
LLM-Check: Investigating Detection of Hallucinations
in Large Language Models

Gaurang Sriramanan
gaurangs@cs.umd.edu

Siddhant Bharti
sbharti@cs.umd.edu

Vinu Sankar Sadasivan
vinu@cs.umd.edu

Shoumik Saha
smksaha@cs.umd.edu

Priyatham Kattakinda
pkattaki@umd.edu

Soheil Feizi
sfeizi@cs.umd.edu

Department of Computer Science
University of Maryland, College Park, USA

Abstract

While Large Language Models (LLMs) have become immensely popular due to
their outstanding performance on a broad range of tasks, these models are prone
to producing hallucinations— outputs that are fallacious or fabricated yet often
appear plausible or tenable at a glance. In this paper, we conduct a comprehensive
investigation into the nature of hallucinations within LLMs and furthermore
explore effective techniques for detecting such inaccuracies in various real-world
settings. Prior approaches to detect hallucinations in LLM outputs, such as
consistency checks or retrieval-based methods, typically assume access to multiple
model responses or large databases. These techniques, however, tend to be com-
putationally expensive in practice, thereby limiting their applicability to real-time
analysis. In contrast, in this work, we seek to identify hallucinations within a single
response in both white-box and black-box settings by analyzing the internal hidden
states, attention maps, and output prediction probabilities of an auxiliary LLM.
In addition, we also study hallucination detection in scenarios where ground-truth
references are also available, such as in the setting of Retrieval-Augmented Gen-
eration (RAG). We demonstrate that the proposed detection methods are extremely
compute-efficient, with speedups of up to 45x and 450x over other baselines, while
achieving significant improvements in detection performance over diverse datasets.

1 Introduction

Over the past few years, Large Language Models (LLMs) such as GPT-4 [Achiam et al., 2023] and
Llama [Touvron et al., 2023] have become immensely popular due to their excellent performance
on natural language inference, question-answering and summarization tasks. Nonetheless, it has been
observed that these models often produce outputs that are fallacious, incorporating fictional or insub-
stantial details that can be partly misleading or entirely fabricated [Ji et al., 2023, Zhang et al., 2023].
Moreover, it is often observed that such model generations seem plausible, appearing tenable before
further scrutiny. This phenomenon in LLMs, known as hallucinations, poses a significant challenge
to their deployment in applications where accuracy and reliability are critical. Thus, the detection and
mitigation of hallucinations in LLMs have been subjects of critical interest. Furthermore, the relative
difficulty of hallucination detection can vary significantly in white-box or black-box settings, depend-
ing on the extent to which access is available to the original LLM that was utilized for generation.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Uncertainty estimation based on output logit based metrics such as perplexity or logit entropy have
been used towards analyzing errors in structured prediction and generations produced by language
models [Malinin and Gales, 2021, Kuhn et al., 2023]. Furthermore, a more fine-grained approach
can be used by considering the relevance of specific tokens in the generated text [Duan et al., 2023],
or by directly obtaining quality or score assessments leveraging the zero-shot capabilities of LLMs
[Fu et al., 2023], depending upon the task specifications. As an alternative approach, Wang et al.
[2023] showed that self-consistency can be incorporated into the decoding strategy to improve
upon naive greedy-decoding in the setting of chain-of-thought prompting, and demonstrate notable
improvements in arithmetic and common-sense reasoning benchmarks. Specific to the setting of
hallucination detection, consistency-based methods like SelfCheckGPT [Manakul et al., 2023] and
INSIDE [Chen et al., 2024] proposed to analyze multiple responses of the same model given a
common prompt. Indeed, SelfCheckGPT [Manakul et al., 2023] relies upon the fact that when LLMs
are trained on a given concept, its output generations tend to be more consistent, while hallucinated
information is less likely to be repeatedly generated across multiple stochastically sampled responses.
Notably, SelfCheckGPT relies only upon black-box based API access to models such as GPT-3.5
[Brown et al., 2020] to assess hallucinations in a given sample sentence. Similarly, Chen et al. [2024]
proposed the INSIDE detection method based on eigenvalue analysis of the covariance matrix over
model embeddings generated across multiple responses of the same prompt, enabling hallucination
detection at a population level instead of sample-level detection. Another setting studied towards the
detection of hallucinations is that of methods using Retrieval Augmented Generation (RAG) [Lewis
et al., 2021, Guo et al., 2022, Varshney et al., 2023, Niu et al., 2024], which assume access to a large
external database of grounded information, pipelined with a fact-verification system.

