Predictive Dynamic Fusion

Bing Cao'? Yinan Xia'

Abstract

Multimodal fusion is crucial in joint decision-
making systems for rendering holistic judgments.
Since multimodal data changes in open environ-
ments, dynamic fusion has emerged and achieved
remarkable progress in numerous applications.
However, most existing dynamic multimodal fu-
sion methods lack theoretical guarantees and eas-
ily fall into suboptimal problems, yielding un-
reliability and instability. To address this issue,
we propose a Predictive Dynamic Fusion (PDF)
framework for multimodal learning. We proceed
to reveal the multimodal fusion from a general-
ization perspective and theoretically derive the
predictable Collaborative Belief (Co-Belief) with
Mono- and Holo-Confidence, which provably re-
duces the upper bound of generalization error.
Accordingly, we further propose a relative cal-
ibration strategy to calibrate the predicted Co-
Belief for potential uncertainty. Extensive ex-
periments on multiple benchmarks confirm our
superiority. Our code is available at https:
//github.com/Yinan—-Xia/PDF.

1. Introduction

Many decision-making challenges in real-world applica-
tions, such as autonomous driving (Cui et al., 2019; Feng
et al., 2020), clinical diagnosis (Perrin et al., 2009; Tem-
pany et al., 2015), and sentiment analysis (Soleymani et al.,
2017; Zadeh et al., 2017), are fundamentally based on multi-
modal data (Kiela et al., 2019). To fully capture complemen-
tary perceptions, multimodal fusion emerges as a promising
learning paradigm that presents an opportunity to integrate
all available modalities and achieve enhanced performance.
Despite these advances, experiments have shown that tradi-
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Figure 1. Our PDF v.s. other fusion methods. We derive from the
upper bound of generalization error and predict the Co-Belief for
each modality with a theoretical guarantee. The relative calibration
calibrates potential uncertainty for more reliable learning. Experi-
ments on different noise levels validate our superiority.

tional fusion techniques have largely overlooked the dynam-
ically changing quality of multimodal data (Natarajan et al.,
2012; Pérez-Ruaet al., 2019; Yan et al., 2004). In reality, the
data quality of different modalities and their inherent rela-
tionships often vary with the open environment. Numerous
studies (Xue & Marculescu, 2023) empirically recognized
that multimodal learning sometimes falls to depending on
partial modalities, even a single modality, instead of mul-
timodal data, especially with modality imbalance (Wang
et al., 2020; Peng et al., 2022) or high noise (Huang et al.,
2021c; Scheunders & De Backer, 2007). Therefore, dy-
namic multimodal learning becomes a key cue for robust
fusion. Some recent works theoretically proved multimodal
learning models do not always outperform their unimodal
counterparts, encountering limited data volumes (Huang
et al., 2021b). This indicates that the dynamic relationship
between multimodal data is not a free lunch.

Intuitively, fusing information from multimodal data by
using the overall quality estimation of each modality is rea-
sonable. However, the data quality estimation is not always
reliable due to the unimodal uncertainty and the changing
relative reliability of multimodal systems (Ma et al., 2023).
We empirically identify that the dominance of each modality
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is dynamically changing in open environments. On this ba-
sis, one fundamental challenge to reliable multimodal learn-
ing is how to precisely estimate the contribution of each
modality to the multimodal systems (Zhang et al., 2023).
However, existing multimodal dynamic fusion techniques
mainly focus on addressing this problem by exploring dy-
namic network architecture (Xue & Marculescu, 2023) or
estimating the modality’s quality by uncertainty (Han et al.,
2022b), which commonly lack theoretical guarantees, re-
sulting in unsatisfactory fusion performance.

To solve this problem, we revisited the relationship between
modality fusion weights and losses. Deriving from the upper
bound of generalization error (Theorem 3.5 in Mohri et al.
2018), we reveal that the key to reducing generalization
error bound lies in the negative covariance between fusion
weight and current modality loss as well as the positive co-
variance between fusion weight and other’s modality loss,
which implies that fusion weights in the multimodal system
should not solely consider the unimodal but is also enforced
to integrate other modalities’ statuses. With this finding, a
natural idea is to employ the loss value of each modality to
perform multimodal fusion. However, directly predicting
the loss value is unstable as the loss is minimized when
converged (see Section 5.3.3). In the setting of multimodal
classification with cross-entropy loss, we transform the pre-
diction of loss value into the confidence of true class label,
while satisfying the correlation derived from the generaliza-
tion error. The motivation is based on a natural intuition,
i.e., the probability of true class and loss is negative.

To this end, we offer a new perspective on the theoretical
foundation of multimodal fusion and propose a Predictive
Dynamic Fusion (PDF) framework, which is effective in
reducing the upper bound of generalization error and sig-
nificantly improving multimodal reliability and stability.
As shown in Figure 1 (a), to be specific, PDF predicts the
Collaborative Belief (Co-Belief) with Mono-Confidence
and Holo-Confidence for each modality. The Mono- and
Holo-Confidences derive from the intra-modal negative and
inter-modal positive covariance between fusion weight and
loss function, respectively. In addition, we empirically iden-
tify the changing data quality in open environments, which
leads to inevitable prediction uncertainty. To handle this is-
sue, we further propose a relative calibration to calibrate the
predicted Co-Belief from the perspective of a multimodal
system, which implies that the relative dominance of each
modality should change dynamically as the quality of other
modalities changes, rather than being static. Experiments
demonstrated that our method has strong generalization ca-
pabilities, achieving superior results on multiple datasets.
Overall, our contributions can be summarized as follows:

» This paper provides an intuitive and rigorous multi-
modal fusion paradigm from the perspective of gener-
alization error. Under theoretical analysis, we derive

a new Predictive Dynamic Fusion (PDF) framework
based on the covariance of the fusion weight and loss
function. This offers theoretical guarantees to reduce
the upper bound of generalization error in decision-
level multimodal fusion.

* We propose to transform the loss prediction to a more
robust Collaborative Belief (Co-Belief) prediction,
which naturally satisfies the covariance relationship
to reduce the upper bound of generalization error with-
out additional computational cost, and significantly
enhance the prediction stability.

* We develop a relative calibration strategy to calibrate
the potential prediction uncertainty and reveal the rela-
tive dominance in dynamic multimodal systems. Ex-
tensive experiments validate our theoretical analysis
and superior performance.

2. Related Works

Multimodal fusion is a fundamental problem in multimodal
learning (Atrey et al., 2010; Cao et al., 2023; Zhu et al.,
2024). Existing methods can be mainly categorized into
early fusion (Nefian et al., 2002), middle fusion (Natara-
jan et al., 2012), and late fusion (Snoek et al., 2005; Wang
et al., 2019b). Early fusion (Ayache et al., 2007) directly
combines various modalities at the data level, often merg-
ing multimodal data through concatenation. Middle fusion
(Han et al., 2022a; Wang et al., 2019a) is widely used in
multimodal learning, which mainly fuses multimodal data
at the feature level. Late fusion (Zhang et al., 2023) usually
integrates multimodal data in the semantic space, which
can be further grouped into naive fusion (Liu et al., 2018),
learnable classifier fusion (Xue & Marculescu, 2023), and
confidence-based fusion (Han et al., 2022b).

