduce the Concept Consistency Score (CCS),
a new interpretability metric that quantifies how strongly in-
dividual attention heads in CLIP models align with specific
concepts. Using GPT-4o as an automatic judge, we compute
CCS for each head and classify them into high, moderate,
and low categories based on defined thresholds. A key contri-
bution of our work is our targeted soft-pruning experiments
which show that heads with high CCS are essential for main-
taining model performance; pruning these heads causes a
significantly larger performance drop compared to pruning
random or low CCS heads. We also show that high CCS
heads are not only crucial for general vision-language tasks
but are especially important for out-of-domain detection and
concept-specific reasoning. Additionally, our experiments
in video retrieval highlight that high CCS heads are equally
vital for temporal and cross-modal understanding, thereby
underscoring the broad relevance of CCS in analyzing and
interpreting CLIP-like models.

2. Quantifying interpretability in CLIP models

2.1. Preliminaries

In this section, we describe our methodology, starting with
the TEXTSPAN [15] algorithm and its extension across all at-
tention heads in multiple CLIP models using in-context learn-
ing. TEXTSPAN associates each attention head with relevant
text descriptions by analyzing the variance in projections
between head outputs and candidate text representations.
Through iterative projections, it identifies distinct compo-
nents aligned with different semantic aspects. While effec-
tive at linking heads to descriptive text spans, TEXTSPAN



Figure 1. Figure shows the steps of computing Concept Consistency Score for each head.

High CCS (CCS = 5) Moderate CCS (CCS = 3) Low CCS (CCS ≤ 1)

L23.H11 (“People”) L23.H0 (“Material”) L21.H6 (“Professions”)
Playful siblings Intrica wood carvingte Photo taken in the Italian pizzerias
A photo of a young person Nighttime illumination thrilling motorsport race
Image with three people Image with woven fabric design Urban street fashion
A photo of a woman Image with shattered glass reflections An image of a Animal Trainer
A photo of a man A photo of food A leg

Table 1. Examples of high, moderate and low CCS heads. More examples can be found in appendix table 4.

Model Kappa SC (ρ) Kendall (τ)

ViT-B-32-OpenAI 0.757 0.781 0.781
ViT-B-16-LAION 0.676 0.678 0.678
ViT-L-14-OpenAI 0.758 0.758 0.758

Table 2. Results between human judgment and LLM judgment
on CCS labelling. SC denotes Spearman’s correlation.

does not assign explicit concept labels. In the next section,
we detail our method for labeling the concepts learned by
individual CLIP heads.

2.2. Concept Consistency Score (CCS)
We introduce the Concept Consistency Score (CCS) as a
systematic metric for analyzing the concepts (properties)
learned by transformer layers and attention heads in CLIP-
like models. This score quantifies the alignment between
the textual representations produced by a given head and an
assigned concept label. Figure 1 illustrates our approach,
with the following sections detailing each step in computing
CCS.

2.2.1. Extracting Text Representations
From each layer and attention head of the CLIP model,
we obtain a set of five textual outputs, denoted as

{T1, T2, T3, T4, T5}, referred to as TEXTSPANs. These out-
puts serve as a textual approximation of the concepts en-
coded by the head.

2.2.2. Assigning Concept Labels
Using in-context learning with ChatGPT, we analyze the
set of five TEXTSPAN outputs and infer a concept label Ch

that best represents the dominant concept captured by the
attention head h. This ensures that the label is data-driven
and reflects the most salient pattern learned by the head.

2.2.3. Evaluating Concept Consistency
To assess the consistency of a head with respect to its as-
signed concept label, we employ a state-of-the-art vision-
language model, GPT-4o, as an external evaluator. For each
TEXTSPAN Ti associated with head h, GPT-4o determines
whether it aligns with the assigned concept Ch. The Concept
Consistency Score (CCS) for head h is then computed as:

CCS(h) =
5∑

i=1

⊮ [Ti aligns with Ch]

where ⊮[·] is an indicator function that returns 1 if GPT-4o
judges Ti to be consistent with Ch, and 0 otherwise.

