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ABSTRACT

Despite overparameterization, deep networks trained via supervised learning are
surprisingly easy to optimize and exhibit excellent generalization. One hypothe-
sis to explain this is that overparameterized deep networks enjoy the benefits of
implicit regularization induced by stochastic gradient descent, which favors parsi-
monious solutions that generalize well on test inputs. It is reasonable to surmise
that deep reinforcement learning (RL) methods could also benefit from this effect.
In this paper, we discuss how the implicit regularization effect of SGD seen in
supervised learning could in fact be harmful in the offline deep RL setting, lead-
ing to poor generalization and degenerate feature representations. Our theoretical
analysis shows that when existing models of implicit regularization are applied to
temporal difference learning, the resulting derived regularizer favors degenerate
solutions with excessive “aliasing”, in stark contrast to the supervised learning
case. We back up these findings empirically, showing that feature representations
learned by a deep network value function trained via bootstrapping can indeed
become degenerate, aliasing the representations for state-action pairs that appear
on either side of the Bellman backup. To address this issue, we derive the form of
this implicit regularizer and, inspired by this derivation, propose a simple and ef-
fective explicit regularizer, called DR3, that counteracts the undesirable effects of
this implicit regularizer. When combined with existing offline RL methods, DR3
substantially improves performance and stability, alleviating unlearning in Atari
2600 games, D4RL domains and robotic manipulation from images.

1 INTRODUCTION

Deep neural networks are overparameterized, with billions of parameters, which in principle should
leave them vulnerable to overfitting. Despite this, supervised learning with deep networks still learn
representations that generalize well. A widely held consensus is that deep nets find simple solutions
that generalize due to various implicit regularization effects (Blanc et al., 2020; Woodworth et al.,
2020; Arora et al., 2018; Gunasekar et al., 2017; Wei et al., 2019). We may surmise that using deep
neural nets in reinforcement learning (RL) will work well for the same reason, learning effective
representations that generalize due to such implicit regularization effects. But is this actually the
case for value functions trained via bootstrapping?

In this paper, we argue that, while implicit regularization leads to effective representations in super-
vised deep learning, it may lead to poor learned representations when training overparameterized
deep network value functions. We focus specifically on the offline RL setting – where deep value
networks must be trained from a static dataset of experience – in order to rule out any confound-
ing effects from exploration and non-stationary data distributions. There is already evidence that
value functions trained via bootstrapping learn poor representations: value functions trained with
offline deep RL eventually degrade in performance (Agarwal et al., 2020; Kumar et al., 2021) and
this degradation is correlated with the emergence of low-rank features in the value network (Kumar
et al., 2021). Our goal is to understand the underlying cause of the emergence of poor representa-
tions during bootstrapping and develop a potential solution. Building on the theoretical framework
developed by Blanc et al. (2020); Damian et al. (2021), we characterize the implicit regularizer that
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arises when training deep value functions with TD learning. The form of this implicit regularizer
implies that TD-learning would co-adapt feature representations at state-action tuples that appear on
either side of a Bellman backup.

We show that this theoretically predicted aliasing phenomenon manifests in practice as feature co-
adaptation, where the features of consecutive state-action tuples learned by the Q-value network
become very similar in terms of their dot product (Section 3). This co-adaptation co-occurs with
oscillatory learning dynamics, and training runs that exhibit feature co-adaptation typically converge
to poorly performing solutions. Even when Q-values are not overestimated, prolonged training in
offline RL can result in performance degradation as feature co-adaptation increases. To mitigate
this co-adaptation issue, which arises as a result of implicit regularization, we propose an explicit
regularizer that we call DR3 (Section 4). While exactly estimating and cancelling the effects of
the theoretically derived implicit regularizer is computationally difficult, DR3 provides a simple and
tractable theoretically-inspired approximation that mitigates the issues discussed above. In practice,
DR3 amounts to regularizing the features at consecutive state-action pairs to be dissimilar in terms
of their dot-product similarity. Empirically, we find that DR3 prevents previously noted pathologies
such as feature rank collapse (Kumar et al., 2021), gives methods that train for longer and improves
performance relative to the base offline RL method employed in practice.

Our first contribution is the derivation of the implicit regularizer that arises when training deep
net value functions via TD learning, and an empirical demonstration that it manifests as feature
co-adaptation in the offline deep RL setting. Feature co-adaptation accounts at least in part for
some of the challenges of offline deep RL, including degradation of performance with prolonged
training. Second, we propose a simple and effective explicit regularizer for offline value-based RL,
DR3, which minimizes the feature similarity between state-action pairs appearing in a bootstrap-
ping update. DR3 is inspired by the theoretical derivation of the implicit regularizer, it alleviates
co-adaptation and can be easily combined with modern offline RL methods, such as REM (Agarwal
et al., 2020), CQL (Kumar et al., 2020b), and BRAC (Wu et al., 2019). Empirically, using DR3 in
conjunction with existing offline RL methods provides about 60% performance improvement on the
harder D4RL (Fu et al., 2020) tasks, and 160% and 25% stability gains for REM and CQL, respec-
tively, on offline RL tasks in 17 Atari 2600 games. Additionally, we observe large improvements on
image-based robotic manipulation tasks (Singh et al., 2020).

2 PRELIMINARIES

The goal in RL is to maximize the long-term discounted reward in an MDP, defined as
(S,A, R, P, γ) (Puterman, 1994), with state space S, action space A, a reward function R(s,a), dy-
namics P (s′|s,a) and a discount factor γ ∈ [0, 1). The Q-function Qπ(s,a) for a policy π(a|s) is the
expected sum of discounted rewards obtained by executing action a at state s and following π(a|s)
thereafter. Qπ(s,a) is the fixed point of Q(s,a) := R(s,a) + γEs′∼P (·|s,a),a′∼π(·|s′) [Q(s′,a′)].
We study the offline RL setting, where the algorithm must learn a policy only using a given dataset
D = {(si,ai, s′i, ri)}, generated from some behavior policy, πβ(a|s), without active data collection.
The Q-function is parameterized with a neural net with parameters θ. We will denote the penultimate
layer of the deep network (the learned features) ϕθ(s,a), such that Qθ(s,a) = wTϕ(s,a), where
w ∈ Rd. Standard deep RL methods (Mnih et al., 2015; Haarnoja et al., 2018) convert the Bellman
equation into a squared temporal difference (TD) error objective for Qθ:

LTD(θ) =
∑

s,a,s′∼D

(
R(s,a) + γQθ(s

′,a′)−Qθ(s,a)
)2
, (1)

where Q̄θ is a delayed copy of same Q-network, referred to as the target network and a′ is computed
by maximizing the target Q-function at state s′ for Q-learning (i.e., when computing Q∗) and by
sampling a′ ∼ π(·|s) when computing the Q-value Qπ of a policy π.

A major problem in offline RL is the issue of distributional shift between the learned policy and
the behavior policy (Levine et al., 2020). Since our goal is to study the effect of implicit regular-
ization in TD-learning and not distributional shift, we build on top of existing offline RL methods
in our experiments: CQL (Kumar et al., 2020b), which penalizes erroneous Q-values during train-
ing, REM (Agarwal et al., 2020), which utilizes an ensemble of Q-functions, and BRAC (Wu et al.,
2019), which applies a policy constraint. An overview of these methods is provided in Appendix E.
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Figure 1: Feature dot-products ϕ(s,a)⊤ϕ(s′,a′) increase during training when backing up from out-of-
sample but in-distribution actions (TD-learning: left, Q-learning: right), though the average Q-value con-
verges and stays relatively constant. Using only seen state-action pairs for backups (offline SARSA) or not
performing Bellman backups (i.e., supervised regression) avoids this issue, with stable and relatively low
dot products. Left: TD-learning with high feature dot products eventually destabilizes and produces incorrect
Q-values, Right: DQN attains extremely large feature dot products, despite a relatively stable trend in Q-values.

3 IMPLICIT REGULARIZATION IN DEEP RL VIA TD-LEARNING

While the “deadly-triad” (Sutton & Barto, 2018) suggests that training value function approximators
with bootstrapping can lead to divergence, modern deep RL algorithms have been able to success-
fully combine these properties (van Hasselt et al., 2018). However, making too many TD updates
to the Q-function in offline deep RL is known to sometimes lead to performance degradation and
unlearning, even for otherwise effective modern algorithms (Fu et al., 2019; Fedus et al., 2020;
Agarwal et al., 2020; Kumar et al., 2021). Such unlearning is not typically observed when training
overparameterized models via supervised learning, so what about TD learning is responsible for it?
We show that one possible explanation behind this pathology is the implicit regularization induced
by minimizing TD error on a deep Q-network. Our theoretical results suggest that this implicit
regularization “co-adapts” the representations of state-action pairs that appear in a Bellman backup
(co-adapts is used qualitatively here, we will discuss our measure shortly), and this co-adaptation
is exacerbated when utilizing unseen state-action pairs for the Bellman backup. Empirically, this
typically manifests as “co-adapted” (similar) features for consecutive state-action tuples, even with
specialized TD-learning algorithms that account for distributional shift. Highly co-adapted features
in turn lead to poor solutions as we will theoretically and empirically show. We first provide empiri-
cal evidence of the existence of this co-adaptation phenomenon in Section 3.1 (additional evidence
in Appendix A.1) and then theoretically characterize the implicit regularization in TD learning, and
discuss how it can explain the co-adaptation phenomenon in Section 3.2.

3.1 FEATURE CO-ADAPTATION AND HOW IT RELATES TO IMPLICIT REGULARIZATION

In this section, we empirically identify a feature co-adaptation phenomenon that appears when
training value functions via bootstrapping, where the feature representations of consecutive state-
action pairs become excessively similar as measured by their dot product ϕ(s,a)⊤ϕ(s′,a′). Feature
co-adaptation appears even when there is no explicit objective to increase feature similarity.

Experimental setup. To empirically observe feature co-adaptation, we ran supervised regression
and three variants of approximate dynamic programming (ADP) on an offline dataset consisting of
1% of uniformly-sampled data from the replay buffer of DQN on two Atari games, previously used
in Agarwal et al. (2020). First, for comparison, we trained a Q-function via supervised regression
to Monte-Carlo (MC) return estimates on the offline dataset to estimate the value of the behavior
policy. Then, we trained variants of ADP which differ in the selection procedure for the action
a′ that appears in the target value in LTD(θ) (Equation 1). The offline SARSA variant aims to
estimate the value of the behavior policy, Qπβ , and sets a′ to the actual action observed at the next
time step in the dataset, such that (s′,a′) ∈ D. The TD-learning variant also aims to estimate
the value of the behavior policy, but utilizes the expectation of the target Q-value over actions a′

sampled from the behavior policy πβ , a′ ∼ πβ(·|s′). We do not have access to the functional
form of πβ for the experiment shown in Figure 1 since the dataset corresponds to the behavior
policy induced by the replay buffer of an online DQN, so we train a model for this policy using
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supervised learning. However, we also similar results comparing offline SARSA and TD-learning
on a gridworld domain where we can access the exact functional form of the behavior policy in
Appendix A.6.2. We also train Q-learning, which chooses the action a′ to maximize the learned Q-
function. While Q-learning learns a different Q-function, we can still compare the relative stability
of these methods to gain intuition about the learning dynamics. In addition to feature dot products
ϕ(s,a)⊤ϕ(s′,a′), we also track the average prediction of the Q-network over the dataset to measure
whether the predictions diverge or are stable in expectation.

Observing feature co-adaptation empirically. As shown in Figure 1 (right), the average dot prod-
uct (top row) between features at consecutive state-action tuples continuously increases for both
Q-learning and TD-learning (after enough gradient steps), whereas it flatlines and converges to a
small value for supervised regression. We might at first think that this is simply a case of Q-learning
failing to converge. However, the bottom row shows that the average Q-values do in fact converge
to a stable value. Despite this, the optimizer drives the network towards higher feature dot products.
There is no explicit term in the TD error objective that encourages this behavior, indicating the pres-
ence of some implicit regularization phenomenon. This implicit preference towards maximizing the
dot products of features at consecutive state-action tuples is what we call “feature co-adaptation.”

When does feature co-adaptation emerge? Observe in Figure 1 (right) that the feature dot products
for offline SARSA converge quickly and are relatively flat, similarly to supervised regression. This
indicates that utilizing a bootstrapped update alone is not responsible for the increasing dot-products
and instability, because while offline SARSA uses backups, it behaves similarly to supervised MC
regression. Unlike offline SARSA, feature co-adaptation emerges for TD-learning, which is sur-
prising as TD-learning also aims to estimate the value of the behavior policy, and hence should
match offline SARSA in expectation. The key difference is that while offline SARSA always uti-
lizes actions a′ observed in the training dataset for the backup, TD-learning may utilize potentially
unseen actions a′ in the backup, even though these actions a′ ∼ πβ(·|s′) are within the distribution
of the data-generating policy. This suggests that utilizing out-of-sample actions in the Bellman
backup, even when they are not out-of-distribution, critically alters the learning dynamics. This
is distinct from the more common observation in offline RL, which attributes training challenges
to out-of-distribution actions (Levine et al., 2020), but not out-of-sample actions. The theoretical
model developed in Section 3.2 will provide an explanation for this observation with a discussion
about how feature co-adaption caused due to out-of-sample actions can be detrimental in offline RL.

3.2 THEORETICALLY CHARACTERIZING IMPLICIT REGULARIZATION IN TD-LEARNING

Why does feature co-adaptation emerge in TD-learning and what do out-of-sample actions have to
do with it? To answer this question, we theoretically characterize the implicit regularization effects
in TD-learning. We analyze the learning dynamics of TD learning in the overparameterized regime,
where there are many different parameter vectors θ that fully minimize the training set temporal
difference error. We base our analysis of TD learning on the analysis of implicit regularization in
supervised learning, previously shown in Blanc et al. (2020); Damian et al. (2021).

Background. When training an overparameterized fθ(x) via supervised regression using the
squared loss, many different values of θ will satisfy L(θ) = 0 on the training set due to overpa-
rameterization, but Blanc et al. (2020) argue that the dynamics of stochastic gradient descent will
only find fixed points that additionally satisfy a condition which can be expressed as ∇θR(θ∗) = 0,
along certain directions (that we will describe shortly). This function R(θ) is referred to as the
implicit regularizer. The noisy gradient updates analyzed in this model have the form:

θk+1 ← θk − η∇θL(θ) + ηεk, εk ∼ N (0,M). (2)

Blanc et al. (2020) and Damian et al. (2021) show that some common SGD techniques fall into
this framework, for example, when the regression targets in supervised learning are corrupted with
N (0, 1) label noise, then the resulting M =

∑|D|
i=1∇θfθ(xi)∇θfθ(xi)

⊤ and the induced implicit
regularizer R is given by R(θ) = η

∑|D|
i ||∇θfθ(xi)||22. Any solution θ∗ found by Equation 2

must satisfy ∇θR(θ∗) = 0 along directions v ∈ R|θ| which lie in the null space of the Hessian
of the loss ∇2

θL(θ
∗) at θ∗, v ∈ Null(∇2

θL(θ
∗)). The intuition behind the implicit regularization

effect is that along such directions in the parameter space, the Hessian is unable to contract θk when
running noisy gradient updates (Equation 2). Therefore, the only condition that the noisy gradient
updates converge/stabilize at θ∗ is given by the condition that∇R(θ∗) = 0. This model corroborates
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empirical findings (Mulayoff & Michaeli, 2020; Damian et al., 2021) about the solutions found by
SGD with deep nets, which motivates our use of this framework.

