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ABSTRACT

Large Language Models (LLMs) currently respond to every prompt. However, they
can produce incorrect answers when they lack knowledge or capability — a problem
known as hallucination. We instead propose post-training an LLM to generate
content only when confident in its correctness and to otherwise (partially) abstain.
Specifically, our method, HALT, produces capability-aligned post-training data
that encodes what the model can and cannot reliably generate. We generate this data
by splitting responses of the pretrained LLM into factual fragments (atomic state-
ments or reasoning steps), and use ground truth information to identify incorrect
fragments. We achieve capability-aligned finetuning responses by either removing
incorrect fragments or replacing them with “Unsure from Here” — according to
a tunable threshold that allows practitioners to trade off response completeness
and mean correctness of the response’s fragments. We finetune four open-source
models for biography writing, mathematics, coding, and medicine with HALT for
three different trade-off thresholds. HALT effectively trades off response com-
pleteness for correctness, increasing the mean correctness of response fragments
by 15% on average. By tuning HALT for highest correctness, we train a single
reliable Llama3-70B model with correctness increased from 51% to 87% across all
four domains while maintaining 53% of the response completeness achieved with
standard finetuning.

1 INTRODUCTION

Most current language models attempt to respond to the majority of prompts, regardless of how
complex they are or how much domain knowledge is required to answer them. While this behavior is
desirable for creative tasks (e.g., poem writing), it is undesired when factual correctness is crucial.
This phenomenon, often referred to as hallucination, poses risks in high-stakes applications such as
medicine or law. We propose HALT', which finetunes an LLM to only respond with information it is
confident about, and to (partially) abstain otherwise. For example, when asked to write a person’s
biography, the LLM would list only facts it is confident in and would omit others. Similarly, when
presented with a complex math problem, it would show only the reasoning steps in which it has
high confidence, terminating its response with “Unsure from here” if it cannot proceed — potentially
forgoing a final answer. Naturally, restricting an LLM to provide only high-confidence information
reduces the total number of correct statements, as it withholds any information it deems uncertain
— even if some of that information might ultimately be correct. To balance this trade-off, HALT
allows practitioners to adjust a confidence threshold. This threshold controls whether the LLM should
respond more eagerly (and risk occasional errors) or more conservatively (and risk omitting correct
information).

We remark that no model will ever achieve perfect performance across all possible tasks, requiring
capability-aligned responses regardless of model strength (OpenAlL[2025)). Additionally, HALT is
not about distilling from a stronger model; rather, it directly addresses the problem of ensuring that
an LLM’s outputs are aligned with its own uncertainty.
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Figure 1: Comparison between Standard and HALT Finetuning for LLMs: Standard finetuning trains
the LLM on responses that potentially , which results in
incorrect outputs at test time. HALT finetuning trains the model only on content within the pretrained
LLM’s capability limits, omitting unknowns or replacing them with “Unsure from here”. HALT
finetuning improves response correctness as the LLM is trained to generate responses according
to its capabilities, which may result in partially incomplete responses when the pretrained LLM’s
capabilities are insufficient.

HALT’s key insight is to finetune the pretrained LLM only on correct content it is capable of
generating, i.e., content within the bounds of the knowledge and reasoning capabilities obtained
during pretraining, as we illustrate in Figure[T} Further, HALT finetunes the LLM to output “Unsure
from here” when uncertain about the remainder of the generation.

HALT is motivated by the observation that LLMs possess internal calibration (Tian et al., [2023b}
Kadavath et al.,|2022)), suggesting they can produce responses aligned with their internal confidence
in the relevant facts or reasoning steps. HALT"s approach of generating capability-aligned finetuning
samples according to the pretrained LLM’s capabilities is based on recent work (Lin et al.l 2023
Zhou et al.,[2024) which shows that LL.Ms do not acquire novel capabilities during finetuning but
only learn to effectively utilize knowledge and reasoning capabilities obtained during pretraining.
Moreover, HALT’s approach of finetuning only on content that the LLM is capable of generating
is supported by recent work (Gekhman et al., [2024; Kang et al., 2024)) showing that finetuning
LLM:s on concepts unknown to them increases hallucination. While HALT requires additional model
generations and post-processing for each pretrained LLM it is applied to, we believe this is reasonable,
as recent work (Zhou et al.,[2024) found that merely 1000 finetuning examples can be sufficient to
finetune generally capable models. Unlike previous methods (Yadkori et al.||2024; |[Farquhar et al.|
2024; |Cheng et al., 2024} Brahman et al., 2024; |[Feng et al., |2024; Zhang et al.,|2024a}; [Kang et al.,
2024), HALT requires no additional computations at test time, as it does not rely on post-processing
or sampling. Instead, it produces a finetuned model that attempts the best possible answer within
its capability. Also, unlike earlier work, HALT extends to prompts involving not only knowledge
retrieval but also complex reasoning.

Given a pretrained LLM and a finetuning dataset, for each prompt, HALT generates a response
aligned to the capabilities of the LLM. For a given prompt, the HALT pipeline (1) generates an
initial response via few-shot prompting of the pretrained LLM, (2) splits it into factual fragments,
(3) assesses correctness of individual fragments via an Evaluator LLM with access to ground truth
information (e.g. the ground truth response), and (4) post-processes the fragments to arrive at the
final HALT finetuning response — which only contains fragments that the pretrained LLM is capable
of generating. Figure 2] provides an example of the pipeline.

