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Abstract

Large Language Models (LLMs) increasingly leverage Fed-
erated Learning (FL) to utilize private, task-specific datasets
for fine-tuning while preserving data privacy. However, while
federated LLM frameworks effectively enable collaborative
training without raw data sharing, they critically lack built-
in mechanisms for regulatory compliance like GDPR’s right
to be forgotten. Integrating private data heightens concerns
over data quality and long-term governance, yet existing dis-
tributed training frameworks offer no principled way to se-
lectively remove specific client contributions post-training.
Due to distributed data silos, stringent privacy constraints,
and the intricacies of interdependent model aggregation, fed-
erated LLM unlearning is significantly more complex than
centralized LLM unlearning. To address this gap, we intro-
duce Oblivionis, a lightweight learning and unlearning
framework that enables clients to selectively remove specific
private data during federated LLM training, enhancing trust-
worthiness and regulatory compliance. By unifying FL and
unlearning as a dual optimization objective, we incorporate
6 FL and 5 unlearning algorithms for comprehensive evalua-
tion and comparative analysis, establishing a robust pipeline
for federated LLM unlearning. Extensive experiments demon-
strate that Oblivionis outperforms local training, achiev-
ing a robust balance between forgetting efficacy and model
utility, with cross-algorithm comparisons providing clear di-
rections for future LLM development.

1 Introduction
Large Language Models (LLMs), driven by the Transformer
architecture (Vaswani et al. 2017), have transformed Natural
Language Processing and diverse fields (Achiam et al. 2023;
Touvron et al. 2023). By efficiently learning complex patterns
from vast datasets, they enable advanced tasks such as text
generation, translation, and question-answering (Wei et al.
2022; Webb, Holyoak, and Lu 2023; Imani, Du, and Shrivas-
tava 2023). Typically, the increase in the quantity and quality
of data samples leads to stronger generalization capabilities
and higher task accuracy. In particular, LLM fine-tuning re-
lies on limited task-specific private data. Such data cannot be
used for centralized fine-tuning as it often involves personal
information or holds significant economic value, as seen in
domains like the medical and financial (Thirunavukarasu
et al. 2023; Wu et al. 2023).

In this context, Federated Learning (FL) (McMahan
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Figure 1: Illustration of the three-step LLM training pro-
cess: (1) Pre-training the base model with public datasets on
a centralized server; (2) Federated fine-tuning on the base
model using private and sensitive task-specific data; (3) Fed-
erated targeted unlearning removes the influence of specific
data upon client requests, addressing regulatory and ethical
requirements. Areas enclosed by grey dashed boxes are our
main contributions.

et al. 2017), as an emerging distributed machine learning
paradigm, becomes a highly anticipated trend in the devel-
opment of LLM training because of its unique collaborative
training mechanism and inherent privacy-preserving feature.
Federated LLM (FedLLM) allows multiple clients to jointly
fine-tune a global model without sharing their local private
data. Specifically, Chen et al. (2023) first proposed a system-
atic research framework to explore the integration between
LLM and FL. Fan et al. (2023) proposed an industrial-grade
framework for FedLLM that addresses resource consumption
and data privacy challenges, supporting efficient training and
privacy-preserving mechanisms. Ye et al. (2024) proposed
the OpenFedLLM framework for training LLM on decen-
tralized private data, with federated instruction tuning, value
alignment, and multiple FL algorithms.

Although FL offers a promising approach for the contin-
uous evolution of LLMs, it still encounters significant chal-



lenges in practical applications. As depicted in Figure 1, the
large number of participating FL clients and diverse data
sources can lead to global models inadvertently learning
low-quality knowledge, biased information, or outdated con-
tent from specific clients during federated fine-tuning (Wei,
Haghtalab, and Steinhardt 2023; Min et al. 2023). Further-
more, as global data privacy regulations (e.g., the EU’s Gen-
eral Data Protection Regulation, GDPR) become increas-
ingly sophisticated and public awareness of user data rights
grows, the right to be forgotten and data deletion requests
are gaining more importance (Rosen 2011; Pardau 2018).
Thus, LLMs require not only the capability to acquire new
knowledge, but also the ability to effectively remove spe-
cific data and its contribution to the model upon the removal
request (Huu-Tien et al. 2024; Wang et al. 2024, 2025a).
Preventing model retention of removed data is critical for
maintaining user trust, ensuring regulatory compliance, and
preserving model integrity.

Based on the above challenges and requirements, we aim to
explore an innovative LLM training paradigm to effectively
mitigate the influence of low-quality knowledge within the
FL framework and empower the model to respond to data
contribution removal requests. We propose that during the
training process of FedLLM, when a client opts out of FL
or its data contribution legally needs to be removed, the
global model should be able to perform federated targeted
unlearning. This process is designed to achieve three key
objectives: (1) Effectiveness, selectively removing all influ-
ences of a client’s local private data from the global model;
(2) Robustness, ensuring the model maintains high utility on
retained data; (3) Lightweight Design, enabling unlearning
with minimal computational resources and model parame-
ters. To achieve these goals, we propose Oblivionis, a
lightweight FedLLM unlearning framework that integrates
federated fine-tuning and targeted unlearning, enabling ro-
bust LLM training while ensuring compliance with privacy
regulations. In conclusion, our contributions are as follows:
• We propose Oblivionis, the first framework that inte-

grates FL and targeted unlearning for LLMs, formulating
them as a joint dual-objective optimization task to enable
privacy-preserving training and compliance with GDPR’s
right to be forgotten.