A key limitation of these detectors is the assumption that they have access to multiple model
generations or a large reference dataset. Consistency-based methods assume hallucinations are
rare, and most generations are factually correct, even though a given LLM model often repeats
similar errors. Moreover, these techniques induce additional overheads to generate multiple
additional responses at inference time, or require large memory overheads to parallelize generations.
Retrieval-based techniques rely on strong fact-verification and retrieval techniques, and may not
be scalable for large databases due to the considerable inference costs involved overall. Furthermore,
incorporating human-level annotation or manual fact checking is often not scalable in this setting.

This leads us to our research question — Is it possible to identify the presence of hallucinations within
a single LLM response in both white-box and black-box settings without incurring additional compu-
tational overheads at training or inference time? Towards this, given the practical constraints involved
in this problem setting, we seek to analyze the efficacy of hallucination detection using analyses of the
internal attention kernel maps, hidden activations and output prediction probabilities of an LLM itself,
using an auxiliary substitute model if white-box access is unavailable. Furthermore, we study the effec-
tiveness of different hallucination detection metrics both in the zero-knowledge setting as well as RAG-
based settings where ground-truth reference materials are assumed to be available at inference time.
We demonstrate that the detection methods proposed are extremely efficient by using teacher-forcing
without additional overheads, and is accompanied by significant gains in detection performance
relative to baseline approaches. In summary, we make the following contributions1 in this work:

• We analyze hallucination detection within a single LLM response using its correspond-
ing internal attention kernel maps, hidden activations and output prediction probabilities.
We utilize these diversified scoring methods from different model components to poten-
tially maximize the capture of hallucinations amongst its various forms without incurring
computational overheads at training or inference time.

• We analyze the problem in broad-ranging settings across diverse datasets: from zero-
resource detection (FAVA [Mishra et al., 2024]), to the case when multiple model responses
are available (SelfCheck [Manakul et al., 2023]), or when ground-truth references are indeed
available at inference time (RAGTruth [Niu et al., 2024]).

• We demonstrate that the proposed method LLM-Check is indeed effective over these diverse
hallucination detection settings, and achieves notable improvements over existing baselines.

• Furthermore, we demonstrate such performance gains while requiring only a fraction of the
computational cost (speedups up to 45x and 450x), as the proposed method does not utilize
multiple model generations or extensive external databases.

1The codebase for LLM-Check is available at this URL

2

https://github.com/GaurangSriramanan/LLM_Check_Hallucination_Detection

2 Related Works

Manakul et al. [2023] introduced SelfCheckGPT, a suite of hallucination detection methods in a
zero-resource gray-box/black-box setting to assess the veracity of a LM response, assuming only
access to the output probability distributions. This is highly practical in real-world usage, since API
calls often impede access to internal model activations. On the other hand, INSIDE [Chen et al., 2024]
measures the self-consistency of the hidden states across multiple independent responses of an LLM,
by performing a centered eigen-analysis of the covariance matrix of these hidden states. Notably,
INSIDE follows a slightly different evaluation framework from other techniques which generally
rely upon human annotations, wherein towards assessing the correctness of a model response
INSIDE utilizes either ROUGE-L score or BERT-similarity scores being larger than a threshold with
respect to a ground-truth. However, ROUGE-L is an n-gram based method that evaluates the longest
common subsequence between the model response and the ground-truth. Thus, several hallucinatory
words can be incorporated without a considerable change in the ROUGE-L score overall.