We define CCS@K as the fraction of attention heads
in a CLIP model that have a Concept Consistency Score
(CCS) of K. This metric provides a global measure of how



many heads strongly encode interpretable concepts. A higher
CCS@K value indicates that a greater proportion of heads
exhibit strong alignment with a single semantic property.
Mathematically, CCS@K is defined as:

CCS@K =
1

H

H∑
h=1

⊮ [CCS(h) = K]

where H is the total number of attention heads in the
model, CCS(h) is the Concept Consistency Score of head
h, ⊮[·] is an indicator function that returns 1 if CCS(h) =
K, and 0 otherwise. This metric helps assess the overall
interpretability of the model by quantifying the proportion of
heads that consistently capture well-defined concepts. Table
1 shows the examples of heads with different CCS scores.

2.3. Evaluating LLM Judgment Alignment with
Human Annotations

In the previous section, we introduced the Concept Consis-
tency Score (CCS), computed using GPT-4o as an external
evaluator. This raises an important question: Are LLM eval-
uations reliable and aligned with human assessments? To
investigate this, we conducted a human evaluation study
comparing LLM-generated judgments with human annota-
tions. We selected 50 TEXTSPAN descriptions from three
different models, along with their assigned concept labels,
and asked one of the authors to manually assess the semantic
alignment between each span and its corresponding label.

Table 2 reports the agreement metrics between human and
LLM evaluations, including Cohen’s Kappa, Spearman’s ρ,
and Kendall’s τ. The Kappa values exceed 0.65, indicating
substantial agreement, while the correlation scores consis-
tently surpass 0.65, confirming strong alignment. These
results validate the use of LLMs as reliable evaluators in
concept consistency analysis. The high agreement with hu-
man judgments suggests that LLMs can effectively assess
semantic coherence, offering a scalable alternative to manual
annotation. In the next section, we introduce the tasks and
datasets used in our experiments.

2.4. Experimental Setting
2.4.1. Tasks
Image classification: CIFAR-10 [22], CIFAR-100 [22],
Food-101 [3], Country-211 [29] and Oxford-pets [28].
Out-of-domain classification: Imagenet-A [20] and
Imagenet-R [19].
Video retrieval: MSRVTT [34], MSVD [7], DiDeMo [2].

2.4.2. Models
For experiments we use the following six foundational
image-text models: ViT-B-32, ViT-B-16 and ViT-L-14 pre-
trained from OpenAI-400M [29] and LAION2B [30]. Next,
we discuss in detail the results from the experiments.

Figure 2. Zero-shot results on Country-211 (location) dataset.

Figure 3. Zero-shot results on CIFAR-10 (Objects) dataset.

3. Results and Discussion

3.1. Interpretable CLIP Models: The Role of CCS.

In this section, we analyze the role of the Concept Con-
sistency Score (CCS) in enhancing CLIP interpretability,
focusing on the question: How does CCS provide deeper
insights into the functional role of individual attention heads
in influencing downstream tasks? To explore this, we per-
form a soft-pruning analysis by zeroing out attention weights
of heads with extreme CCS values—specifically, high CCS
(CCS = 5) and low CCS (CCS ≤ 1). This approach disables
selected heads without modifying the model architecture.
As shown in Table 3, pruning high-CCS heads consistently
causes significant drops in zero-shot classification perfor-
mance across CIFAR-10, CIFAR-100 and FOOD-101 while
pruning low-CCS heads has a minimal effect. This per-
formance gap demonstrates that CCS effectively identifies
heads encoding critical, concept-aligned information, mak-
ing it a reliable tool for interpreting CLIP’s internal decision-



Model CIFAR-10 CIFAR-100 FOOD-101

Original High CCS Low CCS Original High CCS Low CCS Original High CCS Low CCS

ViT-B-32-OpenAI 75.68 71.31 73.61 65.08 56.07 62.39 84.01 73.42 82.12
ViT-B-32-datacomp 72.07 70.50 70.43 54.95 53.14 53.72 41.66 38.13 40.77

