"7 Paint-it: Text-to-Texture Synthesis via Deep Convolutional
Texture Map Optimization and Physically-Based Rendering

Kim Youwang!:24* Tae-Hyun Oh*?>6

Gerard Pons-Moll!23

'University of Tiibingen >Tiibingen Al Center, Germany >Max Planck Institute for Informatics, Germany
“Dept. of Electrical Engineering, POSTECH ®Grad. School of Al, POSTECH

SInstitute for Convergence Research and Education in Advanced Technology, Yonsei University

Mesh without texture + User text prompt

“ a photo of {a bagel, a chair, ...} ”

High-quality PBR texture map synthesis

Figure 1. Paint-it. Given an untextured 3D mesh and the text description describing the desired appearance of the 3D mesh, Paint-it
automatically synthesizes high-fidelity physically-based rendering (PBR) texture maps by neural re-parameterized texture map optimization.

Abstract

We present Paint-it, a text-driven high-fidelity texture map
synthesis method for 3D meshes via neural re-parameterized
texture optimization. Paint-it synthesizes texture maps from
a text description by synthesis-through-optimization, exploit-
ing the Score-Distillation Sampling (SDS). We observe that
directly applying SDS yields undesirable texture quality due
to its noisy gradients. We reveal the importance of texture
parameterization when using SDS. Specifically, we propose
Deep Convolutional Physically-Based Rendering (DC-PBR)
parameterization, which re-parameterizes the physically-
based rendering (PBR) texture maps with randomly initial-
ized convolution-based neural kernels, instead of a standard
pixel-based parameterization. We show that DC-PBR inher-
ently schedules the optimization curriculum according to tex-
ture frequency and naturally filters out the noisy signals from
SDS. In experiments, Paint-it obtains remarkable quality
PBR texture maps within 15 min., given only a text descrip-
tion. We demonstrate the generalizability and practicality of

*Work done during a visiting research period at the University of Tiibingen.

Paint-it by synthesizing high-quality texture maps for large-
scale mesh datasets and showing test-time applications such
as relighting and material control using a popular graphics
engine. Project page: https://kim-youwang.github.io/paint-it.

1. Introduction

Crafting realistic and diverse 3D assets is the key compo-
nent in industrial fields such as movies, games, and AR/VR
applications. Professional graphic designers strive to create
realistic or creative virtual humans, animals, and objects.
Still, the hand-designed generation of realistically textured
3D objects requires cumbersome and time-consuming efforts
with intensive labor and the pain of creation.

To reduce such burdens, methods for generating diverse
3D assets have been extensively studied [8, 11, 17,34, 40,41,
58]. Notably, the recent progress in neural volumetric rep-
resentations, e.g., NeRF [38] and diffusion models [46, 47]
have advanced the development of text-driven 3D asset gen-
eration [26, 28, 33, 42], which leverages a cheaper guidance,
i.e., text description. While these methods generate coarse

https://kim-youwang.github.io/paint-it

Text-based PBR generation — Test-time relighting

Lighting 1~

-

Lighting 2

r Test-time material control | — Diverse generation —

sxd s

Figure 2. Paint-it: Practical applications. Using the synthesized PBR texture maps of Paint-it and commercial graphics engines, e.g.,
Blender, we can (1) relight the mesh by changing High-Dynamic Range (HDR) environmental lighting (see the balls) and (2) control the
material properties at test-time. We can also simulate diverse appearance by synthesizing different PBR texture maps for the same mesh.

geometries and textures, the qualities are still unsatisfac-
tory. Moreover, to use the generated assets in real graphics
engines, e.g., Blender, one must convert the implicit volu-
metric geometries and textures into the explicit mesh and
compatible texture maps, which makes them impractical.
Manual extraction of mesh surfaces and unwrapping of tex-
tures could be performed, but it still has limitations. The
unwrapped texture maps inevitably have heterogeneous tex-
ture mappings, so we cannot easily transfer or edit them,
which is crucial for generating diverse 3D assets.

Recently, a line of work [6, 9, 35, 45] has been tackling
the task of text-driven texture synthesis for practical use.
Instead of generating an entire geometry and texture from
scratch, the task aims at synthesizing diverse texture maps
on top of the given mesh, conditioned on a text description.
While many 3D meshes can be reused in the practical pro-
duction pipeline, the texture maps should be diverse. For
example, a single car mesh can be repeatedly used for mak-
ing a game, but artists should create distinct texture maps to
model different appearances. In this vein, text-driven texture
map synthesis tries to revolutionize the current repetitive and
exhaustive appearance modeling pipeline. However, existing
methods [6, 9, 45] are limited in that they first condition-
ally generate latent or RGB images and back-project the
colors onto the mesh. Although the back-projected colors
may look plausible, they may introduce implausible textures
since the back-projection cannot model material properties
or the complicated reflections on the 3D surfaces.

To address these difficulties, we propose Paint-it, which
synthesizes high-fidelity texture maps, given a mesh with-
out texture and the text description via synthesis-through-
optimization. The main contribution of our work is the analy-
sis and investigation of a proper texture representation, which
allows easier optimization with the Score-Distillation Sam-
pling (SDS) [42]. When optimizing the texture maps, we in-
troduce DC-PBR, the Deep Convolutional Physically-Based

Rendering re-parameterization. We optimize the neural sur-
rogate of the physically-based rendering (PBR) texture maps
rather than directly optimizing the pixel values of the texture
maps. DC-PBR formulates coupled optimization variables
with diverse frequencies and serves as an implicit texture
prior. In our analysis, we show that the DC-PBR, which
uses randomly initialized convolution-based neural kernels,
naturally imposes the frequency-scheduled learning, which
helps filter out high-frequency noisy SDS signals during the
optimization. Furthermore, since DC-PBR re-parameterizes
the disentangled texture maps; diffuse, roughness & metal-
ness, and normal maps, we simulate physical properties such
as the bidirectional reflectance distribution function (BRDF),
yielding photorealistic synthesis results. Overall, we observe
that the proposed DC-PBR better interacts with the SDS loss
than the diffuse-only texture representation.

In experiments, we demonstrate that Paint-it produces
high-quality texture maps for general 3D meshes, e.g., ob-
jects, humans, and animals (Fig. 1). Also, Paint-it synthe-
sizes a remarkable quality of texture maps compared to com-
peting methods. As a favorable byproduct, the synthesized
PBR texture maps are compatible with the popular graphics
engine and can be seamlessly integrated into relighting and
material control pipelines (Fig. 2). We summarize our main
contributions as follows.

* We propose Paint-it, a text-driven synthesis of high-fidelity
PBR texture maps, which support practical test-time appli-
cations compatible with graphics engines.

* We identify the difficulties of synthesizing PBR texture
maps in pixel-based parameterization.

* We introduce DC-PBR, a deep convolutional PBR tex-
ture map re-parameterization, and empirical analysis of
DC-PBR’s benefit when optimizing with the noisy signal,
e.g., Score-Distillation Sampling (SDS).

2. Related Work

Text-driven 3D Asset Generation. Recently, a few impres-
sive works have proposed remarkable 3D asset generation
methods that require only simple text prompts [9, 10, 12, 24,
26-28, 33, 37, 42, 62]. Due to the absence of large-scale
{text, 3D asset}-paired datasets, most methods exploit in-
direct supervision signals by rendering the current estimate
of the 3D asset into 2D images in multiple views and mea-
suring similarity losses between the rendered images and
the given input text. For measuring the similarity as losses,
the vision-language joint embedding space, e.g., CLIP [43],
or text-conditional generative models, e.g., text-to-image
diffusion model [46, 47], are used. This enables per-instance
generation by optimization without any paired fully super-
vised data, i.e., synthesis-through-optimization.

With the synthesis-through-optimization framework, text-
driven 3D asset generation methods are categorized into
volume- and mesh-based methods. Volume-based meth-
ods [7, 24-28, 35, 42, 55, 57] optimize the characteristics,
e.g., occupancy, signed distance function (SDF), and color,
of the points in a 3D space. Mesh-based methods [9, 37, 62]
model geometry with explicit meshes and generate vertex
textures or texture maps. Using meshes allows rasteriza-
tion for faster and more efficient rendering, in contrast to
volumetric rendering used in the volume-based ones. Also,
meshes are well-compatible with graphics engines and suit-
able for texture transfer and animation. This contrasts the
volume representation that requires separate post-processing
to extract mesh and unwrap a texture map by dedicated
methods. Thus, 3D designers prefer mesh representation
due to its practicality. Recently, hybrid methods [10, 33]
were suggested, but they eventually perform re-meshing and
texture unwrapping after the 3D volume optimization, which
introduces substantial texture seams and loses editability.