Kadavath et al. [2022] proposed to use the LLM itself to predict the probability of the generated
response being True, referred to as Self-Prompt; this is primarily relevant for the context of multiple-
choice-questions where the model explicitly has all the options in context. Furthermore, they also train
models to predict the probability that a given multiple-choice-question will be correctly answered by
calibrating its internal confidence values. Azaria and Mitchell [2023] proposed to train feedforward
neural networks on the hidden activations of intermediate layers of LMs on a True-False dataset of rel-
atively short, simple sentences such as "The zebra uses flying for locomotion." This method is thus a
white-box detection technique which also requires supervised training data to train the feedforward net-
work as noted by Manakul et al. [2023]); in contrast, we do not incorporate training of any sub-network
or the LLM itself. Furthermore, it is fairly non-trivial to extend the technique towards more general
settings such as when external references or multiple model responses are available at inference time.
Yuksekgonul et al. [2024] investigate factual errors made by LLMs by modeling it as a constraint-
satisfaction problem. Indeed, the factual query is specified by considering a sequence of Constraint-
tokens and using a subsequent Verifier (such as ExactMatch or WikiData Search) to determine the
satisfaction for each such constraint. This method is highly pertinent in settings where a fact-checking
service is available for ready oracle-access that can provide feedback and annotations in real-time.

Mishra et al. [2024] introduced a fine-grained hallucination detection dataset (FAVA-Bench), wherein
a novel hierarchy of hallucination types is identified and analyzed comprehensively. The authors
first generate a synthetic hallucination training dataset by inserting specific errors using ChatGPT,
and then fine-tune a Llama-2 model (FAVA) to explicitly detect these fine-grained hallucinations.
The work also introduces a human-annotated dataset where the specific hallucination types are
recorded with specified hallucination spans. We make extensive use of the FAVA datasets so released
to compare multiple baselines on a common test-bed. Though retrieval augmented generation (RAG)
helps to mitigate hallucination in LLMs, ungrounded generations still persist [Shuster et al., 2021,
Li et al., 2024]. Recently, Wu et al. [2023] showed how popular LLMs still hallucinate on different
tasks even with the integration of RAG, and compiled the RAGTruth dataset with span-level human
annotation. Furthermore, they fine-tune an LLM on their training data to detect hallucinations and
its span, but thereby incur a significant computational overhead at training time. Due to paucity of
space, we extend our discussion of related works further in Section-D of the Appendix.

3 Taxonomy and Formalisms for Hallucination Detection

Notation: Let V denote the vocabulary of an LLM, and let V∗ denote the set of all possible
sequences obtainable using the same vocabulary. We denote an individual token as x ∈ V , and a
sequence of tokens as x ∈ V∗. For an autoregressive model f , let pf (·|x) denote the next-token
probability distribution based on input x. Moreover, given two token sequences x = (x1x2 . . . xn)
and x̂ = (x̂1x̂2 . . . x̂m), let x⊕ x̂ = (x1x2 . . . xnx̂1x̂2 . . . x̂m) denote their ordered concatenation.

Given a query or prompt xp = (x1x2 . . . xn), let the LLM response of a model f be denoted as
x = (xn+1 . . . xm). Thus, the broad goal of detection is to determine the presence or absence of
hallucination in the output response x, when the input prompt is xp. In practice, LLMs such as
chat-models require additional system prompts to be included along with the user input; here we
assume these are contained within xp for simplicity.

3

Are References Available?

Are Multiple Model
Responses Needed?

FAVA , RAGTruth

Taxonomy of Hallucination Detection

FAVA SelfCheckGPT White Box Black Box

No

No Yes

Yes

Train

Annot

Figure 1: Taxonomy for different settings
of hallucination detection, and the dif-
ferent datasets and data splits that corre-
spond to each such setting.

Method Train
Indep.

Single
Response Efficient Sample

Specific
Retrieval

Indep.
FAVA ×

√ √ √ √

SelfCheckGPT
√

× ×
√ √

INSIDE
√

×
√

×
√

RAGTruth ×
√

×
√

×
LLM-Check (ours)

√ √ √ √ √

Table 1: Overview of Hallucination Detection Methods
with FAVA, SelfCheckGPT, INSIDE, and RAGTruth.
Key- Train Indep: does not require model fine-
tuning/training, Single Response: does not require
multiple LLM responses, Efficient: compute & memory
efficient, Sample Specific: sample-wise instead of
population-level detection, Retrieval Indep: does not
require RAG or reference databases.