For the second step of decomposing the response into fragments, we make the assumption that
responses either consist of independent fragments or causally dependent fragments, i.e., fragments
that build on top of each other in a logical sequence. This distinction is made for each prompt based
on its domain, e.g., math samples are assumed to consist of causally dependent fragments, while
biographies are assumed to consist of independent ones.
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For responses composed of independent fragments, we rely on prior work (Song et al.,[2024)) and
use a finetuned LLM to extract atomic statements, i.e., independently verifiable statements. For
example, “Barack Obama was born in Hawaii” is an atomic statement that could be extracted from
his biography. In step 3, the correctness of each fragment is assessed independently using the ground-
truth-conditioned evaluator LLM (e.g. conditioned on the respective Wikipedia article). The HALT
finetuning response (4) is then composed of all correct fragments, or set to “Unsure from here” if no
fragments were correct.

For responses composed of causally dependent fragments, such as responses to math questions,
HALT instead splits responses at natural boundaries like new lines or equation statements. HALT
then determines the fragment at which the first error occurs using an evaluator LLM with access to the
ground truth response. The HALT response is then composed by replacing the incorrect fragment and
all subsequent fragments with a single “Unsure from here” statement, arriving at a capability-aligned
finetuning response.

Importantly, HALT enables practitioners to choose the desired trade-off between response com-
pleteness (analogous to Recall) and response correctness (analogous to Precision) according to the
deployment scenario. This is effected by estimating model capabilities based on multiple responses
of the pretrained LLM. For example, composing the HALT response from a response with less-than-
average correct fragments yields a conservative estimate of the model’s capability, resulting in an
LLM that responds more carefully.

We evaluate HALT on a wide variety of language models, including LLama3-8B, LLama3-70B,
Gemma2-9B, and Mistral-7B, and on a series of tasks, including writing Wikipedia-style biographies,
solving competition mathematics problems, answering medical questions, and solving coding prob-
lems posed in natural language. We compare HALT to standard finetuning, prior work on factuality
improvement (FactTune, (Tian et al.;|2023a)), prior work on training models to abstain (IDK, (Cheng
et al.,[2024)), and a heuristic baseline that trims responses to match the response length of HALT.
We split generated responses from prompts in the eval dataset into factual fragments and assess the
completeness and average correctness of fragments for each response. Tuning HALT based on our
threshold allows to increase the correctness by 17% for Llama3-70B on average. Across all settings,
HALT improves the F1 score, i.e. the harmonic mean of completeness and correctness, on average
by 4%, as compared to the baselines. Tuning HALT for correctness, we combine data from all
domains and finetune a single reliable LLama3-70B model that achieves an accuracy of 87% across
the four domains — which is in contrast to 51% accuracy achieved with standard finetuning — while
maintaining 51% completeness of responses. Last, we demonstrate that slightly modifying HALT to
annotate fragments as “Unsure” — instead of omitting them — informs users about uncertainty while
retaining complete responses.

2 METHODS

Overview. A pretrained LLM M maps from input sequences to output sequences, M : X — ).
Additionally, we have a finetuning dataset D = (x;, yj);”:l, which consists of m pairs of prompts x;

and their corresponding ground truth responses y;. The goal of our method, which we refer to as
HALT, is to create a modified finetuning dataset D = (z;, y/ );n:

yf[ is aligned with the capabilities of the pretrained model M. We assume access to an evaluator £

that takes as input a statement f and information .J and determines whether f is correct or incorrect
according to the given information, i.e., £ : (f,JJ) — {0, 1}. This evaluation could be performed by
a human annotator, an additional LLM, or any other means.

|» Where each target response

Figure 2] provides an overview of how HALT processes each prompt z;: First, a preliminary response
is generated using the pretrained model M, then split into factual fragments. Next, the evaluator £
assesses the correctness of individual fragments, using the given ground truth response ¥;, potentially
supplemented by other relevant context. Finally, incorrect fragments are removed or replaced by
“Unsure from here” to arrive at the target response yf[ .
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Figure 2: The HALT pipeline includes generating a preliminary response via few-shot prompting of
the pretrained LLM, splitting it into factual fragments, and assessing each fragment’s correctness
before compiling the HALT finetuning response. For a causally dependent response, as displayed
at the top, an error results in an “Unsure from here” marker to indicate uncertainty. For a response
consisting of independent fragments, as shown at the bottom, incorrect fragments are removed.

2.1 CREATING A CAPABILITY-ALIGNED FINETUNING DATASET WITH HALT

Generating the Preliminary Response. For each prompt x;, we first generate a response that aligns
with the format of the ground truth responses in the finetuning dataset D through few-shot prompting
of the pretrained model. We sample a set of four prompt-response pairs {(zy, y)}#+_, uniformly at

random from D \ {(z;,y;)} as in-context learning examples. The context C; = {(zx, yk)}izl is
concatenated with the target prompt x; using a question-answer format. The pretrained model M is
then prompted to create a preliminary response y?t for the prompt x;, i.e. y?t = M(concat(Cj, x;)),
where concat denotes the concatenation of the context C; and the target prompt x; into a single input
sequence.

Splitting the Preliminary Response into Factual Fragments. Next, we split the preliminary
responses ygt into individual factual fragments, denoted as y?l = (f1,-.., fx), where each fragment
represents a verifiable unit. The method used for fragmentation generally depends on the type of
response. Simple, inherently structured responses may allow fragmentation along natural boundaries,
such as equal signs in math equations, bullet points or newline characters. Long and complex
sentences may require more sophisticated methods for fragmentation, such as machine learning
methods specifically trained to extract verifiable statements from complex sentences (Song et al.|
2024; Min et al., [2023; |Wei et al., |2024). We empirically find that grouping prompts by type of
question (e.g., math, coding, knowledge) allows us to determine the required fragmentation method.
We describe fragmentation in Section 3.1}

Assessing Correctness of Fragments. We distinguish between two types of response structures
when determining the correctness of the individual response fragments f1, ..., fx: Responses con-
sisting of either independent fragments, or of causally dependent fragments that build on each other
in a logical sequence. Figure[2]shows the HALT processing pipeline for example prompts of both
categories. We note that not every response will perfectly fit one of the two categories but leave more
complex dependency structures, such as dependency graphs, for future work.