Our work chooses mesh representation for synthesizing
realistic or aesthetic 3D assets in high fidelity with practical
compatibility. Specifically, we focus on texture map synthe-
sis, where we can obtain photorealistic renderings with fast
and stable optimization.

Text-driven Texture Map Synthesis. While texture maps
are the most commonly used for the graphics pipeline, there
are only a few works that generate high-quality texture
maps [9, 10, 35, 45, 50]. Text2Tex [9] and TEXTure [45] are
analogous, where they generate a RGB image using a pre-
trained text and depth-conditioned diffusion model. Since
they use color back-projection from the image onto the tex-
ture map, their texture maps are limited in diffuse RGB
domain. Also, they need additional masking methods to
carefully distinguish which part to update. Latent-Paint [35]
and TexFusion [6] propose optimizing a latent feature tex-
ture map. However, they can also decode RGB colors only
due to the dependency of the pre-trained model that can

only produce RGB, yielding limited photorealism. Fanta-
sia3D [10] optimizes higher-dimensional physically-based
rendering (PBR) materials and generates photorealistic text-
driven 3D assets. They estimate per-point PBR material,
rather than the spatially structured texture maps we use, and
yield non-smooth textures. Our Paint-it optimizes the neural
re-parameterized PBR material maps and obtains smooth and
photorealistic 3D assets. Moreover, instead of generating an
image and inpainting the texture map with low-dimensional
colors, we directly synthesize the DC-PBR texture map;
thus, we do not perform re-meshing or texture unwrapping
for each mesh, so it is naturally compatible with applications,
e.g., texture transfer or mesh animation.

3. Paint-it: Text-Driven PBR Texture Synthesis
via Neural Re-parameterized Optimization

3.1. Preliminary: Score-Distillation Sampling

The Score-Distillation Sampling (SDS) [42] iteratively sam-
ples the 3D representation 6 to generate an image that con-
forms to the input text description y. Suppose there is a
3D representation, e.g., NeRF [38], parameterized as €, and
we can render it into an image x using a differentiable ren-
derer, g(+), i.e., x = g(0). To perform SDS, we first perturb
the rendered image x = ¢(f#) to make the noisy image x;
by sampling a noise ¢ ~ A(0,I) and a noising timestep
t ~ U(0,1). Initially, the rendered image x would not look
like an object described in the text prompt y. Thus, given
a pre-trained text-conditional noise estimator €4, where ¢
denotes the parameters of the pre-trained diffusion model,
the error between the added noise € and the text-conditioned
estimated noise é4(x¢; y, t), i.e., ||€s(xt; y, t) — €|3, would
be large. On the contrary, if 6 is well generated, and its ren-
dering x conforms to the text prompt and in the distribution
of the training image, the error would be minimized.

Poole et al. [42] formulate this intuition into an opti-
mization problem, 6* = arg ming Lai (¢, x=g(0)), where
Laii(6, x=g(0)) = Ey.[m() ¢ (x: y, 1) — e[}3]. Thus, the
update gradient for the 3D representation 6 is written as:

Vo Lsps (¢, x) = By e |m(t)(€p(xs;9,t) — f)g% (D
where m(t) denotes a weighting function conditioned on
the diffusion noise timestep ¢. This enables obtaining 3D
from a text through 2D rendering even without any {text,
3D}-paired dataset. We will use this gradient estimate to
optimize the texture maps in a text-conditioned manner.

3.2. Goal of Paint-it

Paint-it aims to synthesize high-fidelity physically-based
rendering (PBR) texture maps for a given mesh and a text de-
scription so that the resulting texture maps visually conform
to the text description. Given a 3D mesh without texture, M,

p “a pretzel ”
|

DC-PBR: Deep Convolutional PBR Texture Map

Mesh

Input noise ﬁ)OptimiZe
R~

To

z~N(0,1)

Metalness

PBR Texture map

Text-to-image
Diffusion model
Textured 3D mesh E

2 | N— :

Multi-view
rasterize

Figure 3. Paint-it: Overall pipeline. Given a 3D object mesh without a texture and a text describing the desired appearance of the mesh,
Paint-it synthesizes realistic PBR texture maps via synthesis-through-optimization. We introduce DC-PBR, which parameterizes the PBR
texture map into randomly initialized U-Net convolutional neural kernels. By performing texture mapping to texturize the given mesh, we
differentiably rasterize the textured mesh and obtain multi-view images, then compute the diffusion-guided loss. Note that Paint-it optimizes
the neural parameters of the U-Net rather than directly optimizing the pixel values of the texture map.

and a text description y describing the desired appearance
of the mesh, our goal is to synthesize the PBR texture maps
consisting of diffuse K4, roughness & metalness K™, and
detail surface normal K" representations. After synthesiz-
ing the PBR material texture maps, we can perform texture
mapping to obtain a text-conforming textured mesh.

3.3. DC-PBR: Deep Convolutional PBR Texture
Map Re-parameterization

We propose the deep convolutional re-parameterization of
PBR texture maps, DC-PBR, 7y. Instead of the pixel value
parameterization of texture maps, using DC-PBR helps to
sidestep the optimization difficulty of pixel-based repre-
sentation, which will be discussed later in Sec. 4. We
use a randomly initialized convolutional U-Net with skip
connections for Ty and use the randomly sampled code
z~N(0,I) € RTXWx3 g a fixed input, where H and W
are the height and width of the target texture maps, respec-
tively, and z is fixed during optimization. With this, we
re-parameterize the pixel-wise PBR parameters of the tex-
ture maps with the neural convolution kernels of the 7y,
ie., K¢, 2] = To(z), where K§, Kj € RHXWx3,
KM € REXWX2 and thus Ty(z) € REXWXx(3+243),

3.4. Text-driven DC-PBR Optimization

Given a randomly initialized DC-PBR 7Ty of the PBR texture
maps, we perform an iterative optimization aid by the pre-
trained text-to-image diffusion model.

Overall Pipeline. We visualize the Paint-it optimization
pipeline in Fig. 3. At each iteration, we first feed the fixed
noise z to 7y and obtain the predictions of diffuse, roughness
& metalness and normal maps; Kg, K3", and Kj. We then
rasterize the given mesh by texturing with the obtained tex-
ture maps. After rendering multi-view images of the textured

mesh, we use the text-guided diffusion model to compute
the update direction, V Lgps, for the neural parameter 6.

Rendering Mesh with PBR Texture Maps. Given the
output PBR texture maps, i.e., K;},Kgm, Kj, we texture
the given mesh and perform differentiable rasterization to
obtain rendered mesh images. To render mesh surfaces, the
diffuse k‘g € R?, roughness kj, € R, metalness k] € R,
and perturbing normal direction kj} € R? of a 3D surface
point p can be indexed from Kg, K3", and KJ, using the
uv coordinates. We can use the pre-defined uv coordinates
of the given mesh or perform unwrapping to generate the
uv coordinates. We compute the specularity k§ € R? as:

® =0.04- (1 —K§') 4+ Kk§ - k§. The rendered color L of the
mesh surface point p, seen from the view direction w, can
be computed using the rendering equation as:

Le(paw):/;ZLi(pawi)fe(p7wi7w) (wi'ne)dwia (2)

where w; denotes the incident light direction, €2 is a hemi-
sphere around the perturbed surface normal ng, and L; is
the incident light from an off-the-shelf environment map.
Also, fo(p,w;,w) is the bidirectional reflectance distribu-
tion function (BRDF) of the material at 3D surface point p.
‘We model the BRDF according to the PBR representation,
kg, k}, and kj, which is parameterized by our DC-PBR.
Using the renowned Cook-Torrance microfacet specular
shading model [14], we can decompose Eq. (2) into the
diffuse term Lg, (p) and the specular term Ly, (p, w) as:

L0 (p7 (.d) = Lds (P) + LSg (pv W),

La, (p) = K$(1 — k) /Q Li (D, ws) (w; - 1p)dows,

. DyFypGy
Lss (p,OJ) = A 4(w ; ng)(wi - na)Lz(p»wz)(wz Ila)dw“

where Dy, Fy, and Gy denote the microfacet distribution,
Fresnel term, and geometric attenuation function, respec-
tively. Note that Dy, and Gy are the functions of the gener-
ated ky, and Fy is the function of the specularity, k3.
Iterating all the surface points, we obtain the image
of the rendered mesh, Iy. For simplicity, we denote the
aforementioned rendering process for mesh M as Iy =
RM(K¢, Ko, K5), where RM(-) denotes the differentiable
mesh rendering function, which we use NVDiffRast [31].