Our setup. Following this framework, we analyze the fixed points of noisy TD-learning. We
consider noisy pseudo-gradient (or semi-gradient) TD updates with a general noise covariance M :

θk+1 = θk − η

(∑
i

∇θQ(si,ai) (Qθ(si,ai)−(ri+γQθ(s
′
i,a

′
i)))

)
︸ ︷︷ ︸

:=g(θ)

+ηεk, εk ∼ N (0,M) (3)

We use a deterministic policy a′i = π(s′i) to simplify exposition. Following Damian et al. (2021),
we can set the noise model M as M =

∑
i∇θQ(si,ai)∇θQ(si,ai)

⊤, or utilize a different choice
of M , but we will derive the general form first. Let θ∗ denote a stationary point of the training TD
error, such that the pseudo-gradient g(θ∗) = 0. Further, we denote the derivative of g(θ) w.r.t. θ
as the matrix G(θ), and refer to it as the pseudo-Hessian: although G(θ) is not actually the second
derivative of any well-defined objective, since TD updates are not proper gradient updates, as we
will see it will play a similar role to the Hessian in gradient descent. For brevity, define G = G(θ∗),
g = g(θ∗), ∇G = ∇θG(θ∗), and let λi(P ) denote the i-th eigenvalue of matrix P , when arranged
in decreasing order of its (complex) magnitude |λi(P )| (note that an eigenvalue can be complex).

Assumptions. To simplify analysis, we assume that matrices G and M (i.e., the noise covariance
matrix) span the same n-dimensional basis in d-dimensional space, where d is the number of param-
eters and n is the number of datapoints, and n ≪ d due to overparameterization. We also require
θ∗ to satisfy a technical criterion that requires approximate alignment between the eigenspaces of G
and the gradient of the Q-function, without which noisy TD may not be stable at θ∗. We summarize
all the assumptions in Appendix C, and present the resulting regularizer below.

Theorem 3.1 (Implicit regularizer at TD fixed points). Under the assumptions so far, a fixed point
of TD-learning, θ∗, where Qθ∗(si,ai) = ri + γQθ∗(s′i,a

′
i) for every (si,ai, s′i) ∈ D is stable if: (1)

it satisfies Re(λi(G)) ≥ 0,∀i and Re(λi(G)) > 0 if |Imag(λi(G))| > 0, and (2) along directions
v ∈ Rdim(θ),v ∈ Null(G), θ∗ is the stationary point of the induced implicit regularizer:

RTD(θ) = η

|D|∑
i=1

∇Qθ(si,ai)
⊤Σ∗

M∇Qθ(si,ai)

the implicit regularizer for noisy GD in supervised learning

− ηγ

|D|∑
i=1

trace
([[
∇Qθ(s

′
i,a

′
i)

⊤]]⊤ Σ∗
M∇Qθ(si,ai)

)
additional term in TD learning

, (4)

where (si,ai) and (s′i,a
′
i) denote state-action pairs that appear together in a Bellman update, [[□]]

denotes the stop-gradient function, which does not pass partial derivatives w.r.t. θ into □. Σ∗
M is

the fixed point of the discrete Lyapunov equation: Σ∗
M := (I − ηG)Σ∗

M (I − ηG)⊤ + η2M .

A proof of Theorem 3.1 is provided in Appendix C. Next, we explain the intuition behind this result
and provide a proof sketch. To derive the induced implicit regularizer for a stable fixed point θ∗
of TD error, we study the learning dynamics of noisy TD learning (Equation 3) initialized at θ∗,
and derive conditions under which this noisy update would stay close to θ∗ with multiple updates.
This gives rise to the two conditions shown in Theorem 3.1 which can be understood as controlling
stability in mutually exclusive directions in the parameter space. If condition (1) is not satisfied, then
even under-parameterized TD will diverge away from θ∗, since I − ηG would be a non-contraction
as the spectral radius, ρ(I − ηG) ≥ 1 in that case. Thus, θk − θ∗ will grow or not decrease in some
direction. When (1) is satisfied for all directions in the parameter space, there are still directions
where both the real and imaginary parts of the eigenvalue λi(G) are 0 due to overparameterization1.
In such directions, learning is governed by the projection of the noise under the third-order derivative

1To see why this is the case, note that rank(G) ≤ |D| ≪ dim(θ), and so some eigenvalues of G are 0.
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Figure 2: Even when current offline RL algorithms are initialized at a high-performing checkpoint that attains
small feature dot products, feature dot products increase with further training and the performance degrades.

∇G, which appears in the Taylor expansion of θk − θ∗ around the point θ∗:

θk+1 = θk − η

(
g +G(θk − θ∗) +

1

2
∇G[θk − θ∗, θk − θ∗]

)
+ εk, εk ∼ N (0,M) (5)

=⇒ νk+1 = (I − ηG)νk −
η

2
∇G[νk, νk] + εk, (6)

where we define νk := θk − θ∗. The proof shows that θ∗ is stable if it is a stationary point of the
implicit regularizer RTD (condition (2)), which ensures that total noise (i.e., accumulated εk over
iterations k) accumulated by∇G does not lead to a large deviation in νk in directions where I− ηG
does not contract.

Interpretation of Theorem 3.1. While the choice of the noise model M will change the form of the
implicit regularizer, in practice, the form of M is not known. We can consider other choices of M
for interpretation, but Theorem 3.1 can be easy to qualitatively interpret for M such that Σ∗

M = I .
In this case, we find that the implicit preference towards local minima of RTD(θ) can explain feature
co-adaptation. In this case, the regularizer takes a simpler form:

RTD(θ) :=
∑
i

||∇Qθ(si,ai)||22 − γ∇Qθ(si,ai)∇[[Qθ(s
′
i,a

′
i)]].

The first term is equal to the squared per-datapoint gradient norm, which is same as the implicit
regularizer in supervised learning obtained by Blanc et al. (2020); Damian et al. (2021) with la-
bel noise. However, RTD(θ) additionally includes a second term that is equal to the dot product
of the gradient of the Q-function at the current and next states, ∇θQθ(si,ai)

⊤∇θQθ(s
′
i,a

′
i), and

thus this term is effectively maximized. When restricted to the last-layer parameters of a neural
network, this term is equal to the dot product of the features at consecutive state-action tuples:∑

i∇θQθ(si,ai)
⊤∇θQθ(s

′
i,a

′
i) =

∑
i ϕ(si,ai)

⊤ϕ(s′i,a
′
i). The tendency to maximize this quan-

tity to attain a local minimizer of the implicit regularizer corroborates the empirical findings of
increased dot product in Section 3.1.

Explaining the difference between utilizing seen and unseen actions in the backup. If all state-
action pairs (s′i,a

′
i) appearing on the right-hand-side of the Bellman update also appear in the dataset

D, as in the case of offline SARSA (Figure 1), the preference to increase dot products will be
balanced by the affinity to reduce gradient norm (first term of RTD(θ) when Σ∗

M = I): for example,
when (s′i,a

′
i) are permutations of (si,ai), RTD is lower bounded by (1− γ)

∑
i ||∇θQθ(xi)||22 and

hence minimizing RTD(θ) would minimize the feature norm instead of maximizing dot products.
Note that this also corresponds to the implicit regularizer we would obtain when training Q-functions
via supervised learning and hence, our analysis would predict that offline SARSA with in-sample
actions (i.e., when (s′,a′) ∈ D) would behave similarly to supervised regression.

However, the regularizer behaves very differently when unseen state-action pairs (s′i,a
′
i) appear

only on the right-hand-side of the backup. This happens with any algorithm where a′ is not the
dataset action, which is the case for all deep RL algorithms that compute target values by selecting
a′ according to the current policy. In this case, we expect the dot product of gradients at (s,a) and
(s′,a′) to be large at any attractive fixed point, since this minimizes RTD(θ). This is precisely a
form of co-adaptation: gradients at out-of-sample state-action tuples are highly similar to gradients
at observed state-action pairs measured by the dot product. This observation is also supported by
the analysis in Section 3.1. Finally, note that the choice of M is a modelling assumption, and to
derive our explicit regularizer, later in the paper, we will make a simplifying choice of M , though
we empirically verify that a different M also performs well (Appendix A.5).
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Why is implicit regularization detrimental to policy performance? To answer this question,
we present theoretical and empirical evidence that illustrates the adverse effects of this implicit
regularizer. Empirically, we ran two algorithms, DQN and CQL, initialized from a high-performing
Q-function checkpoint, which attains relatively small feature dot products (i.e., the second term of
RTD(θ) is small). Our goal is to see if TD updates starting from such a “good”initialization still
stay around it or diverge to poorer solutions. Our theoretical analysis in Section 3.2 would predict
that TD learning would destabilize from such a solution, since it would not be a stable fixed point.
Indeed, as shown in Figure 2, the policy starts to degrade right from the beginning, and the the dot-
product similarities start to increase. This even happens with CQL, which explicitly corrects for any
distributional shift confounds, implying that the performance drop cannot be directly explained by
the typical out-of-distribution action explanations. To investigate the reasons behind this drop, we
also measured the overall training error for these algorithms (i.e., TD error for DQN and TD error
+ CQL regularizer for CQL) and find in Figure 2 that the loss values generally small for both CQL
and DQN. This indicates that the preference to increase dot products is a consequence of an implicit
phenomenon. In Appendix A.7, we show that this drop in performance is heavily mitigated when
the explicit regularizer that we propose, DR3 is utilized for training.

To motivate why co-adapted features can lead to poor performance in TD-learning, we study the
convergence of linear TD-learning on co-adapted features. Our theoretical result characterizes a
lower bound on the feature dot products in terms of the feature norms for state-action pairs in the
dataset D, which if satisfied, will inhibit convergence:
Proposition 3.2 (TD-learning on co-adapted features). Assume that the features Φ = [ϕ(s,a)]s,a
are used for linear TD-learning. Then, if

∑
s,a,s′∈D ϕ(s,a)⊤ϕ(s′,a′) ≥ 1

γ

∑
s,a∈D ϕ(s,a)⊤ϕ(s,a),

linear TD-learning using features Φ will not converge.

A proof of Proposition 3.2 is provided in Appendix D and it relies on a stability analysis of linear TD.
While features change during training for TD-learning with neural networks, and arguably linear TD
is a simple model to study consequences of co-adapted features, even in this simple linear setting,
Proposition 3.2 indicates that TD-learning may be non-convergent as a result of co-adaptation.

Comparison to implicit regularization in TD learning with linear function approximation. Run-
ning stochastic gradient descent in overparameterized linear regression finds solutions with the small-
est ℓ2 norm, which is often regarded as the implicit regularizer. Based on this observation, one might
wonder how our derived implicit regularizer relates to minimum norm solutions attained by gradient
descent in overparameterized linear TD learning. The implicit regularizer we obtain in Equation 4
would be a constant, independent of the parameter vector θ for linear TD learning. Thus our regu-
larization specifically captures the effect of SGD on non-linear function approximators, which are
absent when studying linear function approximation.

Takeaways. We summarize the key takeaways from our theoretical analysis below:

• Implicit regularizer at TD fixed points is shown in Equation 4. The first term corresponds
to the regularizer for SGD in supervised learning, while the second term that is unique to
TD attempts to increase gradient (feature) dot products.

• Out-of-sample actions exacerbate the implicit regularization effects, since feature dot prod-
ucts can be easily increased when out-of-sample actions, that do not appear in the dataset
are used to compute Bellman targets.

• The implicit regularizer in Equation 4 is induced via a mechanism unique to non-linear
Q-functions, different from overparameterized, linear TD-learning.

• Stability criteria: Interpreted differently, Theorem 3.1 characterizes sufficient conditions
for local minimizes of TD error to stable in overparameterized, non-linear settings, comple-
menting the linear, underparameterized analysis of Ghosh & Bellemare (2020).

4 DR3: EXPLICIT REGULARIZATION FOR DEEP TD-LEARNING

Since the implicit regularization effects in TD-learning can lead to feature co-adaptation, which in
turn is correlated with poor performance, can we instead derive an explicit regularizer to alleviate this
issue? Inspired by the analysis in the previous section, we will propose an explicit regularizer that at-
tempts to counteract the second term in Equation 4, which would otherwise lead to co-adaptation and
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poor representations. The explicit regularizer that offsets the difference between the two implicit reg-
ularizers is given by: ∆(θ) =

∑
i trace

[
Σ∗⊤

M ∇θQθ(si,ai)∇θQθ(s
′
i,a

′
i)

⊤], which represents the
second term of RTD(θ). Note that we drop the stop gradient on Qθ(s

′
i,a

′
i) in ∆(θ), as it performs

slightly better in practice (Table A.1), although as shown in that Table, the version with the stop
gradient also significantly improves over the base method. The first term of RTD(θ) corresponds to
the regularizer from supervised learning. Our proposed method, DR3, simply combines approxima-
tions to ∆(θ) with various offline RL algorithms. For any offline RL algorithm, ALG, with objective
LALG(θ), the training objective with DR3 is given by: L(θ) := LALG(θ) + c0∆(θ), where c0 is the
DR3 coefficient. See Appendix E.3 for details on how we tune c0 in this paper.

Practical version of DR3. In order to practically instantiate DR3, we need to choose a particu-
lar noise model M . In general, it is not possible to know beforehand the “correct” choice of M
(Equation 3), even in supervised learning, as this is a complicated function of the data distribution,
neural network architecture and initialization. Therefore, we instantiate DR3 with two heuristic
choices of M : (i) M induced by label noise studied in prior work for supervised learning and
for which we need to run computationally heavy fixed-point computation for M , and (ii) a sim-
pler alternative that sets Σ∗

M = I . We find that both of these variants generally perform equally
well empirically (Figure 6), and so we utilize (ii) in practice due to low computational costs. Ad-
ditionally, because computing and backpropagating through per-example gradient dot products is
slow, we instead approximate ∆(θ) with the contribution only from the last layer parameters (i.e.,∑

i∇wQθ(si,ai)
⊤∇wQθ(s

′
i,a

′
i)), similarly to tractable Bayesian neural nets. As shown in Ap-

pendix A.5, the practical version of DR3 performs similarly to the theoretically derived version.