• We consolidate diverse FL and unlearning benchmarks,
training, and evaluation datasets into a user-friendly plat-
form, facilitating standardized research for the LLM and
FL communities.

• Our empirical evaluation reveals that Oblivionis out-
performs local training, with federated methods deliver-
ing an average model utility 27.43% higher than the best
local training. This achievement strikes a robust balance
between forgetting efficacy and model utility, while cross-
comparisons of algorithms provide valuable insights for
advancing future LLM development.

2 Related Work
2.1 Federated Fine-Tuning
FL enables collaborative optimization of a shared model
across distributed clients without exposing clients’ pri-

vate training data to preserve privacy. Recent advance-
ments in FL have been expressed by FedLLM frameworks.
Chen et al. (2023) propose a framework emphasizing pre-
training, fine-tuning, and prompt engineering for privacy-
sensitive applications in FedLLM. Fan et al. (2023) introduce
FATE-LLM, an industrial-grade framework with parameter-
efficient fine-tuning and privacy mechanisms for enterprise
usage. Ye et al. (2024) propose OpenFedLLM, enabling fed-
erated instruction tuning and value alignment, outperform-
ing local training in financial benchmarks. Wu et al. (2024a)
present FedBiOT, a resource-efficient fine-tuning approach
using compressed models and adapters. Wu et al. (2024b)
further explore federated Reinforcement Learning from Hu-
man Feedback (RLHF). They propose FedBis and FedBis-
cuit strategies to enhance FedLLM alignment while handling
client preference heterogeneity (Wu et al. 2024b). These
works significantly advance FedLLM training, enhancing ef-
ficiency and privacy for distributed learning. However, exist-
ing FedLLM frameworks often lack robust unlearning mech-
anisms, failing to address GDPR’s regulation or effectively
remove low-quality or outdated data contributions.

2.2 LLM Unlearning
LLMs have achieved remarkable success across diverse do-
mains, yet their dependence on enormous datasets raises sig-
nificant privacy and ethical concerns, such as compliance
with GDPR’s right to be forgotten and the removal of low-
quality knowledge or biased content. In response, machine
unlearning has emerged as a critical mechanism to address
these issues by selectively removing specific knowledge from
trained models without compromising overall model perfor-
mance. It strategically modifies the trained model to erase
required information without retraining from scratch.

Dorna et al. (2025) introduce a unified framework to stan-
dardize and accelerate the evaluation of unlearning algo-
rithms for large language models, ensuring reproducibility
and transparency through consistent metrics and datasets.
Yao et al. (2024) provide a comprehensive overview of LLM
unlearning, highlighting challenges like catastrophic forget-
ting and the difficulty of unlearning deeply integrated knowl-
edge. Liu et al. (2025) reconsider LLM unlearning objectives
from a gradient perspective, advocating algorithms that min-
imize the influence of target data on model gradients. To en-
hance efficiency, Jia et al. (2024) introduce SOUL, leveraging
second-order optimization to achieve faster convergence in
unlearning tasks. Similarly, Ji et al. (2024) develop a frame-
work based on logit differences, reversing forget-retain objec-
tives to efficiently remove specific knowledge. More targeted
approaches, such as UIPE by Wang et al. (2025b), focus on
disentangling knowledge related to forgetting targets, while
Fan et al. (2024) demonstrate that simpler negative preference
optimization can also outperform. These works collectively
highlight the diversity of approaches in LLM unlearning,
ranging from gradient-based algorithms and second-order
optimization to targeted knowledge removal and simplified
objectives. Despite these advancements, existing frameworks
rarely address the joint optimization of federated fine-tuning
and unlearning, leaving a gap in achieving both forgetting
and model utility, which Oblivionis aims to fill.
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Figure 2: (a) Overview of the proposed Oblivionis framework. (b) Oblivionis integrates 6 representative federated
learning algorithms, 5 machine unlearning methods, 2 federated fine-tuning methods (full-parameter and LoRA-based), and a
variety of models. Oblivionis also supports 5 datasets and over 10 evaluation metrics. (c) Sample experimental results that
showcase the divergent performance of 6 FL methods using SimNPO unlearning algorithm on the TOFU dataset.

3 Overview of Framework
This section formalizes the Oblivionis framework. In
Oblivionis, multiple clients train a shared model col-
laboratively while enabling targeted removal of specific data
contributions via unlearning requests, as shown in Figure 2.
The framework treats FL and unlearning as a dual optimiza-
tion problem, with FL denoted by the operator F and un-
learning by U, allowing flexibility for various methods.