Uncertainty estimation is crucial for improving the
model’s interpretability, accuracy, and robustness, especially
for multimodal systems. Many efforts (Neal, 2012; Gal &
Ghahramani, 2016) have been made on this issue. Bayesian
Neural Networks (BNNs) (Denker & LeCun, 1990; Mackay,
1992) use probability distributions, rather than single values,
to represent the weights in neural networks. Deep ensem-
ble methods (Lakshminarayanan et al., 2017; Amini et al.,
2020) typically train multiple models and aggregate their
predictions, then estimate the uncertainty through prediction
variances. Dempster-Shafer’s theory extends Bayesian to
subjective probabilities, offering a robust model for handling
epistemic uncertainty (Dempster, 1968). Energy Score (Liu
et al., 2020) is promising in estimating uncertainty. The
pioneering work, QMF (Zhang et al., 2023) explores gener-
alization error and uncertainty-aware weighting to perform
robust fusion. Gradient-based uncertainty (Lee & AlRegib,
2020) uses backward propagation gradients to quantify un-
certainty. Essentially, it evaluates the output uniformity.
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Figure 2. We use confidence predictors to predict the Mono-Confidence of each modality, where the confidence is negatively correlated
with the loss of the corresponding modality theoretically. Taking into account the Mono-Confidence of other modalities, we further obtain
the Holo-Confidence, where the confidence is positively correlated with the loss of other modalities. By combining Mono-Confidence and
Holo-Confidence, we obtain the Co-Belief, which is calibrated as fusion weight to achieve a reduction in the generalization error bounds.

3. Theory

In this section, we first clarify the basic settings and for-
mulas in multimodal fusion. Next, we revisit the formula
for generalization error bounds and establish its connection
with fusion weights, revealing the theoretical guarantee for
reducing the upper bound of generalization error. Finally,
we propose a predictable dynamic fusion framework that
satisfies the above theoretical analysis.

3.1. Basic Setting

Given multimodal tasks, we define M as the set of modal-
ities, thus |[M]| is the cardinality of M. We denote our
training dataset as Dy,qin, = {7:, ¥}, € X x ), where
N is the sample size of Dyiygin, T; = {xm}lMl has | M|
modalities, and y; € ) is the corresponding label. We aim
to design a predictable fusion weight w for each modality
and achieve a robust multimodal fusion. The uni-modal
projection function f™ : X — ) is trained as the fusion
weight w™ dynamically adjusting during training, where
m € M. The decision-level multimodal fusion is as:

|M]

= Z W™ M (E™). 1)
m=1

3.2. Generalization Error Upper Bound

Generalization Error Upper Bound (GEB) is an important
concept in machine learning, referring to an upper bound

on the performance of a model on unknown data (Zhang
et al., 2023). Typically, the smaller the upper bound of the
generalization error, the better the model’s generalization
ability, i.e., the better it performs on unknown joint distri-
bution. For binary classification, the Generalization Error
(GE) of a model f can be defined as:

where { is a convex logistic loss function, D is an unknown
dataset. By Rademacher complexity theory (Theorem 3.5
in Mohri et al. 2018), we delve into the essence of GEB in
multimodal fusion and obtain the following theorem. The
full proof of Theorem 3.1 is given in Appendix A.1.

Theorem 3.1. (Generalization Error Upper Bound in Mul-
timodal System). Let efr(f™) denotes the empirical errors
of the m-th modality on Dyrqin = {Ti,y: Y, and H is
hypothesis set i.e., H : X — {—1,+1}, where f € H.
R (H) is the Rademacher complexities (Theorem 3.5 in
Mohri et al. 2018). We holds with a confidence level of 1 — A
O<A<1):

| M|
GE(f) < M| (RN(H) " \/M) n Z err(f™)

+|§:| L Gopm, gmy MIZL Zc )
|M| ov(w |./\/l| va

m
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where Cov(w™,¢™) is the covariance between fusion
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weight and loss of m-th modality, and Cov(w™, ¢7) is the
cross-modal covariance. Note that the empirical errors
err(f™) and the Rademacher complexities R () remain
constant when optimizing over the same model. There-
fore, the key to achieving a lower GEB lies in ensuring that
Cov(w™, f™) < 0 and Cov(w™,#?) > 0,Vj # m. Thus,
to reduce the multimodal fusion model’s GEB, we can draw
the following corollaries:

Corollary 3.2. A negative correlation should exist between
a modality’s weight and its loss.

Corollary 3.3. A positive correlation is desirable between
a modality’s weight and the losses of the other modalities.

3.3. Collaborative Belief
3.3.1. MONO-CONFIDENCE

To fulfill Corollary 3.2, an intuitive strategy is to predict
the loss of each modality and utilize the predicted loss to
formulate the weight, thereby establishing a negative cor-
relation explicitly and directly. Nevertheless, employing
loss as a fusion weight for modalities presents significant
challenges. Notably, as the loss minimizes during the train-
ing process, even marginal biases can induce substantial
perturbations. This sensitivity to small errors in loss estima-
tion may compromise the stability and effectiveness of the
weight. Also, the loss value may range from zero to positive
infinity, making its precise prediction quite challenging. To
mitigate these challenges, we propose substituting loss with
the probability (psrve € [0, 1]) of the true class label, which
is inversely related to the loss as denoted by £ = — log Pgrye
(Full derivation of the relationship between loss and Py
is provided in the Appendix A.2), provides a more stable
and interpretable basis for weight computation.

Owing to the negative correlation between loss and pyyye,
we consider using the py,. as the weight for multimodal
fusion to fulfill Corollary 3.2. By analyzing the properties of
Pirue, We identify that it reflects the confidence of modality,
some works (Corbiere et al., 2019) have articulated this.
Using py, as a fusion weight not only helps in lowering
the upper bound of generalization error but also provides a
theoretical guarantee for dynamic multimodal fusion. Since
the predictable py,,,. solely considers the current modality’s
confidence, we define it as Mono-Confidence:

Mono-Conf™ = py,.., 4

where p;7’,,. is the prediction of p}*,,. as there is no ground-
true label in the test phase. The detailed implementation of
the prediction is given in Appendix C.6

3.3.2. HOLO-CONFIDENCE

Recalling Corollary 3.3, an instinctive approach to naturally
achieve Cov(w™, ¢7) > 0,Vj # m is using the losses of

other modalities as the weight. Thus, we consider construct-
ing the weight by using the sum of the losses from other
modalities as the weight for the given modality. Basing
the property of / = — log pirue, We replaced £ with piye.
Thus, we define this term as Holo-Confidence because of
the cross-modal interaction of pyye:

Ml
Z];ém

M
S
1Og H] #m ﬁgure

)
IOg H‘zjwl‘ ptrue

Holo-Conf™ =

where ¢ and £/ s the prediction of ¢ and £/, Our proposed
Holo-Confidence also fulfills Corollary 3.3, the full proof is
given in the Appendix A.3.

3.3.3. Co-BELIEF

Since Mono-Confidence and Holo-Confidence facilitate the
collaborative interaction among modalities, to fulfill Corol-
lary 3.2 and 3.3 simultaneously, we define a collaborative
belief (Co-Belief) as a linear combination of the predictable
Mono-Confidence and Holo-Confidence, which can be taken
as the final fusion weight.

Co-Belief™ = Mono-Conf™ + Holo-Conf™.  (6)

Noting that the Co-Belief meets Corollary 3.2 and 3.3 simul-
taneously, and is better than the individual term to represent
the weight. The proof is shown in Appendix A .4.