We present a broad taxonomy of the different settings in which hallucination detection is studied
in Figure-1. Here, we discuss and analyze this classification in detail:

I. Without External References: First, we consider the setting wherein no external references are
available to provide additional context to the LLM. Within this scenario, we can make a further classi-
fication based on whether multiple model responses can be potentially generated for the same prompt:

IA. Single Model Response: Here, only the original prompt xp and fixed model output x is assumed
to be available. Thus, in this setting, hallucination detection using LLMs relies upon the tacit
assumption that the query topic is covered to some reasonable extent in the pre-training data of the
LLM. We comprehensively analyze this setting using the FAVA Human-Annotated dataset to compare
different approaches. Moreover, Mishra et al. [2024] provide a fine-tuned Llama-2-chat model, that
can be used to annotate specific error types in the given response x. In our evaluations, we binarize
these outputs to only detect the presence or absence of hallucinations.

IB. Multiple Model Responses: Given a prompt xp and a fixed model output x, SelfCheckGPT
additionally generates stochastically sampled responses x1,x2, . . .xk in order to compute different
metrics such as BertScore, n-gram, Question-Answer and LLM-prompt score with respect to x, to
assess the absence or presence of hallucinations in x. Notably, these scores can be computed with
a black-box model with only external API access. On the other hand, INSIDE only considers the
input prompt xp, and computes eigen-decomposition of the covariance matrix of hidden activations
across multiple generated samples x1,x2, . . .xk. This is used to then statistically infer the presence
of hallucinations within this set of generations, based on a possible lack of self-consistency at a
“population level” between samples within this specific set of k samples. Thus, INSIDE performs
hallucination detection at a population-level of all the generated samples simultaneously, rather than
detection on a given fixed (single) output response x.

II. With External References: In this setting, a broad-ranging set of data retrieved from external
sources are used to affix additional context to assess the validity of the model response x. This is
a highly pertinent setting, as the retrieved data can consist of up-to-date information from sources
deemed reliable or trustworthy. Furthermore, with the inclusion of external data, LLMs can be used
on topics not completely covered in its original pretraining data in a straightforward manner, without
requiring computationally intensive rounds of additional training or fine-tuning.

IIA. White-Box: For a given prompt xp, we consider hallucination detection in an output response
x that is generated by a given LLM f . If the original LLM f is available and accessible to compute
the internal model activations, the setting is considered to be “white-box”. For instance, INSIDE
provides the population-level detection using the original source model so used, and thus falls in the
family of white-box detection techniques.

IIA. Black-Box: If the original LLM f that generated the response x for prompt xp is no longer avail-
able or inaccessible, an auxiliary substitute LLM f̂ can be utilized (such as open-source LLMs like
Llama-2) to compute scores with internal activations and attention kernel maps. This can be achieved
by using teacher-forcing on the substitute LLM, and this setting is considered to be “black-box”.

4

Prompt: Explain how neural
networks work in Layman's terms
Response: A neural network is a
computer program designed to
mimic how the human brain works ...

Layer Normalize

Feedforward Layer

Layer Normalize

Self-Attention Layer

m x m

d x m
m x d m x m

Lower-triangular
Self-Attention Kernel Map

Attention Score

Hidden Score

Score
>=

threshold

Hallucination Detected

Hallucination
Not Detected

Hallucination Detected

Hallucination
Not Detected

Transformer Block

Legend:
m = number of tokens in
prompt and response
concatenation
d = size of hidden dimension

Yes

Yes

No

No

Hidden
Activations

To next layer

Score
>=

threshold

X

Figure 2: Schematic of detection pipeline using Eigenvalue Analysis of internal LLM representations.

4 Proposed Method

In this section, we describe our method LLM-Check in detail. Given that we wish to perform
hallucination detection without any training or inference time overheads, we propose to analyze all
model-related latent and output observables available with a single forward-pass of the LLM. For
a broad family of autoregressive models using the Transformer architecture [Vaswani et al., 2017],
the input token embeddings are transformed to a sequence of hidden representations at each layer
of the model. For an LLM with L internal layers, let Hl denote the hidden representations at layer
l ∈ {1, . . . , L}. The hidden representation at layer (l + 1) is then computed as follows:

Hl+1 = Hl +Al+1 +Ml+1

where Al+1 and Ml+1 denote the attention and MLP contributions respectively. Additional operations
such as layer-normalization is commonly carried out, but we omit their details here to be concise.
The attention contributions represent the updates to the representation of a token at a given layer by
attending to all token representations of the previous layer. In particular, if Q,K, V denote the Query,
Key and Values in the attention mechanism, the attention contribution is given by computing the kernel
similarity of Q and K, and masking the values V with this kernel, and is simplified to be written as:

A = Ker(Q,K)V = Softmax

(
Q ·KT

√
dk

)
V

where dk is the dimension of the keys and queries. Generally, LLMs utilize multi-headed attention,
wherein the kernel maps are individually computed over each head and concatenated, and then cast
back to the appropriate dimension using Output projection matrices before being aggregated together.
We note importantly that for auto-regressive LLMs, the attention kernel maps are lower triangular
for each attention head, since a given token can only attend to the internal model representations
of previous tokens in the sequence.

While LLMs do hallucinate, they still have a significantly appreciable degree of world-knowledge
grounded on truthful facts encountered in the training stage, which is reflected in the fact that
hallucinations are absent in some of the autoregressively generated sample outputs when multiple
model responses are considered for the same prompt. In this work, we propose to directly analyze the
variations in model characteristics between truthful and hallucinated examples by examining the rich
semantic representations present in internal LLM representations, since we observe that the LLM can
often generate the truthful version, albeit with potentially lower frequency. Thus, we posit that the
model is in fact sensitive to the presence of non-factual, hallucinated information in responses which
would otherwise be truthful, based on grounded precepts encountered in its training and that this can
then be efficiently leveraged to perform hallucination detection within a single model response itself.

1. Eigenvalue Analysis of Internal LLM Representations

The differences in model sensitivity to hallucinated or truthful information would reflect in the rich
semantic representations present in the hidden activations and the pattern of attention maps across
different token representations. To quantitatively capture these variations, we propose to analyze
the cross-covariance for hidden representations, and the kernel similarity map of self-attention across
different tokens, since these form the foremost salient characteristics of the LLM itself. Given that
we wish to do hallucination detection in black-box settings as well, we utilize teacher-forcing to

5

obtain representations corresponding to xp ⊕ x, wherein system prompt tokens delineate the original
prompt and model output response. Thus, for a given layer l ∈ {1, . . . , L}, let H denote the hidden
representations for input xp ⊕ x. If the token embedding dimension is d and xp ⊕ x consists of m
tokens, each hidden representation matrix H is of shape (d×m). To be highly compute-efficient and
enable real-time detection, we distill a simple yet salient scalar quantity - the mean log-determinant
- from these variations in hidden representations using eigen-analysis. Theoretically, this is
well-motivated as the eigenvalues and singular values capture the interaction in latent space between
the different token representations corresponding to hallucinated and truthful sample sequences. We
can compute the (m×m) covariance matrix Σ2, and compute its log-determinant as follows:

Σ2 = HTH , log det
(
Σ2
)
= log

m∏
i=1

σ2
i =

m∑
i=1

log σ2
i = 2

m∑
i=1

log σi

where σi are the singular values of H. In order to remove the explicit dependence on input-length,
we propose to utilize the mean log-determinant of Σ2 , that is, 2

m

∑m
i=1 log σi, which we term as

Hidden Score. Here, we note crucial differences from the approach of INSIDE, which computes
the centered covariance matrix across multiple model responses to check self-consistency of the
set of responses, and performs hallucination detection at the population level for a set of responses,
rather than a given fixed model response x. We repeat this procedure across hidden representations
of different layers; please refer to Section-F of the Appendix for detailed layerwise-analysis.

As an alternative approach, we now move towards utilizing internal components of the attention
mechanism, namely the kernel similarity maps used within self-attention heads, to analyze hallucina-
tions. If the number of self-attention heads utilized at each layer in the LLM architecture is a, the
attention maps can be represented as tensors of the shape (a×m×m) for an input sequence xp ⊕ x
of length m. If Keri represents the kernel similarity map corresponding to attention head i, Keri is
a lower-triangular square matrix of size (m×m) for each i ∈ {1, . . . , a}. Since it is lower-triangular
the eigenvalues of Keri are just the values on the principal matrix diagonal, since they are the roots
of the characteristic equation det(Keri−λI) = 0. Furthermore, since LLMs use the Softmax kernel,
all the eigenvalues are also provably non-negative. We can thus obtain the log-determinant of Keri
without using SVD or eigen-decomposition:

log det(Keri) =

m∑
j=1

logKerjji

where Kerjji represents the (j, j) diagonal entry of the square matrix Keri. Again, we obtain the
mean log-determinant for each attention head, and aggregate them to obtain an alternative hallucina-
tion measure, which we call Attention Score. Here, we note that computing the Attention Score is ex-
tremely efficient, since it does not require any explicit eigen-decomposition. The overall pipeline used
for hallucination detection using the Hidden Score and Attention Score is visualized in Figure-2. We
further present a detailed illustrative example using the Attention Score in Section-C of the Appendix.

In black-box settings, we propose to utilize an auxiliary autoregressive LLM f̂ , where we use
teacher-forcing to obtain the scores from the auxiliary LLM instead to perform detection. We also
note that since the MLP component of a transformer block is applied to each position separately
and identically [Vaswani et al., 2017], it does not capture cross-token interactions, and thus we do
not consider this component for detection itself.

2. Output Token Uncertainty Quantification

Alongside the internal model representations, we now consider the probability distribution pf (·|x)
over the output response tokens as induced by the LLM. Given that LLMs are trained with next-token
prediction, the probability distribution pf (·|x) for a given token can be highly salient toward the
relative choices available for completion. Indeed, specifically for factual sentences that are part of
topics covered in the training dataset of an LLM, we expect that its completions are such that the model
likelihood of the output sequence is high. On the other hand, if the sentences arise from a distribution
far different from that encountered in the training regime, the model outputs are more likely to be
ungrounded in nature due to the lack of specificity between different tokens in the vocabulary.

We thus present the output token-level analysis techniques for identifying hallucinations in LLM
responses. We propose to analyze the use of perplexity of the response x, given the prompt xp, as a

6

potential measure for detecting hallucinations:

PPL(x) = exp

(
− 1

m− n+ 1

m∑
i=n

log pf (xi|xp ⊕ x<i)

)
Furthermore, at each token position in the output response, we can consider the mean entropy of
the probability distribution over all tokens (not just the token finally selected during autoregressive
generation). We can further refine logit-entropy-based measures by considering only the top-k tokens
rather than all possible tokens since the contribution from tokens of extremely low probability is
likely noisy and non-salient. We refer to this as the Logit Entropy score, defined as

LogitEnt(x, k) = − 1

m− n+ 1

m∑
i=n

k∑
j=1

pf (x
j
i |xp ⊕ x<i) log pf (x

j
i |xp ⊕ x<i)

where xj
i is the token with jth highest probability at output position i, conditioned on the prefix xp ⊕

x<i However, given that the entire sentence may not be hallucinatory, the length-average scores may
not be as salient as we desire to predict hallucinations accurately. Thus, in light of this, we consider the
Windowed Logit Entropy score, which computes the logit entropy scores across overlapping token win-
dows and returns the logit entropy of the window with the maximum score. This score is thereby sen-
sitive to short sequences of hallucinatory material and is not diluted by sequence length normalization.

We propose these two distinct lines of analysis towards hallucination detection, which we collectively
term as LLM-Check, in order to adequately capture the extremely heterogeneous and diversified
forms of hallucination displayed by modern Large Language Models over different domains. Towards
this, the Eigen-analysis of internal LLM representations helps highlight the consistent pattern of
modifications to the hidden states and the model attention across different token representations
in latent space when hallucinations are present in model responses as compared to truthful, grounded
responses. On the other hand, the uncertainty quantification of the output tokens helps analyze
hallucinations based on the likelihood assigned by the model on the actual tokens predicted at a
specific point in the sequence generated auto-regressively

Before analyzing the quantitative experimental results in the following section, we first present
qualitative comparisons of the proposed method with the most pertinent baselines in Table-1. We
present various trade-offs and advantages in the table such as to whether the method requires fine-
tuning of an LLM, if it inherently requires multiple model responses to detect hallucinations, if the
method is computationally efficient, if it performs detection on per-sample basis or at a population
level, and whether the method is inherently dependent on retrieval during inference time. We observe
that our proposed approach is indeed qualitatively advantageous in all of the aspects so mentioned.