3.1 Federated Learning Setup
Consider 𝐾 clients in an FL framework, indexed by 𝑘 ∈
{1, 2, . . . , 𝐾}. Each client C𝑘 holds a private dataset: D𝑘 =

{(𝑥𝑖 , 𝑦𝑖)}𝑁𝑘𝑖=1, where 𝑥𝑖 and 𝑦𝑖 are sequences of tokens (in-
put/prompt and output/response, respectively), and 𝑁𝑘 =

|D𝑘 | is the number of samples for client 𝑘 . The token se-
quences are used to fine-tune an LLM parameterized by
𝜃 ∈ R𝑑 , where 𝑑 is the dimensionality of the model pa-
rameters. Let 𝑦𝑖, 𝑗 denote the 𝑗-th token in 𝑦𝑖 given the
concatenated sequence of input 𝑥𝑖 and previous tokens
𝑦𝑖,< 𝑗 = (𝑦𝑖,1, . . . , 𝑦𝑖, 𝑗−1). The probability of generating 𝑦𝑖, 𝑗
is 𝑝(𝑦𝑖, 𝑗 | 𝑥𝑖 ⊕ 𝑦𝑖,< 𝑗 ; 𝜃), where ⊕ is the sequence concate-
nation operator.

To address the high communication overhead of full fine-
tuning in FL, where transmitting the entire set of model
parameters across clients is computationally expensive, we
adopt Low-Rank Adaptation (LoRA) (Hu et al. 2022) for
parameter-efficient fine-tuning. LoRA achieves performance
comparable to full fine-tuning while significantly reducing
the communication and computational costs by updating only
a small subset of parameters. Specifically, for each client C𝑘
at communication round 𝑡 ∈ {1, 2, . . . , 𝑇}, LoRA updates
a subset of the model parameters for a given weight matrix
W ∈ R𝑚×𝑛 in the large language model through a low-rank

decomposition:
W𝑡
𝑘 = W + ΔW𝑡

𝑘 , ΔW𝑡
𝑘 = A𝑡𝑘B𝑡𝑘 (1)

where A𝑡
𝑘
∈ R𝑚×𝑟 , B𝑡

𝑘
∈ R𝑟×𝑛, and 𝑟 ≪ min(𝑚, 𝑛) is the

rank of the adaptation. The global model parameters 𝜃𝑡 in-
clude the fixed base weights 𝑊 , while each client C𝑘 op-
timizes the LoRA parameters 𝜙 (𝑡 )

𝑘
=

{
A𝑡
𝑘
,B𝑡

𝑘

}
during lo-

cal training. The full set of model parameters is denoted as
𝜃 = 𝜃base + 𝜙, where 𝜃base is the set of frozen pre-trained
parameters, and 𝜙 represents the LoRA parameters. Since
𝑟 is small, |𝜙| ≪ |𝜃 |, substantially reduces the parameter
optimization burden.

3.2 Federated Fine-Tuning (FedFT)
Federated fine-tuning collaboratively optimizes the global
model 𝜃𝑡 across all clients over 𝑇 communication rounds.
Each client 𝑘 first conducts local training on its local model.
The base model parameters 𝜃base remain fixed. At round 𝑡,
client C𝑘 receives global LoRA parameters 𝜙𝑡−1, initializes
the local LoRA parameters 𝜙 (𝑡 ,0)

𝑘
= 𝜙𝑡−1 and performs 𝑅

iterations of local optimization on D𝑘 using stochastic gra-
dient descent (SGD) on the LoRA parameters. For iteration
𝑟 ∈ {1, 2, . . . , 𝑅}:

𝜙
(𝑡 ,𝑟 )
𝑘

= 𝜙
(𝑡 ,𝑟−1)
𝑘

− 𝜂∇𝜙L𝑘
(
𝜙
(𝑡 ,𝑟−1)
𝑘

;B𝑘
)

(2)

where 𝜂 is the learning rate, and B𝑘 ⊆ D𝑘 is a mini-batch.
The mini-batch loss is:

L𝑘
(
𝜙
(𝑡 ,𝑟−1)
𝑘

;B𝑘
)
=

1
|B𝑘 |

∑︁
(𝑥𝑖 ,𝑦𝑖 ) ∈B𝑘

−
𝑛𝑖∑︁
𝑗=1

log 𝑝
(
𝑦𝑖, 𝑗 | 𝑥𝑖 ⊕ 𝑦𝑖,< 𝑗 ; 𝜃base + 𝜙 (𝑡 ,𝑟−1)

𝑘

)
(3)



where 𝑛𝑖 = |𝑦𝑖 | is the length of the output sequence, and
the probability is computed using the model with parameters
𝜃base + 𝜙 (𝑡 ,𝑟−1)

𝑘
.