For responses consisting of independent fragments, the correctness of each fragment is independent
of the correctness of other fragments. Examples are Wikipedia-style information overviews, lists of
independent recommendations, and results for independent tasks. For responses consisting of causally
dependent fragments, the correctness of a fragment depends on the correctness of prior fragments.
Examples are step-by-step solutions, code implementations, or sequential reasoning, where each part
builds upon previous ones.

For responses consisting of independent fragments, we assess the correctness of each fragment
individually using the evaluator £, with information J given by the ground truth response y; and
potentially additional information. For responses consisting of causally dependent fragments, we
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prompt the evaluator £ — conditioned on the ground truth response — to identify the first incorrect
fragment of the response, and consider all subsequent fragments as incorrect.

Creating the HALT Finetuning Response. For responses with independent fragments, we merely
remove any incorrect fragments. For responses with causal dependency, we remove all statements
starting from the first incorrect statement, and, in case any incorrect statements were present, place
“Unsure from here” at the end of the response, as illustrated in Figure 2]

2.2 TRADING OFF BETWEEN RESPONSE CORRECTNESS AND COMPLETENESS

The trade-off between average correctness of fragments and response completeness can be tuned by
choosing the preliminary response from a set of sampled responses of the pretrained LLM. Specifically,
instead of relying on a single greedily decoded response to estimate the pretrained model’s capabilities,
we sample multiple preliminary responses. Selecting the “worst” response among the sampled
preliminary responses, i.e., the response in which the lowest number of fragments is correct, provides
a conservative estimate of the model’s capability. Composing the HALT response based on the worst
response results in a finetuned model with higher correctness but lower completeness. The opposite
holds true when selecting the best response instead.

Specifically, for each prompt x;, we sample N preliminary responses {y?t’" N_| with different
random seeds and compute the average fragment correctness for each response as outlined in Section
We sort the preliminary responses in ascending order of average correctness and select the

a-percentile response as n* = [a/N'| and y?t = ygl’" . Here, o determines the trade-off, where a

lower « favors correctness over completeness. The selected response y?‘ is then processed with the
HALT pipeline shown in Figure 2]

3 EXPERIMENTAL VALIDATION

Overview. As HALT responses are derived from few-shot prompted responses of the pre-trained
model, we first validate that finetuning on these yields performance similar to finetuning on the
ground truth responses. We then assess the accuracy of our evaluator £, which we implement using
Llama3-405B. We observe in Table [I|that the evaluator has an average per-response absolute error
ranging from 0.27 to 1.14 fragments. We then evaluate HALT on four different datasets and for
four open-source LLMs, namely Llama3-8B (Dubey et al.,|2024), Llama3-70B (Dubey et al., 2024),
Gemma?2-9B (Team et al.,[2024), and Mistral-7B (Jiang et al., 2023)). We demonstrate that HALT
allows to trade off between response completeness and correctness while simultaneously achieving
the best arithmetic mean of completeness and correctness. Utilizing HALT, we train a single reliable
model on all four datasets that achieves 87% correctness, an increase of 36% compared to the
correctness achieved by standard finetuning. Last, we demonstrate that HALT can be modified to
annotate response fragments that the model is unsure about as “Unsure” — instead of omitting them.
This allows to provide users with complete responses, while simultaneously informing users about
likely incorrect parts of the response.

3.1 IMPLEMENTATION AND VALIDATION OF RELEVANT COMPONENTS

Prior Work and Baselines. We implement FactTune (Tian et al.|[2023a)), IDK (Cheng et al.| 2024),
and supervised finetuning, which we refer to as “Unchanged”. We remark that none of these baselines
allow for adjusting the trade-off between completeness and correctness. FactTune, applicable to
knowledge tasks, i.e. the Wikipedia dataset, first finetunes the pretrained model, e.g. on Wikipedia
biographies. It then generates responses from the finetuned model, evaluates atomic statements using
FactScore (Min et al., 2023)), and creates a preference dataset to finetune the model again using
Direct Preference Optimisation (Rafailov et al.| [2024). IDK evaluates which prompts a model can
answer, then finetunes the model to either entirely abstain or completely answer to given prompts.
We additionally implement a RandomTrim baseline, which, instead of removing fragments according
to the capability of the pretrained model as done with HALT, removes the n last fragments of a given
response. n is sampled from a Poisson distribution, which is chosen such that the average response
length matches that of HALT responses.
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Figure 3: Response correctness (y-axis) and completeness (x-axis) for LLama3-70B (top) and
Llama3-8B (bottom) when finetuned with different methods (desired number of fragments is ngy).
F1 Score is constant along curved grey lines, and highest in the top right corner. For HALT and
Randomtrim, results are shown with different trade-offs between completeness and correctness, where
lighter colors indicate tuning for higher correctness. We omit results with less than 5% completeness,
e.g., RandomTrim results for Wikipedia Biographies and Math. We observe that HALT allows for
strongly influencing the trade-off between correctness and completeness across all four datasets while
achieving higher F1 scores (closer to the top right corner) than baseline methods. We show results for
Gemma?2-9B and Mistral7B in Figure in the Appendix.

Datasets. Wikibios (Lebret et al.,2016) contains the summary paragraph of individuals listed on
Wikipedia, sampled uniformly randomly. Hence, this dataset contains many individuals who are only
little known. Since the original dataset was assembled 8 years ago, we updated all information using
the official Wikipedia API, and excluded all individuals not uniquely identified when searching for
their name on the Wikipedia API. We added each person’s full Wikipedia article to the dataset, which
is used as additional information for the evaluator £. In the reasoning domain, we only consider
datasets that provide step-by-step solutions, as we found that these increase the accuracy of the
evaluator £ significantly. MATH (Hendrycks et al.,|2021b) contains mathematical problems across
various fields. MedExQA (Kim et al.| 2024])) is a medical question-answering dataset covering five
distinct specialties. APPS (Hendrycks et al.,[2021a) evaluates code generation, containing a wide
range of programming challenges; we consider those marked as “introductory”.