Diffusion-guided DC-PBR Optimization. We obtain
noisy PBR texture maps for the initial iteration of the opti-
mization since the DC-PBR 7y is randomly initialized. We
use the Score-Distillation Sampling (Eq. (1)) to iteratively
update the neural re-parameterized PBR texture maps, 7p.
Our optimization problem can be written as follows:

0" = argminE, . [[lao (RN (K5, K. K8):w.)~<l3] .)

where ¢ denotes the parameters of the pre-trained diffu-
sion model, RM(KYJ, Ki", K3) denotes the noisy image
perturbed with forward diffusion process, respectively. We
omit the ¢-dependent weighting function m(t) for notation
simplicity. Given an image Iy rendered from the textured
mesh, we compute the SDS update gradient for updating the
neural re-parameterized texture maps as follows:

R ol |
VO»CSDS((bv I@) = Et,e |:(€¢>(19,t; Y, t) - 6) a;:|
A m n aI
— B (oI K K nt) — 50 |

The iterative update of DC-PBR 7y with VyLsps finally
yields a solution 6*, and we obtain high-quality PBR texture
maps as: [K$. , KM K8.] = Ty-(z).

4. Analysis: Effect of the Deep Convolutional
Re-parameterization for PBR Texture Maps

4.1. Analysis of Fitting Behavior

We observe that the SDS loss is noisy, including notable
randomness. To analyze, we first design a simple experiment
focusing on the parameterization by excluding the influence
of the randomness induced by the diffusion model.

Methods. We compare the optimizations on pixel values
and neural parameters as: 1) Pixel Optimization: The most
direct way to fit an initial texture map 7' € R¥*W >3 (o the
ground truth T would be to optimize the pixel value of 7" to
minimize the error, e.g., L1 loss, as: T* = arg minT|T—T\.
2) Neural Re-parameterized Optimization: Our method to
fit a texture T is to re-parameterize it with the neural pa-
rameters, i.e., T=Tp(z), where Tp(-) is a randomly ini-
tialized convolutional U-Net with skip connections, and

z ~ N(0,I) € RFIXWX3 which is fixed during the op-
timization. Thus, the optimization problem is as follows:
0* = argmingy|Ty(z) — T
Frequency Band Energy Analysis. By comparing both
methods, we see the characteristic differences of two rep-
resentations: pixel parameters and deep convolutional re-
parameterization. In this analysis, we investigate the ener-
gies of the frequency components in the texture maps. Given
each iteration’s texture map, we conduct the spatial texture
frequency (Fourier) analysis and compute the energy com-
ponents in five non-overlapping frequency bands from the
lowest to highest frequencies. See supplementary for details.
Figures 4a and 4b show the energy-iteration plot of both
methods. While the pixel value optimization fits all the
frequency bands simultaneously (Fig. 4a), the neural re-
parameterized optimization fits the low-frequency compo-
nents faster and defers to fit the high-frequency components
later (Fig. 4b), i.e., schedules the frequency. Considering
that lower-frequency bands mostly contain the content of
the image while highest-frequency bands mainly correlate
with noises in the image, we hypothesize that the scheduled
frequency of neural re-parameterization helps the optimiza-
tion focus more on the content of the texture map in the
earlier iterations. The texture map visualizations show the
neural re-parameterized optimization fits the overall texture
and skin tones, i.e., low-frequency, first in earlier iterations
and details later. A similar observation in the natural image
domain is reported in [49, 54], and we further show that the
consistent result also holds for the PBR representation. On
the other hand, the pixel optimization learns low-to-high fre-
quencies simultaneously, which fits noise and texture signals
jointly. This yields undesirable optimization paths that may
be harmful for sensitive losses like the SDS loss, which is
further investigated as follows.

4.2. Analysis of Optimization with the SDS Loss

We investigate whether the observed frequency scheduling
effect of our neural re-parameterization occurs in more com-
plicated Paint-it optimization with the SDS loss (Eq. (3)).
Note that the SDS loss is much noisier than the L1 loss in
Sec. 4.1. The randomness in the sampled perturbation noise
€, diffusion timestep ¢, and multi-view camera positions yield
incoherent gradients in every optimization iteration.

Similar to the pixel optimization in Sec. 4.1, we design
the baseline pixel optimization for synthesizing PBR texture
maps with the SDS loss as follows:

K K™ K™ = argmin
Kd’Krm’Kn

Ere [|leg(RY (KL K™ K")y,) —l3] + Lrv, @)

where K¢, K™, K" denote the diffuse, roughness & metal-
ness, and normal maps, respectively. We also use the total

Intuitive example: Ground truth texture map fitting (Sec. 4.1)

I Target task: Text-driven texture synthesis (Sec. 4.2) ———

=V i
- w5
e e

ﬂﬂﬂ alalal

Energy
, ettt S
| . A ——— e
Ground truth texture map | ——
Dotted lines: GT energy Dotted lines: GT energy
—— Freq. band 1 (lowest) 50 150 500 fer 50 150 500

—— Freq. band 2
—— Freq. band 3
—— Freq. band 4
—— Freq. band 5 (highest)

(a) Pixel optimization
Fits all freq.

(b) Neural re-param. optimization
Fits low freq. to high freq.

Energy‘
i

100 500 900 100 500 900

Iter

Iter

(c) Pixel optimization
Increases all freq.

(d) DC-PBR optimization (Ours)
Learns low freq. to high freq.

Figure 4. Frequency scheduling of neural re-parameterized texture optimization. For each iteration, we investigate the energies of
the frequency components of the reconstructed (a,b) / synthesized (c,d) texture maps. The pixel optimization (a,c) fits and increases all
frequency bands and suffers from fitting high-frequency texture contents from the initial stages, yielding degraded quality texture maps. In
contrast, our proposed neural re-parameterization (b,d) naturally schedules which frequencies to focus on, thus obtaining coarse-to-fine
texture synthesis with robustness to noisy supervision, e.g., SDS loss, and yielding high-quality texture maps.

variation Lty for K¢ as a regularization to guide the smooth-
ness of the local diffuse texture. This compensates for the
lack of inductive bias in the pixel parameterization so that
we can derive a stronger baseline to be compared.

Figures 4c and 4d compare the baseline pixel optimization
(Eq. (4)) and our proposed DC-PBR optimization (Eq. (3))
by plotting the frequency band energies of the PBR texture
maps obtained in each iteration. In Fig. 4c, the baseline
pixel optimization increases all frequency bands. It fits noisy
details from the SDS loss and yields significantly degraded
texture maps. On the contrary, in Fig. 4d, our proposed neu-
ral re-parameterized optimization shows behaviors similar to
those of Fig. 4b. The neural re-parameterization of DC-PBR
guides the optimization to learn low-frequency bands faster
than high-frequency noise, and later, mid-frequency bands
follow. As a result, interestingly, the texture maps are sponta-
neously synthesized in a coarse-to-fine manner perceptually,
where the overall structure and colors are learned first and
the details, such as eyes and letters on the body, later.

Our neural re-parameterized optimization robustly filters
out the high-frequency noise gradients from the SDS loss
by its favorable frequency scheduling property. We postu-
late that this favorable property is induced by the architec-
ture of the convolutional U-Net 7y, consisting of a diverse
composition of convolution kernels. The convolution ker-
nel itself tends to learn favorable expressive local texture
prior [19, 22, 54], including smoothness. Also, the stacked
convolution mechanism that is repeatedly applied across
the spatial domain with diverse compositions is analogous
to other prior structures leveraging pattern recurrences of
natural images, e.g., [4, 15, 36, 56].