Explicit DR3 regularizer : Rexp(θ) =
∑
i∈D

ϕ(si,ai)
⊤ϕ(s′i,a

′
i). (7)

5 RELATED WORK

Prior analyses of the learning dynamics in RL has focused primarily on analyzing error propaga-
tion in tabular or linear settings (e.g., Chen & Jiang, 2019; Duan et al., 2020; Xie & Jiang, 2020;
Wang et al., 2021a;b; Farahmand et al., 2010; De Farias, 2002), understanding instabilities in deep
RL (Achiam et al., 2019; Bengio et al., 2020; Kumar et al., 2020a; Van Hasselt et al., 2018) and de-
riving weighted TD updates that enjoy convergence guarantees (Maei et al., 2009; Mahmood et al.,
2015; Sutton et al., 2016), but these methods do not reason about implicit regularization or any form
of representation learning. Ghosh & Bellemare (2020) focuses on understanding the stability of
TD-learning in underparameterized linear settings, whereas our focus is on the overparameterized
setting, when optimizing TD error and learning representations via SGD. Kumar et al. (2021) studies
the learning dynamics of Q-learning and observes that the rank of the feature matrix, Φ, drops during
training. While this observation is related, our analysis characterizes the implicit preference of learn-
ing towards feature co-adaptation (Theorem 3.1) on out-of-sample actions as the primary culprit for
aliasing. Additionally, while the goal of our work is not to increase srank(Φ), utilizing DR3 not only
outperforms the srank(Φ) penalty in Kumar et al. (2021) by more than 100%, but it also alleviates
rank collapse, with no apparent term that explicitly enforces high rank values. Somewhat related
to DR3, Durugkar & Stone (2018); Pohlen et al. (2018) heuristically constrain gradients of TD to
prevent changes in target Q-values to prevent divergence. Contrary to such heuristic approaches,
DR3 is inspired from a theoretical model of implicit regularization, and does not prevent changes in
target values, but rather reduces feature dot products.

6 EXPERIMENTAL EVALUATION OF DR3
Our experiments aim to evaluate the extent to which DR3 improves performance in offline RL in
practice, and to study its effect on prior observations of rank collapse. To this end, we investigate
if DR3 improves offline RL performance and stability on three offline RL benchmarks: Atari 2600
games with discrete actions (Agarwal et al., 2020), continuous control tasks from D4RL (Fu et al.,
2020), and image-based robotic manipulation tasks (Singh et al., 2020).

Following prior work (Fu et al., 2020; Gulcehre et al., 2020), we evaluate DR3 in terms of final
offline RL performance after a given number of iterations. Additionally, we report training stability,
which is important in practice as offline RL does not admit cheap validation of trained policies for
model selection. To evaluate stability, we train for a large number of gradient steps (2-3x longer
than prior work) and either report the average performance over the course of training or the final
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Table 1: IQM normalized average performance (training stability) across 17 games, with 95% CIs in parenthe-
sis, after 6.5M gradient steps for the 1% setting and 12.5M gradient steps for the 5%, 10% settings. Individual
performances reported in Tables F.4-F.10. DR3 improves the stability over both CQL and REM.

Data CQL CQL + DR3 REM REM + DR3

1% 43.7 (39.6, 48.6) 56.9 (52.5, 61.2) 4.0 (3.3, 4.8) 16.5 (14.5, 18.6)

5% 78.1 (74.5, 82.4) 105.7 (101.9, 110.9) 25.9 (23.4, 28.8) 60.2 (55.8, 65.1)

10% 59.3 (56.4, 61.9) 65.8 (63.3, 68.3) 53.3 (51.4, 55.3) 73.8 (69.3, 78)
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Figure 3: Performance of DR3 + COG on
two manipulation tasks using only 5% and
25% of the data used by Singh et al. (2020)
to make these more challenging. COG +
DR3 outperforms COG in training and at-
tains higher average and final performance.
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Figure 4: Normalized performance across 17 Atari games
for REM + DR3 (top), CQL + DR3 (bottom). x-axis rep-
resents gradient steps; no new data is collected. While naïve
REM suffers from a degradation in performance with more
training, REM + DR3 not only remains generally stable with
more training, but also attains higher final performance. CQL
+ DR3 attains higher performance than CQL. We report IQM
with 95% stratified bootstrap CIs (Agarwal et al., 2021).

performance at the end of training. We expect that a stable method that does not unlearn with more
gradient steps, should have better average performance, as compared to a method that attains good
peak performance but degrades with more training. See Appendix E for further details.

Offline RL on Atari 2600 games. We compare DR3 to prior offline RL methods on a set of offline
Atari datasets of varying sizes and quality, akin to Agarwal et al. (2020); Kumar et al. (2021). We
evaluated on three datasets: (1) 1% and 5% samples drawn uniformly at random from DQN replay;
(2) a dataset with more suboptimal data consisting of the first 10% samples observed by an online
DQN. Following Agarwal et al. (2021), we report the interquartile mean (IQM) normalized scores
across 17 games over the course of training in Figure 4 and report the IQM average performance
in Table 1. Observe that combining DR3 with modern offline RL methods (CQL, REM) attains the
best final and average performance across the 17 Atari games tested on, directly improving upon
prior methods across all the datasets. When DR3 is used in conjunction with REM, it prevents
severe unlearning and performance degradation with more training. CQL + DR3 improves by 20%
over CQL on final performance and attains 25% better average performance. While DR3 is not
unequivocally “stable”, as its performance also degrades relative to the peak it achieves (Figure 4),
it is more stable relative to base offline RL algorithms. We also compare DR3 to the srank(Φ)
penalty proposed to counter rank collapse (Kumar et al., 2021). Directly taking median normalized
score improvements reported by Kumar et al. (2021), CQL + DR3 improves by over 2x (31.5%)
over naïve CQL relative to the srank penalty (14.1%), indicating DR3’s efficacy.

Offline RL on robotic manipulation from images.
Next, we aim to evaluate the efficacy of DR3 on two
image-based robotic manipulation tasks (Singh et al.,
2020) (visualized on the right) that require composition
of skills (e.g., opening a drawer, closing a drawer, pick-
ing an obstructive object, placing an object, etc.) over
extended horizons using only a sparse 0-1 reward. As shown in Figure 3, combining DR3 with COG
not only improves over COG, but also learns faster and attains a better average performance.

Offline RL on D4RL tasks. Finally, we evaluate DR3 in conjunction with CQL on the antmaze and
kitchen domains in D4RL (Fu et al., 2020). To assess if DR3 is stable and able to prevent unlearning
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Figure 5: Trend of effective rank, srank(Φ) of fea-
tures Φ learned by the Q-function when trained with
TD error (red, “Without DR3”) and with TD error +
DR3 (blue, “With DR3”) on three Atari games using
the 5% dataset. Note that DR3 alleviates rank collapse
observed by Kumar et al. (2021), without explicitly aim-
ing to. Effective rank measures the number of directions
with significant singular values (Appendix A.4).

Table 2: Performance of CQL, CQL + DR3 af-
ter 2M gradient steps with a learning rate of 3e-
4 for the Q-function averaged over 4 seeds. This
is training for 6x longer compared to CQL defaults.
Observe that CQL + DR3 outperforms CQL at 2M
steps, indicating is efficacy in inducing stability.

D4RL (-v0) Task CQL CQL + DR3

kitchen-mixed 14.6 ± 20.5 37.0 ± 8.0
kitchen-partial 29.6 ± 19.6 43.5 ± 1.9
kitchen-complete 22.3 ± 17.5 24.8 ± 15.3

antmaze-med-diverse 0.7 ± 0.1 0.9 ± 0.1
antmaze-med-play 0.5 ± 0.4 0.4 ± 0.3
antmaze-lar-diverse 0.1 ± 0.0 0.3 ± 0.16
antmaze-lar-play 0.06 ± 0.09 0.1 ± 0.01

that eventually appears in CQL, we trained CQL+DR3 for 6x longer: 2M steps with 3x higher
learning rate. Observe in Table 2, that CQL + DR3 outperforms CQL (statistical significance shown
in Appendix A.8). We show that CQL + DR3 also outperforms base CQL in terms of performance
and stability on MuJoCo tasks previously studied in Kumar et al. (2021) in Appendix A.3. Further,
we also compare the effect of adding DR3 to BRAC (Wu et al., 2019). DR3 applied on BRAC
improves final median normalized score performance by 13.8 and stability by 8.1 across 15 MuJoCo
tasks. Numbers for BRAC can be found in Table F.2.

To summarize, these results indicate that DR3 is a versatile explicit regularizer that improves per-
formance and stability of a wide range of offline RL methods, including conservative methods (e.g,
CQL, COG), policy constraint methods (e.g., BRAC) and ensemble-based methods (e.g., REM).

DR3 does not suffer from rank collapse. Prior work (Kumar et al., 2021) has shown that implicit
regularization can lead to a rank collapse issue in TD-learning, preventing Q-networks from using
full capacity. To see if DR3 addresses the rank collapse issue, we follow Kumar et al. (2021) and plot
the effective rank of learned features with DR3 in Figure 5 (DQN and REM in Appendix A.4). While
the value of the effective rank decreases during training with naïve bootstrapping, we find that rank
of DR3 features typically does not collapse, despite no explicit term encouraging this. Additionally,
we test the robustness/sensitivity of each layer in the learned Q-network to re-initialization (Zhang
et al., 2019) during training and find that DR3 alters the representations trained with TD to behave
similarly to supervised learning (Figure A.2).

Figure 6: Comparing DR3 regularizers corre-
sponding to our simplifying choice of M and M
induced by label noise, with base CQL and DQN
algorithms. Note that both of these penalties when
applied over CQL improve performance, and gen-
erally perform similarly.

Comparing explicit regularizers for different
choices of noise covariance M . Finally, we inves-
tigate the behavior of different implicit regularizers
derived via two choices of M in Equation 4 and the
corresponding explicit regularizers. While the ex-
plicit regularizer we use in practice is a simplifying
choice that works well, another choice of M is the
covariance matrix induced by label noise, which re-
quires explicit computation of Σ∗

M . Observe in Fig-
ure 6 that the explicit regularizer for our simplify-
ing choice is not worse than the different choice of
M . This justifies utilizing our simplified, heuristic
choice of setting Σ∗

M = I in practice. Results on
five Atari games are shown in Appendix A.5.

7 DISCUSSION

We characterized the implicit preference of TD-learning towards solutions that maximally co-adapt
gradients (or features) at consecutive state-action tuples that appear in Bellman backup. This reg-
ularization effect is exacerbated when out-of-sample state-action samples are used for the Bellman
backup and it can lead to poor policy performance. Inspired by the theory, we propose a practical
explicit regularizer, DR3 that aims to counteracts this implicit regularizer. DR3 yields substantial
improvements in stability and performance on a wide range of offline RL problems. We believe
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that understanding the learning dynamics of deep Q-learning and the induced implicit regularization
will lead to more robust and stable deep RL algorithms. Furthermore, this understanding can help
us to predict the instability issues in value-based RL methods in advance, which can inspire cross-
validation and model selection strategies, an important, open challenge in offline RL, for which
existing off-policy evaluation techniques are not practically sufficient (Fu et al., 2021). We also note
that our analysis does not consider the online RL setting with non-stationary data distributions, and
extending our theory and DR3 to online RL is an interesting avenue for future work.
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Appendices
A ADDITIONAL VISUALIZATIONS AND EXPERIMENTS FOR DR3

In this section, we provide visualizations and diagnostic experiments evaluating various aspects of
feature co-adaptation and the DR3 regularizer. We first provide more empirical evidence showing
the presence of feature co-adaptation in modern deep offline RL algorithms. We will also visualize
DR3 inspired from the implicit regularizer term in TD-learning alleviates rank collapse discussed in
Kumar et al. (2021). We will compare the efficacies of the explicit regularizer induced for different
choices of the noise covariance matrix M (Equation 4), understand the effect of dropping the stop
gradient term in ou practical regularizer and finally, perform diagnostic experiments visualizing if the
Q-networks learned with DR3 resemble more like neural networks trained via supervised learning,
measured in terms of sensitivity and robustness to layer reinitialization (Zhang et al., 2019).

A.1 MORE EMPIRICAL EVIDENCE OF FEATURE CO-ADAPTATION

In this section, we provide more empirical evidence demonstrating the existence of the feature co-
adaptation issue in modern offline RL algorithms such as DQN and CQL. As shown below in Fig-
ure A.1, while the average dataset Q-value for both CQL and DQN exhibit a flatline trend, the
dot product similarity for consecutive state-action tuples generally continues to increase throughout
training and does not flatline. While DQN eventually diverges in Seaquest, the dot products increase
with more gradient steps even before divergence starts to appear.
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Figure A.1: Demonstrating feature co-adaptation on five Atari games with standard offline DQN and
CQL, averaged over 3 seeds. Observe that the feature dot products continue to rise with more training for
both CQL and DQN, indicating the presence of co-adaptation. On the other hand, the average Q-values exhibit
a converged trend, except on Seaquest. Further, note that the dot products continue to increase for CQL even
though CQL explicitly corrects for out-of-distribution action inputs.

A.2 LAYER-WISE STRUCTURE OF A Q-NETWORK TRAINED WITH DR3

To understand if DR3 indeed makes Q-networks behave as if they were trained via supervised learn-
ing, utilizing the empirical analysis tools from Zhang et al. (2019), we test the robustness/sensitivity
of each layer in the learned network to re-initialization, while keeping the other layers fixed. This
tests if a particular layer is critical to the predictions of the learned neural network and enables us to
reason about generalization properties (Zhang et al., 2019; Chatterji et al., 2019). We ran CQL and
REM and saved all the intermediate checkpoints. Then, as shown in Figure A.2, we first loaded a
checkpoint (x-axis), and computed policy performance (shaded color; colorbar) by re-initializing a
given layer (y-axis) of the network to its initialization value before training for the same run.

Note in Figure A.2, that while almost all layers are absolutely critical for the base CQL algorithm,
utilizing DR3 substantially reduces sensitivity to the latter layers in the Q-network over the course of
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Figure A.2: CQL vs CQL + DR3 and REM vs REM + DR3. Average robustness of the learned Q-function
to re-initialization of all layers to different checkpoints over the course of training created based on the protocol
from Zhang et al. (2019). The colors in the heatmap indicate performance of the reinitialized checkpoint,
normalized w.r.t. the checkpoint without any change to layers. Note that while CQL and REM are more
sensitive (i.e., less robust) to reinitialization of all the layers especially the last layer, CQL + DR3 and REM +
DR3 behave closer to supervised learning, in the sense that they are more robust to reinitialization of layers of
the network, especially the last layer.

training. This is similar to what Zhang et al. (2019) observed for supervised learning, where the ini-
tial layers of a network were the most critical, and the latter layers primarily performed near-random
transformations without affecting the performance of the network. This indicates that utilizing DR3
alters the internal layers of a Q-network trained with TD to behave closer to supervised learning.

A.3 RESULTS ON MUJOCO DOMAINS

In this section, we provide the results of applying DR3 on the MuJoCo tasks shown in Figure A.5.
(Appendix A) of Kumar et al. (2021). To briefly describe the setup, in these tasks we train on the
three gym tasks (Hopper-v2, Ant-v2, Walker2d-v2) using 20% of the offline data, uniformly subsam-
pled from the run of an online SAC agent, mimicking the setup from Kumar et al. (2021). Rather than
retraining an SAC agent to collect data, we subsampled the Gym-MuJoCo *-full-replay-v2
replay buffers from the latest D4RL (Fu et al., 2020). In these cases we plot the srankδ values, the
feature dot products and the corresponding performance values with and without the DR3 regularizer
for 4M steps (Kumar et al. (2021) showed their plots for just under 4M steps) in Figure A.3.