ViT-B-16-OpenAI 78.10 63.93 76.44 68.22 51.70 65.38 88.73 76.35 87.36
ViT-B-16-LAION 82.82 78.91 75.38 76.92 65.55 72.51 86.63 67.54 81.4

ViT-L-14-OpenAI 86.94 86.29 85.97 78.28 75.66 77.55 93.07 90.75 92.79
ViT-L-14-LAION 88.29 86.48 88.19 83.37 80.07 83.25 91.02 86.45 90.35

Table 3. Accuracy comparison of various CLIP models on CIFAR-10, CIFAR-100 and FOOD-101 datasets. The values represent original
accuracy, performance after pruning high-CCS heads, and performance after pruning low-CCS heads.

making mechanisms.
We further observe notable variations in pruning sensitiv-

ity across model architectures. ViT-B-16 models suffer the
most from high-CCS head pruning, implying a reliance on a
smaller number of specialized heads. In contrast, ViT-L-14
models show greater resilience, suggesting more distributed
representations. Among smaller models, OpenAI-trained
models experience larger performance drops than OpenCLIP
models when high-CCS heads are pruned. However, in
larger models like ViT-L-14, OpenCLIP variants show a
slightly higher degradation. These patterns reveal that CCS
not only identifies functionally important heads but also cap-
tures model-specific and training-specific differences in how
conceptual knowledge is organized and utilized within CLIP
architectures. We also experiment with pruning equal num-
ber of random attention heads as high CCS heads. Results
show that high CCS heads leads to significant drop in perfor-
mance across datasets and variants. Detailed analysis can be
found in appendix 5.2.

3.2. High CCS heads are crucial for concept-specific
tasks.

To investigate the functional role of high Concept Consis-
tency Score (CCS) heads, we conduct concept-specific prun-
ing experiments. In these experiments, we prune heads with
high CCS scores corresponding to a target concept (e.g.,
locations) and evaluate the model’s performance on tasks
aligned with that concept, such as location classification.
In contrast, we also prune heads associated with unrelated
concepts (e.g., animals) and assess the resulting impact on
task performance. Our results indicate that pruning high
CCS heads leads to a significant drop in task performance,
validating that these heads encode essential concept-relevant
information. For instance, in the ViT-B-16 model, pruning
location heads results in a substantial decrease in location
classification accuracy from 22.81% to 14.09%, as shown
in Figure 2. Conversely, pruning heads corresponding to
unrelated concepts has little effect on performance, demon-
strating the concept-specific nature of high CCS heads, as
illustrated in Figure 3.

In more general classification tasks, object-related heads
consistently exhibit a greater impact on performance than
location or color heads. For example, in the ViT-B-32 model,
pruning object-related heads leads to a more noticeable ac-
curacy drop (from 87.6% to 86.02%) compared to pruning
location or color heads, which result in smaller reductions
(87.02% and 87.22%, respectively). This underscores the
greater importance of object-related features in vision tasks.
Larger models, such as ViT-L-14, demonstrate a more robust
performance to pruning, with smaller accuracy drops when
pruning concept-specific heads, suggesting that these models
employ more distributed and redundant representations. For
instance, pruning object-related heads in ViT-L-14 reduces
accuracy only marginally, from 92.1% to 91.25%, with neg-
ligible effects from pruning location and color heads. These
results not only confirm the effectiveness of CCS as an inter-
pretability tool but also show that high CCS heads are critical
for concept-aligned tasks and provide significant insights
into how concepts are represented within CLIP-like models.
Results for out-of-domain detection and video retrieval can
be found in appendix sections 5.3 and 5.4 respectively.