5 Experimental Results

Datasets and Detection Details: To analyze the efficacy of the proposed hallucination detection
measures and perform a comparative analysis with existing baselines, we utilize the taxonomy and
datasets presented in Figure-1. For the setting of detection without external references with a single
model response, we utilize the FAVA-Annotation [Mishra et al., 2024] dataset, wherein we deem
passages containing any form of hallucination to be hallucinated overall. Furthermore, we utilize
the fine-grained classification of different forms of hallucination as annotated in the FAVA dataset
to analyze the efficacy of the detection measures across these different types. In the setting of
detection without external references with multiple model responses, we utilize the SelfCheckGPT
dataset [Manakul et al., 2023], consisting of 1908 sentence level annotated samples, alongside 20
stochastically generated responses from GPT 3 (text-davinci-003). Moreover, to fairly compare across
different detection methods, we also augment the originally released version of the FAVA-Annotation
dataset by generating 20 additional responses from GPT 3 using the original prompt set. By doing so,
we are able to obtain new baselines for SelfCheckGPT and INSIDE on the FAVA-Annotation dataset
using the multiple responses so generated.

For our evaluations in the setting of hallucination detection with external references assumed
available, we primarily consider the RAGTruth dataset [Wu et al., 2023]. In detail, we use the
Summarization subset which was created by prompting six different LLMs with CNN/Daily Mail
dataset and recent news, resulting in more than 5K samples. We use the span-level human annotation

7

Model Measure AUROC Accuracy TPR @ 5% FPR F1 Score

Llama-2-7B Self-Prompt 50.30 50.30 - 66.53
Llama-2-7B FAVA Model 53.29 53.29 - 43.88
Llama-2-7B SelfCheckGPT-Prompt 50.08 54.19 - 67.24
Llama-2-7B INSIDE 59.03 57.98 13.17 39.66

LLM-Check (Ours)

PPL Score 53.22 58.68 3.59 68.33
Window Entropy 56.90 56.59 2.99 42.52

Llama-2-7B
Logit Entropy 53.80 55.99 2.99 56.73
Hidden Score (LY 20) 58.44 58.08 11.98 59.66
Attn Score (LY 21) 72.34 67.96 14.97 69.27
PPL Score 53.96 56.89 3.59 64.20
Window Entropy 55.24 58.38 5.99 66.02

Vicuna-7B
Logit Entropy 52.29 55.69 1.80 57.31
Hidden Score (LY 15) 58.22 59.28 10.18 66.99
Attn Score (LY 19) 71.69 66.47 24.55 62.00

PPL Score 53.22 58.68 3.59 67.40
Window Entropy 56.90 56.59 2.99 55.52

Llama-3-8B
Logit Entropy 53.80 55.99 2.99 56.27
Hidden Score (LY 15) 57.10 57.78 10.78 65.38
Attn Score (LY 23) 68.19 65.87 15.57 70.53

Table 2: Detection results on the FAVA-Annotation Dataset wherein no External References are
available. For methods such as INSIDE and SelfCheckGPT-Prompt, we utilize the multiple model
responses generated by GPT-3.

so provided in the dataset and considered a sample is hallucinated if there exists any hallucinated span
in the response. Additionally, we also consider white-box and black-box detection settings for the
RAGTruth dataset, depending on the original LLM model used for generating the responses. Apart
from RAGTruth, we also consider the training data-split of FAVA wherein several references are
provided, and specific hallucination errors are edited in synthetically to obtain pairs of ground-truth
responses with and without hallucinations. We consider a 500-sample subset of the FAVA train-data
towards this setting of detection with external references.

Models and Metrics: We utilize popular open-source LLM chat-models such as Llama-2-7b Chat
[Touvron et al., 2023], Vicuna [Zheng et al., 2023] and Llama-3-instruct [AI@Meta, 2024] as our
autoregressive LLMs with their corresponding tokenizers provided by HuggingFace [Wolf et al.,
2020], for both white-box and black-box evaluations. We compute the suite of hallucination detection
scores proposed in Section-4, which we collectively term as LLM-Check, and present standard
threshold based detection metrics such as Accuracy, Area under the ROC curve (AUROC), True
Positive Rate (TPR) at low (5%) False Positive Rate (FPR) and F1 score. In each setting, we consider
balanced datasets, with an equal number of samples with and without hallucinations present, except
for the SelfCheck dataset where we follow the setup utilized in the original paper.