Observe in Figure A.3, that while the standard CQL algorithm performs poorly and suffers from
performance degradation within about 1M-1.5M steps for Walker2d and Ant, CQL + DR3 is able
to prevent the performance degradation and trains stably. Base CQL demonstrates oscillatory per-
formance on Hopper, but CQL + DR3 stabilizes the performace of CQL. This indicates that DR3 is
effective on MuJoCo domains, and prevents the instabilities with CQL.

For details, the weight on the CQL regularizer in this case is equal to 5.0 across all the tasks, and
weight on the DR3 regularizer is 0.01. We also attempted to tune the CQL coefficient for the baseline
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Figure A.3: Comparison of CQL and CQL + DR3 on the offline MuJoCo Gym domains, mimicking
the setup of Kumar et al. (2021). The data is generated by randomly sampling 20% of the transitions of the
D4RL (Fu et al., 2020) full-replay-v2 datasets, which are collected via the run of an online SAC agent. The
performance is shown in terms of the D4RL normalized score, where 0.0 denotes the performance of a random
policy and 100.0 denotes the performance of an expert online SAC policy. Observe that adding DR3 stabilizes
the performance on Hopper, and prevents performance collapse on Walker2d and Ant. In addition note that the
srank values attained by CQL + DR3 is higher than base CQL and more importantly, the feature dot products
are much smaller for CQL + DR3 compared to CQL.

CQL algorithm within {1.0, 2.0, 5.0, 10.0, 20.0} to see if it address the performance degradation
issues, but did not find any difference in the collapsing behavior of base CQL. Our CQL baseline is
therefore well-tuned, and DR3 improves the performance over this baseline.

A.4 RANK COLLAPSE IS ALLEVIATED WITH DR3
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Figure A.4: Comparing the feature ranks for CQL and CQL + DR3. Observe that utilizing DR3 success-
fully alleviates the rank collapse issue noted in prior work without explicitly correcting for it.

Prior work (Kumar et al., 2021) has shown that implicit regularization in TD-learning can lead to
a feature rank collapse phenomenon in the Q-function, which hinders the Q-function from using
its full representational capacity. Such a phenomenon is absent in supervised learning, where the
feature rank does not collapse. Since DR3 is inspired by mitigating the effects of the term in the im-
plicit regularizer (Equation 4) that only appears in the case of TD-learning, we wish to understand if
utilizing DR3 also alleviates rank collapse. To do so, we compute the effective rank srankδ(ϕ) met-
ric of the features learned by Q-functions trained via CQL and CQL with DR3 explicit regularizer.
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As shown in Figure A.4, for the case of five Atari games, utilizing DR3 alleviates the rank collapse
issue completely (i.e., the ranks do not collapse to very small values when CQL + DR3 is trained for
long). We do not claim that the ranks with DR3 are necessarily higher, and infact as we show below,
a higher srank of features may not always imply a better solution. The fact that DR3 can prevent
rank collapse is potentially surprising, because no term in the practical DR3 regularizer explicitly
aims to increase rank: feature dot products can be made smaller while retaining low ranks by simply
rescaling the feature vectors. But, as we observe, utilizing DR3 enables learning features that do not
exhibit collapsed ranks, thus we hypothesize that correcting for appropriate terms in RTD(θ) can
address some of the previously observed pathologies in TD-learning.
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Figure A.5: Performance and srank values for DQN and DQN + DR3. Observe that the srank values
increase for DQN + DR3, while they collapse for DQN on Asterix, Seaquest and SpaceInvaders with more
training. Thus, DQN + DR3 does not suffer from a sudden rank collapse. However, a higher srank does not
imply a better return, and so while initially DQN does have a high rank, DQN + DR3 performs superiorly.

We now investigate the feature ranks of a Q-network trained when DR3 is applied in conjunction
with a standard DQN and REM (Agarwal et al., 2020) on the Atari domains. We plot the values of
srankδ(ϕ), the feature dot products and the performance of the algorithm for DQN in Figure A.5 and
for REM in Figure A.6. In the case of DQN, we find that unlike the base DQN algorithm for which
feature rank does begin to collapse with more training, the srank for DQN + DR3 is increasing. We
also note that DQN + DR3 attains a better performance compared to DQN, throughout training.
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Figure A.6: Comparing the performance and srank values for REM and REM + DR3. Observe that
while REM + DR3 outperforms REM, the srank values attained by REM are much larger than REM + DR3,
and none of these ranks have collapsed. Thus, while REM + DR3 maintains non-collapsed features, for the case
of REM, it reduces the value of srank and attains better performance. This does not contradict the observations
from Kumar et al. (2021) as we discuss in the text.
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Table A.1: Normalized interquartile mean performance with 95% stratified bootstrap CIs (Agarwal et al.,
2021) across 17 Atari games of REM, REM + ∆′(Φ) (Stop gradient in DR3), REM + DR3 after 6.5M gradient
steps for the 1% setting and 12.5M gradient steps for the 5%, 10% settings. Observe that REM + ∆′(ϕ) also
improves over the base REM method significantly, by about 130%, even though ∆′(ϕ) is generally comparable
and somewhat worse than the DR3 regularizer used in the main paper.

Data REM REM + ∆′(Φ) REM+DR3

1% 4.0 (3.3, 4.8) 15.0 (13.4, 16.6) 16.5 (14.5, 18.6)

5% 25.9 (23.4, 28.8) 55.5 (50.8, 59.8) 60.2 (55.8, 65.1)

10% 53.3 (51.4, 55.3) 67.7 (64.7, 71.3) 73.8 (69.3, 78)

However, we note that the opposite trend is true for the case of REM: while REM + DR3 attains
a better performance than REM, adding DR3 leads to a reduction in the srank value compared to
base REM. At a first glance, this might seem contradicting Kumar et al. (2021), but this is not the
case: to our understanding, Kumar et al. (2021) establish a correlation between extremely low rank
values (i.e., rank collapse) and poor performance, but this does not mean that all high rank features
will lead to good performance. We suspect that since REM trains a multi-headed Q-function with
shared features and randomized target values, it is able to preserve high-rank features, but this need
not mean that these features are useful. In fact, as shown in Figure A.7, we find that the base REM
algorithm does exhibit feature co-adaptation. This case is an example where the srank metric from
Kumar et al. (2021) may not indicate poor performance.
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Figure A.7: Feature dot products for REM and REM + DR3 on log scale. REM does suffer from feature
co-adaptation despite high-rank features.

A.5 INDUCED IMPLICIT REGULARIZER: THEORY AND PRACTICE

In this section, we compare the performance of our practical DR3 regularizer to the regularizers
(Equation 4) obtained for different choices of M , such as M induced by noise, studied in previous
work, and also evaluate the effect of dropping the stop gradient function from the practical version
of our regularizer.

Empirically comparing the explicit regularizers for different noise covariance matrices, M .
The theoretically derived regularizer (Equation 4) suggests that for a given choice of M , the follow-
ing equivalent of feature dot products should increase over the course of training:

∆M (θ) :=
∑

s,a∈D
trace

[
Σ∗

M∇Q(s,a)∇Q(s′,a′)⊤
]
. (Generalized dot products) (A.1)

We evaluate the efficacy of the explicit regularizer that penalizes the generalized dot products,
∆M (θ), in improving the performance of the policy, with the goal of identifying if our practical
method performs similar to this regularizer on generalized dot products.. While Σ∗

M must be explic-
itly computed by running fixed point iteration for every parameter iterate θ found during TD-learning
– which makes this method significantly computationally expensive2, we evaluated it on five Atari
games for 50× 62.5k gradient steps as a proof of concept. As shown in Figure A.8, the DR3 penalty
with the choice of M which corresponds to label noise, and the dot product DR3 penalty, which is
our main practical approach in this paper generally perform similarly on these domains, attaining
almost identical learning curves on 4/5 games, and clearly improving over the base algorithm. This
hints at the possibility of utilizing other noise covariance matrices to derive an explicit regularizer.

2In our implementation, we run 20 steps of the fixed-point computation of Σ as shown in Theorem 3.1 for
each gradient step on the Q-function, and this increases the runtime to about 8 days for 50 iterations on a P100
GPU.
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Figure A.8: Comparing the performance of explicit penalties for two different choices of the covariance
matrix M . Observe that in all the five games the DR3 regularizer derived for the choice of M from Blanc et al.
(2020) also leads to a substantial increase in performance over the base algorithm, and in four of five games,
DR3 (label-noise) works just as well as DR3.

Deriving more computationally efficient versions of the regularizer for a general M and identifying
the best choice of M are subject to future work.

Effect of stop gradient. Finally, we investigate the effect of utilizing a stop gradient in the DR3
regularizer. We run a variant of DR3: ∆′(ϕ) =

∑
s,a,s′ ϕ(s,a)

⊤[[ϕ(s′,a′)]], with the stop gradient
on the second term (s′,a′) and present a comparison to the one without the stop gradient in Table A.1
for REM as the base offline method, averaged over 17 games. Note that this version of DR3, with the
stop gradient, also improves upon the baseline offline RL method (i.e., REM) by 130%. While this
performs largely similar, but somewhat worse than the complete version without the stop gradient,
these results do indicate that utilizing ∆′(ϕ) can also lead to significant gains in performance.

A.6 UNDERSTANDING FEATURE CO-ADAPTATION SOME MORE

In this section, we present some more empirical evidence to understand feature co-adaptation. The
three factors we wish to study are: (1) the effect of target update frequency on feature co-adaptation;
(2) understand the trend in normalized similarities and compare these to the trend in dot products;
and (3) understand the effect of out-on-sample actions in TD-learning and compare it to offline
SARSA on a simpler gridworld domain. We answer these questions one by one via experiments
aiming to verify each hypothesis.

A.6.1 EFFECT OF TARGET UPDATE FREQUENCY ON FEATURE CO-ADAPTATION
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Figure A.9: Comparing the feature dot products for various
target update delays, where a smaller N implies a faster update
and a larger N corresponds to a slower target update. Observe
that while slower updates to the target network may reduce co-
adaptation, very slow target updates may still lead to excesssive
co-adaptation.

We studied the effect of target update
frequency on feature co-adaptation,
on some gridworld domains from
Fu et al. (2019). We utilized the
grid16smoothobs environment,
where the goal of the agent is to nav-
igate from the center of a 16 × 16
gridworld maze to one of its corners
while avoiding obstacles and “lava”
cells. The observations provided to
the RL algorithm are given by a high-
dimensional random transformation
of the (x, y) coordinates, smoothed
over neighboring cells in the grid-
world. We sampled an offline dataset
of 256 transitions and trained a Q-
network with two hidden layers of size (1024, 1024) via fitted Q-iteration (FQI) (Riedmiller, 2005).

We evaluated the feature dot products for Q-functions trained with a varying target update frequen-
cies, given generically as: updating the target network using a hard target update once per N gradient
steps, where N takes on values N = 5, 10, 50, 100, 200, 500, and present the results in Figure A.9
(left), averaged over 3 random seeds. Thee feature dot products initially decrease from N = 5 to
N = 10, because the target network is updated slower, but then starts to rapidly increase when when
the target network is slowed down further to N = 50 and N = 200 in one case and N = 500 in the
other case.
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We also evaluated the feature dot products when using CQL as the base offline RL algorithm. As
shown in Figure A.9 (right), while CQL does reduce the absolute range of the feature dot products,
slow target updates with N = 500 still lead to the highest feature dot products as training progresses.
Takeaway: While it is intuitive to think that a slower target network might alleviate co-adaptation,
we see that this is not the case empirically with both FQI and CQL, suggesting a deeper question
that is an interesting avenue for future study.

A.6.2 GRIDWORLD EXPERIMENTS COMPARING TD-LEARNING VS OFFLINE SARSA

To supplement the analysis in Section 3.1, we ran some experiments in the gridworld domains from
Fu et al. (2019). In this case, we used the grid16smoothsparse and grid16randomsparse
domains, which present challenging navigation tasks in a maze under a 0-1 sparse reward signal,
provided at the end of the trajectory. Additionally, the observations available to the offline RL agent
do not consist of the raw (x, y) locations of the agent in the maze, but rather high-dimensional
randomly chosen transformations of (x, y) in the case of grid16randomsparse, which are
additionally smoothed locally around a particular state to obtain grid16smoothsparse.

Since our goal is to compare feature co-adaptation in TD-learning and offline SARSA, we consider a
case where we evaluate a “mixed” behavior policy that chooses the optimal action with a probability
of 0.7 at a given state, and chooses a random, suboptimal action with 0.3. We then generate a
dataset of size 256 transitions and train offline SARSA and TD-learning on this data. While SARSA
backups the next action observed in the offline dataset, TD-learning computes a full expectation
of the Q-function Ea′∼πβ(·|s′) [Q(s′,a′)] under the behavior policy for computing Bellman backup
targets. The behavior policy is fully known to the TD-learning agent. Our Q-network consists of
two hidden layers of size (1024, 1024) as before.
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Figure A.10: Comparing the feature dot products for TD-
learning and offline SARSA, used to compute the value of the
behavior policy using a dataset of size 256 on two gridworld do-
mains. Observe that the feature dot products are higher in the case
of TD-learning compared to offline SARSA.

We present the trends in the feature
dot products for TD-learning and of-
fline SARSA in Figure A.10, aver-
aged over three seeds. Observe that
the trends in the dot product values
for TD-learning and offline SARSA
closely follow each other for the ini-
tial few gradient steps, soon, the dot
products in TD-learning start grow-
ing faster. In contrast, the dot prod-
ucts for SARSA either saturate or
start decreasing. The only difference
between TD-learning and SARSA is
the set of actions used to compute
Bellman targets – while the actions
used for computing Bellman backup
targets in SARSA are in-sample actions and are observed in the dataset, the actions used by TD-
learning may be out-of-sample, but are still within the distribution of the data-generating behavior
policy. This supports our empirical evidence in the main paper showing that out-of-sample actions
can lead to feature co-adaptation.

A.6.3 FEATURE CO-ADAPTATION AND NORMALIZED FEATURE SIMILARITIES

Note that we characterized feature co-adaptation via the dot products of features. In this section,
we explore the trends in other notions of similarity, such as cosine similarity between ϕ(s,a) and
ϕ(s′,a′) which measures the dot product of feature vectors at consecutive state-action tuples after
normalization. Formally,

cos(ϕ(s,a), ϕ(s′,a′)) :=
ϕ(s,a)⊤ϕ(s′,a′)

||ϕ(s,a)||2 · ||ϕ(s′,a′)||2
.