5. Experiments
5.1. Qualitative Results

In Fig. 5, we visualize the rendered meshes using Paint-it’s
synthesized PBR texture maps for a given text prompt. To

show the generalizability of the Paint-it synthesis method,
we take the subsets of the large-scale mesh datasets: Ob-
javerse [16] and RenderPeople [3] for general objects and
clothed humans. For animals, we obtained the template
meshes from the quadruped animal linear mesh model [65].
Paint-it can generate photorealistic and vivid textures with
material properties such as a mushroom’s matte surface
and a teapot’s metallic surface. By leveraging the strong
generative prior from the pre-trained text-to-image diffu-
sion model, Paint-it faithfully distinguishes texture parts for
skin and cloth. Interestingly, Paint-it can generate pseudo-
stereoscopic effects, even though the given mesh surface is
flat, e.g., the jewels and gems on a crown. We postulate
this effect stems from our DC-PBR, where we synthesize
the disentangled material properties along with perturbing
tangent space normals. Paint-it also supports the material
control or texture transfer for the same input mesh and the
relighting using different environment maps, thanks to the
synthesized PBR texture maps (Fig. 2).

5.2. Comparison with Competing Methods

In Fig. 6, we evaluate Paint-it with recent text-driven
mesh texture synthesis methods, Latent-Paint [35], Fanta-
sia3D [10], Text2Tex [9], and TEXTure [45]. Texture maps
are generated from each method on identical 3D meshes and
text. Paint-it synthesizes more vivid, realistic, and consistent
textures, compared to texture inpainting methods, Text2Tex
and TEXTure. Specifically, they suffer from multi-view tex-
ture inconsistencies and the baked lighting effects. The back-
projection of the generated RGB image onto the mesh and
the limited diffuse texture representation could be the reason.
Latent-Paint synthesizes blurry texture and is also limited in
diffuse texture. Fantasia3D learns a coordinate-based MLP
to predict the per-point PBR materials, whereas we parame-
terize the full texture map globally. When backpropagating
gradients, Paint-it has a global effect over the full texture,
while Fantasia3D is much more local. Given that SDS is an

a cappuccino a crown a mushroom a wooden bowl a teapot

N4
\®v’

a gentleman a young man a business woman an old woman a kid wearing a
wearing a gray suit wearing a sweater wearing a red shirt wearing a dress sweatshirt and jeans
@ ® i
a horse i

Lk

Figure 5. Qualitative results. We take diverse 3D meshes from Objaverse [16], RenderPeople [3], and SMAL [65], then synthesize texture
maps with our manual text prompts. We visualize the original and rendered meshes with our synthesized PBR texture maps. Paint-it
can model diverse material properties, e.g., the metallic surface of a crown, the rough surface of a mushroom, realistic human skin tones,
front-to-back appearance consistency, and complicated patterns of the animal’s appearance. See supplementary material for more results.

Objaverse mesh Latent-Paint Fantasia3D Text2Tex TEXTure Paint-it
w/ input text (CVPR 2023) (ICCV 2023) (ICCV 2023) (SIGGRAPH 2023) (Ours)

“a basketball”
M

K

“a Jack-o-lantern”

3

w @
™

“a polar bear”

Texture type / RGB /X Per-point PBR / RGB /X RGB /X DC-PBR/
Relightable?

Figure 6. Qualitative comparison. We compare Paint-it with recent competing methods [9, 10, 35, 45]. We script each method to
synthesize textures for the subset of Objaverse [16] meshes and compare the rendered quality of the textured meshes. Deep convolutional
re-parameterization of the PBR texture maps helps Paint-it synthesize a photorealistic and vivid appearance compared to other methods.

“a cappuccino ”
(a) Paint-it (Ours) |

Roughness Metalness Perturb. normal

Diffuse

(b) Fantasia3D

R

Figure 7. PBR disentanglement results. Paint-it vs. Fantasia3D.

Latent-Paint Fantasia3D Text2Tex TEXTure Ours

FID (}) 41.11 58.79 37.89 38.40 34.46
User score (1) 322 271 3.34 3.04 4.37

Table 1. Quantitative results on Objaverse subset. We evaluate
the realism of the synthesized texture maps by measuring FID and
user study. Paint-it outperforms the recent competing methods.

ambiguous and noisy signal, the global gradient update of
Faint-it helps get a higher-quality, coherent appearance. In
Fig. 7, Paint-it obtain better-disentangled materials and spec-
ular properties, while Fantasia3D fails to generate the mug’s
metallic (smooth) surface. Also, Fantasia3D re-meshes the
input mesh, destroying the geometry and obtaining implausi-
ble uv mapping with substantial seams.

Following the protocol from Text2Tex [9], we report the
Fréchet Inception Distance (FID) [23]. Given untextured
meshes from Objaverse [16], we scripted each method to
synthesize texture maps from the same text prompt. Then,
we render the textured meshes in multi-views and compute
the FID score. Please refer to Text2Tex for details. We also
conduct a user study, requesting users to rate the realism of
samples synthesized with Paint-it and competing methods.
We got responses from 30 users. Table 1 shows that Paint-it
outperforms recent competing methods in terms of FID and
user scores. Only Paint-it surpasses the score four (realistic),
showing our superior realism and synthesis quality.

5.3. Ablation studies

Effects of PBR Texture Representation. First, we opti-
mize only the diffuse texture map K¢ as other recent meth-
ods [9, 45]. Simplifying the texture representation to model
only the diffuse texture still generates a decent visual quality.
However, compared to our full method, it is less realistic
since it cannot model the reflection on the surface or stereo-
scopic effects. We highlight the notable difference in the
visual qualities of our full method and the diffuse-only opti-
mization in Fig. 8a, w/o PBR and in Fig. 8b.

Effects of Texture Neural Re-parameterization. As dis-
cussed in Sec. 4, DC-PBR, i.e., neural re-parameterized opti-
mization, naturally embodies the frequency scheduling for
synthesizing textures. While baseline optimization (Eq. (4))
adopts a regularization term to avoid synthesizing noisy
textures with high frequencies, it still introduces severely
jittered textures (see Fig. 8a, w/o Re-param., & Fig. 8c).

(a) Ablation results

Qurs (full) w/o PBR (only K9) w/o Re-param.

“a bagel”

Optimize

w/o PBR
K4, Krm Kn

ony k%) | @
i
‘:2&{.(.', AR

Ours (full)
3& Ea.()

Figure 8. Ablation study. The proposed neural re-parameterization
of PBR textures significantly enhances the visual qualities of the
meshes, e.g., stereoscopic effects, realism, and texture consistency.

6. Discussion, Limitation, and Conclusion

We present Paint-it, a text-based synthesis of physically-
based rendering (PBR) texture maps for meshes. We pro-
pose the deep convolutional re-parameterization of PBR
texture maps, which inherently eases and robustifies the opti-
mization with the Score-Distillation Sampling. We show the
performance and potential of the proposed method by synthe-
sizing high-fidelity PBR texture maps for large-scale mesh
datasets, including general objects, humans, and animals.

We expect Paint-it can revolutionize the heuristic graph-
ics pipelines, e.g., editing, relighting textures, and generating
unlimited realistic 3D assets for production. The current lim-
itation of Paint-it is the optimization time, which takes ap-
proximately 15~30 minutes per mesh. To further accelerate
Faint-it, an efficient loss using the Consistency models [51]
would be helpful. Also, based on our synthesized texture
maps for large-scale mesh datasets, curating a PBR texture
map dataset and using it to train a feed-forward generative
model would be a promising future direction.

Acknowledgment. We thank the members of AMILab [1] and RVH group [2] for
their helpful discussions and proofreading. The project was made possible by funding
from the Carl Zeiss Foundation. This work is funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) - 409792180 (Emmy Noether
Programme, project: Real Virtual Humans), and the German Federal Ministry of
Education and Research (BMBF): Tiibingen Al Center, FKZ: 01IS18039A. Gerard
Pons-Moll is a Professor at the University of Tiibingen endowed by the Carl Zeiss
Foundation, at the Department of Computer Science and a member of the Machine
Learning Cluster of Excellence, EXC number 2064/1 — Project number 390727645.
Kim Youwang and Tae-Hyun Oh were supported by Institute of Information & com-
munications Technology Planning & Evaluation (IITP) grant funded by the Korea
government(MSIT) (No.RS-2023-00225630, Development of Artificial Intelligence
for Text-based 3D Movie Generation; No.2022-0-00290, Visual Intelligence for Space-
Time Understanding and Generation based on Multi-layered Visual Common Sense;
No0.2021-0-02068, Artificial Intelligence Innovation Hub).