4. Conclusion

In this work, we proposed Concept Consistency Score (CCS),
a novel interpretability metric that quantifies how consis-
tently individual attention heads in CLIP-like models align
with semantically meaningful concepts. Through extensive
soft-pruning experiments, we demonstrated that heads with
high CCS are essential for maintaining model performance,
as their removal leads to substantial performance drops com-
pared to pruning random or low CCS heads. Our findings
further highlight that high CCS heads are not only critical
for standard vision-language tasks but also play a central
role in out-of-domain detection and concept-specific reason-
ing. Moreover, experiments on video retrieval tasks reveal
that high CCS heads are crucial for capturing temporal and
cross-modal relationships, underscoring their broad utility
in multimodal understanding. Our study shows how CCS is
a powerful interpretability metric for identifying key layers
and heads in CLIP-like models.
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5. Additional Results

5.1. Concept Consistency Scores (CCS) for CLIP
models.

We measure CCS@K for all values of K i.e K ∈ [0, 5].
Table 6 presents the Concept Consistency Score (CCS) dis-
tribution across various CLIP models, categorized by ar-
chitecture size, patch size, and pre-training data. Several
noteworthy trends emerge from this analysis. First, mod-
els pre-trained on larger and more diverse datasets (e.g.,
OpenCLIP-LAION2B) tend to exhibit a higher proportion
of heads with CCS@5, indicating that a greater number of
transformer heads are aligned with semantically meaning-
ful concepts. For instance, the ViT-L-14 model trained on
LAION2B shows the highest CCS@5 score of 0.328, sug-
gesting that approximately 32.8% of heads are consistently
associated with a single concept, reflecting strong concept
alignment in these models.

Second, smaller models such as ViT-B-32 trained on
OpenAI-400M demonstrate a significantly lower CCS@5
score (0.167) and a higher proportion of heads with lower
CCS values (e.g., CCS@0 = 0.021), indicating weaker align-
ment of heads to consistent concepts. This observation im-
plies that larger models with richer pre-training data are
better at learning concept-specific representations, a key re-
quirement for robust and interpretable multimodal reasoning.

Interestingly, when comparing models with the same ar-
chitecture but different pre-training corpora, such as ViT-B-
32 (OpenAI-400M vs. OpenCLIP-datacomp), we observe
a higher CCS@5 score for datacomp (0.229) than OpenAI-
400M (0.167), suggesting that dataset composition signifi-
cantly affects the emergence of interpretable heads.

Moreover, progressive increases in CCS from CCS@0
to CCS@5 show how concept alignment varies within
each model. For instance, while ViT-L-14 (OpenCLIP-
LAION2B) has a low CCS@0 of 0.016, it steadily increases
to a high CCS@5 of 0.328, suggesting that although a few
heads are poorly aligned, a substantial fraction are highly
consistent in capturing specific concepts.

In summary, these results demonstrate that the CCS met-
ric effectively captures differences in conceptual alignment
across models of varying size and pre-training datasets. Mod-
els with larger capacities and richer pre-training datasets tend
to exhibit higher concept consistency, offering better inter-
pretability and potentially stronger generalization abilities.
This analysis underscores the value of CCS as a diagnostic
tool for evaluating and comparing the internal conceptual
representations learned by CLIP-like models.

5.2. High CCS vs random heads pruning

To rigorously evaluate the effectiveness of the Concept Con-
sistency Score (CCS) as a measure of interpretability in CLIP
models, we compare the impact of pruning heads with high
CCS scores against pruning an equal number of randomly se-
lected heads. While earlier results demonstrated that pruning
high CCS heads significantly degrades model performance,
a critical question remains: Are these high-CCS heads gen-
uinely more important than other heads?

To investigate this, we conduct controlled experiments
where we randomly prune the same number of attention
heads and analyze the corresponding performance drop. The
results of these experiments are presented in Figure 5. As
shown in the figure, pruning high CCS heads consistently
leads to a substantially larger decrease in zero-shot per-
formance compared to random pruning, across different
datasets and model variants. These findings empirically vali-
date that CCS effectively identifies heads that are essential
for the model’s decision-making process, thereby offering
a principled mechanism for interpreting the internal work-
ings of CLIP models. Unlike random pruning, which affects
heads without regard to their learned properties, CCS-guided
pruning systematically targets heads that encode critical con-
cepts, revealing their functional role in model predictions.