4. Method

To achieve a reliable prediction, we propose a relative cali-
bration strategy to calibrate the predicted Co-Belief to han-
dle inevitable uncertainty. With this reliable prediction,
we coined our multimodal fusion framework as Predictive
Dynamic Fusion (PDF).

Note that the data quality usually dynamically changes in
open environments, leading to inevitable uncertainty for
the prediction. To decrease the potential uncertainty of Co-
Belief in complex scenarios, we further propose a Relative
Calibration (RC) to calibrate the predicted Co-Belief from
the perspective of a multimodal system. This implies that
the relative dominance of each modality should change dy-
namically as the quality of other modalities changes, rather
than being static.

Firstly, we define the Distribution Uniformity DU™ of m-th
modality in multimodal system as,

C
DU" = & Y lSoftmass )~ )
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where C'is the class number, 1 is the mean of probability,
and it holds p = é The distribution of probabilities after
softmax offers critical insights into a model’s uncertainty:
A uniform distribution typically suggests high uncertainty,
whereas a peaked distribution implies low uncertainty in
predictions (Huang et al., 2021a). We compared it with
other uncertainty estimation methods in Appendix B.2.

Considering the changing environment, the uncertainty of
different modalities in a multimodal system should be rel-
ative, i.e., the uncertainty of each modality should change
dynamically as the uncertainty of other modalities changes.
One modality should dynamically perceive the changes
of other modalities and modify its relative contribution
to the multimodal system. Thus, we introduce a Relative
Calibration (RC) to calibrate the relative uncertainty of each
modality. The relative calibration for m-th modality can be
formulated as follows (in a scenario with two modalities,
denoted as m,n € M):

C
pun  Softmar(fa): — p

RC™ = DU

p . ®
2 |Softmaz(f*(@™)); = u

The definition of RC™ when |[M| > 2 is given in the Ap-
pendix A.S.

Considering real-world factors, RC"™ works with an asym-
metric form to further calibrate the Co-Belief. Specifically,
we postulate that the modality with a RC™ < 1 possess
greater uncertainty, and it tends to produce relatively unreli-
able predictions for p};,,. (Gawlikowski et al., 2023), thus
the corresponding Co-Belief has potential risks in accuracy.
Hence, we reduce the contribution of such a modality by
multiplying its predicted Co-Belief with RC™ (RC™ < 1).
Conversely, modalities with a RC™ > 1 are deemed to
have less uncertainty and accurate Co-Belief, thus the con-
tribution of these modalities can be maintained to reduce
optimization difficulty. Based on this, the asymmetric cali-
bration term is defined as:

pm RC™ = %%n if DU™ < DU", ©)
)1 otherwise.

We calibrate the Co-Belief of the m-th modality with our
asymmetric calibration strategy and obtain the Calibrated
Co-Belief (CCB) as:

CCB" = (Co-Belief™) - k™. (10)

We use the each modality’s CCB as its fusion weight in a

multimodal system,

| M|

flo) =Y W™ fm (™)
m=1

|M|

= Z Softmaxz(CCB™) - f™(z™). (11)

m=1

The loss functions of our PDF framework are given in Ap-
pendix C.6.

5. Experiments
5.1. Setup

Datasets. We evaluate the proposed method across vari-
ous multimodal classification tasks, including ¢ Image-text
classification: The UPMC FOOD101 dataset (Wang et al.,
2015) contains noisy images and texts obtained in uncon-
trolled environments containing about 100,000 recipes for a
total of 101 food categories. MVSA (Niu et al., 2016) is a
sentiment analysis dataset that collects sentiment data for
matched pairs of users’ texts and images; ¢ Scenes recogni-
tion: NYU Depth V2 (Silberman et al., 2012) is an indoor
scenes dataset, both the RGB and Depth Cameras recorded
the image-pairs; © Emotion recognition: CREMA-D (Cao
et al., 2014) is an audio-visual dataset designed for recog-
nizing multi-modal emotion, demonstrating various basic
emotional states (happy, sad, anger, fear, disgust, and neu-
tral) through spoken sentences. ¢ Face recognition: PIE
(Sim et al., 2003) is a pose, illumination, and expression
database of over 40,000 facial images of 68 people.

Evaluation metrics. We report the average and worst ac-
curacies in the presence of Gaussian noise (for image and
audio modalities) and blank noise (for text modality), in
accordance with prior studies (Zhang et al., 2023; Han
et al., 2022b; Xie et al., 2017; Ma et al., 2021). To mit-
igate the impact of randomness, we replicate to evaluate our
model using five distinct seeds. We also defined two new
metrics, Aggregate Covariance (AC) and GEB Decreasing
Proportion (GDP), to quantify the capability of fusion strat-
egy to reduce generalization error upper bound, i.e. the
generalization ability of the model with certain fusion strat-
egy. The specific definitions are given in Appendix C.3.

Competing methods. In our experiments, we compare our
method with established fusion techniques, including late
fusion and concatenation-based fusion, which are static, as
well as with dynamic fusion approaches, including TMC
(Han et al., 2022b), QMF (Zhang et al., 2023) and DynMM
(Xue & Marculescu, 2023). We also establish unimodal
baselines for comparison: RGB and depth for scene recog-
nition; text and image for image-text classification; visual
and audio for emotion recognition.
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Table 1. We add Gaussian noise on 50% modalities and € presents the noise degree. This table reported the average and worst classification
accuracies of our method and the competing methods on MVSA, FOOD101, NYU Depth V2, and CREMA-D datasets. The method
marked with * was replicated by ourselves, while the rest of the results are sourced from (Zhang et al., 2023). Full results with standard

deviation are reported in Table 9.

e=0.0 €e=5.0 e =10.0
DATASET METHOD AVG. WORST. AVG. WORST. AVG. WORST.
IMG 64.12 62.04 49.36 45.67 45.00 39.31
TEXT 75.61 74.76 69.50 65.70 47.41 45.86
CONCAT 65.59 64.74 50.70 44.70 46.12 41.81
MVSA LATE FUSION 76.88 74.76 63.46 58.57 55.16 47.78
TMC 74.88 71.10 66.72 60.12 60.36 53.37
QMF 78.07 76.30 73.85 71.10 61.28 57.61
DYNMM* 79.07 78.23 67.96 65.51 59.21 56.65
OURS 79.94 78.42 74.40 72.64 63.09 60.31
IMG 64.62 64.22 34.72 34.19 33.03 32.67
TEXT 86.46 86.42 67.38 67.19 43.88 43.56
CONCAT 88.20 87.81 61.10 59.25 49.86 47.79
UMPC LATE FUSION 90.69 90.58 68.49 65.05 58.00 55.77
FOOD 101 T™C 89.86 89.80 73.92 73.64 61.37 61.10
QMF 92.92 92.72 76.03 74.68 62.21 61.76
DYNMM* 92.59 92.50 74.74 74.35 59.68 59.22
OURS 93.32 92.84 76.47 76.09 62.83 62.03
RGB 63.30 62.54 53.12 50.31 45.46 42.20
DEPTH 62.65 61.01 50.95 42.81 44.13 35.93
CONCAT* 69.88 69.11 63.82 61.47 60.03 55.66
NYU LATE FUSION*  70.03 68.65 64.37 63.30 60.55 57.95
DEPTH V2 T™MC* 70.40 70.03 59.33 55.51 50.61 45.41
QMF* 69.54 68.65 64.10 62.54 60.18 58.41
DYNMM * 65.50 64.99 54.31 52.14 46.79 45.26
OURS 71.37 70.18 65.72 63.91 62.56 60.25
VISUAL* 43.60 40.05 32.52 28.49 30.17 28.09
AUDIO* 58.67 57.39 54.66 50.67 43.01 35.35
CONCAT* 61.56 59.95 52.33 45.16 41.01 31.59
LATE FUSION*  61.81 57.39 49.84 39.92 39.15 29.90
CREMA-D TMC* 59.15 56.18 54.42 45.16 46.79 37.63
QMF* 63.04 60.75 56.06 51.75 41.60 35.89
DYNMM* 60.46 59.81 54.43 52.82 42.39 41.26
OURS 63.31 61.69 57.85 54.17 47.84 44.62

Implementation details. The network was trained for
100 epochs utilizing the Adam optimizer with $; = 0.9,
B2 = 0.999, weight decay of 0.01, dropout rate of 0.1, and
a batch size of 16. All the experiments were conducted
on an NVIDIA A6000 GPU, using PyTorch with default
parameters for all methods. More details are provided in
Appendix C.4.