We plot the trend in the cosine similarity with and without DR3 for five Atari games in Figure A.11
with CQL, DQN and REM, and for the three MuJoCo tasks studied in Appendix A.3 in Figure A.12.
We find that the cosine similarity is generally very high on the Atari domains, close to 1, and not
indicative of performance degradation. On the Ant and Walker2d MuJoCo domains, we find that
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Figure A.11: Cosine similarities of DQN, DQN + DR3, REM, REM + DR3 and CQL, CQL + DR3. Note
that DQN, REM and CQL attain close to 1 cosine similarities, and addition of DR3 does reduce the cosine
similarities of consecutive state-action features.
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Figure A.12: Cosine similarities of CQL and CQL + DR3 on MuJoCo domains. Note that the cosine
similarities of CQL grow to 1 and roughly stabilize for Ant and Walker2d, but start decreasing for Hopper. This
happens despite the oscillatory trends in performance of CQL on Hopper A.3. This means that a low cosine
similarity need not imply poor performance, and DR3 can improve performance even when cosine similarity
of base CQL is decreasing. We also notice that DR3 does actually reduce cosine similarity.

the cosine similarity first rises up close to 1 and roughly saturates there. On the Hopper domain, the
cosine similarity even decreases over training. However we observe that the feature dot products
are increasing for all the domains. Applying DR3 in both cases improves performance (as shown
in earlier Appendix), and generally gives rise to reduced cosine similarity values, though it can also
increase the cosine similarity values occasionally. Furthermore, even when the cosine similarities
were decreasing for the base algorithm (e.g., in the case of Hopper), addition of DR3 reduced the
feature dot products and helped improve performance. This indicates that both the norm and di-
rectional alignment are contributors to the co-adaptation issue, which is what DR3 aims to fix and
independently directional alignment does not indicate poor performance.

A.7 STABILITY OF DR3 FROM A GOOD SOLUTION

In this appendix, we study the trend of CQL + DR3 when starting learning from a good initialization,
which was studied in Figure 2. As shown in Figure A.13, while the performance for baseline CQL
degrades significantly (from 5000 at initialization on Asterix, performance degrades to ∼3200 by
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Figure A.13: Running CQL + DR3 and CQL in the setup of Figure 2 to evaluate the stability of CQL +
DR3 when starting training from a good solution. Observe that the performance of base CQL decays quickly
from the good solution, but CQL + DR3 is relatively more stable. Additionally, the feature dot products for
DR3 are much smaller compared to CQL.

100 iterations for base CQL), whereas the performance of DR3 only moves from 5000 to ∼4300. A
similar trend holds for Breakout. This means that the addition of DR3 does stabilize the learning
relative to the baseline algorithm. Please note that we are not claiming that DR3 is unequivocally
stable, but that improves stability relative to the base method. We also present the dot products for
DR3, which are also small, unlike increasing dot products for base CQL as shown in the figure.

A.8 STATISTICAL SIGNIFICANCE OF OUR D4RL ANTMAZE AND KITCHEN RESULTS

Figure A.14: Statistical significance of the results of CQL + DR3 vs CQL (Table 2) as measured by
average probability of improvement (Agarwal et al., 2021), with stratified bootstrap confidence intervals for
this statistic. Since the lower CI for this statistic is > 0.5, CQL + DR3 significantly improves over base CQL,
and since the mean and upper CI are ≥ 0.75, this improvement is also meaningful.

In order to assess the statistical significance of our D4RL Antmaze and Kitchen results, we follow the
recommendedations by Agarwal et al. (2021) for comparing deep RL algorithms considering their
statistical uncertainties. Specifically, we computed the average probability of improvement (Agar-
wal et al., 2021) of CQL + DR3 over CQL on the antmaze and kitchen domains, and we find that
DR3 does significantly and meaningfully improve over CQL on both the Kitchen and AntMaze
domains. Before presenting the results, let us first describe the metric we compute.

Probability of improvement and statistical significance. For two given algorithms Alg1 and Alg2,
and runs Xk,1, Xk,2, · · · , Xk,m from Alg1 and runs Yk,1, Yk,2, · · · , Yk,n from Alg2 on task k, the
probability of improvement of Alg1 over Alg2 is given by P (Alg1 > Alg2) =

1
K

∑K
k=1 P (Algk1 >

Algk2). The probability of improvement on a given task k, P (Algk1 > Algk2) is computed using the
Mann-Whitney U-statistic and is given by:

P (Algk1 > Algk2) =
1

MN

M∑
i=1

N∑
j=1

S(Xk,i, Yk,j) where S(x, y) =


1, if y < x,
1
2 , if y = x,

0, if y > x.

Alg1 leads to statistically significant improve over Alg2 if the lower CI for P(Alg1 > Alg2) is
larger than 0.5. Per the Neyman-Pearson statistical testing criterion in ?, Alg1 leads to statistically
meaningful improvement over Alg2 if the upper confidence interval (CI) of P(Alg1 > Alg2) is larger
than 0.75.

Figure A.14 presents the value of P(CQL + DR3 > CQL) on the AntMaze and Kitchen domains at
2M gradient steps along with the 95% CI for this statistic. DR3 improves over CQL on the AntMaze
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domains with probability 0.83 with 95% CI (0.7, 0.96) and on the Kitchen domains with probability
0.8 with 95% CI (0.6, 1.0). These values pass the criterion of being both statistically significant
and meaningful per the above definitions, implying that DR3 does significantly and meaningfully
improve upon CQL on these domains.

B EXTENDED RELATED WORK

In this section, we briefly review some extended related works, and in particular, try to connect
feature co-adaptation and implicit regularization to various interesting results pertaining to RL lower-
bounds with function approximation and self-supervised learning.

Lower-bounds for offline RL. Zanette (2020) identifies hard instances for offline TD learning of
linear value functions when the provided features are “aliased”. Note that this work does not consider
feature learning or implicit regularization, but their hardness result relies heavily on the fact the
given linear features are aliased in a special sense. Aliased features utilized in the hard instance
inhibit learning along certain dimensions of the feature space with TD-style updates, necessitating an
exponential sample size for near-accurate value estimation, even under strong coverage assumptions.
A combination of Zanette (2020)’s argument, which provides a hard instance given aliased features,
and our analysis, which studies the emergence of co-adapted/similar features in the offline deep RL
setting, could imply that the co-adaptation can lead to failure modes from the hard instance, even on
standard Offline RL problems, when provided with limited data.

Connections to self-supervised learning (SSL). Several modern self-supervised learning meth-
ods (Grill et al., 2020; Chen & He, 2020) can be viewwed as utilizing some form of bootstrapping
where different augmentations of the same input (x + Aug1,x + Aug2) serve as consecutive state-
action tuples that appear on two sides of the backup. If we may extrapolate our reasoning of feature
co-adaptation to this setting, it would suggest that performing noisy updates on a self-supervised
bootstrapping loss will give us feature representations that are highly similar for consecutive state-
action tuples, i.e., the representations for ϕ(x+Aug1)

⊤ϕ(x+Aug2) will be high. Intuitively, an easy
way for obtaining high feature dot products is for ϕ(·) to capture only that information in ·, which is
agnostic to data augmentation, thus giving rise to features that are invariant to transformations. This
aligns with what has been shown in self-supervised learning (Tian et al., 2020; 2021). Another inter-
esting point to note is that while such an explanation would indicate that highly co-adapted features
are beneficial in SSL, such features can be adverse in value-based RL as discussed in Section 3.

Preventing divergence in deep TD-learning. Finally, we discuss Achiam et al. (2019) which
proposes to pre-condition the TD-update using the inverse the neural tangent kernel (Jacot et al.,
2018) matrix so that the TD-update is always a contraction, for every θk found during TD-learning.
Intuitively, this can be overly restrictive in several cases: we do not need to ensure that TD always
contracts, but that is eventually stabilizes at good solution over long periods of running noisy TD
updates, Our implicit regularizer (Equation‘4) derives this condition, and our theoretically-inspired
DR3 regularizer shows that empirically, it suffices to penalize the dot product similarity in practice.

C PROOF OF THEOREM 3.1
In this section, we will derive our implicit regularizer RTD(θ) that emerges when performing TD
updates with a stochastic noise model with covariance matrix M . We first introduce our notation
that we will use throughout the proof, then present our assumptions and finally derive the regularizer.
Our proof utilizes the analysis techniques from Blanc et al. (2020) and Damian et al. (2021), which
analyze label-noise SGD for supervised learning, however key modifications need to be made to
their arguments to account for non-symmetric matrices that emerge in TD learning. As a result,
the form of the resulting regularizer is very different. To keep the proof concise, we will appeal to
lemmas from these prior works which will allow us to bound certain concentration terms.

C.1 NOTATION

The noisy TD-learning update for training the Q-function is given by:

θk+1 = θk − η

(∑
i

∇θQ(si,ai) (Qθ(si,ai)−(ri+γQθ(s
′
i,a

′
i)))

)
︸ ︷︷ ︸

:=g(θ)

+ηεk, εk ∼ N (0,M) (C.1)
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where g(θ) denotes the parameter update. Note that g(θ) is not a full gradient of a scalar objective,but it is a form of a “pseudo”-gradient or “semi”-gradient. Let εk denote an i.i.d.random noise that
is added to each update. This noise is sampled from a zero-mean Gaussian random variable with
covariance matrix M , i.e., N (0,M).

Let θ∗ denote a point in the parameter space such that in the vicinity of θ∗, g(θ) ≤ C , for a small
enough C . Let G(θ) denote the derivative of g(θ) w.r.t. θ: G(θ) = ∇θg(θ) and let ∇G(θ) denote
the third-order tensor ∇2

θg(θ). For notation clarity, let G = G(θ∗),∇G = ∇G(θ∗). Let ei denote
the signed TD error for a given transition (si,ai, s

′
i) ∈ D at θ∗:

ei = Qθ∗(si,ai)− (ri + γQθ∗(s′i,a
′
i)). (C.2)

Since θ∗ is a fixed point of the training TD error, ei = 0. Following Blanc et al. (2020), we will
assume that the learning rate in gradient descent, η, is small and we will ignore terms that scale
as O(η1+δ), for δ > 0. Our proof will rely on using a reference Ornstein-Uhlenbeck (OU) process
which the TD parameter iterates will be compared to. Let ζk denote the k-th iterate of an OU process,
which is defined as:

ζk+1 = (I − ηG)ζk + ηεk, εk ∼ N (0,M) (C.3)

We will drop θ from∇θ to indicate that the gradient is being computed at θ∗, and drop (si,ai) from
Q(si,ai) and instead represent it as Qi for brevity; we will represent Q(s′i,a

′
i) as Q′

i. We assume
that∇2Qi is L2-Lipschitz and∇3Qi is L3-Lipschitz throughout the parameter space Θ.

C.2 PROOF STRATEGY

For a given point θ∗ to be an attractive fixed point of TD-learning, our proof strategy would be to
derive the condition under which it mimics a given OU noise process, which as we will show stays
close to the parameter θ∗. This condition would then be interpreted as the gradient of a “induced”
implicit regularizer. If the point θ∗ is not a stationary point of this regularizer, we will show that
the movement θ is large when running the noisy TD updates, indicating that the regularizer, atleast
in part guides the dynamics of TD-learning. To show this, we would write out the gradient update,
isolate some terms that will give rise to the implicit regularizer, and bound the remaining terms us-
ing contraction and concentration arguments. The contraction arguments largely follow prior work
(though with key exceptions in handling contraction with asymmetric and complex eigenvalue ma-
trices), while the form of the implicit regularizer is different. Finally, we will interpret the resulting
update over large timescales to show that learning is indeed guided by the implicit regularizer.

C.3 ASSUMPTIONS AND CONDITIONS

Next, we present some key assumptions we will need for the proof. Our first assumption is that the
matrix G ∈ Rd×d is of maximal rank possible, which is equal to the number of datapoints n and
n≪ d, the dimensionality of the parameter space. Crucially, this assumption do not imply that G is
of full rank – it cannot be, because we are in the overparameterized regime.

Assumption A1 (G spans an n-dimensional basis.). Assume that the matrix G spans n-possible
directions in the parameter space and hence, attains the maximal possible rank it can.

The second condition we require is that the matrices
∑

i∇Qi∇Q⊤
i and M share the same n-

dimensional basis as matrix G:

Assumption A2.
∑

i∇Qi∇Q⊤
i , M , and G span identical n-dimensional subspaces.

This is a technical condition that is required. If this condition is not met, as we will show the learning
dynamics of noisy TD will not be a contraction in certain direction in the parameter space and TD-
learning will not stabilize at such a solution θ∗. In fact, we will utilize a stronger version of this
statement for TD-learning to converge, and we will discuss this shortly.

C.4 LEMMAS USED IN THE PROOF

Next, we present some lemmas that would be useful for proving the theoretical result.
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Lemma C.1 (Expressions for the first and and second-order derivatives of g(θ).). The following
definitions and expansions apply to our proof:

G(θ∗) =
∑
i

∇2Qiei +
∑
i

∇Qi(∇Qi − γ∇Q′
i)

⊤

∇G(θ∗)[v,v] = 2
∑
i

∇2Qivv
⊤(∇Qi − γ∇Q′

i) +
∑
i

tr
(
(∇2Qi − γ∇2Q′

i)vv
⊤)∇Qi +∇3Qiei

Lemma C.1 presents a decomposition of the matrix G and the directional derivative of the third order
tensor ∇G[v,v] in directions v and v, which will appear in the Taylor expansion layer. Note that
at θ∗ since ei = 0, the first term in G(θ∗) and the third term in ∇G(θ∗)[v,v] vanish. Lemma C.2
derives a fixed-point recursion for the covariance matrix of the total noise accumulated in the OU-
process with covariance matrix M and this will appear in our proof.

Lemma C.2 (Covariance of the random noise process ζk). Let ζk denote the OU process satisfying:
ζk+1 = (I − ηG)ζk + ηεk, where εk ∼ N (0,M), where M ≽ 0. Then, ζk+1 ∼ N (0,Σ), where Σ
satisfies the discrete Lyapunov equation:

Σ∗
M = (I − ηG)Σ∗

M (I − ηG)⊤ + η2M.

Proof. For the OU process, ζk+1 = (I − ηG)ζk + ηεk, since εk is a Gaussian random variable, by
induction so is ζk+1, and therefore the covariance matrix of ζk+1 is given by:

Σk+1 := (I − ηG)Σk(I − ηG⊤) + η2M. (C.4)

Solving for the fixed point for Σk gives the desired expression.

In our proofs, we will require the following contraction lemmas to tightly bound the magnitude of
some zero-mean terms that will appear in the noisy TD update under certain scenarios. Unlike the
analysis in Damian et al. (2021) and Blanc et al. (2020) for supervised learning with label noise,
where the contraction terms like (I − ηG)kG are bounded by ≈ 1

kη intuitively because I − ηG

is a contraction in the subspace spanned by matrix G. However, this is not true for TD-learning
directly since terms like (I − ηG)kS appear for a different matrix S. Therefore, TD-learning will
diverge from θ∗ unless matrices G and M have their corresponding eigenvectors assigned to the top
eigenvalues be approximately “aligned”. We formalize this definition next, and then provide a proof
of the concentration guarantee.

Definition 1 ((ω,C0)-alignment). Given a positive semidefinite matrix A, let A = UAΛAU
⊤
A denote

its eigendecomposition. Without loss of generality assume that the eiegenvalues are arranged in
decreasing order, i.e., ∀i > j,ΛA(i) ≤ ΛA(j). Given another matrix B, let B = UBΛBU

H
B denote

its complex eigendecomposition, where eigenvalues in ΛB are arranged in decreasing order of their
complex magnitudes, i.e., ∀i > j, |ΛB(i)| ≤ |ΛB(j)|. Then the matrix pair (A,B) is said to be
(ω,C0)-aligned if |UH

B (i)UA(i)| ≤ ω and if ∀ i,ΛA(i) ≤ C0|ΛB(i)| for a constant C0.