Splitting Responses into Fragments. We decompose a response into factual fragments as follows.
Wikipedia answers are often complex and nested, which prohibits a heuristic-based fragmentation.
We instead use a state-of-the-art fact-extraction LLM, made available by |Song et al.[(2024). Although
responses are well structured for MATH, we found that a heuristic-based fragmentation yields unsat-
isfactory results and instead prompted LLama3-405B to fragment responses at natural boundaries.

For MedExQA we found it satisfactory to split answers at full stop signs. Similarly, code responses
in APPS are split line-for-line.

Evaluator Implementation. For Wikibios, we prompt Llama3-405B with the fragment to assess, as
well as with the entire Wikipedia article of the relevant person, and ask it to assess whether the given
fragment is correct or incorrect in the given context (see example prompt in App.[B.T). Hence, the
evaluator is called multiple times to assess a single response. For MATH, MedExQA, and APPS, we
prompt Llama3-405B with the numbered fragments that make up the response and the ground-truth
step-by-step solution, and prompt it to identify the first incorrect fragment.

F1 Score to Measure the Mean of Completeness and Correctness. We follow |Wei et al.| (2024)
and use the F1 score as a combined measure of response correctness and completeness, analogous to
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Figure 4: Example responses (ground truth re-
sponse in the top left corner), with completeness,
correctness, and F1 scores annotated for each.

Table 1: Avg. number of fragments per response
and avg. number of fragments incorrectly la-
belled by the Llama3-405B evaluator. Analysis
run on 300 manually-labelled Llama3-70B re-
sponses per dataset.

Wikipedia MATH Medical Q. Coding
Avg # fragm. 9.58 5.54 5.26 7.85
Avg # incorrect 0.27 0.63 0.41 1.14

Table 2: Finetuning models on responses gen-
erated via best-of-5 few-shot prompting results
in only marginally lower performance (average
correctness of statements) than finetuning on the
Unchanged (ground truth) responses.

. . Pretrained Model Responses ~MATH Medical Q. Coding
The number of required fragments here is three.
A i . Llama-3-8B Unchanged 0.30 0.69 0.30
We observe that the highest F1 score is achieved Few-Shot  0.25 0.68 0.27
when the LLM answers with the correct first frag- Unchanged  0.81 0.80 0.38
. Llama-3-70B

ments and abstains after. Few-Shot 076 0.78 035
. Unchanged 0.30 0.69 0.30
Mistral-7B Few-Shot 0.5 0.69 0.24
Unchanged  0.39 0.69 0.27
Gemma-2-98 gl Shot  0.33 071 0.26

binary classification. Here, response completeness (Recall) measures the ratio of correct fragments
relative to the desired number of fragments, i.e., % Response correctness (Precision) is the relative
correctness of all given response fragments, i.e., et We consider two definitions for the desired
number of fragments. The first defines the desired number of fragments as the number required to
answer the question fully (see App.[A.T]for details), which we refer to as n; (which is independent
of the model’s capability). Hence, any method can only achieve full recall under this definition if the
pretrained LLM’s capabilities are sufficient to answer all questions completely and correctly. The
second option defines the number of desired fragments according to the pretrained LLM’s capability,
which we refer to as ncapavle. Specifically, ncapavie 1S the number of correct fragments in the few-shot
prompted response of the pretrained LLM. We remark that under the latter definition, a method could
attain full recall (and an F1 score of 1) if the finetuned LLM answers exactly with those response
fragments that are within its capability limits. Figure @] shows response completeness and correctness

for different example responses, with the number of desired fragments defined as the number required
to answer the question fully (n4y).

Ncorrect
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Figure 5: We show results for training a single reliable LLama3-70B model with HALT tuned for
increased correctness, trained on equal shares of all four datasets, referred to HALT (Combined
Model). We additionally plot results for HALT trained on each dataset individually, referred to
as HALT, and results when finetuning on the Unchanged dataset. We observe that HALT allows

for increasing average accuracy across all datasets by 36% to 87% while maintaining an average
completeness of 25%.

Completeness
@ HALT (Combined Model)

Information-Conditioned Llama-3-405B Yields a Strong Correctness Evaluator. We evaluate
the performance of our evaluator in assessing the correctness of individual fragments (denoted as
fi,-.., fr for a response split into k£ fragments, as defined in Section 4) of responses of all four
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datasets. For each dataset, we randomly sampled 300 responses generated by Llama3-70B and
manually annotated the correctness of all fragments. We observe in Table [T]that the Llama3-405B
evaluator’s error ranges from 0.27 incorrectly assessed atomic statements per Wikipedia response,
composed of 9.58 atomic statements on average, to a discrepancy of 1.14 lines on Coding, with an
average number of 7.85 lines of code per response. In MATH, the evaluator misjudges the location
of the first incorrect fragment by only 0.6 reasoning steps, at an average response length of 5.54.
We conclude that Llama3-405B — prompted with relevant information — is well suited to assess the
correctness of individual logical fragments.