Federated Learning Process: The FL operator F aggre-
gates local updates to produce the global parameters:

𝜙𝑡 = F ({𝜙 (𝑡 ,𝑅)
𝑘

}𝐾𝑘=1, 𝜙
𝑡−1, {D𝑘}𝐾𝑘=1) (4)

where F can represent methods like weighted averaging
(e.g., 𝜙𝑡 = 𝜙𝑡−1+∑𝐾

𝑘=1 𝑤𝑘 (𝜙
(𝑡 ,𝑅)
𝑘

−𝜙𝑡−1), with𝑤𝑘 = 𝑁𝑘∑𝐾
𝑗=1 𝑁 𝑗

)
or other schemes. The FedFT objective is:

LFedFT (𝜙𝑡 ) =
𝐾∑︁
𝑘=1

𝑤𝑘L𝑘 (𝜙𝑡 ;D𝑘) (5)

3.3 Federated Targeted Unlearning (FedTU)
A client C𝑢 ∈ {1, 2, . . . , 𝐾} requests unlearning of a subset
Dforget
𝑢 = {(𝑥𝑖 , 𝑦𝑖)}𝑖∈I𝑢 ⊆ D𝑢, where I𝑢 is the index set

of the data points to be unlearned. The goal is to derive
global LoRA parameters 𝜙𝑡unlearn that approximate a model
trained without Dforget

𝑢 , while preserving performance on the
remaining data

⋃𝐾
𝑘=1 D𝑘 \ Dforget

𝑢 . The unlearning operator
U produces:

𝜙𝑡unlearn = U(𝜙𝑡 ,I𝑢,Dforget
𝑢 ) (6)

where U represents a general unlearning method (e.g., gra-
dient ascent, influence functions). The server updates the
global parameters: 𝜙𝑡+1 = 𝜙𝑡unlearn, and broadcasts 𝜙𝑡+1 to all
clients. Clients then resume local fine-tuning using Equation
(2) to compute 𝜙 (𝑡+1,𝑟 )

𝑘
.

𝜙𝑡+2 = F ({𝜙 (𝑡+1,𝑅)
𝑘

}𝐾𝑘=1, 𝜙
𝑡+1, {D𝑘 \ Dforget

𝑢 }𝐾𝑘=1) (7)

The FedTU objective minimizes the influence of Dforget
𝑢 :

LFedTU (𝜙𝑡unlearn) = LFedFT (𝜙𝑡unlearn;
𝐾⋃
𝑘=1

D𝑘 \ Dforget
𝑢 ) (8)

Finally, the Unified Framework alternates between FedFT
and FedTU, solving the dual optimization objective problem:

min
𝜙𝑡unlearn

min
𝜙𝑡

(
LFedFT (𝜙𝑡 ) + Iunlearn (𝑡) · LFedTU (𝜙𝑡unlearn)

)
(9)

This is achieved by iteratively applying F for FedFT and
U for FedTU. At each communication round 𝑡, the server
checks for unlearning requests from a client C𝑢 specifying
Dforget
𝑢 . If present, U is activated Iunlearn (𝑡) = 1; otherwise,

only F is applied Iunlearn (𝑡) = 0. Our framework supports
various implementations of F and U, ensuring flexibility.

4 Experiments
4.1 Experimental Setups
To explore the performance of different algorithms in the
Oblivionis framework, we conduct comprehensive ex-
periments using a carefully designed experimental setup.

Models and Benchmark Datasets. We consider four base
models in our experiments: Llama-2-7b-hf (Touvron et al.
2023), Llama-3.1-8B-Instruct, Llama-3.2-1B-Instruct, and
Llama-3.2-3B-Instruct (Grattafiori et al. 2024). We fine-
tune and evaluate these models on two benchmark datasets:
TOFU and MUSE, selected based on prior works (Wang
et al. 2024; Yuan et al. 2024; Dorna et al. 2025). The TOFU
dataset is divided into four subsets: Forget Set (Forget), Re-
tain Set (Retain), Real Authors (RA), and World Facts (WF).
The MUSE dataset comprises two corpora, News and Books,
to simulate real-world large-scale unlearning requests and
evaluate forgetting efficacy and model utility preservation in
machine unlearning algorithms.

Baselines. We employ six well-established federated opti-
mization algorithms and five unlearning algorithms as base-
lines, detailed as follows:
• FL Algorithms: We categorize the considered FL

algorithms into two groups: Adaptive Optimization
FL (AOFL), including FedAdagrad, FedAdam, and
FedYogi (Reddi et al. 2020), which enhance aggrega-
tion with momentum or adaptive learning rates; and
Weighted Averaging-Based FL (WAFL), comprising
FedAvg (McMahan et al. 2017), FedAvgM (Hsu, Qi, and
Brown 2019), and FedProx (Li et al. 2020), which focus
on parameter averaging or regularization. By focusing
on these foundational and widely applicable algorithms,
Oblivionis ensures scalability and extensibility for
diverse FL scenarios.