5.2. Questions to be Verified

We conducted a series of experiments to investigate our
effectiveness and rationale thoroughly. The experiments
were designed to address four primary questions:

e Does our proposed method have better generalization
ability than its counterparts?

In Section 3.2, we conducted a theoretical analysis
to demonstrate that our method can effectively lower
the upper bound of generalization error, which is evi-
denced in its performance and robustness to noisy data.
To empirically substantiate that our method reduces the
generalization error upper bound, we carried out com-
parative experiments across five datasets under diverse
noise conditions.

Does our PDF framework really work?

We performed an ablation study to verify the effective-
ness of each component of our framework. Addition-
ally, we visualized the capability of Mono-Confidence,
Co-Belief, and Calibrated Co-Belief in reducing the
generalization error upper bound.
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Figure 3. We evaluated the effectiveness of Mono-Confidence, Co-Belief, and Calibrated Co-Belief as fusion weights on the NYU Depth
V2 dataset to determine their effectiveness in minimizing the generalization error upper bound. The yellow part of the pie chart in Figure 3
(a), (b), or (c) illustrates the Generalization Error Bound Decreasing Proportion (GDP) for each weight form under varying noises (0, 5,
and 10). As depicted in Figure 3 (c), the Calibrated Co-Belief attains the highest GDP, leading to the best generalization. Figure 3 (d)
presents the GDP across diverse fusion strategies and noise intensities. More details are given in Appendix D.1.

e Why do we predict pirye instead of loss?

In Section 3.3, we choose to establish the correlation
between weights and loss by predicting psye. We
analyzed the distribution of py;qe, and by examining
the relationship between py,,,. and loss, we identified
the challenge in predicting loss. Eventually, we com-
pared the performance of the two prediction methods,
validating the advantages of psyye.

o Why relative calibration is effective and reliable?

To further investigate the effect of relative calibration,
we conducted experiments to explore the relative un-
certainty when data quality changes by adding noise.
We also compared the efficacy of DU with that of other
uncertainty estimation methods.

5.3. Results
5.3.1. GENERALIZATION ABILITY

Our method improves the model’s generalization compared
to the competing approaches, as shown in Table 1. No-
tably, as the noise intensity increases, the advantages of
our method become increasingly highlighted, reinforcing its
superior generalization potential. It is especially commend-
able that our approach consistently realizes state-of-the-art
performance on all the datasets against the competing meth-
ods. Full results under different noises (Gaussian noise and
Salt-Pepper noise) with standard deviation are shown in Ap-
pendix D.5. Additionally, we also conducted experiments
on PIE dataset with 3 modalities in Appendix D.4.

To further validate the efficacy of our approach, we incor-
porated time-varying noise into the CREMA-D dataset to
emulate real-world scenarios. Specifically, we introduced
noise with varying frequencies to synthesize noisy speech
data, and the intensity of noise added to image frames also
varied over time. As depicted in Table 3, our PDF demon-
strated exceptional generalization prowess, even amidst the
influence of time-varying noise interference.

Table 2. Ablation study on MVSA to verify the effectiveness of
Mono-Confidence (MC), Holo-Confidence (HC), and relative cali-
bration (RC) as well as the complete model.

e=0 e=5 e=10

MCHC RC AVG. WORST. AVG. WORST. AVG. WORST.
N4 79.43 78.23 T72.57 69.56 60.84 55.11
V4 79.28 78.23 7257 69.94 61.22 55.68

v/ 7911 77.84 71.30 63.97 60.11 50.29

ARV 79.92 79.00 72.83 70.13 60.97 55.49
v 4/ 79.06 7823 73.09 71.10 62.11 58.57

Vv v 79.62 7823 73.12 70.91 62.13 57.61
vV oV 7994 7842 7440 72.64 63.09 60.31

Table 3. Comparison between our PDF and other competing meth-
ods on CREMA-D dataset with added time-varying noise.

METHOD AVG. WORST.
CONCAT 60.20 58.60
LATE FUSION 60.80 57.39
TMC 57.17 54.03
QMF 61.20 59.40
DYNMM 57.90 57.53
OURS 61.40 60.34

5.3.2. ABLATION STUDY

We conducted ablated experiments on Mono-Confidence,
Holo-Confidence, and Relative Calibration. The mean and
worst accuracy on the MVSA dataset across different noise
intensities are reported. The results, presented in Table 2,
reveal that the model with Calibrated Co-Belief attains the
best robustness and generalization.

Lower generalization error upper bound. We applied
the proposed Generalization Error Bound Decreasing Pro-
portion (GDP) to measure the capacity of a fusion strategy
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Figure 4. We present the true distribution of p¢y.e for the samples
in UPMC Food 101, according to the blue area in (a), while the
red line in (a) is the function curve of loss corresponding to ptrue.
In (b), we reported the performance of two prediction methods in
various noise conditions. It’s obvious that predicting pirye yields
better performance.

Table 4. Comparison with traditional uncertainty on MVSA.

UNCERTAINTY e=0 e=5 e=10
ENERGY 79.14 73.22 61.72
ENTROPY 78.88 72.07 60.94
EVIDENCE 79.17 73.28 61.87
MCP 79.48 73.22 61.93
Ours (DU) 79.94 74.40 63.09

for reducing the Generalization Error Upper Bound (GEB).
Separately, we compare the GDP metrics of models that
utilize Mono-Conf (Equation (4)), Co-Belief (Equation (5)),
and CCB (Equation (10)) as fusion weights. Specifically,
for each fusion strategy, we trained 50 models with distinct
random seeds and reported the GDP of these models under
varying noises (0, 5, and 10) during testing. We took Mono-
Confidence, Co-Belief, and CCB as distinct fusion weights
for the model and depicted the AC (defined in Equation (23))
distribution in Figure 3 (a), (b), and (c). The proportion of
AC < 0, i.e. GDP, signifies the fusion strategy’s potential
to reduce the model’s GEB. Figure 3 (d) displays the GDP
of different fusion strategies under diverse noisy conditions.
The proportion of Mono-Confidence that reduces GEB with-
out noise is greater than 50%, and Holo-Confidence further
increases the model’s GDP, CCB endows the model with the
best generalization capabilities in dynamic environments.
These experiments validate our effectiveness in lowering
the generalization error upper bound.