Finetuning on Few-Shot Prompted Responses is comparable to Finetuning on Ground Truth
Responses. HALT relies on responses derived from few-shot prompting of the pretrained LLM. For
the MATH, Medical QA, and Coding datasets, we compare the performance of the finetuned model
when either finetuned on the dataset’s unchanged ground truth response or the best-of-5 few-shot
prompted response of the pretrained LLM. Table |2{ shows that the average gap ranges from 1.7%
to 3.7% only across the models, and could be further closed by sampling more responses. As a
result, the expected correctness for finetuning methods that rely on the ground truth response is
1.7% to 3.7% higher than that of HALT responses; however, we empirically find that HALT can
still outperform such methods. We remark that for Mistral-7B, the gap is at 5% and 6% in Math
and Coding, respectively, suggesting that this model has worse in-context learning capabilities than
the other examined models. As discussed later, we found that this performance gap influences the
finetuned Mistral-7B HALT models. These findings support the assumption that LLMs do not acquire
novel knowledge or capabilities during finetuning (Lin et al.l 2023} Zhou et al., 2024).

3.2 HALT ENABLES TRADING OFF COMPLETENESS AND CORRECTNESS

Next, we finetune all four models on all four datasets, comparing HALT to the baselines. For HALT,
we sample five few-shot prompted preliminary responses, sort them by relative correctness, choose a
response according to « € [40%, 60%, 80%)]. That is, we either choose the most, second most, or
third most accurate response, and then process it with the HALT pipeline. We provide examples of
finetuning responses for different tradeoff parameters « in App. We discard the response with
the lowest and second lowest relative correctness, as we empirically found that finetuning on these
can result in close to zero completeness and correctness. Figure [3|shows that choosing different o
for HALT allows to trade off correctness and completeness effectively, altering correctness by +
17% and £ 12% for Llama3-70B and Llama3-8B, respectively. Table[3]in the Appendix shows that
HALT further achieves the highest harmonic mean of completeness and correctness in most cases, as
compared to baseline methods, both for ngesired S€t t0 7141 and 0 Neapable-

HALT Does Not Harm General Instruction-Following Capabilities. To assess whether HALT
maintains coherence and general instruction-following capabilities beyond domain-specific accuracy,
we conducted an AlpacaEval-style evaluation (Li et al., 2023)) comparing Llama3-70B HALT (trained
with o = 0.6) against the base Llama3-70B model across 578 prompts spanning all four evaluation
datasets, using GPT-5 as a judge. HALT achieves near-parity with the base model overall (50.8%
win rate), demonstrating that selective abstention does not significantly harm general instruction-
following capabilities. Notably, HALT outperforms the base model on wikibios_v2 (66.0% win rate),
where factual accuracy is critical—precisely the use case HALT is designed for. On mathematical
reasoning and general-domain tasks (MATH, appsintro, medex), HALT shows modest degradation
(41.8-45.4% win rates), expected since judges may penalize abstentions when completeness is valued
over guaranteed correctness (see Table[5]in the Appendix for full results).

3.3 TRAINING A MULTI-DOMAIN LLM ACHIEVING 87% CORRECTNESS

We now evaluate the real-world use case of training a single model that achieves high correctness
across multiple domains. Specifically, we train a single reliable Llama3-70B model on an equal-parts
mix of data from all four domains with HALT tuned for increased accuracy, i.e., with a = 40%.
Figure [5] shows that this model achieves an average accuracy of 87% across all four domains, as
compared to 51% achieved by training on a mix of the ground truth datasets. Meanwhile, the response
completeness remains at 25% on average. This demonstrates that HALT allows training a generally
capable model that users can trust significantly more than models trained with standard finetuning.
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3.4 ADD-ON HALT: MARKING FRAGMENTS AS “UNCERTAIN” INSTEAD OF OMITTING THEM.

Users might desire to observe the model’s full response while being informed which parts might
be incorrect, enabling them to edit uncertain code or verify statements externally. We evaluate this
use case by modifying HALT to annotate uncertain response fragments with “Uncertain”, instead
of omitting them. Specifically, we modify the finetuning dataset for Math, Medical Q., and Coding
by marking the first incorrect response fragment and all subsequent fragments as ‘“Uncertain”. Note
that these fragments are replaced by “Unsure from here” in the default HALT response. We do not
investigate the open-ended Wikipedia biography writing task as it allows for generating an unbounded
number of “Uncertain” statements. Figure [6]in the Appendix shows that training Llama3-70B at
a = 60% with Add-On HALT results in significant correctness improvements when fragments
marked as “Uncertain” are excluded from the correctness evaluation, achieving improvements similar
to those of HALT"s default implementation. When the “Unsure” markers are ignored Add-On HALT
achieves response completeness similar to that achieved when finetuning on the Unchanged responses.
In conclusion, a slight modification of HALT enables the retention of response completeness while
reliably informing the user about likely incorrect fragments.

4 RELATED WORK

A large body of prior work studied detecting LLM generations that likely contain hallucinations, i.e.,
likely contain incorrect statements. Approaches include training probes (Su et al.| 2024), directly
inspecting hidden states (Chen et al.| [2024), or evaluating semantic entropy of generations (Farquhar
et al.;|2024). These works are complemented by approaches to mitigate hallucinations via weight-
space editing (Zhang et al.,|2024b)), modified decoding techniques (Chuang et al., 2023)), preference
training on samples that contain fewer or more hallucinations (Tian et al.,2023a), or post-processing
of generated responses (Mohri & Hashimoto} 2024} |Gui et al.| 2024} Wang et al.,[2024). In contrast
to these works, HALT addresses the trade off between response completeness and correctness, does
not require any post-processing of generations at test-time, and applies to reasoning problems.

Recent works have discovered that finetuning LLMs on unknown examples increases hallucinations
(Kang et al., 2024}; |Gekhman et al.,[2024; Tian et al.|[2023b)), which motivates HALT"s approach of
only finetuning on samples that are within the LLM’s capabilities.