• Unlearning Algorithms: Integrated unlearning algo-
rithms are classified into two types: Gradient-Based Op-
timization Unlearning (GOUL), including GradAscent,
GradDiff (Maini et al. 2024), and RMU (Li et al. 2024);
and Preference Optimization Unlearning (POUL), in-
cluding NPO (Zhang et al. 2024) and SimNPO (Fan et al.
2024). GOUL directly manipulates gradients or repre-
sentations to eliminate the influence of data targeted for
forgetting, employing simpler, targeted adjustments.

Model Size 𝑁Base 𝑁Trainable Ratio (%)
Llama-2 7B 6818.37 M 79.95 M 1.17

Llama-3.1 8B 8114.15 M 83.89 M 1.03
Llama-3.2 1B 1258.36 M 22.54 M 1.79

3B 3261.38 M 48.63 M 1.49

Table 1: Illustration of model parameter distribution.

Training Setup. We conduct experiments using 30 clients
with a 10% participation rate for Oblivionis. In each
round, a randomly selected client requests targeted sample-
level unlearning. The training process consists of 5 local
epochs and 10 global rounds, with a one-epoch warmup pe-
riod included. The base models are fine-tuned using LoRA
with a rank of 32, an alpha of 64, and a dropout rate of 0.05.
We train the model with a learning rate of 8 × 10−5 and a
weight decay of 0.01. The entire experiment is tested on a
cloud server with one NVIDIA A100 (80 GB) GPU.



Algorithms
Weighted Averaging-Based FL Adaptive Optimization FL

FedAvg FedAvgM FedProx FedAdagrad FedAdam FedYogi

MU↑ FTR↑ MU↑ FTR↑ MU↑ FTR↑ MU↑ FTR↑ MU↑ FTR↑ MU↑ FTR↑
Meta Llama-3.2-1B-Instruct with LoRA

Finetune 0.50 0.49 0.48 0.45 0.50 0.49 0.45 0.62 0.45 0.60 0.45 0.59
GradAscent 0.46 0.61 0 0.050 0.43 0.64 0.40 0.72 0.44 0.65 0.46 0.66

GradDiff 0.46 0.63 6.5e-5 0.70 0.44 0.60 0.42 0.70 0.44 0.66 0.44 0.67
NPO 0.46 0.62 2.9e-5 0.71 0.44 0.63 0.41 0.74 0.45 0.68 0.45 0.68

SimNPO 0.46 0.65 0.00018 0.69 0.43 0.66 0.42 0.74 0.46 0.69 0.46 0.70
Retrain 0.51 0.65 0.47 0.62 0.51 0.64 0.46 0.67 0.46 0.66 0.46 0.66

Meta Llama-3.2-3B-Instruct with LoRA

Finetune 0.59 0.49 0.56 0.48 0.58 0.51 0.53 0.61 0.50 0.57 0.50 0.57
GradAscent 0.52 0.59 0.00015 0.79 0.48 0.62 0.45 0.73 0.52 0.66 0.51 0.66

GradDiff 0.52 0.59 0.00062 0.77 0.49 0.59 0.47 0.71 0.51 0.61 0.51 0.61
NPO 0.50 0.62 0.00032 0.79 0.47 0.60 0.45 0.73 0.50 0.63 0.50 0.63

SimNPO 0.51 0.61 0.0013 0.77 0.48 0.62 0.47 0.73 0.50 0.63 0.51 0.65
Retrain 0.59 0.64 0.56 0.64 0.57 0.65 0.53 0.66 0.50 0.63 0.50 0.63

Table 2: Performance comparison of federated learning and unlearning algorithms on the TOFU dataset using Llama-3.2-1B
and 3B models, evaluated on metrics MU (Model Utility) and FTR (Forget Truth Ratio) with Split99 strategies. Scores in Bold
indicate the optimal MU in different FL methods, while scores underlined indicate the optimal FTR in different FL methods.

Figure 3: Comparative analysis of ROUGE scores across federated learning and unlearning methods using Llama-3.2-1B
model with Split99 strategies. For the Forget set, lower scores indicate better performance (↓), whereas for the remaining sets,
higher scores are preferable (↑).

Meanwhile, Table 1 summarizes the number of trainable
parameters under the LoRA paradigm. In all cases, no more
than 1.79% of base models’ parameters are updated, while the
rest remain frozen, highlighting the lightweight nature of our
approach. For more experimental settings, including specific
methods of federated learning and unlearning, datasets, and
models, please refer to the contents in Appendix A and B.