5.3.3. PREDICTING P4y IS MORE FEASIBLE

Although the most direct method to establish a relation-
ship between weight and loss is to use the predicted loss as
weight, it encountered difficulties in practice. As shown in
Figure 4 (a), we display the sample distribution of p;,. and
the corresponding loss function curve. We observed that ap-
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Figure 5. Relative Calibration (RC) can detect noise variations
within the current modality as well as in other modalities. The
noise ratio denotes the ratio of the noises added to the two modal-
ities, representing the relative exposure of the two modalities to
noise. We maintained a fixed noise level for the modality denoted
by the blue line in the figure.

proximately 83% of py,... values fall into the range of 0.8 to
1, while the corresponding loss value ranges between 0 and
0.097, making it challenging to predict loss accurately. Em-
ploying the same methodology, we conducted comparative
experiments on predicting the loss and the py,.,e, Figure 4
(b) shows that predicting py,., consistently outperforms pre-
dicting loss under various noise conditions. This experiment
validates the effectiveness of our prediction strategy.

5.3.4. EFFECTIVENESS OF RELATIVE CALIBRATION

Relative calibration reflects the quality of modality. We
conducted experiments across four datasets with two modal-
ities to explore the responsiveness of Relative Calibration
(RC) to modality quality. We changed the data quality by
varying noise levels. Specifically, we alter the degree of
noise added to it and fix another modality’s noise level.
More details of adding noise are given in Appendix C.5.

The noise ratio denotes the ratio of the noises added to the
two modalities, representing the relative exposure of the two
modalities to noise. As illustrated in Figure 5, the RC value
of the noisy modality declines with increased noise, while
the RC of the modality with fixed noise enhances or main-
tains as the noise level of the other modality escalates. This
indicates that RC is adept at discerning the quality of both
its modality and the others. These findings corroborate the
conceptual expectation of multimodal data quality relativity
and emphasize the dynamism and interpretability of RC.

Comparison with traditional uncertainty. We compared
the proposed DU with conventional uncertainty estimation
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methods. For a fair comparison, we substituted our proposed
DU in RC with alternative uncertainties, namely energy-
based uncertainty (Liu et al., 2020), entropy (Shannon,
1948), uncertainty in Dempster—Shafer Theory (DST) (Sen-
soy et al., 2018), and Maximum Class Probability (MCP)
(Hendrycks & Gimpel, 2016). As shown in Table 4, DU
demonstrates the best performance compared to other uncer-
tainties. Among these uncertainties, entropy has a similar
form to DU, howeyver, it is unsuitable for our method, more
details are given in Appendix B.2. Moreover, to validate
the advantages of RC’s relativity and asymmetric form, we
conducted analysis and experiments in Appendix D.3.

6. Conclusion

Through extensive empirical studies, we observe that the fu-
sion paradigms of existing methods are typically unreliable,
and lack theoretical guarantees. Starting from the gener-
alization error upper bound (GEB), we find the positive
and negative correlations between fusion weight and loss,
which inspired us to predict the Mono- and Holo-Confidence
directly. Thus, we obtain predictable Co-Belief with the-
oretical guarantees to reduce GEB. Due to the potential
prediction uncertainty, it is further calibrated in multimodal
systems by relative calibration and used as the fusion weight.
Comprehensive experiments with in-depth analysis validate
our superiority in accuracy and stability against other ap-
proaches. Moreover, our PDF’s extensions to other tasks
are worth exploring. We believe this method is inspirational
research that will benefit the community.

Impact Statement

This paper presents work to advance the field of multimodal
fusion in machine learning. Our goal is to construct a pre-
dictive multimodal fusion method to boost the safety and
accuracy of joint decisions in multimodal systems, lower-
ing the potential modality bias and instability of prediction.
However, due to the modality imbalance and data bias in
open environments, there is a possibility of inevitable uncer-
tainty when applying our method in real-world applications.
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Appendix
A. Proofs

A.1. Proof of Theorem 3.1

Proof. Given the decision-level multimodal fusion formula delineated in Equation (1), consider £ to be the convex logistic

wm

loss function applied to binary classification tasks. The softmax function is utilized to normalize w™: W™ = %
j=1¢"
Considering the property of convex function, we have:
|M| | M|
é(f($)7 y) — Z( Z wmf’m(x('m))7 y) < Z wmg(f’rn(x(m))’ y) (12)
m=1 m=1

When computing the expectation of Equation (12) and leveraging the properties of expectation, the subsequent equation is
satisfied. To simplify notation, ¢( f™(x), y) can be denoted as ¢ and D is an unknown dataset:
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|M|
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To simplify Equation (13), we invoke Rademacher complexity theory (Mohri et al., 2018) (Theorem 3.5), which establishes
that with a confidence level of 1 — A where 0 < A < 1, the following holds:

In(1/A)
2N

In this context, err(f™) represents the empirical error of the unimodal function f™, and H denotes the hypothesis set,
defined as H : X — {—1,+1}, which includes f as a member. The Rademacher complexity is denoted by Ry (H).
Consequently, we assert that with a confidence level of 1 — A, where 0 < A < 1, the following relationship is upheld:

m(1/a)) | A i M| -1
GE(f)S|M|<RN(H)+\/7>+Z€TT ™) +Z[|M|C’ovw M) — M ZC’ovw o) }

m
Mono-Covariance J# Holo-Covariance

(14)

E(ey)~p[l™] < efr[f™] + Rn(H) + (13)

A.2. Proof of Mono-Confidence Satisfies Corollary 3.2

Proof. In classification tasks with a cross-entropy function, the unimodal loss is defined as:
N
—> " yilogp;. (15)

The one-hot label of the i-th class is denoted by y;, and p; represents the predicted probability for the i-th class. Under the
assumption that the ¢-th class is the correct classification, we have y; = 1 and y; = 0 for all ¢ # ¢. The probability of true
class pirye 1s pr under the above assumption. Consequently, Equation (15) can be simplified to:

t = —ylogpy — Zyi log ps
it
= —logp: (16)
= —log ptrue (17)
Noting that py,,. naturally correlates with cross-entropy loss. To substantiate that Cov(p}},.. £™) < 0, we put forth the
following proposition:

Proposition A.1. For any two random variables X and Y, the condition Cov(X,Y) < 0 is equivalent to that X and Y are
inversely correlated, and conversely, Cov(X,Y') > 0 is equivalent to a positive correlation between them.

Recalling Equation (17), we have
de 1

=- ; (18)
dptrue Ptrue

where pye € [0, 1]. Hence, we have dp?fue € (—o0, —1], which means / is negatively correlated with py;.,. in the domain

of pirue. With the Proposition A.1, the fact that Cov(py),,., £™) < 0 holds. Recalling the Corollary 3.2, it’s proved that
using pyrye as the Mono-Confidence conforms to reducing generalization error upper bound.

A.3. Proof of Holo-Confidence Satisfies Corollary 3.3

Proof. Recalling the definition of the m-th modality’s Holo-Confidence:

Z_j;ém gj

Holo-Conf™ = =2~ |
M p;
SIMle

19)

As for the positive correlation between Holo-Conf™ and ¢/, the derivative of Holo-Conf” with respect to £/ for all j # m
is computed as follows:

m |M| 7 ] ;
OHolo-Conf’ Z =3 m _ 09 20)

ok <ZL”:1' oy’ (M gy

13
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where ¢ € [0, +00). Consequently, since W € [0, 4+00), it is established that Holo-Conf™ is positively correlated

with ¢/ within the domain of #7, for all j # m. Given Proposition A.1, it is validated that C'ov(Holo-Conf™, 0 ) > 0 for all
j # m. Referencing Corollary 3.3, this demonstrates that our proposed Holo-Confidence metric aligns with the reduction of
the generalization error upper bound.