Another line of prior work has found that LLMs are well-calibrated, and found that confidence scores
can, for example, be obtained via inspection of logits (Kadavath et al., 2022) or via prompting LLMs
to state their confidence (Lin et al.| 2022). This provides a basis for recent works that train models
to abstain when uncertain (Zhang et al., 20244} |Chen et al.| 2023} |Yadkori et al.| 2024} |Wen et al.,
2024;|Brahman et al., [2024; |[Feng et al., | 2024; |Cheng et al., 2024} Tuan et al., 2024). Recent work has
explored training models to express verbalized uncertainty through confidence scores (Band et al.,
2024])) and calibrated hedging (Stengel-Eskin et al.,2024). Unlike prior works that either fully abstain,
fully answer, or preserve complete responses with uncertainty qualifications, HALT trains LLMs to
selectively compose partial responses according to their capabilities, enabling modification of the
desired trade off between completeness and correctness.

5 CONCLUSION

We present HALT, a novel finetuning paradigm that trains models to generate responses according to
their internal confidence by omitting response fragments they are uncertain about. HALT training
yields models that are up to 37% more accurate than those trained using unchanged ground-truth
answers while maintaining high response completeness.

Limitations. Our method assumes independent or causally dependent fragments; dependency
graphs could improve complex tasks. HALT uses binary capability assessment; fine-grained scaling
may help. We train separate models per trade-off; a single adaptive model would improve flexibility.
Extending to multi-modal domains is promising.
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A SUPPLEMENTARY EXPERIMENTAL DETAILS AND RESULTS

A.1 DEFINING THE NUMBER OF FRAGMENTS REQUIRED TO FULLY ANSWER A PROMPT.

We remark that the number of fragments necessary to answer a question cannot be unambiguously
determined and, in practice, slightly varies for different pre-trained LLMs. However, when, e.g.,
an LLM responds with two correct fragments, we must define n,; to be able to compute response
completeness. As different pretrained LL.Ms will answer the same few-shot prompt with slightly
different numbers of fragments, as shown in Table [ we choose na according to the pre-trained
model’s response statistics in the MATH and Medical Question datasets. For biography writing and
coding, we found that the number of fragments of the ground truth response defines n,; well.

A.2 ADDITIONAL IMPLEMENTATION DETAILS

LLM implementations. We implement all LLMs using their open-source implementations given
at https://github.com/huggingface/transformers.

Finetuning Details. We use supervised finetuning with LoRA (Hu et al., 202 1)) for compute-efficient
training, with a rank of 256 and alpha of 512. Training is performed using the AdamW (Kingmal
2014) optimizer with betas set to (0.9,0.95), weight decay of 0.01, and an initial learning rate of
le — 5. The learning rate schedule follows a warmup fraction of 5%, with a decay to le — 6 over 5
epochs. The effective batch size is set to 128.

Computational Resources. Finetuning of the 7-9B LLMs took around 5-6 hours on a single Nvidia
A100 GPU. Finetuning of the Llama3-70B model took around 3-4 hours on a node of 8 Nvidia A100
(80GB) GPUs.

Datasets. We downloaded the datasets from the following domains. The Wikibios dataset was
downloaded from https://github.com/DavidGrangier/wikipedia-biography-dataset;
the MATH dataset from https://github.com/hendrycks/math, the MedexQA dataset from
https://huggingface.co/datasets/bluesky333/MedExQA, and the APPS dataset from
https://github.com/hendrycks/apps.

Baseline Implementations. We implemented FactTune (Tian et al. 2023a) using the authors’
implementation given at https://github.com/kttian/1lm_factuality_tuning. For the
IDK baseline (Cheng et al.,2024) we follow the authors’ implementation given at https://github.
com/OpenMOSS/Say—I-Dont-Know.

Math (MATH) Med. Questions (MedExQA) Codmg (APPS)

- T T

0.50 0.78 0.22 0.30
Completeness Completeness Completeness

Correctness

’ Unchanged (Few-Shot) ’ HALT ‘ Add-On HALT (remove 'Unsure') ’ Add-On HALT (evaluate 'Unsure')

Figure 6: We evaluate an Add-On version of HALT for LLama3-70B. Add-On HALT annotates
response fragments as *Unsure’ instead of omitting them. Removing fragments marked by Add-On
HALT as ’Unsure’ results in a significant increase in correctness. At the same time, evaluating
"Unsure’ fragments yields results similar to training on the Unchanged (Few-Shot generated) re-
sponses. This demonstrates that Add-On HALT allows for increased correctness while preserving the
completeness of unchanged finetuning.
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Table 3: F1 score (arithmetic mean of response correctness and completeness) for all models and
finetuning methods. We show results when setting the desired number of fragments as those required
to fully answer the question (left side of Table) and when setting the desired number as those that the
pre-trained model is capable of generating (right side). Note that a perfect F1 score is only attainable
when setting 7desired = Ncapable. We find that HALT largely outperforms prior work and baselines, by
larger margins for ncapavle. For Gemma2-7B, we hypothesize that the relatively lower performance of
HALT in Math and coding is likely due to the worse in-context learning capabilities, as outlined in