If two matrices are (ω,C0)-aligned, this means that the corresponding eigenvectors when arranged
in decreasing order of eigenvalue magnitude roughly align with each other. This condition would
be crucial while deriving the implicit regularizer as it will quantify the rate of contraction of certain
terms that define the neighborhood that the iterates of noisy TD-learning will lie in with high prob-
ability. We will operate in the setting when the matrix G and

∑
i∇Qi∇Q⊤

i are (ω,C0)-aligned
with each other, and matrix M and G are also (ω,C0)-aligned (note that we can consider ω′, C ′

0),
which will not change our bounds and therefore we go for less notational clutter). Next we utilize
this notion of alignment to show a particular contraction bound that extends the weak contraction
bound in Damian et al. (2021).

Lemma C.3. Assume we are given a matrix G such that |λi(I − ηG)| ≤ ρ0 < 1 for all λi such that
λi ̸= 0. Let G = UΛUH be the complex eigenvalue decomposition of G (since almost every matrix
is complex-diagonalizable). For a positive semi-definite matrix S that is (ω,C0)-aligned with G, if
S = USΛSU

⊤
S is its eigenvalue decomposition, the following contraction bound holds:

||(I − ηG)kS|| = O
(
ωC0

ηk

)

25



Proof. To prove this statement, we can expand (I − ηG) using its eigenvalue decomposition only
in the subspace that is jointly shared by G and M , and then utilize the definition of ω-alignment to
bound the terms.

||(I − ηG)kS|| = ||(I − ηUΛUH)kUSΛSU
⊤
S || (C.5)

=
∣∣∣∣(UUH − ηUΛUU

H)kUSΛSU
⊤
S

∣∣∣∣ (C.6)

=
∣∣∣∣∣∣U (I − ηΛ)

k
UHUSΛSU

⊤
S

∣∣∣∣∣∣ (C.7)

≤ ω · || (I − ηΛ)
k || · ΛS (C.8)

≤ ω · C0 ·
(
max

i
|1− ηΛ(i)|k|Λ(i)|

)
(C.9)

Now we need to solve for the inner maximization term. When Λ(i) is not complex for any i, the
term above is ≲ 1/ηk using the result from Damian et al. (2021), but when Λ(i) is complex, this
bound can only hold under certain conditions. To note when this quantity is bounded, we expand
|1− ηx|k for some complex number x = r(cos θ + ι sin θ):

|1− ηx|k = |(1− ηr cos θ) + ιηr sin θ| (C.10)

=

[√
(1− ηr cos θ)

2
+ η2r2 sin2 θ

]k
=
(
1 + η2r2 − 2ηr cos θ

)k/2
(C.11)

=⇒ |1− ηx|k|x| =
(
1 + η2r2 − 2ηr cos θ

)k/2
r (C.12)

≲ 1

ηk
if η ≤ min

i

Re(Λ(i))

|Λ(i)|
and ∞ otherwise. (C.13)

Plugging back the above expression in the bound above completes the proof.

The proof of Lemma C.3 indicates that unless the learning rate η and the matrix G are such that the
|λi(I − ηG)| ≤ ρ < 1 in directions spanned by matrix S, such an expression may not converge.
This is expected since the matrix I − ηG will not contract in directions of non-zero eigenvalues if
the real part r cos θ is negative or zero. Additionally, we note that under Definition 1, we can extend
several weak-contraction bounds from Damian et al. (2021) (Lemmas 9-14 in Damian et al. (2021))
to our setting.

Next, Lemma C.4 shows that the OU noise iterates are bounded with high probability when Defini-
tion 1 holds:
Lemma C.4 (ζk is bounded with high probability). With probability atleast 1− δ and under Defini-
tion 1, ||ζk|| ≤ nω

√
ηC0 log

1
δ = O(√η).

Proof. To prove this lemma, we first bound the trace of the covariance matrix Σk+1 and then apply
high probability bounds on the Martingale norm concentration. The trace of the covariance matrix
Σk+1 can be bounded as follows (all the equations below are restricted to the dimensions of non-zero
eigenvalues of G):

tr [Σk+1] =
∑
j≤k

tr
[
(I − ηG)jM(I − ηG⊤)j

]
(C.14)

=
∑
j≤k

tr
[
(UUH − ηUΛUH)jM(UUH − ηUΛUH)j

]
(C.15)

=
∑
j≤k

tr
[
U(I − ηΛ)jUHUMΛMU⊤

MU(I − ηΛ)jUH
]

(C.16)

=
∑
j≤k

nω2C0tr
[
|I − ηΛ|j · |Λ| · |I − ηΛ|j

]
(C.17)

≤ nω2C0

∑
j≤k

n ·max
λ

(|1− ηλ|2j · |λ|) ≤ ηn2C0ω
2 (C.18)

Now, we can apply Corollary 1 from Damian et al. (2021) to obtain a bound on ||ζk|| as with high

probability, atleast 1− δ, ||ζk|| ≤
√
2tr(Σ) log 1

δ = nω
√
ηC0 log

1
δ .
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C.5 MAIN PROOF OF THEOREM 3.1

In this section, we present the main proof of Theorem 3.1. The proof involves two components:
(1) the part where we derive the regularizer, and (2) bounding additional terms via concentration
inequalities. Part (1) is specific to TD-learning, while a lot of the machinery for part (2) is directly
taken from prior work (Damian et al., 2021) and Blanc et al. (2020). We focus on part (1) here.

Our strategy is to analyze the learning dynamics of noisy TD updates that originate at θ∗. In a small
neighborhood around θ∗, we can expand the noisy TD update (Equation 3) using Taylor’s expansion
around θ∗ which gives:

θk+1 = θk − ηg(θk) + ηεk, εk ∼ N (0,M) (C.19)

=⇒ θk+1 = θk − η
(
g +G(θk − θ∗)− η

2
G[θk − θ∗, θk − θ∗]

)
+ ηεk +O(η||θk − θ∗||3).

(C.20)
Denoting νk := θk − θ∗, using the fact that ||g(θ∗)|| ≤ C , we find that νk can be written as:

νk+1 = (I − ηG)νk + εk +
η

2
G[νk, νk] +O(η||νk||3 + ηC ) (C.21)

Since the OU process ζk stays in the vicinity of the point θ∗, and follows a similar recursion to the
one above, our goal would be to design a regularizer so that Equation C.21 closely follows the OU
process. Thus, we would want to bound the difference between the variable νk and the variable ζk,
denoted as rk to be within a small neighborhood:

rk+1 = νk+1 − ζk+1 = (I − ηG) (νk − ζk)

rk

+
1

2
G[νk, νk] +O(η||νk||3 + ηC ).

We can write down an expression for rk summing over all the terms:

rk+1 = − η

2

∑
j≤k

(I − ηG)k−j∇G[νk, νk]

term (a)

+
∑
j≤k

(I − ηG)j
[
O(η||νk||3 + ηC )

]
term (b)

. (C.22)

Term (a) in the above equation is the one that can induce a displacement in rk as k increases and
would be used to derive the regularizer, whereas term (b) primarily consists of terms that concentrate
to 0. We first analyze term (a) and then we will analyze the concentration terms later.

To analyze term (a), note that the term ∇G[νk, νk], by Lemma C.1, only depends on νk via the
covariance matrix νkν

⊤
k . So we will partition this term into two terms: (i) a term that utilizes the

asymptotic covariance matrix of the OU process and (ii) errors due to a finite k and stochasticity that
will concentrate.

2× (a) = η
∑
j≤k

(I − ηG)k−j∇G[νk, νk] (C.23)

=
∑
j≤k

(I − ηG)k−j∇G[ζ∗, ζ∗] +
∑
j≤k

(I − ηG)k−j∇G([νk, νk]− [ζ∗, ζ∗]), (C.24)

The first term is a “bias” term and doesn’t concentrate to 0, and will give rise to the regularizer. We
can break this term using Lemma C.1 as:

∇G[ζ∗, ζ∗] =2
∑
i

∇2QiΣ
∗
M (∇Qi − γ∇Q′

i) +
∑
i

tr
[
(∇2Qi − γ∇2Q′

i)Σ
∗
M

]
∇Qi (C.25)

The regularizer RTD(θ) is the function such that:

∇θRTD(θ) =
∑
i

∇2QiΣ
∗
M (∇Qi − γ∇Q′

i) (C.26)

=⇒ RTD(θ) =
∑
i

∇QiΣ
∗
M∇Q⊤

i − γ
∑
i

trace
(
Σ∗

M∇Qi[[∇Q′
i]]

⊤) , (C.27)

where [[·]] denotes the stop gradient operator. If the point θ∗ is a stationary point of the regularizer
RTD(θ), then Equations C.26 and C.27 imply that the first term of Equation C.25 must be 0. There-
fore in this case to show that θ∗ is attractive, we need to show that the other terms in Equations C.25,
C.24 and term (b) in Equation C.22 concentrate around 0 and are bounded in magnitude. The re-
maining part of the proof shown in Appendix C.7 provides these details, but we first summarize the
main takeaways in the proof to conclude the argument.
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C.6 SUMMARY OF THE ARGUMENT

We will show how to concentrate terms in Equation C.26 besides the regularizer largely following
the techniques from prior work, but we first summarize the entire proof. The overall update to
the vector rk which measures the displacement between the parameter vector θk − θ∗ and the OU-
process ζk can be written as follows, and it is governed by the derivative of the implicit regularizer
(modulo error terms):

rk+1 = −η

2

∑
j≤k

(I − ηG)k−j∇θRTD(θ
∗) +O

(√
ηt · poly(C ,L2,L3, ω, C0)

)
. (C.28)

An important detail to note here is that since the regularizer consists of Σ∗
M and the size of Σ∗

M (i.e,
its eigenvalues), as shown in Lemma C.4 depends on one factor of η. So, effectively the first term
in Equation C.28 does depend on two factors of η. Using Equation C.28, we can write the deviation
between θ∗ and θk as:

νk+1 = ζk+1 −
η

2

∑
j≤k

(I − ηG)k−j∇θRTD(θ
∗) +O

(√
ηt · poly(C ,L2,L3, ω, C0)

)
. (C.29)

The OU process ζk converges to θ∗ in the subspace spanned by G, since the condition ρ(I−ηG) < 1
is active in this subspace (if the condition that ρ(I − ηG) < 1 in the subspace spanned by G is not
true, then as Ghosh & Bellemare (2020) show, TD can diverge). Now, given G satisfies this spectral
radius condition, ζk would converge to θ∗ within a timescale of O

(
1
η

)
within this subspace, which

as Blanc et al. (2020) put it is the strength of the “mean-reversion” term. On the remaining directions
(note that d≫ n), the dynamics is guided by the regularizer, although with a smaller weight of η2.

C.7 ADDITIONAL PROOF DETAILS: CONCENTRATING OTHER TERMS

We first concentrate the terms in Equation C.25. The cumulative effect of the second term in Equa-
tion C.25 is given by:

η
∑
j≤k

(I − ηG)j−k∇Qitr
[
(∇2Qi − γ∇2Q′

i)Σ
∗
M

]
(C.30)

≤ η
∑
j≤k

(I − ηG)j−k∇Qi · O (L2(1 + γ)σ) ≤ O

(
η

√
k

η
ω0C0L2(1 + γ)σ

)
, (C.31)

which follows from the fact that ∇2Qi is L2-Lipschitz, and using Lemma C.3 for contracting the
remaining terms.

Next, we turn to concentrating the second term in Equation C.24. This term corresponds to the con-
tribution of difference between the empirical covariance matrix νkν

⊤
k and the asymptotic covariance

matrix ζ∗ζ∗⊤. We expand this term below using the form of G from Lemma C.1, and bound it one
by one.∑

j≤k

(I − ηG)k−j∇G([νk, νk]− [ζ∗, ζ∗]) (C.32)

=
∑
j≤k

∑
i

(I − ηG)k−j∇2Qi

(
νkνk − ζ∗ζ∗⊤

)
(∇Qi − γ∇Q′

i) +O
(√

ηkω0C0L2(1 + γ)σ
)

(C.33)

Now, we note that the term ∆k+1 := νk+1ν
⊤
k+1 − ζ∗ζ∗⊤ can itself be written as a recursion:

∆k+1 = (I − ηG)(∆k)(I − ηG)⊤ + (I − ηG)ζkε
⊤ + εζ⊤k (I − ηG)⊤

Ak

+ εε⊤ − ηM

Bk

(C.34)
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Expanding the term ∆k+1 in terms of a summation over k, and plugging it into the expression from
Equation C.35 we get∑

i

∑
j≤k

(I − ηG)k−j∇2Qi(I − ηG)j∆0(I − ηG⊤)j (C.35)

+
∑
i

∑
j≤k

∑
p≤j

(I − ηG)k−j∇2Qi(I − ηG)j−p−1(Ap +Bp)(I − ηG⊤)j−p−1

Now by noting that if G and ∇Qi are (ω,C0)-aligned, then so are G⊤ and ∇Qi, we can finish the
proof by repeating the calculations used by Damian et al. (2021) (Appendix B, Equations 67-73) to
bound the terms in Equation C.35 by O(

√
ηk), but with an additional factor of ω2C2

0 .

Term (b) in Equation C.22. When C is small enough, we can bound the term (b) using O(
√
ηk),

similar to Damian et al. (2021).

D PROOF OF PROPOSITION 3.2

In this section, we will prove Proposition 3.2. First, we refer to Proposition 3.1 in Ghosh &
Bellemare (2020), which shows that TD-learning is stable and converges if and only if the matrix
Mϕ = Φ⊤(Φ− γΦ′) has eigenvalues with all positive real entries. Now note that if,∑

s,a

ϕ(s,a)⊤ϕ(s,a) ≤ γ
∑
s,a,s′

ϕ(s′,a′)⊤ϕ(s,a) (D.1)

=⇒ trace
(
Φ⊤Φ

)
≤ γtrace

(
Φ⊤Φ′) (D.2)

=⇒ trace
[
Φ⊤ (Φ− γΦ′)

]
≤ 0. (D.3)

Since the trace of a real matrix is the sum of real components of eigenvalues, if for a given matrix
M , trace(M) ≤ 0, then there exists atleast one eigenvalue λi such that Re(λi) ≤ 0. If λi < 0, then
the learning dynamics of TD would diverge, while if λi = 0 for all i, then learning will not contract
towards the TD fixed point. This concludes the proof of this result.

E EXPERIMENTAL DETAILS OF APPLYING DR3

In this section, we discuss the practical experimental details and hyperparameters in applying our
method, DR3 to various offline RL methods. We first discuss an overview of the offline RL methods
we considered in this paper, and then provide a discussion of hyperparameters for DR3.