A.4. Proof of Co-Belief Lowers GEB

To verify whether a fusion strategy can reduce the model’s GEB, we proposed the Aggregate Covariance (AC), where

|M]
AC(f) = Z (Cov(wm,ﬁm) - (M| -1) Z Cov(wm,ﬁj)), (21
m=1 Jj#Em

where f € H is the multimodal function and f™ is the function of m-th modality. When AC(f) < 0, it is deemed that the
GEB of f is decreased. We identify that reducing the generalization upper bound requires ensuring our proposed metric,
AC(f) < 0. The formulation of the proposed Co-Belief is as follows:

lOg Hg;ém pgrue _ym Z];ém gj

Co-Belief™ =p}, .+ ——2—— =¢ + == (22)
10g [T Pie sl
The desirable result is:
|M] ,
AC(f) = > | Cov(Co-Belief™, ™) —(IM| — 1) Y _ Cov(Co-Belief™, /) | < 0. (23)
m=1 Jj#EmM

Mono-Covariance Holo-Covariance

Now, we consider the Mono-Covariance in Equation (23).

dCo-Belief™ PR Dr
A T S
(>iZ1 0)
where ¢ € [0, 4+00). Hence, we have % € (—o0, —1], which means Co-Belief™ is negatively correlated with ™ in
the domain of ¢"*. Recalling Proposition A.1, we have Mono-Covariance < 0.

(24)

Then, consider the Holo-Covariance in Equation (23).

dCo-Belief™ ZL/:VIIIW—Z#"L i _ Ej (25)

2 20
e (oMl (oMl

where ¢ € [0, 00). Therefore, % € [0, +00) indicates that Co-Belief” is positively correlated with #7 in the domain

of #7,¥j # m. With the Proposition A.1, we have Holo-Covariance > 0. Thus, we achieve our goal in Equation (23),
reducing the generalization error upper bound.

Furthermore, our proposed Co-Belief surpasses both Mono-Confidence and Holo-Confidence in reducing the generalization
error upper bound. Unlike Mono-Conf™, which exhibits no correlation with ¢/, the Mono-Covariance of Co-Belief™ is
less than that of Mono-Conf™. Similarly, Holo-Conf™ has a higher Mono-Covariance than Co-Belief. These findings
underscore our proposed Co-Belief’s marked advantage in diminishing the generalization error upper bound, as corroborated
by our ablation studies.

A.5. The Complete Form of the RC Formula

Revisiting our proposed relative calibration term as defined in Equation (8), it is important to note that this term is initially
conceptualized under a two-modality setting. For cases where | M| > 2, the relative calibration term is redefined as follows:

_DU™- (M| - 1)

RC™

(26)
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Moreover, when formulating the final calibrated Co-Belief, we perform truncation on the RC value for asymmetric calibration,
which is defined by the following formula:

2istm (27)

o _ JRCT = PUTAMIZL i RC™ < 1,
|1 otherwise.

It is observed that when | M| = 2, the definition is congruent with the formulation of RC and % as delineated in Equation (8)
and Equation (9). Furthermore, this definition is consistent with the theoretical analysis presented in the main body of our

paper.

B. More Analysis
B.1. p¢,c is Reliable

Existing confidence estimation methods (Corbiere et al., 2019; Papadopoulos et al., 2001) usually depend on estimating
confidence precisely for certain tasks in unimodal scenarios. By contrast, in our proposed method, py,,. is used to
construct dynamic fusion weight to satisfy the theoretical guarantee and reflect the modality dominance in multimodal
fusion. Therefore, the reliability of s, in our method is reflected in the ability to provide reasonable fusion weights
(Mono-Confidence) for each modality, which implies that when different modalities make inconsistent decisions, the fusion
weight of the dominant modality should be higher and vice versa, to make a correct decision jointly.

To validate the reliability of P, We calculated the probability that ;... is able to help make the right decision in case
unimodal models make false classifications. For the two-modalities dataset, we first counted the number of samples in which
the two modalities made conflicting decisions. Among these conflicting samples, we then calculated the proportion of cases
where the py,.-weighted (Mono-Confidence weighted) fusion result was correct. We compare py,,.-weighted fusion with
other methods that have uni-modal outputs. As shown in Table 5, the experimental results indicate that py,.q,e is superior in
responding to the importance of modality and correct for the modality results’ inconsistencies compared with other fusion
weights, demonstrating the reliability of our p},,..

B.2. Drawbacks of Employing Entropy in Composing Relative Calibration

Traditional approaches to evaluating informational uncertainty, exemplified by entropy (Shannon, 1948), face difficulties
within our relative framework. Figure 6 (a) demonstrates that when entropy is held constant for a particular modality, the
variable rate of change of its derivative engenders erratic fluctuations in the relative value of multimodal entropy in response
to variations in another modality’s entropy, resulting in biased comparisons. In contrast, Distribution Uniformity (DU),
characterized by its constant slope, facilitates more balanced assessments of uncertainty across different modalities.

] 1.0
0.7 Entropy
i DU
0.6 Los
0.5
> r0.6
5 0.4 =)
g A
= 034 r0.4
0.2 r0.2
0.1
r0.0
0.0 0.2 0.4 0.6 0.8 1.0
p

Figure 6. The function diagram of Entropy and Distribution Uniformity in two categories.
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Table 5. We report the proportion (%) of fusion results that are correct by different fusion weight when the two modalities made conflicting
decision.

METHOD MVSA UMPC FOOD 101
LATE FUSION 60.58 89.31
TMC 60.09 90.84
QMF 73.45 93.77
DYNMM 76.77 88.94
OURS 77.49 95.53

B.3. More Comparisons with Other Methods

The recognition of decision-level generalization bounds in past analyses by QMF is commendable. Nevertheless, it is crucial
to acknowledge that our methodology diverges markedly at the conceptual stage from QMF’s approach. QMF’s formula
for generalization bounds, grounded in unimodal analysis, overlooks the complex interplay among modalities within a
multimodal system. The terms *Term-L’ and *Term-C* within QMF’s framework are not static, varying with each modality’s
response to scene changes. Consequently, enforcing a negative Term-Cov through calibration does not ensure a reduced
generalization bound. Our perspective posits that each modality’s contribution in a multimodal system should be assessed in
relation, and with this view, we have deduced the Generalization Error Bound (GEB) through a multimodal perspective.
Fundamentally, the GEB is influenced only by Mono-Term and Holo-Term, considering that optimization within the same
function class yields identical Rademacher complexity and empirical error. Therefore, ensuring the sign of Mono-Term and
Holo-Term suffices to diminish the generalization bound.

Furthermore, QMF endeavors to gauge the quality of modalities by accounting for uncertainty, postulating a direct
relationship between uncertainty and loss, thereby aligning its approach with its theoretical framework of the generalization
bound. This necessitates the application of calibration to uphold the initial premise. However, our analysis of the p;;.,,e, Which
indicates the modality’s reliability, reveals an inverse relationship with the loss. Consequently, rooted in the Generalization
Error Bound (GEB) concept, we propose a strategy to diminish the GEB by focusing on the accurate prediction of pyyye.