Section @

Ndesired = Tall Tdesired = Neapable
LLM Finetuning Wikipedia Math Medical Q. Coding | Wikipedia Math Medical Q. Coding
m Unchanged 0.23+£0.01 030£0.05 0.70+0.02 0.334+0.01 | 0.26+0.04 049+0.07 0.81+£0.02 0.58+0.05
x RandomTrim 0.05+0.01 0.08+£0.00 0.70+0.02 0.3040.02 | 021 +£0.03 0.26+0.00 0.82+0.02 0.61 £ 0.06
& Abstain (IDK) (Cheng et al.|2024})  0.14 £0.00 0.12+£0.02 0.58+0.16 0.05+0.03 | 0.25+0.04 0.38+0.10 0.69+0.18 0.18 £ 0.09
E FactTune (Tian et al.}[2023a) 0.24 +£0.01 - - - 0.38 +0.02 - - -
A HALT (ours) 0.28 £0.00 0.35+0.07 0.68+0.03 0.35+0.04 | 0.63+0.01 0.66+0.12 0.81+0.04 0.77 £ 0.05
2 Unchanged 0.26 £0.01 0.68 £0.01 0.80+0.03 0.44+0.03 | 0.35+0.02 0.75+0.01 0.87+£0.03 0.71 £ 0.09
N RandomTrim 0.12+0.01 0.64+0.01 0.82+0.00 0.38+0.03 | 026+0.01 0.75+0.01 0.88+0.00 0.75+0.05
% Abstain (IDK) (Cheng et al.|2024}  0.28 £0.01 0.53£0.27 0.754+0.07 0.19£0.13 | 0.44 +£0.03 0.68£0.38 0.82+0.07 048=+0.32
g FactTune (Tian et al.[[2023a) - - - - - - - -
=i HALT (ours) 033 £0.03 0.68+0.04 0.81+006 0.41+0.01 | 0.68+0.02 0.87+0.02 0.88+0.06 0.83+0.04
~ Unchanged 0.14+£0.00 0.31+£0.02 0.69+0.06 0.33+0.02]0.20+0.04 0.50+0.06 0.81=£0.06 0.57=+0.05
o RandomTrim 0.05+0.00 0.12+£0.06 0.64+0.04 025+0.06 | 0.34+0.04 043+0.25 0.80+£0.05 0.52=+037
E] Abstain (IDK) (Cheng et al.|2024}  0.11 £0.00 0.09£0.02 0.56+0.17 0.01 £0.00 | 0.18 £0.03 043 £0.07 0.73+£020 0.04 £0.02
z FactTune (Tian et al.|[2023a) 0.20 £ 0.01 - - - 0.44 £ 0.03 - - -
= HALT (ours) 0.13+£0.01 028+£0.03 0.66+0.02 0.3440.03 | 0.68+0.05 0.69+041 0.81£0.08 0.82=+0.06
A Unchanged 0.15+0.01 042+£008 0.71+0.01 0.34+0.02 | 0.21+0.08 0.64+0.15 082+0.01 0.62+0.05
N RandomTrim 0.02+0.00 028+0.06 0.72+0.04 0344+0.03|0.194+0.05 059+0.14 0.82+0.04 0.65=+0.04
g Abstain (IDK) (Cheng et al.|2024}  0.13 £0.00 0.134+0.04 0.67+0.04 0.02+0.01 | 0.19+£0.02 038+0.11 0.7940.04 0.08 +0.03
£ FactTune (Tian et al.]2023a) 0.08 + 0.00 - - - 0.31 +£0.05 - - -
3 HALT (ours) 0.09 £0.00 0.41+027 0.74+0.02 0.44+0.06 | 0.57 +0.03 0.79 +0.60 0.86+0.03 0.85+ 0.08

Table 4: The table shows the average number of fragments per response for answers generated by
each pretrained model using in-context learning. The ‘Ground Truth® row represents the ground
truth answer, with each category showing 100% correctness. Among the models, Llama-3-70B has
the highest relative correctness, followed by Llama-3-8B and Gemma-2-9B, with Mistral-7B-v0.3
performing the lowest.

- Wikipedia Math Medical Q. Coding ‘
Pretrained Model # given % corr. | # given % corr. | # given % corr. | # given % corr. % corr. avg
Ground Truth 9.8+8.0 100.0 | 45+34 100.0 51+12 100.0 15.0£12.7 100.0 100.0
Llama-3-8B 119+11.2 129 33+32 301 54+15 669 93+11.7 422 38.0
Llama-3-70B 9.6+£103 309 55£3.0 541 52+£13 838 7.8£9.0 58.8 56.9
Gemma-2-9B 9.6 +£8.0 6.4 41+33 286 53+£19 718 124+£102 302 34.3
Mistral-7B-v0.3 9.6 7.9 6.3 37+3.1 171 52+1.8 6038 11.7+9.1 279 28.0
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Figure 7: Response correctness (y-axis) and completeness (x-axis) for Gemma2-9B (top) and Mistral-
7B (bottom) when finetuned with different methods (desired number of fragments is n,;). F1 Score
is constant along curved grey lines, and highest in the top right corner. For HALT and Randomtrim,
results are shown with different trade-offs between completeness and correctness, where lighter
colors indicate tuning for higher correctness. We omit results with less than 5% completeness.

Dataset HALT Wins Base Wins Ties Win Rate
MATH 49 59 42 45.4%
appsintro 46 64 39 41.8%
medex 54 65 9 45.4%
wikibios_v2 97 50 3 66.0%
Overall 246 238 93 50.8%

Table 5: AlpacaEval-style evaluation comparing HALT (o = 0.6) against base Llama3-70B across
578 prompts. Win rate excludes ties. GPT-40-mini served as judge.

A.3 ALPACAEVAL GENERAL INSTRUCTION-FOLLOWING RESULTS
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Example prompt to Llama3-405B evaluator to determine correctness of a fragment that is part of a

response composed of independent fragments.

****Context:****

{{FULL WIKIPEDIA ARTICLE OF BARACK OBAMA}}

#hExStatement: **##

Barack Obama was born on May 12, 1960.

#ExFIpstruction:**#*

Is the above Statement True or False according to the given Context? Reply with either *True’ or "False.’

Figure 8: Example prompt to Evaluator for assessing a fragment from a Wikipedia-style response.

Example prompt to Llama3-405B evaluator to determine correctness of a response composed of causally

dependent fragments.