4.2 Experimental Results
Structured QA Task. As presented in Table 2, we choose
Model Utility (MU) and Forget Truth Ratio (FTR) to evalu-

ate. AOFL algorithms, particularly FedAdagrad, consistently
outperform WAFL methods in forgetting efficacy. For the 1B
model, FedAdagrad, when paired with SimNPO or NPO,
achieves an FTR of 0.74, surpassing FedAvg’s 0.65 and Fed-
Prox’s 0.66. Similarly, for the 3B model, FedAdagrad attains
an FTR of 0.73, compared to 0.64 for FedAvg and 0.65 for
FedProx. These findings indicate that AOFL methods effec-
tively utilize adaptive optimization to prioritize the Forget
Set objectives, thereby maintaining unlearning performance.
However, this enhancement results in a reduction in MU, with
FedAdagrad yielding MU values ranging from 0.40 to 0.47,



Figure 4: Comparative analysis of Probability scores across federated learning and unlearning methods using Llama-3.2-1B
model with Split99 strategies. For the Forget set, lower scores indicate better performance (↓), whereas for the remaining sets,
higher scores are preferable (↑).

whereas FedAvg maintains more stable MU values between
0.46 and 0.59 across both models. Among unlearning strate-
gies, SimNPO and NPO demonstrate superior forgetting ef-
ficacy, achieving FTR values between 0.69 and 0.74 with
AOFL methods while maintaining competitive MU values
from 0.42 to 0.51. In contrast, the Retrain strategy achieves
the highest MU value of up to 0.59 but is computationally
intensive, limiting its practical applicability. Meanwhile, Fe-
dAvgM suffers from catastrophic forgetting in the Struc-
tured QA Task, with MU values plummeting to between
0.00018 and 0.0013, despite achieving high FTR values of
up to 0.79. This instability likely arises from FedAvgM am-
plifying the adverse effects of unlearning updates on general
model parameters, resulting in performance collapse.

To evaluate the impact of model scale, we test the larger 3B
model, which shows higher MU and FTR values, indicating
a better balance between utility and forgetting. For instance,
FedAvg with Retrain achieves a MU of 0.59 and an FTR of
0.64 for the 3B model, compared to 0.51 and 0.65 for the
1B model. WAFL methods like FedAvg and FedProx yield
stable MU values of 0.47 to 0.59 but lag in FTR compared to
AOFL methods. This highlights a trade-off: AOFL methods
prioritize forgetting but reduce utility, while WAFL methods
ensure stability. All unlearning strategies except Finetune
outperform the Finetune baseline’s FTR of 0.45 to 0.62 for
the 1B model and 0.48 to 0.61 for the 3B model, achieving
values of 0.59 to 0.79, confirming Oblivionis ’s robust
unlearning capability.

To validate the effectiveness of Oblivionis in forget-
ting and retaining general knowledge, we evaluated it on all
four sets from TOFU, using ROUGE and Probability metrics.
These metrics analyze the model’s forgetting behavior from
different perspectives: Forget ROUGE measures the textual
similarity between generated and true answers in the For-

get Set via ROUGE-L recall, indicating whether the model
still produces targeted forgotten information; Forget Prob-
ability quantifies the conditional probability of correct an-
swers, capturing subtle changes in output content and proba-
bility distribution. As shown in Figure 3 and Figure 4, on the
Forget Set, from the initial fine-tuned model to each FU dual-
optimization method, both Forget ROUGE and Forget Prob-
ability significantly decreased, indicating that the model’s
generated answers deviated from the true answers, with a
substantial reduction in probability preference for correct an-
swers, proving the FU algorithm’s effectiveness in altering
model output behavior and achieving information forgetting.
Meanwhile, on the Retain Set, World Facts, and Real Au-
thors sets, ROUGE and Probability results remained largely
consistent with fine-tuning performance, demonstrating that
the FU algorithm effectively retains model performance on
non-forgotten data while forgetting the Forget Set. Overall,
the evaluation confirms the FU algorithm’s effective capa-
bility for forgetting while maintaining the model’s overall
performance stability. Overall, FedAdagrad excels in for-
getting efficacy but compromises model utility, whereas
FedAvg and FedProx prioritize utility stability, sacrificing
forgetting performance in the Structured QA Task. For a
comprehensive analysis involving various model scales and
data split strategies, please refer to the results in Appendix D.

Contextual QA Task. FedProx demonstrated a good bal-
ance across all objectives on the MUSE News set, as ev-
idenced by Table 3. When combined with GradDiff, it
achieves low NVM and NKM of 0.52 and 0.55, respec-
tively, while maintaining high Utility Preserved (UP) at 0.52.
These results indicate effective unlearning with robust model
performance. FedAvg exhibits moderate performance. When
combined with GradAscent, it yields an NVM of 0.41, NKM
of 0.49, and UP of 0.35. These results indicate that it is less



Algorithms
Weighted Averaging-Based FL Adaptive Optimization FL

FedAvg FedAvgM FedProx FedAdagrad FedAdam FedYogi
NVM NKM UP NVM NKM UP NVM NKM UP NVM NKM UP NVM NKM UP NVM NKM UP

Finetune 0.77 0.57 0.43 0.34 0.38 0.31 0.60 0.60 0.52 0.61 0.65 0.53 0.67 0.63 0.50 0.67 0.62 0.50
GradAscent 0.41 0.49 0.35 0.0059 0.030 0.019 0.56 0.56 0.49 0.033 0 0 0.46 0.51 0.40 0.44 0.50 0.41