C. More Details
C.1. Related Work Details

Predictive confidence is currently frequently used in fault detection (Corbiere et al., 2019) and Out-Of-Distribution (OOD)
detection (DeVries & Taylor, 2018). However, it often leads to overconfidence due to softmax probabilities. Some methods
focus on smoothing the predicted probability distribution through label smoothing (Miiller et al., 2019), while others
apply temperature scaling (Liang et al., 2017) to calibrate the probability outputs. Some works (Wei et al., 2022) mitigate
overconfidence by constraining the magnitude of logits. Essentially, most of these approaches aim to align the expected
class probabilities with empirical accuracy (Ma et al., 2023).

C.2. Symbols Table

To avoid potential confusion, we provide a table for main symbols in Table 6.

C.3. Metric Details

To quantify the capacity of a fusion strategy on reducing the GEB, we defined a metric called GEB Decreasing Proportion
(GDP):

GDP = Ex[I{ac(s)<olrery ()], (28)
where F C H, I is the indicator function, which is defined as:

1 if f € {AC(f) <0|f € H},

) (29)
0 otherwise.

Liac(py<oifeny (f) = {
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Table 6. Main Symbols Table.

SYMBOL EXPLANATION
M THE SET OF EACH UNI-MODAL
M| THE CARDINALITY OF M
w™ FUSION WEIGHT OF THE M-TH MODALITY
m UNI-MODAL PROJECTION FUNCTION
GEB(f)  GENERALIZATION ERROR UPPER BOUND OF f
Dirue TRUE CLASS PROBABILITY
Dtrue THE PREDICTION OF Ptrye
l LOGISTIC LOSS FUNCTION
£™  THE SIMPLICITY REPRESENTATION OF £(f™(z™),y)
om THE PREDICTION OF /™
efr(f™)  EMPIRICAL ERRORS OF THE M-TH MODALITY
H HYPOTHESIS SET
Ry (H) RADEMACHER COMPLEXITIES

C.4. Implementation Details

The network was trained for 100 epochs utilizing the Adam optimizer with 8; = 0.9, 82 = 0.999, weight decay of 0.01,
dropout rate of 0.1, and a batch size of 16. The initial learning rate was chosen from the set {le — 8, 5e — 5, le — 4}.
Specifically, for image-text classification, the initial learning rate was 5e — 5; for scene recognition, it was 1e-8 for the second
layer of the confidence predictor and 1e-4 for all others; for emotion recognition, it was set to le-3. All the experiments
were conducted on an NVIDIA A6000 GPU, using PyTorch with default parameters for all methods.

C.5. Experiment Details

We changed the data quality by varying noise levels. Specifically, we alter the degree of noise added to it and fix another
modality’s noise level. For NYU Depth V2 dataset, we fixed the RGB noise level at 5 and increased the depth noise from 0
to 10. For MVSA and FOOD101 datasets, we maintained the text noise at 2.5 and escalated the image noise from O to 5. For
the CREMA-D dataset, we kept the audio modality’s SNR fixed and varied the image noise from 0 to 10. With the increase
of one modality’s noise, we report the changing trend of each modality’s calibrated weight.

C.6. The Prediction of p;’, . and Loss Function

During the inference phase, there is no ground truth available to get the p}”, ., so we trained a confidence predictor consisting
of multiple linear layers to predict p;’,. by the MSELoss:

| M|
Ept'rue = Z MSE (ﬁ;‘;l“umpgfue% (30)

m=1

where pi,,. = Predictor(feature™), and feature™ is the feature of input 2™ generated by encoder. Leveraging the
Pite to compute Co-Belief™, utilizing the model’s output after softmax to calculate RC™ and its transformation k., the
final calibrated Co-Belief CCB™ as well as w™ can be obtained as Equation (10).

Drawing on the principles of multi-task learning, we conceive the overall loss function as the aggregate of standard
cross-entropy classification losses across multiple modalities, coupled with the py,... prediction loss:

|M]
Loveran = Lce(y, f(2)) + Z Lee(y, [™(@™)) + Lo, G
m=1

where Lcg represents the cross-entropy loss, while £ is the py,e prediction loss defined as Equation (30).

Ptrue
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Figure 7. Aw™ gradually shrinks to zero as the training epochs increase.

Table 7. Comparative experiments on asymmetric calibration and its variants with NYU Depth V2.

VARIANTS OF RC e=0 e=5 e=10

DISTRIBUTION UNIFORMITY (DU) 71.13 64.93  62.08
RELATIVE CALIBRATION (RC) 71.06 65.43 62.19
ASYMMETRIC CALIBRATION 71.37 65.72 62.56

D. Additional results

D.1. Lower Generalization Error Upper Bound

We applied the proposed Generalization Error Bound Decreasing Proportion (GDP, as defined in Equation (28)) to measure
the capacity of a fusion strategy for reducing the Generalization Error Upper Bound (GEB). Separately, we compare the
GDP metrics of models that utilize Mono-Conf (Equation (4)), Co-Belief (Equation (5)), and CCB (Equation (10)) as fusion
weights. Specifically, for each fusion strategy, we trained 50 models with distinct random seeds and reported the GDP of
these models under varying noises (0, 5, and 10) during testing. We took Mono-Confidence, Co-Belief, and CCB as distinct
fusion weights for the model and depicted the AC distribution in Figure 3 (a), (b), and (c). The proportion of AC < 0, i.e.
GDP, signifies the fusion strategy’s potential to reduce the model’s GEB. Figure 3 (d) displays the GDP of different fusion
strategies under diverse noisy conditions. The proportion of Mono-Confidence that reduces GEB without noise is greater
than 50%, and Holo-Confidence further increases the model’s GDP, CCB endows the model with the best generalization
capabilities in dynamic environments. These experiments validate our effectiveness in lowering the generalization error
upper bound.

On comparing Figure 3 (a) and (b), it is evident that the extent of the orange segment in Figure 3 (b), i.e., the model’s GDP,
is greater than that in Figure 3 (a), suggesting that the integration of both Mono-Confidence and Holo-Confidence yields
a heightened likelihood of GEB reduction. In Figure 3 (c), the application of Calibrated Co-Belief as the fusion weight
demonstrates a probability of up to 90% in reducing the generalization error.
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Table 8. Comparison on three modalities dataset PIE under Gaussian noise.

METHOD e=0.0 e=2.0 €e=4.0 e =6.0 e =8.0 e =10.0
LATE FUSION 88.24 85.74 83.09 81.32 78.09 74.12
T™MC 89.71 84.26 79.12 74.71 70.88 64.85
QMF 88.24 85.59 81.76 81.03 77.94 74.00
DYNMM 89.71 85.29 84.56 82.35 80.15 76.47
OURS 90.44 88.82 84.71 82.50 80.74 78.53

Figure 3 (d) displays the GDP of different fusion strategies under various noisy conditions, with the sum corresponding to the
GDP of the three fusion strategies depicted in Figure 3 (a) (b) and (c). We observe that the proportion of Mono-Confidence
reducing GEB without noise is greater than 50%, and the inclusion of Holo-Confidence further increases the model’s GDP,
indicating an enhanced generalization ability. Additionally, the incorporation of the calibration strategy endows the model
with stronger generalization capabilities in noisy environments.