E.1 BACKGROUND ON VARIOUS OFFLINE RL ALGORITHMS

In this paper, we consider four base offline RL algorithms that we apply DR3 on. These methods
are detailed below:

REM. Random ensemble mixture (Agarwal et al., 2020) is an uncertainty-based offline RL algo-
rithm uses multiple parameterized Q-functions to estimate the Q-values. During the Bellman backup,
REM computes a random convex combination of the target Q-values and then trains the Q-function
to match this randomized target estimate. The randomized target value estimate provides a robust
estimate of target values, and delays unlearning and performance degradation that we typically see
with standard DQN-style algorithms in the offline setting. For instantiating REM, we follow the in-
stantiation provided by the authors and instantiate a multi-headed Q-function with 200 heads, each
of which serves as an estimate of the target value. These multiple heads branch off the last-but-one
layer features of the base Q-network. The objective for REM is given by:

min
θ

Es,a,r,s′∼D

[
Eα1,...,αK∼∆

[
ℓλ

(∑
k

αkQ
k
θ(s,a)− r − γmax

a′

∑
k

αkQ
k
θ′(s′,a′)

)]]
(E.1)

where lλ denotes the Huber loss while P∆ denotes the probability distribution over the standard (K
1)-simplex.

29



CQL. Conservative Q-learning (Kumar et al., 2020b) is an offline RL algorithm that learns a con-
servative value function such that the estimated performance of the policy under this learned value
function lower-bounds its true value. CQL modifies the Q-function training to incorporate a term
that minimizes the overestimated Q-values in expectation, while maximizing the Q-values observed
in the dataset, in addition to standard TD error. This CQL regularizer is typically multiplied by a
coefficient α, and we pick α = 0.1 for all our Atari experiments following Kumar et al. (2021) and
α = 5.0 for all our kitchen and antmaze D4RL experiments. Using yk(s,a) to denote the target
values computed via the Bellman backup (we use actor-critic backup for D4RL experiments and the
maxa′ backup for standard Q-learning in our Atari experiments following Kumar et al. (2020b)), the
objective for training CQL is given by:

min
Q

α

(
Es∼D

[
log
∑
a

exp(Q(s,a))

]
− Es,a∼D [Q(s,a)]

)
+
1

2
Es,a,s′∼D

[
(Q(s,a)− yk(s,a))

2
]
.

The deep Q-network utilized by us is a ReLU network with four hidden layers of size
(256, 256, 256, 256) for the D4RL experiments, while for Atari we utilize the standard convolu-
tional neural network from Agarwal et al. (2020); Kumar et al. (2021) with 3 convolutional layers
borrowed from the nature DQN network and then a hidden feedforward layer of size 512.

BRAC. Behavior-regularized actor-critic (Wu et al., 2019) is a policy-constraint based actor-critic
offline RL algorithm which regularizes the policy to stay close to the behavior policy πβ to prevent
the selection of “out-of-distribution” actions. In addition, BRAC subtracts this divergence estimate
from the target Q-values when performing the backup, to specifically penalize target values that
come from out-of-distribution action inputs at the next state (s′,a′).

Q-function: min
θ

Es,a∼D

[(
r(s,a) + γEa′∼πϕ(·|s′)[Q̄θ(s

′,a′) + β log π̂β(a
′|s′)]−Qθ(s,a)

)2]
.

Policy: max
ϕ

Es∼D,a∼πϕ(·|s) [Qθ(s,a) + β log π̂β(a|s)− α log πϕ(a|s)] . (E.2)

COG. COG (Singh et al., 2020) is an algorithmic framework for utilizing large, unlabeled datasets of
diverse behavior to learn generalizable policies via offline RL. Similar to real-world scenarios where
large unlabeled datasets are available alongside limited task-specific data, the agent is provided with
two types of datasets. The task-specific dataset consists of behavior relevant for the task, but the
prior dataset can consist of a number of random or scripted behaviors being executed in the same
environment/setting. The goal in this task is to actually stitch together relevant and overlapping parts
of different trajectories to obtain a good policy that can work from a new initial condition that was
not seen in a trajectory that actually achieved the reward. COG utilizes CQL as the base offline RL
algorithm, and following Singh et al. (2020), we fix the hyperparameter α = 1.0 in the CQL part for
both base COG and COG + DR3. All other hyperparameters including network sizes, etc are kept
fixed as the prior work Singh et al. (2020) as well.

E.2 TASKS AND ENVIRONMENTS USED

Atari 2600 games used. For all our experiments, we used the same set of 17 games utilized by
Kumar et al. (2021) to test rank collapse. In the case of Atari, we used the 5 standard games
(ASTERIX, QBERT, PONG, SEAQUEST, BREAKOUT) for tuning the hyperparameters, a strategy
followed by several prior works (Gulcehre et al., 2020; Agarwal et al., 2020; Kumar et al., 2021).
The 17 games we test on are: ASTERIX, QBERT, PONG, SEAQUEST, BREAKOUT, DOUBLE DUNK,
JAMES BOND, MS. PACMAN, SPACE INVADERS, ZAXXON, WIZARD OF WOR, YARS’ REVENGE,
ENDURO, ROAD RUNNER, BEAMRIDER, DEMON ATTACK, ICE HOCKEY.

Following Agarwal et al. (2021), we report interquartile mean (IQM) normalized scores across all
runs as mean scores can be dominated by performance on a few outlier tasks while median is inde-
pendent of performance on all except 1 task – zero score on half of the tasks would not affect the
median. IQM which corresponds to 25% trimmed mean and considers the performance on middle
50% of the runs. IQM interpolates between mean and median, which correspond to 0% and almost
50% trimmed means across runs.

D4RL tasks used. For our experiments on D4RL, we utilize the Gym-MuJoCo-v0 environments for
evaluating BRAC, since BRAC performed somewhat reasonably on these domains (Fu et al., 2020),
whereas we use the harder AntMaze and Franka Kitchen domains for evaluating CQL, since these
domains are challenging for CQL (Kumar et al., 2020b).
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Table E.1: Hyperparameters used by the offline RL Atari agents in our experiments. Following
Agarwal et al. (2020), the Atari environments used by us are stochastic due to sticky actions, i.e.,
there is a 25% chance at every time step that the environment will execute the agents previous action
again, instead of the new action commanded. We report offline training results with same hyperpa-
rameters over 5 random seeds of the offline dataset, game simulator and network initialization.

Hyperparameter Setting (for both variations)

Sticky actions Yes
Sticky action probability 0.25
Grey-scaling True
Observation down-sampling (84, 84)
Frames stacked 4
Frame skip (Action repetitions) 4
Reward clipping [-1, 1]
Terminal condition Game Over
Max frames per episode 108K
Discount factor 0.99
Mini-batch size 32
Target network update period every 2000 updates
Training environment steps per iteration 250K
Update period every 4 environment steps
Evaluation ϵ 0.001
Evaluation steps per iteration 125K
Q-network: channels 32, 64, 64
Q-network: filter size 8× 8, 4× 4, 3× 3
Q-network: stride 4, 2, 1
Q-network: hidden units 512

Robotic manipulation tasks from COG (Singh et al., 2020). These tasks consist of a 6-DoF
WidowX robot, placed in front of two drawers and a larger variety of objects. The robot can open or
close a drawer, grasp objects from inside the drawer or on the table, and place them anywhere in the
scene. The task here consists of taking an object out of a drawer. A reward of +1 is obtained when
the object has been taken out, and zero otherwise. There are two variants of this domain: (1) in the
first variant, the drawer starts out closed, the top drawer starts out open (which blocks the handle for
the lower drawer), and an object starts out in front of the closed drawer, which must be moved out
of the way before opening, and (2) in the second variant, the drawer is blocked by an object, and this
object must be removed before the drawer can be opened and the target object can be grasped from
the drawer. The prior data for this environment is collected from a collection of scripted randomized
policies. These policies are capable of opening and closing both drawers with 40-50% success rates,
can grasp objects in the scene with about a 70% success rate, and place those objects at random
places in the scene (with a slight bias for putting them in the tray).

E.3 THE DR3 REGULARIZER COEFFICIENT

We utilize identical hyperparameters of the base offline RL algorithms when DR3 is used, where
the base hyper-parameters correspond to the ones provided in the corresponding publications. DR3
requires us to tune the additional coefficient c0, that weights the DR3 explicit regularizer term. In
order to find this value on our domains, we followed the tuning strategy typically followed on Atari,
where we evaluated four different values of c0 ∈ {0.001, 0.01, 0.03, 0.3} on 5 games (ASTERIX,
SEAQUEST, BREAKOUT, PONG and SPACEINVADERS) on the 5% replay dataset settings, picked c0
that wprked best on just these domains, and used it to report performance on all 17 games, across all
dataset settings (1% replay and 10% initial replay) in Section 6. This protocol is standard in Atari
and has been used previously in Agarwal et al. (2020); Gulcehre et al. (2020); Kumar et al. (2021)
in the context of offline RL. The value of the coefficient found using this strategy was c0 = 0.001
for REM and c0 = 0.03 for CQL.

For CQL on D4RL, we ran DR3 with multiple values of c0 ∈ {0.0001, 0.001, 0.01, 0.5, 1.0, 10.0},
and picked the smallest value of c0 which did not lead to eventually divergent (either negatively
diverging or positively diverging) Q-values, in average. For the antmaze domains, this corresponded
to c0 = 0.001 and for the FrankaKitchen domains, this corresponded to c0 = 1.0.
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F COMPLETE RESULTS ON ALL DOMAINS

In this section, we present the results obtained by running DR3 on the Atari and D4RL domains
which were not discussed in the main paper due to lack of space. We first understand the effect of
applying DR3 on BRAC (Wu et al., 2019), which was missing from the main paper, and then present
the per-game Atari results.

Table F.1: Normalized interquartile mean (IQM) final performance (last iteration return) of CQL, CQL +
DR3, REM and REM + DR3 after 6.5M gradient steps for the 1% setting and 12.5M gradient steps for the 5%,
10% settings. Intervals in brackets show 95% CIs computed using stratified percentile bootstrap (Agarwal et al.,
2021)

.

Data CQL CQL + DR3 REM REM + DR3

1% 44.4 (31.0, 54.3) 61.6 (39.1, 71.5) 0.0 (-0.7, 0.1) 13.1 (9.9, 18.3)

5% 89.6 (67.9, 98.1) 100.2 (90.6, 102.7) 3.9 (3.1, 7.6) 74.8 (59.6, 84.4)

10% 57.4 (53.2, 62.4) 67.0 (62.8, 73.0) 24.9 (15.0, 29.1) 72.4 (65.7, 81.7)

Table F.2: Performance of DR3 when applied in conjunction with BRAC (Wu et al., 2019). Note
that DR3 attains a larger final performance (at the end of 2M steps of training) as well as a higher
average performance (i.e. stability score) across all iterations of training.

Task Average Performance across Iterations Final Performance
BRAC BRAC + DR3 BRAC BRAC + DR3

halfcheetah-expert-v0 1.7 ± 1.9 49.9 ± 16.7 2.1 ± 3.3 71.5 ± 24.9
halfcheetah-medium-v0 43.5 ± 0.2 43.2 ± 0.2 45.1 ± 0.8 44.9 ± 0.6

halfcheetah-medium-expert-v0 17.0 ± 5.4 6.0 ± 5.5 24.8 ± 9.3 6.7 ± 7.3
halfcheetah-random-v0 24.4 ± 0.4 18.4 ± 0.3 24.9 ± 0.8 18.2 ± 1.0

halfcheetah-medium-replay-v0 44.9 ± 0.3 44.1 ± 0.4 45.0 ± 1.4 44.9 ± 0.5
hopper-expert-v0 15.7 ± 1.5 21.8 ± 3.2 16.6 ± 6.0 20.8 ± 5.3

hopper-medium-v0 32.8 ± 1.4 46.3 ± 7.1 36.2 ± 1.7 58.3 ± 13.7
hopper-medium-expert-v0 40.2 ± 5.7 37.0 ± 2.9 31.7 ± 11.8 21.8 ± 4.9

hopper-random-v0 11.7 ± 0.0 11.2 ± 0.0 12.2 ± 0.0 11.1 ± 0.0
hopper-medium-replay-v0 31.6 ± 0.3 30.3 ± 0.8 31.3 ± 1.2 36.1 ± 5.7

walker2d-expert-v0 25.5 ± 14.4 33.6 ± 11.8 54.0 ± 31.0 60.6 ± 20.2
walker2d-medium-v0 81.3 ± 0.3 80.8 ± 0.2 83.8 ± 0.2 83.4 ± 0.3

walker2d-medium-expert-v0 5.8 ± 5.2 6.4 ± 3.4 22.4 ± 22.0 39.5 ± 23.3
walker2d-random-v0 1.4 ± 0.8 1.7 ± 0.9 0.0 ± 0.1 2.9 ± 2.1

walker2d-medium-replay-v0 26.1 ± 6.4 47.4 ± 4.1 11.7 ± 7.0 38.7 ± 9.6
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Table F.4: Mean evaluation returns per Atari game across 5 runs with standard deviations for
1% dataset. The coefficient for DR3 is 0.03 with a CQL coefficient of 1.0. The average performance
is computed over 20 checkpoints spaced uniformly over training for 100 iterations where 1 iteration
corresponds to 62,500 gradient updates.

Game Final Performance Average Performance across Iterations
CQL CQL + DR3 CQL CQL + DR3

Asterix 656.9 ± 91.0 821.4 ± 75.1 650.2 ± 65.3 814.1 ± 25.1
Breakout 23.9 ± 3.8 32.0 ± 3.2 23.8 ± 0.5 32.8 ± 3.1

Pong 16.7 ± 1.7 14.2 ± 3.3 15.7 ± 2.0 15.1 ± 2.3
Seaquest 449.0 ± 11.0 446.6 ± 26.9 474.5 ± 30.3 456.1 ± 17.0

Qbert 8033.8 ± 1513.2 9162.7 ± 993.6 7980.0 ± 379.9 9000.7 ± 225.2
SpaceInvaders 386.0 ± 123.2 351.9 ± 77.1 371.7 ± 47.5 440.6 ± 29.6

Zaxxon 829.4 ± 813.3 1757.4 ± 879.4 834.6 ± 504.0 1634.0 ± 673.9
YarsRevenge 11848.2 ± 2977.7 16011.3 ± 1409.0 15077.9 ± 1301.9 17741.6 ± 613.6
RoadRunner 37000.7 ± 1148.5 24928.7 ± 7484.5 35899.9 ± 653.1 32063.3 ± 1011.4
MsPacman 1869.8 ± 167.2 2245.7 ± 193.8 1991.9 ± 55.1 2224.1 ± 80.8
BeamRider 780.3 ± 64.5 617.9 ± 25.1 782.0 ± 36.1 619.9 ± 20.9
Jamesbond 558.5 ± 124.8 460.5 ± 102.0 524.6 ± 118.5 484.2 ± 89.4

Enduro 198.4 ± 34.2 253.5 ± 14.2 259.8 ± 16.4 276.1 ± 16.9
WizardOfWor 771.1 ± 358.2 904.6 ± 343.7 833.7 ± 168.4 935.2 ± 174.4

IceHockey -8.7 ± 1.3 -7.8 ± 0.9 -8.8 ± 0.9 -7.9 ± 0.7
DoubleDunk -15.1 ± 1.9 -14.0 ± 2.8 -15.3 ± 0.9 -14.5 ± 1.0
DemonAttack 1970.2 ± 161.3 386.2 ± 75.3 1338.8 ± 298.4 414.0 ± 46.0

Table F.5: Mean evaluation returns per Atari game across 5 runs with standard deviations for
5% dataset. The coefficient for DR3 is 0.03 with a CQL coefficient of 0.1. The average performance
is computed over 20 checkpoints spaced uniformly over training for 200 iterations where 1 iteration
corresponds to 62,500 gradient updates.