GradDiff 0.39 0.43 0.34 0.25 0.24 0.24 0.52 0.55 0.52 0.17 0.53 0.43 0.46 0.49 0.39 0.43 0.53 0.38
NPO 0.36 0.45 0.35 0.33 0.38 0.34 0.42 0.56 0.43 0.36 0.50 0.36 0.39 0.47 0.35 0.43 0.44 0.39

SimNPO 0.32 0.39 0.33 0.30 0.41 0.29 0.27 0.51 0.42 0.18 0.49 0.36 0.31 0.45 0.36 0.33 0.47 0.38
Retrain 0.21 0.32 0.46 0.18 0.22 0.30 0.21 0.36 0.52 0.21 0.33 0.52 0.21 0.32 0.50 0.21 0.34 0.50

Table 3: Performance comparison of federated learning algorithms on the MUSE News set using Llama-2-7B model, evaluated
on metrics NVM (No Verbatim Mem↓), NKM (No Knowledge Mem↓), and UP (Utility Preserved↑). Scores in Bold indicate
the optimal UP in different FL methods, while underlined indicate the optimal NVM and NKM in different FL methods.

Figure 5: Comparison of Model Utility(MU) between local
and federated learning across different unlearning methods.

effective than FedProx in balancing forgetting and model util-
ity. FedAvgM shows poor overall performance. For instance,
when combined with GradAscent, it yields extremely low
UP at 0.019, despite favorable NVM and NKM of 0.0059
and 0.03, respectively. Therefore, we consider it unsuitable
for balanced optimization. Among the optimizer-enhanced
methods, FedAdam and FedYogi delivered competitive per-
formance. FedAdam achieves an NVM of 0.31, NKM of
0.45, and UP of 0.36 with SimNPO. FedYogi produces sim-
ilar results with SimNPO, achieving an NVM of 0.33, NKM
of 0.47, and UP of 0.38. FedAdagrad achieves less consistent
results. When combined with GradDiff, it yields an NVM of
0.17, NKM of 0.53, and UP of 0.43.

From a dual-objective optimization perspective, FedProx
effectively minimizes NVM and NKM while maintaining
high UP across all unlearning algorithms. FedAdam and
FedYogi also achieve a well-balanced trade-off among the
objectives, especially when combined with SimNPO. How-
ever, its effectiveness is slightly lower than that of FedProx. In
contrast, FedAvg emphasizes model utility at the cost of un-
learning performance, while FedAvgM prioritizes unlearn-
ing performance at the expense of model utility, making both
approaches suboptimal. SimNPO and NPO demonstrate ro-
bust performance across FL methods, with SimNPO achiev-
ing the lowest NVM of 0.27 when paired with FedProx. In
summary, Oblivionis demonstrates strong effectiveness
in balancing the dual-objective optimization of minimizing

memorization, while maximizing utility across a majority of
the scenarios considered. Overall, FedProx demonstrates
a better trade-off between model utility and unlearning
performance in the contextual QA task.

Comparative Analysis of Local and Federated Learning.
Empirical results illustrated in Figure 5 reveal that FU meth-
ods consistently achieve higher MU scores than local training
across all unlearning strategies, demonstrating superior ro-
bustness in preserving model utility during unlearning. Lo-
cal training exhibits a significant vulnerability to catastrophic
forgetting, especially with GradAscent, where MU drops to
near-zero levels. In contrast, FL methods mitigate the desta-
bilizing effects of unlearning through collaborative parame-
ter updates and maintain stable and competitive MU scores.
Among the unlearning methods, NPO paired with FL algo-
rithms yields the highest MU, indicating strong compatibility
with the dual-objective optimization framework. In contrast,
local training fails to balance unlearning and performance
retention across all methods. In summary, Oblivionis
significantly outperforms local training by maintaining
robust model utility across unlearning methods, high-
lighting its efficacy for practical applications.