References

(1]
(2]
(3]
(4]

(3]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

https://ami.postech.ac.kr/members. 8
http://virtualhumans.mpi-inf.mpg.de/people.html. 8
https://renderpeople.com/, 2023. 6, 7, 15, 17, 19

Connelly Barnes, Eli Shechtman, Dan B Goldman, and Adam
Finkelstein. The generalized PatchMatch correspondence
algorithm. In European Conference on Computer Vision
(ECCV),2010. 6

Benjamin Biggs, Oliver Boyne, James Charles, Andrew
Fitzgibbon, and Roberto Cipolla. Who left the dogs out?: 3D
animal reconstruction with expectation maximization in the
loop. In European Conference on Computer Vision (ECCV),
2020. 15

Tianshi Cao, Karsten Kreis, Sanja Fidler, Nicholas Sharp,
and KangXue Yin. Texfusion: Synthesizing 3d textures with
text-guided image diffusion models. In IEEE International
Conference on Computer Vision (ICCV), 2023. 2, 3

Yukang Cao, Yan-Pei Cao, Kai Han, Ying Shan, and Kwan-
Yee K. Wong. Dreamavatar: Text-and-shape guided 3d hu-
man avatar generation via diffusion models. arXiv preprint,
arxiv:2304.00916, 2023. 3

Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano,
Boxiao Pan, Shalini De Mello, Orazio Gallo, Leonidas
Guibas, Jonathan Tremblay, Sameh Khamis, Tero Karras,
and Gordon Wetzstein. Efficient geometry-aware 3D genera-
tive adversarial networks. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2022. 1

Dave Zhenyu Chen, Yawar Siddiqui, Hsin-Ying Lee, Sergey
Tulyakov, and Matthias NieBner. Text2tex: Text-driven tex-
ture synthesis via diffusion models. In IEEE International
Conference on Computer Vision (ICCV),2023. 2,3,6,7, 8,
13, 15

Rui Chen, Yongwei Chen, Ningxin Jiao, and Kui Jia. Fan-
tasia3d: Disentangling geometry and appearance for high-
quality text-to-3d content creation. In IEEE International
Conference on Computer Vision (ICCV), 2023. 3,6, 7, 12, 13,
15

Xu Chen, Tianjian Jiang, Jie Song, Jinlong Yang, Michael
Black, Andreas Geiger, and Otmar Hilliges. gdna: Towards
generative detailed neural avatars. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2022. 1
Yongwei Chen, Rui Chen, Jiabao Lei, Yabin Zhang, and
Kui Jia. Tango: Text-driven photorealistic and robust 3d
stylization via lighting decomposition. In Advances in Neural
Information Processing Systems (NeurIPS), 2022. 3
Junhyeong Cho, Kim Youwang, and Tae-Hyun Oh. Cross-
attention of disentangled modalities for 3d human mesh recov-
ery with transformers. In European Conference on Computer
Vision (ECCV), 2022. 15

R. L. Cook and K. E. Torrance. A reflectance model for com-
puter graphics. ACM Transactions on Graphics (SIGGRAPH),
1(1), 1982. 4

Antonio Criminisi, Patrick Perez, and Kentaro Toyama. Ob-
ject removal by exemplar-based inpainting. In /IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2003. 6

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs,
Oscar Michel, Eli VanderBilt, Ludwig Schmidt, Kiana Ehsani,
Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe
of annotated 3d objects. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2023. 6,7, 8, 13, 15,
16, 18

Zijian Dong, Xu Chen, Michael J.Black Jinlong Yang, Otmar
Hilliges, and Andreas Geiger. AG3D: Learning to generate
3D avatars from 2D image collections. In IEEE International
Conference on Computer Vision (ICCV), 2023. 1

Yao Feng, Haiwen Feng, Michael J. Black, and Timo Bolkart.
Learning an animatable detailed 3D face model from in-the-
wild images. ACM Transactions on Graphics (SIGGRAPH),
40(8), 2021. 15

Leon Gatys, Alexander S Ecker, and Matthias Bethge. Texture
synthesis using convolutional neural networks. In Advances
in Neural Information Processing Systems (NeurIPS), 2015.
6

Shubham Goel, Georgios Pavlakos, Jathushan Rajasegaran,
Angjoo Kanazawa*, and Jitendra Malik*. Humans in 4D:
Reconstructing and tracking humans with transformers. In
IEEE International Conference on Computer Vision (ICCV),
2023. 15

Vladimir Guzov, Aymen Mir, Torsten Sattler, and Gerard
Pons-Moll. Human poseitioning system (hps): 3d human
pose estimation and self-localization in large scenes from
body-mounted sensors. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2021. 15

Reinhard Heckel and Mahdi Soltanolkotabi. Denoising and
regularization via exploiting the structural bias of convolu-
tional generators. In International Conference on Learning
Representations (ICLR), 2020. 6

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bern-
hard Nessler, and Sepp Hochreiter. Gans trained by a two time-
scale update rule converge to a local nash equilibrium. In Ad-
vances in Neural Information Processing Systems (NeurlPS),
2017. 8

Fangzhou Hong, Mingyuan Zhang, Liang Pan, Zhongang Cai,
Lei Yang, and Ziwei Liu. Avatarclip: Zero-shot text-driven
generation and animation of 3d avatars. ACM Transactions
on Graphics (SIGGRAPH), 41(4):1-19, 2022. 3

Yukun Huang, Jianan Wang, Yukai Shi, Xianbiao Qi, Zheng-
Jun Zha, and Lei Zhang. Dreamtime: An improved optimiza-
tion strategy for text-to-3d content creation. arXiv preprint,
arxiv:2306.12422, 2023.

Yukun Huang, Jianan Wang, Ailing Zeng, He Cao, Xianbiao
Qi, Yukai Shi, Zheng-Jun Zha, and Lei Zhang. Dreamwaltz:
Make a scene with complex 3d animatable avatars. arXiv
preprint, arxiv:2305.12529,2023. 1, 3

Ajay Jain, Ben Mildenhall, Jonathan T. Barron, Pieter Abbeel,
and Ben Poole. Zero-shot text-guided object generation with
dream fields. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2022.

Ruixiang Jiang, Can Wang, Jingbo Zhang, Menglei Chai,
Mingming He, Dongdong Chen, and Jing Liao. Avatarcraft:
Transforming text into neural human avatars with parameter-
ized shape and pose control. In IEEE International Confer-
ence on Computer Vision (ICCV),2023. 1,3

https://ami.postech.ac.kr/members
http://virtualhumans.mpi-inf.mpg.de/people.html
https://renderpeople.com/

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

GeonU Kim, Kim Youwang, and Tae-Hyun Oh. FPRF: Feed-
forward photorealistic style transfer of large-scale 3D neural
radiance fields. In AAAI Conference on Artificial Intelligence
(AAAI), 2024. 14

Jihoon Kim, Jiseob Kim, and Sungjoon Choi. Flame: Free-
form language-based motion synthesis & editing. In AAAI
Conference on Artificial Intelligence (AAAI), 2022. 15
Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol,
Jaakko Lehtinen, and Timo Aila. Modular primitives for high-
performance differentiable rendering. ACM Transactions on
Graphics (SIGGRAPH), 39(6), 2020. 5

Zhaoshuo Li, Thomas Miiller, Alex Evans, Russell H Tay-
lor, Mathias Unberath, Ming-Yu Liu, and Chen-Hsuan Lin.
Neuralangelo: High-fidelity neural surface reconstruction. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2023. 14

Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa,
Xiaohui Zeng, Xun Huang, Karsten Kreis, Sanja Fidler, Ming-
Yu Liu, and Tsung-Yi Lin. Magic3d: High-resolution text-to-
3d content creation. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2023. 1, 3

Qianli Ma, Jinlong Yang, Anurag Ranjan, Sergi Pujades, Ger-
ard Pons-Moll, Siyu Tang, and Michael Black. Learning to
dress 3d people in generative clothing. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2020.
1

Gal Metzer, Elad Richardson, Or Patashnik, Raja Giryes, and
Daniel Cohen-Or. Latent-nerf for shape-guided generation
of 3d shapes and textures. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2023. 2,3,6,7, 13,
15

Tomer Michaeli and Michal Irani. Nonparametric blind super-
resolution. In /IEEE International Conference on Computer
Vision (ICCV), 2013. 6

Oscar Michel, Roi Bar-On, Richard Liu, Sagie Benaim, and
Rana Hanocka. Text2mesh: Text-driven neural stylization for
meshes. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2022. 3

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In European Conference on Computer Vision (ECCV),
2020. 1,3

Thomas Miiller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a mul-
tiresolution hash encoding. ACM Transactions on Graphics
(SIGGRAPH), 41(4):102:1-102:15, 2022. 14