#kxkMath Question:***%
A triangle has a base of 8 units and a height of 5 units. If the triangle is part of a rectangle with the same base
and height, what fraction of the rectangle’s area does the triangle occupy?
##+**Ground truth Response for Math Question:**%*%*
1

The area of a triangle is calculated using the formula: Area = 5 x base x height.
Substituting the given values: Area = % X 8 X 5 = 20 square units.
The area of the rectangle is calculated using the formula: Area = base x height. Substituting the given values:
Area = 8 x 5 = 40 square units.
Triangle’sarea  __ 20 1

. . . s g o _HUMEIYITH EUE
The triangle occupies a fraction of the rectangle’s area given by: rhes — A — B¢

Thus, the triangle occupies % of the rectangle’s area.
##+*Step-wise Response given by student: *##*

Line 1: The area of a triangle is calculated using the formula: Area = % X base x height.
1

Line 2: Substituting the given values: Area = 5 X 8 x 5 = 20 square units.

Line 3: The area of the rectangle is 8 x 5 = 40 square units.

Line 4: The fraction of the rectangle’s area that the triangle occupies is 20 square units.
#kkInstruction: **#*

You are given a Math question above, as well as a Ground truth Response to it. Determine until which line the
step-wise response given by the student is correct. Reply with the number of the last correct line. If the first
step is already wrong, reply with zero. Otherwise, reply with the number of the last correct line, i.e., with an
integer between 0 and the number of lines in the response. Reply with "Line X’ only, where X is the number of
the last correct line.

Figure 9: Example prompt to Evaluator for assessing a MATH response.

B.2 EXAMPLE HALT RESPONSES FOR DIFFERENT TRADE OFFS BETWEEN RESPONSE
CORRECTNESS AND RESPONSE COMPLETENESS

B.2.1 ExAMPLE HALT FINETUNING RESPONSES FOR THE WIKIBIOS AND MATH
DATASETSAND FOR DIFFERENT THRESHOLDS

We show examples of HALT responses for different trade-offs between response completenes and
response correctness in Figures [[0]and [T1]

We note that responses for the Wikipedia biography dataset are segmented into individual atomic
statements. This segmentation results fromt he application of the fact-extraction LLM
[2024), but can reverted by prompting the LLM to recompose the response into a single text at the
end of the generation. We omitted this recomposition as it complicates the assessment of individual
statements.
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Example for o = 0.4

wEEE Question:****

Tell me about Daniel
the Stylite

Respond with no more
than 500 tokens. Only
list facts about the person

If unsure how to continue
at any point during the
response, write 'Unsure
from here.” and terminate
your response.

##%% Response: %
Saint Daniel the Stylite
died on 11 December 493.

that you are certain about.
Separate all facts by "\n’.

Example for o = 0.6

A% Question:*#**

Tell me about Daniel
the Stylite

Respond with no more
than 500 tokens. Only
list facts about the person

If unsure how to continue
at any point during the
response, write 'Unsure
from here.” and terminate
your response.

*#%% Response:**+*
Saint Daniel the Stylite
was born around 409.

Saint Daniel the Stylite
died on 11 December 493.

Saint Daniel the Stylite
was a Christian saint.

that you are certain about.
Separate all facts by "\n’.

Example for o = 0.8

wEEE Question: * ¥+

Tell me about Daniel
the Stylite

Respond with no more
than 500 tokens. Only
list facts about the person
that you are certain about.
Separate all facts by "\n’.
If unsure how to continue
at any point during the
response, write 'Unsure
from here.’” and terminate
your response.

*#%% Response:**+%*
Saint Daniel the Stylite
was born around 409.

Saint Daniel the Stylite
died on 11 December 493.

Saint Daniel the Stylite
was a Christian saint.

Saint Daniel the Stylite
is commemorated on 11
December in the Eastern
Orthodox Church.

Figure 10: Example HALT responses for different treshold parameters « for the Wikipedia dataset.
Finetuning on the left response (lowest «) results in a conservative LLM providing responses of
higher correctness and lower completeness, while finetuning on right response results in a eagerly
responding LLM.
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Finetuning pair for o = Finetuning pair for o = Finetuning pair for o =
0.4 0.6 0.8

#HEE Question:****

A triangle has a base
of 8 units and a height
of 5 units. If the triangle
is part of a rectangle
with the same base and
height, what fraction of
the rectangle’s area does
the triangle occupy?

wkkk Response:® %

The area of a triangle is cal-
culated using the formula:
Area = % X base x height.
Substituting the given val-
ues: Area = % X8 X5 =
20 square units.

Unsure from here.

wHEE Question:**+*

A triangle has a base
of 8 units and a height
of 5 units. If the triangle
is part of a rectangle
with the same base and
height, what fraction of
the rectangle’s area does
the triangle occupy?

ik Response:

The area of a triangle is cal-
culated using the formula:
Area = % X base x height.
Substituting the given val-
ues: Area = % X8 X5 =
20 square units.

The area of the rectangle
is calculated using the for-
mula: Area = base X
height. Substituting the
given values: Area = 8 X
5 = 40 square units.
Unsure from here.

*#EE Question: ****

A triangle has a base
of 8 units and a height
of 5 units. If the triangle
is part of a rectangle
with the same base and
height, what fraction of
the rectangle’s area does
the triangle occupy?

seskeskesk Response:****

The area of a triangle is cal-
culated using the formula:
Area = % x base x height.
Substituting the given val-
ues:Area:% X8 x5 =
20 square units.

The area of the rectangle
is calculated using the for-
mula: Area = base X
height. Substituting the
given values: Area = 8 X
5 = 40 square units.

The triangle occupies
a fraction of the rect-
angle’s area given by:
Triangle’sarea _ 20 _ 1

Rectangle’s area 40 — 2°
Thus, the triangle occupies

% of the rectangle’s area.

Figure 11: Example HALT responses for different treshold parameters o for the MATH dataset. The
left response (lowest ) results in a conservative LLM providing responses of higher correctness and
lower completeness, while finetuning on the right response results in a eagerly responding LLM.
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