5 Conclusion
In this work, we introduce Oblivionis, a lightweight
framework that seamlessly integrates federated learning and
unlearning to enable distributed model training and compli-
ance with regulations such as GDPR’s right to be forgotten.
By formulating FL and unlearning as a joint dual-objective
optimization task, Oblivionis achieves a robust balance
between forgetting targeted data and preserving model util-
ity, as demonstrated by superior performance on TOFU and
MUSE benchmarks. Our comprehensive evaluation, includ-
ing cross-comparisons of diverse FL and unlearning algo-
rithms, evidences that models trained using Oblivionis
consistently outperform those trained using local training
approaches. Notably, methods like FedAdagrad paired with
SimNPO achieve high forgetting efficacy. By consolidating
diverse benchmarks and datasets into a user-friendly code
library, Oblivionis further facilitates standardized re-
search for the LLM and FL communities. Our framework
is also open-sourced to facilitate reproducibility and foster
further research in the development of LLM.
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Cho, K.; van Merriënboer, B.; Bahdanau, D.; and Bengio,
Y. 2014. On the Properties of Neural Machine Translation:
Encoder–Decoder Approaches. In Wu, D.; Carpuat, M.;
Carreras, X.; and Vecchi, E. M., eds., Proceedings of SSST-
8, Eighth Workshop on Syntax, Semantics and Structure in
Statistical Translation, 103–111. Doha, Qatar: Association
for Computational Linguistics.
Dettmers, T.; Lewis, M.; Shleifer, S.; and Zettlemoyer, L.
2022. 8-bit Optimizers via Block-wise Quantization. 9th In-
ternational Conference on Learning Representations, ICLR.
Dorna, V.; Mekala, A.; Zhao, W.; McCallum, A.; Lipton,
Z. C.; Kolter, J. Z.; and Maini, P. 2025. OpenUnlearning:
Accelerating LLM Unlearning via Unified Benchmarking of
Methods and Metrics. arXiv preprint arXiv:2506.12618.
Fan, C.; Liu, J.; Lin, L.; Jia, J.; Zhang, R.; Mei, S.; and
Liu, S. 2024. Simplicity Prevails: Rethinking Negative Pref-
erence Optimization for LLM Unlearning. arXiv preprint
arXiv:2410.07163.
Fan, T.; Kang, Y.; Ma, G.; Chen, W.; Wei, W.; Fan, L.; and
Yang, Q. 2023. Fate-llm: A industrial grade federated learn-
ing framework for large language models. arXiv preprint
arXiv:2310.10049.
Grattafiori, A.; Dubey, A.; Jauhri, A.; Pandey, A.; Kadian,
A.; Al-Dahle, A.; Letman, A.; Mathur, A.; Schelten, A.;
Vaughan, A.; et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.
Hsu, T.-M. H.; Qi, H.; and Brown, M. 2019. Measuring the
effects of non-identical data distribution for federated visual
classification. arXiv preprint arXiv:1909.06335.
Hu, E. J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang, S.;
Wang, L.; Chen, W.; et al. 2022. Lora: Low-rank adaptation
of large language models. ICLR, 1(2): 3.
Huu-Tien, D.; Pham, T.-T.; Thanh-Tung, H.; and Inoue,
N. 2024. On effects of steering latent representation
for large language model unlearning. arXiv preprint
arXiv:2408.06223.
Imani, S.; Du, L.; and Shrivastava, H. 2023. Mathprompter:
Mathematical reasoning using large language models. arXiv
preprint arXiv:2303.05398.
Ji, J.; Liu, Y.; Zhang, Y.; Liu, G.; Kompella, R. R.; Liu,
S.; and Chang, S. 2024. Reversing the forget-retain ob-
jectives: An efficient llm unlearning framework from logit
difference. Advances in Neural Information Processing Sys-
tems, 37: 12581–12611.
Jia, J.; Zhang, Y.; Zhang, Y.; Liu, J.; Runwal, B.; Diffenderfer,
J.; Kailkhura, B.; and Liu, S. 2024. Soul: Unlocking the
power of second-order optimization for llm unlearning. arXiv
preprint arXiv:2404.18239.

Li, N.; Pan, A.; Gopal, A.; Yue, S.; Berrios, D.; Gatti, A.;
Li, J. D.; Dombrowski, A.-K.; Goel, S.; Phan, L.; et al. 2024.
The wmdp benchmark: Measuring and reducing malicious
use with unlearning. arXiv preprint arXiv:2403.03218.
Li, T.; Sahu, A. K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.;
and Smith, V. 2020. Federated optimization in heterogeneous
networks. Proceedings of Machine learning and systems, 2:
429–450.
Lin, C.-Y. 2004. Rouge: A package for automatic evaluation
of summaries. In Text summarization branches out, 74–81.
Liu, S.; Yao, Y.; Jia, J.; Casper, S.; Baracaldo, N.; Hase, P.;
Yao, Y.; Liu, C. Y.; Xu, X.; Li, H.; et al. 2025. Rethink-
ing machine unlearning for large language models. Nature
Machine Intelligence, 1–14.
Maini, P.; Feng, Z.; Schwarzschild, A.; Lipton, Z. C.; and
Kolter, J. Z. 2024. Tofu: A task of fictitious unlearning for
llms. arXiv preprint arXiv:2401.06121.
McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; and
y Arcas, B. A. 2017. Communication-efficient learning of
deep networks from decentralized data. In Artificial intelli-
gence and statistics, 1273–1282. PMLR.
Min, S.; Gururangan, S.; Wallace, E.; Shi, W.; Hajishirzi,
H.; Smith, N. A.; and Zettlemoyer, L. 2023. Silo language
models: Isolating legal risk in a nonparametric datastore.
arXiv preprint arXiv:2308.04430.
Pardau, S. L. 2018. The california consumer privacy act:
Towards a european-style privacy regime in the united states.
J. Tech. L. & Pol’y, 23: 68.
Reddi, S.; Charles, Z.; Zaheer, M.; Garrett, Z.; Rush, K.;
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