Jeong Joon Park, Peter Florence, Julian Straub, Richard New-
combe, and Steven Lovegrove. Deepsdf: Learning contin-
uous signed distance functions for shape representation. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2019. 1

Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo
Bolkart, Ahmed A. A. Osman, Dimitrios Tzionas, and
Michael J. Black. Expressive body capture: 3D hands, face,
and body from a single image. In /EEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2019. 1, 15

10

(42]

(43]

(44]

(45]

[46]

(47]

(48]

[49]

(50]

(51]

(52]

(53]

(54]

Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall.
Dreamfusion: Text-to-3d using 2d diffusion. In International
Conference on Learning Representations (ICLR), 2022. 1, 2,
3,12

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. In International
Conference on Machine Learning (ICML), 2021. 3

Davis Rempe, Tolga Birdal, Aaron Hertzmann, Jimei Yang,
Srinath Sridhar, and Leonidas J. Guibas. Humor: 3d human
motion model for robust pose estimation. In IEEE Interna-
tional Conference on Computer Vision (ICCV), 2021. 15

Elad Richardson, Gal Metzer, Yuval Alaluf, Raja Giryes,
and Daniel Cohen-Or. Texture: Text-guided texturing of 3d
shapes. ACM Transactions on Graphics (SIGGRAPH), 2023.
2,3,6,7,8,13, 15

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Bjorn Ommer. High-resolution image
synthesis with latent diffusion models. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2022.
1,3

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay
Whang, Emily L. Denton, Seyed Kamyar Seyed Ghasemipour,
Burcu Karagol Ayan, Seyedeh Sara Mahdavi, Raphael Gon-
tijo Lopes, Tim Salimans, Jonathan Ho, David Fleet, and
Mohammad Norouzi. Photorealistic text-to-image diffusion
models with deep language understanding. In Advances in
Neural Information Processing Systems (NeurlPS), 2022. 1,
3

Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and
Sanja Fidler. Deep marching tetrahedra: a hybrid representa-
tion for high-resolution 3d shape synthesis. In Advances in
Neural Information Processing Systems (NeurIPS), 2021. 15

Zenglin Shi, Pascal Mettes, Subhransu Maji, and Cees G M
Snoek. On measuring and controlling the spectral bias of the
deep image prior. International Journal of Computer Vision,
2022. 5

Yawar Siddiqui, Justus Thies, Fangchang Ma, Qi Shan,
Matthias Niefner, and Angela Dai. Texturify: Generating
textures on 3d shape surfaces. In European Conference on
Computer Vision (ECCV), 2022. 3

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever.
Consistency models. In International Conference on Machine
Learning (ICML), 2023. 8

Kim Sung-Bin, Lee Hyun, Da Hye Hong, Suekyeong Nam,
Janghoon Ju, and Tae-Hyun Oh. Laughtalk: Expressive 3d
talking head generation with laughter, 2024. 15

Guy Tevet, Sigal Raab, Brian Gordon, Yoni Shafir, Daniel
Cohen-or, and Amit Haim Bermano. Human motion diffusion
model. In International Conference on Learning Representa-
tions (ICLR), 2023. 15

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky.
Deep image prior. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2018. 5, 6, 12, 14

[55]

[56]

(571

(58]

[59]

[60]

[61]

(62]

[63]

[64]

[65]

Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A. Yeh, and
Greg Shakhnarovich. Score jacobian chaining: Lifting pre-
trained 2d diffusion models for 3d generation. In /IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR),
2023. 3

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming
He. Non-local neural networks. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018. 6
Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan
Li, Hang Su, and Jun Zhu. Prolificdreamer: High-fidelity and
diverse text-to-3d generation with variational score distilla-
tion. In Advances in Neural Information Processing Systems
(NeurIPS), 2023. 3

Jiajun Wu, Chengkai Zhang, Tianfan Xue, William T Free-
man, and Joshua B Tenenbaum. Learning a probabilistic
latent space of object shapes via 3d generative-adversarial
modeling. In Advances in Neural Information Processing
Systems (NeurIPS), 2016. 1

Xianghui Xie, Bharat Lal Bhatnagar, and Gerard Pons-Moll.
Visibility aware human-object interaction tracking from single
rgb camera. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2023. 15

Yuxuan Xue, Bharat Lal Bhatnagar, Riccardo Marin, Nikolaos
Sarafianos, Yuanlu Xu, Gerard Pons-Moll, and Tony Tung.
Nsf: Neural surface fields for human modeling from monoc-
ular depth. In IEEE International Conference on Computer
Vision (ICCV), 2023. 15

Kim Youwang, Kim Ji-Yeon, Kyungdon Joo, and Tae-Hyun
Oh. Unified 3d mesh recovery of humans and animals by
learning animal exercise. In British Machine Vision Confer-
ence (BMVC), 2021. 15

Kim Youwang, Kim Ji-Yeon, and Tae-Hyun Oh. CLIP-Actor:
Text-driven recommendation and stylization for animating
human meshes. In European Conference on Computer Vision
(ECCV),2022. 3, 15

Kim Youwang, Lee Hyun, Kim Sung-Bin, Suekyeong Nam,
Janghoon Ju, and Tae-Hyun Oh. A large-scale 3D face mesh
video dataset via neural re-parameterized optimization. arXiv
preprint, arXiv:2310.03205, 2023. 15

Wojciech Zielonka, Timo Bolkart, and Justus Thies. Towards
metrical reconstruction of human faces. In European Confer-
ence on Computer Vision (ECCV), 2022. 15

Silvia Zuffi, Angjoo Kanazawa, David Jacobs, and Michael J.
Black. 3D menagerie: Modeling the 3D shape and pose of
animals. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017. 6,7

11

"7 Paint-it: Text-to-Texture Synthesis via Deep Convolutional
Texture Map Optimization and Physically-Based Rendering

— Supplementary Material —

In this supplementary material, we provide additional
details and results that are not included in the main paper
due to the space limit. The attached video includes a brief
introduction and interesting qualitative results of Paint-it.

A. Details of Paint-it
A.1. DC-PBR: Network Design

The main contribution of our work is the proposed DC-PBR
parameterization for optimizing the physically-based render-
ing (PBR) texture maps. Instead of pixel-based parameteriza-
tion of the PBR texture maps, we introduce the fixed random
noise input z ~ N(0,I) € RF*W>3 and a randomly ini-
tialized U-Net with skip connections, 7. We obtain the PBR
texture map [K$, K" K3] = Ty(z) € REXWx(3+243) for
every iteration of the synthesis optimization.

Our design choice of DC-PBR is inspired by the Deep
Image Prior [54], and we extended it to re-parameterize the
PBR texture maps for the text-driven texture map synthesis
task. We use an encoder-decoder (‘“hourglass”) architecture
with skip connections between encoder and decoder features
for our neural re-parameterization, DC-PBR 7Ty. For the
network hyperparameters, we used the default architecture
of the Deep Image Prior, i.e., five levels of downsampling
and upsampling layers for the encoder and decoder. We
encourage readers to refer to the details in Fig. 21 of Deep
Image Prior. We empirically set the learning rate as 5 - 10~4
and the total iteration for PBR texture synthesis as 1000.

A.2. Details of SDS Loss

Recall that we optimize the DC-PBR given the text with the
Score-Distillation Sampling (SDS).

SDS Loss for Multi-view Mesh Images. We adopt some
engineering to obtain high-fidelity and multi-view consis-
tent PBR texture maps. When computing the SDS loss, we
need the rendered image of the textured mesh. We randomly
sample camera poses in multi-view and render N view im-
ages. We sample the elevation angle as ey ~ U(—5, §),
and the azimuth angle as @,im ~ U(0,27). We set N = 4
for most cases. When optimizing DC-PBR for humans and
animals, we increase the generation quality of the face re-
gions by additionally rendering the face-focused images. We
translate the mesh so that the head can be the center of the
world coordinate and render it with peey ~ U(—7,) and
©Pazim ~ U(0, 27). For human and animal cases, we use a to-
tal N = 8 views for computing SDS loss, where four views

are for the full body, and the others are for face regions. We

12

View 2 View 4 View 5

View 3

View 1

Figure S1. (For SDS analysis) Textured mesh image rendered from
adjacent camera views —2° < @eey < 2° and —2° < @gim < 2°.
The images are slightly different but look almost identical.

also use the directional text prompt engineering as in prior
arts [10, 42] to mitigate the “Janus problem”.