Moreover, we observe that larger CLIP models exhibit
smaller differences between high CCS and random pruning
impacts compared to smaller models, suggesting that larger
architectures may possess more redundancy or distributed
representations, making them more resilient to head prun-
ing. Overall, these results establish CCS as a reliable and
interpretable metric for identifying concept-relevant heads,
contributing to a deeper understanding of how CLIP mod-
els organize and utilize conceptual knowledge across their
layers.

5.3. High CCS heads are crucial for out-of-domain
(OOD) detection

While our earlier experiments primarily focused on in-
domain datasets such as CIFAR-10 and CIFAR-100 to vali-
date the Concept Consistency Score (CCS), understanding
model behavior under out-of-domain (OOD) conditions is
a critical step toward evaluating models’ robustness and
spurious correlations. Table 5 demonstrates the results on
ImageNet-A and ImageNet-R datasets respectively. From
the table, we observe that pruning heads with high CCS
scores leads to a substantial degradation in model perfor-
mance, underscoring the critical role these heads play in
the model’s decision-making process. Notably, the ViT-B-



High CCS (CCS = 5) Moderate CCS (CCS = 3) Low CCS (CCS ≤ 1)

L22.H10 (“Animals”) L11.H0 (“Locations”) L10.H6 (“Body parts”)
Image showing prairie grouse Photo taken in Monument Valley A leg
Image with a donkey Majestic animal colorful procession
Image with a penguin An image of Andorra Contemplative monochrome portrait
Image with leopard print patterns An image of Fiji Graceful wings in motion
detailed reptile close-up Image showing prairie grouse Inviting reading nook
L23.H5 (“Nature”) L11.H11 (“Letters”) L9.H2 (“Textures”)
Intertwined tree branches A photo with the letter J Photo of a furry animal
Flowing water bodies A photo with the letter K Closeup of textured synthetic fabric
A meadow A swirling eddy Eclectic street scenes
A smoky plume A photo with the letter C Serene beach sunset
Blossoming springtime blooms awe-inspiring sky Minimalist white backdrop

Table 4. Examples of high, moderate and low CCS heads.

Model Imagenet-A Imagenet-R

Original High CCS Low CCS Original High CCS Low CCS

ViT-B-32-OpenAI 31.49 20.24 28.72 69.09 54.47 64.45
ViT-B-32-datacomp 4.96 4.59 4.65 34.06 31.6 32.47

ViT-B-16-OpenAI 49.85 25.49 47.27 77.37 55.52 74.84
ViT-B-16-LAION 37.97 25.27 27.44 80.56 66.32 71.73

ViT-L-14-OpenAI 70.4 68.15 69.2 87.87 86.56 86.97
ViT-L-14-LAION 53.8 42.44 52.93 87.12 82.22 86.94

Table 5. Accuracy comparison of various CLIP models on ImageNet-A and ImageNet-R. The values represent original accuracy, performance
after pruning high-CCS heads, and performance after pruning low-CCS heads.

16-OpenAI model exhibits the most pronounced drop in
performance upon pruning high CCS heads, suggesting that
this model relies heavily on a smaller set of concept-specific
heads for robust feature representation consistent with the
observations previously. These results demonstrate that CCS
is a powerful metric for identifying attention heads that en-
code essential, generalizable concepts in CLIP models while
avoiding spurious correlations.

5.4. Impact of CCS pruning on zero-shot video re-
trieval.

To further assess the importance of high CCS heads for
downstream tasks, we conducted a series of zero-shot video
retrieval experiments on three popular datasets: MSRVTT,
MSVD, and DIDEMO under different pruning strategies.
Figure 4 shows the results of this experiment. Notably,
pruning high CCS (Concept Consistency Score) heads con-
sistently leads to a substantial drop in performance across
all datasets, demonstrating their critical role in preserving
CLIP’s retrieval capabilities. For instance, on MSRVTT and
MSVD, high CCS pruning significantly underperforms com-
pared to low CCS and random head pruning, which show
much milder performance degradation. Interestingly, low
CCS and random head pruning maintain performance much

closer to the original unpruned model, indicating that not
all attention heads contribute equally to model competence.
This consistent trend across datasets highlights that heads
with high CCS scores are essential for encoding concept-
aligned information necessary for accurate zero-shot video
retrieval.