D.2. Convergence of Fusion Weight

To demonstrate the dependability of our calibrated weights, we ascertain their convergence when training. We define
Aw™ as the mean absolute change of the weights across the entire validation set for each epoch and track its progression
throughout the training period. As illustrated in Figure 7, across various datasets, Aw™ consistently trends toward zero,
indicating the calibrated fusion weights’ convergence.

D.3. Effectiveness of the Form of the Asymmetric Calibration

We adopt an asymmetric form for Relative Calibration (RC), which not only aligns with the motivation of calibration
but also facilitates better weight optimization for the RC with an asymmetric form ranging from 0 and 1. To validate the
effectiveness of asymmetric calibration, we conducted comparative experiments involving asymmetric calibration and its
variants, including DU (Equation (7)), and RC (Equation (8)) without asymmetric form by assessing their impact on average
accuracy metrics. Results presented in Table 7 suggest that RC with asymmetric calibration exhibits enhanced generalization
capabilities.

D.4. Extensibility to Datasets with More than 2 Modalities

As illustrated in Equation (27), our proposed relative calibration can be extended to cases where | M| > 2. To verify the
effectiveness of our PDF, we conducted comparisons with previous state-of-the-art methods on the PIE dataset with three
modalities. As depicted in Table 8, our PDF surpasses the competing methods across various noise levels, highlighting its
superiority.

D.5. Compared Experiments on Different Noises

In this section, we report the full experiment results with standard deviation in varying Gaussian noise and Salt-pepper noise
compared with other methods in Table 9 and Table 10 separately.

E. Limitations

Even though the proposed PDF model achieves superior performance over existing methods and shows advanced generaliza-
tion ability in dynamically changing conditions, there are still some potential limitations. We provide theoretical guarantees
to the Co-Belief prediction, however, the potential uncertainty is inevitable. The proposed relative calibration is an empirical
solution for this problem without theoretical guarantees. Therefore, it is important to explore new uncertainty estimation
methods from the theoretical perspective. Besides, the predictor in our model is relatively simple, and it is also valuable to
study more efficient and effective predictor architectures.
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Table 9. We add Gaussian noise on 50% modalities and € presents the noise degree. it shows the average and the standard deviation of
classification accuracies with our method and the compared methods on four datasets. The method marked with * was replicated by us,
while the rest of the data is sourced from (Zhang et al., 2023).

DATASET METHOD e=0.0 €=5.0 e=10.0
TEXT 75.614+0.53 69.50+1.50 47.4140.79
IMG 64.124+1.23 49.36+2.02 45.00+2.63
CONCAT 65.59+1.33 50.70+2.65 46.12+2.44
MVSA LATE FUSION 76.88+1.30 63.46+£3.46 55.16+3.60
QMF 78.07+1.10 73.854+1.42 61.2842.12
TMC 74.87+2.24 66.72+4.55 60.35+2.79
DYNMM * 79.07+0.53 67.96+1.65 59.214+1.41
OURS 79.94+0.95 74.44+1.51 63.09+1.33
TEXT 86.46+0.05 67.38+0.19 43.884+0.32
IMG 64.6240.40 34.7240.53 33.03+0.37
CONCAT 88.201+0.34 61.10+2.02 49.86+2.05
UMPC LATE FUSION 90.69+0.12 68.49+3.37 57.99+1.59
FOOD 101 QMF 92.92+0.11 76.034+0.70 62.2140.25
TMC 89.86+0.07 73.93+0.34 61.374+0.21
DYNMM* 92.5940.07 74.7440.19 59.68+0.20
OURS 93.3240.22 76.474+0.31 62.831+0.31
RGB 62.65+1.22 50.95+3.38 44.13+3.80
DEPTH 63.301+0.48 53.124+1.52 45.46+2.07
NYU CONCAT* 69.8840.52 63.82+1.46 60.03£2.63
DEPTH V2 LATE FUSION* 70.031+0.84 64.37+0.80 60.55+1.65
TMC* 70.4040.31 59.334+2.19 50.614+2.87
QMF* 69.54+1.06 64.10+1.42 60.184+1.23
DYNMM* 65.50+0.37 54.31+1.72 46.79+1.09
OURS 71.374+0.76 65.7241.72 62.561+1.84
VISUAL* 43.60+2.02 32.52+1.98 30.17+1.19
AUDIO* 58.67+1.01 54.66+2.16 43.01+6.04
CONCAT* 61.56£1.37 52.33£3.32 41.0145.70
CREMA-D LATE FUSION* 61.81+£2.13 49.84+3.72 39.15+5.82
QMF* 63.04+1.37 56.60+2.38 41.60£2.75
TMC* 59.154+1.95 54.4243.34 46.79+4.72
DYNMM * 60.46+0.37 54.434+0.73 42.3940.50
OURS 63.31+1.11 57.854+2.04 47.844+2.32
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Table 10. We add Salt-pepper noise on 50% modalities and € presents the noise degree. it shows the average and the standard deviation of
classification accuracies with our method and the compared methods on four datasets. The method marked with * was replicated by us,
while the rest of the data is sourced from (Zhang et al., 2023).

DATASET METHOD e=0.0 €e=5.0 €=10.0

TEXT 75.61£0.53 69.50+£1.50 47.4140.79

IMG 64.124+1.23 56.724+1.92 50.71+£3.20

CONCAT 65.59+1.33 58.69+2.25 51.16£2.99

MVSA LATE FUSION 76.88+1.30 67.88+£1.87 55.43+1.94
QMF 78.07£1.10 73.90+1.89 60.41£2.63

T™™C 74.874+2.24 68.02+3.07 56.62+3.67

DYNMM* 79.0740.53 71.35+0.97 59.96+1.31
OURS 79.9440.95 75.11+1.15 61.97+1.14

TEXT 86.444+0.02 67.414+0.20 43.89+0.33

IMG 64.531+0.47 50.75+0.44 36.83+0.92

CONCAT 88.2240.36 72.4940.75 52.10+0.97

UMPC LATE FUSION 90.66+0.16 77.99+0.54 58.75+0.99
FOOD101 QMF 92.90+0.13 80.87+0.40 61.60+0.20
T™C 89.86+0.07 77.861+0.41 60.221+0.43

DYNMM* 92.59+0.07 78.91+0.20 57.64+0.30

OURS 93.3240.22 81.214+0.34 61.76+0.33

RGB 62.61+1.21 49.144+1.40 34.76+1.59

DEPTH 63.3240.50 50.994+1.41 38.56+2.16

NYU CONCAT* 69.884+0.52 61.41£1.69 51.65£2.94
DEPTH V2 LATE FUSION* 70.031+0.84 62.05+£1.17 51.50+1.81
T™MC* 70.4040.31 59.33+1.47 45.32+2.84

QMF* 69.54+1.06 62.02+£1.47 51.87+0.91

DYNMM * 65.50+0.37 52.26+1.45 38.174+1.17

OURS 71.37+0.76 64.274+1.36 53.621+2.15

VISUAL* 43.60+2.02 40.30£1.77 36.84+1.72

AUDIO* 58.674+1.01 54.57£2.06 43.0046.01

CONCAT* 61.56£1.37 54.28+3.89 42.57+6.16

CREMAD LATE FUSION* 61.81+£2.13 54.831+3.24 41.07£6.88
QMF* 63.04+£1.37 97.73+2.25 45.02£2.28

TMC* 59.154+1.95 54.614+3.19 47.72+2.76

DYNMM* 60.46+0.37 54.5840.65 42.4940.43

OURS 63.31+1.11 58.61+1.50 48.401+2.85
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