When computing the SDS loss, at each iteration, we syn-
chronize the noise ¢ and the noising timestep ¢ for multi-view
rendered images, i.e., we randomly sample a single € and
t for each synthesis iteration and add the same amount of
noise to the multi-view mesh images. Finally, we sample the
noising timestep ¢, from the distribution U (¢min, tmax). We
start by [tmin, tmax] = [0.2, 0.98], and linearly narrows down
the distribution so that it become [tmin, tmax] = [0.3, 0.5] by
the end. We empirically set the ranges for ¢ i, and ¢pax.

Why is SDS Loss a Noisy Signal?. In the main paper, we
denote that the SDS loss is a noisy signal. By noisy, we refer
to the incoherent nature of the SDS loss. From Sec. 3.1 and
Eq. 1 in the main paper, we notice the SDS loss is dependent
on the randomly sampled Gaussian noise ¢ ~ A(0,I) and
the noising timestep ¢ ~ U (tmin, tmax). We sample € and ¢
for every iteration of the PBR texture map synthesis; thus,
the SDS loss is highly likely to give incoherent direction for
updating the DC-PBR 7y. Moreover, as aforementioned, we
use multi-view rendered images. Multi-view images contain
different visible mesh parts, potentially providing incoherent
update directions for 7y.

To show the incoherent SDS gradient, we design a toy
example. Given a mesh and a text input, we render the mesh
in N adjacent views, i.e., we sample elevation and azimuth
in the range —2° < @eley < 2° and —2° < QYuim < 2°.
Since the camera views are closely distributed, the rendered
mesh images would look almost identical (see Fig. S1).

We investigated the backward gradients V Lgps applied
on the diffuse map K4, computed from each view, with the
identical text prompt and € and {. We obtain a flattened,
stacked gradient matrix from per-view SDS loss gradients
on the diffuse map. Formally, we obtain the gradient ma-
trix G € RV*F where N denotes the number of rendered
views, and F' denotes the flattened dimension of the gradi-
ent. Even though we compute the SDS loss with the same

text prompt, same € and ¢, and the almost identical rendered
images indistinguishable in eyes, we observe that the gra-
dient matrix G is in high rank. We first obtain the singular
values of the gradient matrix G using the Singular Value
Decomposition (SVD) and investigate the ratio of all the
singular values with the smallest singular value. From a toy
example, where N = 5, we obtain the singular value ratio
as [2.1868,1.7937,1.7838, 1.6689, 1.0000], i.e., the highest
and lowest singular values do not deviate too much in terms
of the scale, showing G is high rank. In other words, the
SDS loss, computed with a pre-trained text-to-image dif-
fusion model, provides incoherent guidance from multiple
views and guides the optimization in incoherent directions.

We claim the SDS loss is a noisy signal from this obser-
vation. In Sec. 4.2, we empirically show our DC-PBR filters
out the high-frequency noisy signal by inherently schedul-
ing the optimization curriculum. Thus, DC-PBR is effective
when combined with the noisy SDS loss.

A.3. Details of Frequency-based Analysis

We plot the energy-iteration plot in our frequency-based
analysis of the proposed DC-PBR (Fig. 4 in the main paper).
We first performed the Fast Fourier Transform (FFT) of the
diffuse texture map obtained in each iteration. See Fig. S2a
for the FFT result. Then, we define five non-overlapping
frequency bands, depending on the radius from the center of
the FFT image, as in Fig. S2b. Note that the ranges of the
frequency bands are fixed during the optimization. Finally,
we compute the energy of each frequency band by summing
all the frequency response magnitudes (either absolute value
or square works) in each frequency band.

In Fig. 4-left, the optimization starts from a monotonic
gray image, which has high zero-frequency energies, i.e., DC
component. However, note that we visualize each frequency
band’s ‘average’ energy. DC component occupies only a tiny
area (< 1%) in the lowest frequency band; thus, the pixel
brightness hardly affects the band’s energy.

During Paint-it optimization, our DC-PBR representa-
tion automatically schedules the curriculum to learn low
frequency first, then mid frequency, and filters out the high-
est frequency, i.e., noise.

A 4. Details of User Study

We conducted a user study to assess the realism of the synthe-
sized PBR texture maps. We showed ten untextured meshes
from the Objaverse [16] dataset and showed five different
results obtained from the methods: Latent-Paint [35], Fanta-
sia3D [10], Text2Tex [9], TEXTure [45], and Paint-it (ours).
We asked 30 users with engineering/non-engineering back-
grounds to rate the realism of the rendered images in the
score range 1 to 5, i.e., 1: very unrealistic, 2: unrealistic, 3:
neutral, 4: realistic, and 5: very realistic. The order of the
methods was randomly shuffled for fairness. The interface

13

(a) FFT of texture map

(b) Frequency bands

Figure S2. (a) Visualization of the FFT image of the diffuse map.
(b) Visualization of the pre-defined non-overlapping frequency
bands. Center: low frequency, Outer: high frequency.

[e i
“a wooden bench”

1 (very unrealis.. 2 (unrealistic) 3 (neutral) 4 (realistic) 5 (very realistic)

@
©
Figure S3. The users were asked to rate the realism of the rendered

mesh images, textured with five different methods. The order of
the methods was randomly shuffied for each question.

-

~
e —

com

(a) PBR w/ Feature grid + MLP (Baseline)

(b) DC-PBR (Ours)

Figure S4. Feature grid+MLP (baseline) vs. DC-PBR (ours)

of the user study is shown in Fig. S3.

A.S. Details & Discussion about Optimization Time

The optimization time for synthesizing PBR texture maps
takes about 15 min. for general object meshes in Obja-
verse [16]. For more complex cases, such as 3D humans or
animals, we additionally use face-focused mesh renderings;
thus, it takes about 30 min. to complete. We optimized
both the baseline (Eq. (4) in the main paper, pixel optimiza-
tion) and our DC-PBR until convergence, and there’s no

Energy

Energy

f*'!
——
Ground truth texture map

Dotted lines: GT energy

Dotted lines: GT energy Dotted lines: GT energy

Iter

—— Freq. band 1 (lowest) 50 150 500
= Freq. band 2

- Freq. band 3 . . ;
— Freq. band 4 (a) Pixel optimization

—— Freq. band 5 (highest) : Fits all freq.

50

(b) U-Net w/o skip connection
: Cannot fit high freq.

150

Iter

Iter

900 150 900

(c) U-Net w/ skip connection (Ours)
: Fits high freq. later

Figure S5. Effect of skip connection: Texture map fitting. When fitting a texture map with different parameterizations, U-Net without skip
connections fails to fit the highest frequency band. This hints that the skip connections are responsible for representing fine-grained details.

Energy| —— Freq. band 1 (lowest)
—— Freq. band 2
—— Freq. band 3
—— Freq. band 4
—— Freq. band 5 (highest)

Energy

500

(a) Pixel optimization
: Increases all freq.

900

(b) U-Net w/o skip connection
: Cannot increase high freq.

ter

100 500 900

(c) U-Net w/ skip connection (Ours)
: Increases high freq. later

Figure S6. Effect of skip connection: Text-driven texture synthesis. When synthesizing PBR texture maps with different parameterizations,
U-Net without skip connections cannot increase the mid-to-high frequency band (purple). Proposed DC-PBR with U-Net and skip connections
can synthesize fine-grained details in texture maps, resulting in high-fidelity synthesis results.

significant time difference. Instead, DC-PBR helps the opti-
mization with noisy SDS loss find a better solution than the
vanilla pixel optimization. We use a single NVIDIA RTX
A6000 GPU for the optimization.

Extending Paint-it to large-scale 3D scenes would be
an interesting future direction. However, Paint-it’s PBR
texture generation for large-scale scenes would take a longer
optimization time. As suggested in FPRF [29], we may try
semantic feature distillation to accelerate the optimization
when stylizing large-scale 3D scenes using SDS.

B. Additional Experiment
B.1. More Baseline for PBR Representation

For a PBR representation baseline, other than direct pixel
optimization (Eq. (4) in the main paper), we implement a
multi-resolution hash encoding of grid features and subse-
quent MLP [39] to model the disentangled PBR texture maps.
In Fig. S4, our DC-PBR representation yields smoother and
more vivid texture results than the new baseline. In Table S1,
our DC-PBR obtains a better FID score than other PBR

14

representation baselines (Pixel optim., & Feat. grid+MLP).
We postulate that the SDS gradients only propagate to local
hash grids in the new baseline, lacking non-local texture
smoothness, as supported in [32]. On the other hand, the spa-
tial CNN kernels of our DC-PBR are beneficial in naturally
imposing texture smoothness.