Game Final Performance Average Performance across Iterations
CQL CQL + DR3 CQL CQL + DR3

Asterix 1798.2 ± 168.6 3318.5 ± 301.7 1812.7 ± 64.0 3790.5 ± 218.0
Breakout 94.1 ± 44.4 166.0 ± 23.1 105.1 ± 10.4 196.5 ± 4.4

Pong 13.1 ± 4.2 17.9 ± 1.1 15.2 ± 1.3 17.4 ± 1.2
Seaquest 1815.9 ± 722.8 2030.7 ± 822.8 1382.3 ± 258.1 3722.3 ± 969.5

Qbert 10595.7 ± 1648.5 9605.6 ± 1593.5 9552.0 ± 925.6 10830.7 ± 783.1
SpaceInvaders 758.9 ± 56.9 1214.6 ± 281.8 662.0 ± 58.1 1323.7 ± 94.4

Zaxxon 1501.0 ± 1165.7 4250.1 ± 626.2 1508.8 ± 437.5 3556.5 ± 531.3
YarsRevenge 24036.7 ± 3370.6 17124.7 ± 2125.6 22733.1 ± 1175.3 18339.8 ± 1299.7
RoadRunner 40728.4 ± 3318.9 38432.6 ± 1539.7 42338.4 ± 471.4 41260.2 ± 1008.6
MsPacman 2975.9 ± 522.1 2790.6 ± 353.1 2923.6 ± 251.3 3101.2 ± 381.6
BeamRider 1897.6 ± 473.7 785.8 ± 43.5 2218.5 ± 242.4 775.9 ± 12.5
Jamesbond 108.8 ± 49.1 96.8 ± 43.2 76.5 ± 4.6 106.1 ± 34.8

Enduro 764.3 ± 168.7 938.5 ± 63.9 797.7 ± 47.8 923.2 ± 40.3
WizardOfWor 943.2 ± 380.3 612.0 ± 343.3 1004.3 ± 314.7 1007.4 ± 313.2

IceHockey -17.3 ± 0.6 -15.0 ± 0.7 -16.6 ± 0.5 -12.0 ± 0.3
DoubleDunk -18.1 ± 1.5 -16.2 ± 1.7 -17.3 ± 1.0 -16.0 ± 1.6
DemonAttack 4055.8 ± 499.7 8517.4 ± 1065.9 4062.4 ± 465.8 8396.7 ± 689.4
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Table F.6: Mean returns per Atari game across 5 runs with standard deviations for initial 10%
dataset. The coefficient for DR3 is 0.03 with a CQL coefficient of 0.1. The average performance is
computed over 20 checkpoints spaced uniformly over training for 200 iterations.

Game Final Performance Average Performance across Iterations
CQL CQL + DR3 CQL CQL + DR3

Asterix 2803.9 ± 294.6 3906.2 ± 521.3 2903.2 ± 217.7 4692.2 ± 377.0
Breakout 64.7 ± 7.3 70.8 ± 5.5 65.6 ± 5.7 75.4 ± 6.0

Pong 5.3 ± 6.8 5.5 ± 6.2 7.3 ± 5.0 8.1 ± 5.2
Seaquest 222.3 ± 219.5 1313.0 ± 220.0 704.9 ± 254.5 1327.9 ± 250.0

Qbert 4803.2 ± 489.5 5395.3 ± 1003.6 4492.5 ± 240.8 4708.5 ± 463.0
SpaceInvaders 704.9 ± 121.5 938.1 ± 80.3 737.8 ± 23.8 902.1 ± 60.0

Zaxxon 231.6 ± 450.9 836.8 ± 434.7 394.4 ± 385.1 725.7 ± 370.3
YarsRevenge 13076.2 ± 2427.0 12413.9 ± 2869.7 12493.2 ± 543.6 12395.6 ± 1044.2
RoadRunner 45063.5 ± 1749.7 45336.9 ± 1366.7 45522.7 ± 1068.1 44808.0 ± 911.7
MsPacman 2459.5 ± 381.3 2427.5 ± 191.3 2528.1 ± 149.2 2488.3 ± 109.8
BeamRider 4200.7 ± 470.2 3468.0 ± 238.0 4729.5 ± 94.8 3344.3 ± 289.0
Jamesbond 84.6 ± 25.4 89.7 ± 15.6 108.7 ± 34.1 111.7 ± 10.9

Enduro 946.7 ± 289.7 1160.2 ± 81.5 1013.9 ± 29.7 1136.2 ± 32.5
WizardOfWor 520.4 ± 451.2 764.7 ± 250.0 499.8 ± 238.5 792.2 ± 101.3

IceHockey -18.1 ± 0.7 -16.0 ± 1.3 -17.6 ± 0.5 -15.2 ± 1.0
DoubleDunk -21.2 ± 1.1 -20.6 ± 1.0 -20.6 ± 0.3 -19.7 ± 0.5
DemonAttack 4145.2 ± 400.6 7152.9 ± 723.2 4839.4 ± 586.7 7278.5 ± 701.3

Table F.7: Mean returns per Atari game across 5 runs with standard deviations for 1% dataset.
The coefficient for DR3 is 0.001 while we use a multi-headed REM with 200 Q-heads (Agarwal
et al., 2020). The average performance is computed over 20 checkpoints spaced uniformly over
training for 100 iterations.

Game Final Performance Average Performance across Iterations
REM REM + DR3 REM REM + DR3

Asterix 240.4 ± 29.1 405.7 ± 46.5 304.4 ± 9.3 413.7 ± 39.6
Breakout 0.7 ± 0.7 14.3 ± 2.8 6.3 ± 1.0 10.3 ± 1.1

Pong -14.2 ± 1.7 -7.7 ± 6.3 -14.1 ± 2.2 -15.3 ± 3.0
Seaquest 81.0 ± 78.5 293.3 ± 191.5 246.6 ± 49.5 489.9 ± 128.6

Qbert 239.6 ± 133.2 436.3 ± 111.5 255.5 ± 76.0 471.0 ± 116.5
SpaceInvaders 152.8 ± 27.5 206.6 ± 77.6 188.6 ± 5.8 262.7 ± 22.4

Zaxxon 534.9 ± 731.3 2596.4 ± 1726.4 1807.9 ± 478.2 707.7 ± 577.4
YarsRevenge 1452.6 ± 1631.0 5480.2 ± 962.3 4018.8 ± 987.8 7352.0 ± 574.7
RoadRunner 0.0 ± 0.0 3872.9 ± 1616.4 1601.2 ± 637.9 14231.9 ± 2406.0
MsPacman 698.8 ± 129.5 1275.1 ± 345.6 690.4 ± 69.7 860.4 ± 57.1
BeamRider 703.0 ± 97.4 522.9 ± 42.2 745.5 ± 30.7 592.2 ± 27.7
Jamesbond 41.0 ± 27.0 157.6 ± 65.0 53.3 ± 12.1 88.8 ± 27.2

Enduro 0.5 ± 0.4 132.4 ± 16.1 21.7 ± 4.0 197.5 ± 19.1
WizardOfWor 362.5 ± 321.8 1663.7 ± 417.8 552.1 ± 253.1 1460.8 ± 194.8

IceHockey -16.7 ± 0.9 -9.1 ± 5.1 -12.1 ± 0.8 -4.8 ± 1.8
DoubleDunk -21.8 ± 1.0 -17.6 ± 1.5 -20.4 ± 0.6 -17.1 ± 1.6
DemonAttack 102.0 ± 17.3 162.0 ± 34.7 124.0 ± 10.7 145.6 ± 27.2
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Table F.8: Mean returns per Atari game across 5 runs with standard deviations for the
5% dataset. The coefficient for DR3 is 0.001 while we use a multi-headed REM with 200 Q-
heads (Agarwal et al., 2020). The average performance is computed over 20 checkpoints spaced
uniformly over training for 200 iterations.

Game Final Performance Average Performance across Iterations
REM REM + DR3 REM REM + DR3

Asterix 876.8 ± 201.1 2317.0 ± 838.1 958.9 ± 50.9 1252.6 ± 395.1
Breakout 15.2 ± 4.9 33.4 ± 4.0 16.3 ± 3.4 17.7 ± 2.4

Pong 7.5 ± 5.2 -0.7 ± 9.9 -4.7 ± 3.0 -12.0 ± 3.2
Seaquest 1276.0 ± 417.3 2753.6 ± 1119.7 1484.3 ± 367.7 1602.0 ± 603.7

Qbert 2421.4 ± 1841.8 7417.0 ± 2106.7 1330.7 ± 431.0 4045.8 ± 898.9
SpaceInvaders 431.5 ± 23.3 443.5 ± 67.4 349.5 ± 22.6 362.1 ± 33.6

Zaxxon 6738.2 ± 966.6 1609.7 ± 1814.1 3630.7 ± 751.4 346.1 ± 512.1
YarsRevenge 14454.2 ± 1644.4 16930.4 ± 2625.8 14628.3 ± 1945.1 12936.5 ± 1286.0
RoadRunner 15570.9 ± 12795.6 46601.6 ± 2617.2 22740.3 ± 1977.2 33554.1 ± 1880.4
MsPacman 1272.2 ± 215.3 2303.1 ± 202.7 1147.7 ± 126.1 1438.7 ± 140.4
BeamRider 1922.5 ± 589.1 674.8 ± 21.4 886.9 ± 82.1 698.3 ± 21.5
Jamesbond 189.6 ± 77.0 130.5 ± 45.7 120.2 ± 9.3 88.6 ± 41.5

Enduro 172.7 ± 55.9 583.9 ± 108.7 236.8 ± 11.3 457.7 ± 39.3
WizardOfWor 838.4 ± 670.0 2661.6 ± 371.4 1281.3 ± 66.7 1863.7 ± 261.2

IceHockey -9.7 ± 4.2 -6.5 ± 3.1 -8.1 ± 0.7 -4.1 ± 1.5
DoubleDunk -18.4 ± 0.9 -17.6 ± 2.6 -19.6 ± 1.0 -17.8 ± 1.9
DemonAttack 507.7 ± 120.1 5602.3 ± 1855.5 581.6 ± 207.0 1452.3 ± 765.0

Table F.9: Mean returns per Atari game across 5 runs with standard deviations for initial
10% dataset. The coefficient for DR3 is 0.001 while we use a multi-headed REM with 200 Q-
heads (Agarwal et al., 2020). The average performance is computed over 20 checkpoints spaced
uniformly over training for 200 iterations.

Game Final Performance Average Performance across Iterations
REM REM + DR3 REM REM + DR3

Asterix 2254.7 ± 403.6 5122.9 ± 328.9 2684.6 ± 184.4 3432.1 ± 257.5
Breakout 81.2 ± 13.9 96.8 ± 21.2 63.5 ± 4.6 62.4 ± 6.1

Pong 8.8 ± 3.1 7.6 ± 11.1 2.6 ± 2.1 -2.5 ± 5.6
Seaquest 1540.2 ± 354.6 981.3 ± 605.9 1029.5 ± 260.6 836.2 ± 234.3

Qbert 4330.7 ± 250.2 4126.2 ± 495.7 3478.0 ± 248.0 3494.7 ± 380.3
SpaceInvaders 895.2 ± 68.3 799.0 ± 28.3 699.7 ± 31.4 653.1 ± 21.5

Zaxxon 950.7 ± 897.4 0.0 ± 0.0 490.2 ± 306.6 0.0 ± 0.0
YarsRevenge 10913.1 ± 1519.1 11924.8 ± 2413.8 11508.5 ± 290.0 10977.7 ± 1026.9
RoadRunner 45521.7 ± 2502.1 49129.4 ± 1887.9 37997.4 ± 638.6 41995.2 ± 1482.1
MsPacman 2177.4 ± 393.0 2268.8 ± 455.0 1930.5 ± 141.7 2126.6 ± 147.6
BeamRider 2921.7 ± 308.7 4154.9 ± 357.2 3727.5 ± 304.3 2871.0 ± 44.3
Jamesbond 197.8 ± 73.8 149.3 ± 304.5 149.0 ± 120.5 83.3 ± 162.4

Enduro 529.5 ± 200.7 832.5 ± 65.5 584.6 ± 85.3 801.8 ± 39.3
WizardOfWor 606.5 ± 823.2 920.0 ± 497.0 838.3 ± 343.7 926.3 ± 318.5

IceHockey -4.3 ± 0.6 -5.9 ± 5.1 -7.0 ± 1.1 -5.4 ± 3.7
DoubleDunk -17.7 ± 3.9 -19.5 ± 2.5 -16.9 ± 0.5 -16.7 ± 1.0
DemonAttack 6097.9 ± 1251.3 9674.7 ± 1600.6 4649.1 ± 514.6 5141.9 ± 361.4
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Table F.10: Average returns across 5 runs for the random agent and the average performance of
the trajectories in the DQN (Nature) dataset. For Atari normalized scores reported in the paper, the
random agent is assigned a score of 0 while the average DQN replay is assigned a score of 100. Note
that the random agent scores are also evaluated on Atari 2600 games with sticky actions.

Game Random Average DQN-Replay

Asterix 279.1 3185.2
Breakout 1.3 104.9

Pong -20.3 14.5
Seaquest 81.8 1597.4

Qbert 155.0 8249.7
SpaceInvaders 149.5 1529.8

Zaxxon 10.6 1854.1
YarsRevenge 3147.7 21015.0
RoadRunner 15.5 38352.3
MsPacman 248.0 3108.8
BeamRider 362.0 4576.4
Jamesbond 27.6 560.3

Enduro 0.0 671.9
WizardOfWor 686.6 1128.5

IceHockey -9.8 -8.5
DoubleDunk -18.4 -11.3
DemonAttack 166.0 4407.5
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F.1 PER-GAME LEARNING CURVES FOR ATARI GAMES
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Figure F.1: Per-game learning curves of CQL and CQL + DR3 on the 5% uniform replay dataset, for
which the normalized average learning curve is shown in Figure 4. Note that CQL + DR3 attains a higher
performance than CQL for a majority of games, and rises up to a higher peak.
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Figure F.2: Per-game learning curves of REM and REM + DR3 on the 5% uniform replay dataset, for
which the normalized average learning curve is shown in Figure 4. Note that REM + DR3 attains a higher
performance than REM for a majority of games.
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F.2 DOT PRODUCT SIMILARITIES FOR CQL+DR3 AND REM+DR3 ON 17 GAMES
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Figure F.3: Per-game feature dot products (in log scale) of CQL and CQL + DR3 on the 5% uniform
replay dataset. Note that CQL + DR3 attains a smaller value of the feature dot product.
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Figure F.4: Per-game feature dot products (in log scale) of REM and REM + DR3 on the 5% uniform
replay dataset Note that REM + DR3 attains a higher performance than REM for a majority of games. Note
that the dot products for REM+DR3 stabilize are small, and decreases for a majority of the training steps for a
number of games, or stabilize at a small value.
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