6. Related Work

Early research on interpretability primarily concentrated on
convolutional neural networks (CNNs) due to their intricate
and opaque decision-making processes [14, 18, 31, 32, 36].
More recently, the interpretability of Vision Transformers
(ViT) has garnered significant attention as these models, un-
like CNNs, rely on self-attention mechanisms rather than
convolutions. Researchers have focused on task-specific
analyses in areas such as image classification, captioning,
and object detection to understand how ViTs process and
interpret visual information [9–12, 27, 35]. One of the key
metrics used to measure interpretability in ViTs is the atten-
tion mechanism itself, which provides insights into how the
model distributes focus across different parts of an image
when making decisions [6, 8]. This has led to the develop-
ment of techniques that leverage attention maps to explain



Model Model size Patch size Pre-training data CCS@0 CCS@1 CCS@2 CCS@3 CCS@4 CCS@5

CLIP B 32 OpenAI-400M 0.021 0.062 0.167 0.271 0.312 0.167
CLIP B 32 OpenCLIP-datacomp 0.104 0.062 0.208 0.189 0.208 0.229
CLIP B 16 OpenAI-400M 0.021 0.062 0.125 0.292 0.292 0.208
CLIP B 16 OpenCLIP-LAION2B 0.062 0.062 0.105 0.25 0.25 0.271
CLIP L 14 OpenAI-400M 0.062 0.109 0.172 0.204 0.203 0.25
CLIP L 14 OpenCLIP-LAION2B 0.016 0.031 0.109 0.219 0.297 0.328

Table 6. Concept Consistency Score (CCS) for CLIP models.

(a) MSRVTT (b) MSVD (c) DIDEMO

Figure 4. Zero-shot performance comparison of unpruned (original) model, pruning high CSS, low CSS and random heads on video
retrieval task.

ViT predictions. Early work on multimodal interpretability,
which involves models that handle both visual and textual in-
puts, probed tasks such as how different modalities influence
model performance [5, 26] and how visual semantics are rep-
resented within the model [17, 23]. Aflalo et al. [1] explored
interpretability methods for vision-language transformers,
examining how these models combine visual and textual in-
formation to make joint decisions. Similarly, Stan et al. [33]
proposed new approaches for interpreting vision-language
models, focusing on the interactions between modalities and
how these influence model predictions. Our work builds
upon and leverages the methods introduced by Gandelsman
et al. [15, 16] to interpret attention heads, neurons, and layers
in vision-language models, providing deeper insights into
their decision-making processes.



Model Country-211 Oxford-pets

Original High CCS Low CCS Original High CCS Low CCS

ViT-B-32-OpenAI 17.16 11.46 16.3 50.07 46.66 48.96
ViT-B-32-datacomp 4.43 4.37 4.37 26.48 25.98 25.33

ViT-B-16-OpenAI 22.81 10.72 21.79 52.72 49.12 51.89
ViT-B-16-LAION 20.45 7.49 16.87 65.79 48.48 49.81

ViT-L-14-OpenAI 31.91 23.21 30.63 61.79 62.04 62.08
ViT-L-14-LAION 26.41 16.38 25.66 54.1 56.12 57.16

Table 7. Accuracy comparison of various CLIP models on Country-211 and Oxford-pets datasets. The values represent original accuracy,
performance after pruning high-CCS heads, and performance after pruning low-CCS heads.

(a) CIFAR-10 (b) CIFAR-100 (c) Food-101

Figure 5. Zero-shot performance comparison for CIFAR-10, CIFAR-100, and Food-101 datasets under different pruning strategies.
For random pruning, results are averaged across three runs.
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