B.2. Effects of DC-PBR Design Choice

In this section, we investigate the effect of our DC-PBR
design choice. Specifically, we study the effect of our U-Net
with skip connections in synthesizing the PBR texture maps.

As discussed in the main paper and Sec. A.1, we use a
randomly initialized U-Net with skip connections, shortly,
U-Net+skip. Deep Image Prior [54] used U-Net+skip and
claimed skip connections inherently promote self-similarity
across multi-scales, which is beneficial for inverse problems.
We wanted to investigate how the skip connections affect
the DC-PBR optimization with SDS loss. Thus, we conduct
the same experiment as in Sec. 4 of the main paper, but with
U-Net, without (w/0) skip connections.

Paint-it

“Batman”
“Captain America”

X
X

RRARR
KA €AA

R
X

time

Figure S7. Paint-it: Dynamic virtual 3D humans. We synthesize PBR texture maps given text and rigged mesh, e.g., SMPL-X [41], using
Paint-it. Then, we animate the textured 3D humans using sequential pose parameters (can be retrieved [62] or generated [30]).

Only K¢
59.39

Pixel optim.
216.6

Feat. grid+MLP DC-PBR (Ours)
55.98 34.46

FID (1)

Table S1. FID for ablation study

Fitting behavior. Following the experiment in Sec. 4.1, we
fit a randomly initialized U-Net w/o skip connections given
a ground-truth texture map. In Fig. S5b, the energy-iteration
plot shows that parameterizing a texture map with U-Net
w/o skip connection fails to fit high frequency.

DC-PBR synthesis behavior. Similarly, for our task, i.e.,
text-driven DC-PBR optimization, U-Net w/o skip connec-
tion fails to increase the mid-to-high frequency band (purple
line), resulting in blurry texture maps. In contrast, our DC-
PBR, parameterized in U-Net+skip, successfully increases
the mid-to-high frequency band, synthesizing fine-grained
texture maps. We conclude that the skip connections are
in charge of synthesizing fine-grained, high-frequency de-
tails of texture maps. This observation aligns with the Deep
Image Prior’s claim, where skip connections benefit the
inverse problems with multi-scale feature awareness. We
additionally showed the frequency level behavior of the skip
connection through the experiments (see Fig. S6).

C. Additional Results
C.1. More Quantitative Comparison

In Tab. S1, we report FID scores for the ablation study (in
Sec. 5.3 in the main paper). We used 410 meshes from
Objaverse to get the real sample set and added 50 meshes for
the generated sample set. The results support that our full
DC-PBR enhances the realism of the generated texture.

C.2. More Qualitative Results

We provide more qualitative results of our Paint-it. Given un-
textured meshes from Objaverse [16] and RenderPeople [3],
we obtain the text prompts from 1) manually writing the
requirements, e.g., a Spiderman lego minifigure, or 2) gen-
erating an automatic text caption using multi-modal large-

15

language models, e.g., GPT-4. Then, we conduct Paint-it
optimization to synthesize PBR texture maps and render the
textured meshes (see Fig. S8 and Fig. S9).

C.3. More Comparison Results

In Figs. S10 and S11, we provide more qualitative re-
sults that compare Paint-it and recent competing meth-
ods [9, 10, 35, 45]. As in Fig. 6 of the main paper, we synthe-
size texture maps using each method for the same untextured
meshes and text prompts. Overall, Paint-it synthesizes much
realistic and vivid texture on the meshes, thanks to the PBR
texture representation and texture smoothness induced by our
proposed DC-PBR. Note that Fantasia3D [10] also synthe-
sizes PBR materials, but in a per-point independent manner;
thus, it lacks texture smoothness and yields substantial jit-
terings. Moreover, given an untextured mesh, Fantasia3D
converts the mesh into a signed distance function (SDF)
representation, DMTet [48]. Such auxiliary re-meshing opti-
mization leads to severe geometric quality degradation, e.g.,
floating artifacts on a toy bicycle example, in Fig. S10.

C.4. Paint-it for Animated Meshes

Faint-it can also synthesize high-quality PBR texture maps
for animatable meshes and generate dynamic 3D assets.
Since Paint-it does not perform a re-meshing process and
preserves the original UV texture coordinates, we can syn-
thesize maps for any rigged meshes, e.g., T-posed human
mesh, and animate with any motion sequences.

In this paper, we used SMPL-X [41]. We first take the
canonical posed SMPL-X mesh and synthesize PBR texture
maps using Paint-it. To animate the textured avatars, one
may use the motion captured mesh sequences of 3D human
bodies [13, 20, 21, 59, 60], faces [18, 63, 64] or even ani-
mals [5, 61]. Generative models for natural body or facial
motions [44, 52, 53] could also be applied for animation. We
may also use the posed meshes and perform advanced aug-
mentations as proposed in CLIP-Actor [62]. We visualize
the synthesized animated meshes in Fig. S7.

a banana a chocolate cake a Spiderman lego a bean bag a lamp

minifigure —
— T S 1
a Starbucks a candle a cowboy hat an umbrella a wooden chair
takeout cup
ﬁ l
a sofa a pancake a chair
—
a wooden a hammer a briefcase a toy bicycle
bench

a cello a rocking chair a kettlebell

/

a dolphin a dumbbell an hourglass a golden key a chocolate

= 0 ===8

a kitchen frying a ski glove a slice of watermelon a pipe cigar

? ¥ w & o

Figure S8. Qualitative results of Paint-it: Objaverse dataset [16]. Given any untextured mesh from the existing mesh database, Paint-it
synthesizes high-fidelity, locally smooth, and realistic object PBR texture maps.

L=

16

a woman
wearing
a sportswear

a woman
wearing
ared dress

a man
wearing
a blue suit

a man
wearing
a green coat

&

\ a woman
wearing
a black

sportswear

a man
wearing
blue jeans

a man
wearing

a shower
% gown 7% &

ey

Figure S9. Qualitative results of Paint-it: RenderPeople dataset [3]. Given untextured clothed human meshes, Paint-it synthesizes
high-fidelity, vivid, and multi-view consistent human and cloth PBR textures. We render four different views of the textured mesh.

17

LR -E N X K-
B alsl s L=

a dumbbell

a mushroom

a wooden bench

—

a bean bag

a watermelon

A

a toy bicycle

a spiderman lego

@

a pancake

a ski glove
Objaverse Mesh Latent-Paint Fantasia3D Text2Tex TEXTure Paint-it
w/ Input Text (CVPR2023) (CVPR2023) (Iccv2023) (SIGGRAPH 2023) (Ours)

Figure S10. Comparison results: Objaverse dataset [16].
18

)

a woman wearing
a sportswear

1

a man wearing
blue jeans

f

a man wearing
a green coat

0

a kid wearing a
blue sweatshirt
and jeans

!

a man wearing
sweater and jeans

RenderPeople Latent-Paint Fantasia3D Text2Tex TEXTure Paint-it
Mesh w/ Input Text (CVPR2023) (CVPR2023) (IcCv2023) (SIGGRAPH 2023) (Ours)

Figure S11. Comparison results: RenderPeople dataset [3].
19

	. Introduction
	. Related Work
	. Paint-it: Text-Driven PBR Texture Synthesis via Neural Re-parameterized Optimization
	. Preliminary: Score-Distillation Sampling
	. Goal of Paint-it
	. DC-PBR: Deep Convolutional PBR Texture Map Re-parameterization
	. Text-driven DC-PBR Optimization
	. Analysis: Effect of the Deep Convolutional Re-parameterization for PBR Texture Maps
	. Analysis of Fitting Behavior
	. Analysis of Optimization with the SDS Loss

	. Experiments
	. Qualitative Results
	. Comparison with Competing Methods
	. Ablation studies

	. Discussion, Limitation, and Conclusion
	. Details of Paint-it
	. DC-PBR: Network Design
	. Details of SDS Loss
	. Details of Frequency-based Analysis
	. Details of User Study
	. Details & Discussion about Optimization Time

	. Additional Experiment
	. More Baseline for PBR Representation
	. Effects of DC-PBR Design Choice

	. Additional Results
	. More Quantitative Comparison
	. More Qualitative Results
	. More Comparison Results
	. Paint-it for Animated Meshes