5.1 Detection Results on Datasets with no External References as Context

First, we analyze the setting of hallucination detection when no grounded references are provided as
context. We present the consolidated detection metrics in Table-2 using the FAVA-Annotation dataset.
To evaluate methods such as SelfCheckGPT and INSIDE, we make use of the stochastically sampled
responses of GPT-3 that we augment to the original dataset. We observe that in this zero-context set-
ting, many of the baselines perform fairly poorly in comparison to LLM-Check. We remark that while
entropy-based scores were used for comparisons in the SelfCheckGPT paper, the best-performing
variant was seen to be SelfCheckGPT-Prompt using GPT-3 itself, which was used to generate the
original hallucinations. Here, we observe that when using Llama2-7B for SelfCheckGPT-Prompt, the
results are much worse. This might be due to the fact that SelfCheckGPT is less effective at the pas-
sage level after aggregation is performed over the individual sentences. We observe that the Attention
Scores are the most effective across different models, and obtains significantly higher detection scores.

8

Model Method AUC-PR Accuracy TPR @ 5% FPR

Llama-2 SelfCheck 72.84 51.44 4.81
Llama-3 SelfCheck 75.06 54.84 5.10

LLM-Check (Ours)

Llama-2 Attn Score 80.04 58.91 9.41
Llama-2 Prompt 79.46 61.21 8.76
Llama-3 Attn Score 79.96 58.92 9.48
Llama-3 Prompt 78.49 58.54 7.11

Table 3: Detection results on the SelfCheckGPT Dataset wherein no External References are available,
but when multiple model responses are indeed available. We report the results using the same data-
split as the original SelfCheck [Manakul et al., 2023] paper, and thus the number of positive and
negative samples are imbalanced in this table: 1392/1908 samples have hallucinations present.

We further analyze the layer-wise performance of scores obtained from internal model representations
in Section-F of the Appendix. We observe that while the Attention Scores are generally the most
effective, particularly around Layer 20, the oscillation in detection performance across different layers
can be large, relative to the case of using the Hidden Score which is fairly more stable across layers.

In Table-3, we further analyze the performance of LLM-Check against SelfCheckGPT on the
SelfCheckGPT Dataset, where multiple GPT-3 generated responses are available in addition to the
original model response. We follow the setup used in the original paper with imbalanced classes,
and similarly also report Area under the Precision-Recall curve in-place of AUROC. We again find
that the Attention scores provide better detection performance over all three metrics of AUC-PR,
Accuracy and TPR@5%FPR, despite not utilizing the additional model responses included in the
dataset. Here, we present a Prompt-variant of LLM-Check, where instead of prompting the LLM to
output "Yes" or "No" based on the additional model responses and then hard-coding to 0/1 scores as
in SelfCheckGPT-Prompt, we compute Attention Scores of modified prompts which include the addi-
tionally generated model responses, and then aggregate over them as done in SelfCheckGPT-Prompt.
We find that LLM-Check with Attention-Prompt performs similarly well, though the inference time
is higher in this setting, due to the iteration over the different model responses.

5.2 Detection Results on Datasets with External References

We now analyze the setting wherein external references are assumed to be available to the model
at inference time. In Table-4, we present evaluations obtained using a Llama-2-7b model in both
white-box and black-box settings. For the black-box setting, we considered four different models –
Llama-2-13b, Llama-2-70b, GPT-4, Mistral-7b. In the white-box setting, we observe that the Hidden
Score achieves a higher F1 score compared to all other detection methods. The Attention scores are
however better in the overall black-box setting, where we compute a weighted average since different
models hallucinate at different frequencies on the same prompt data. Additionally, we also observe that
LLM-Check performs better on larger models. For example, with Hidden score, our approach obtains
54.11%, 59.67%, and 59.31% AUROC on the 7b, 13b, and 70b variants of Llama-2 respectively.
Furthermore, the AUROC increases to 61.87% for hallucinations arising from the GPT-4 model.

Lastly, we present the evaluations on 500 examples of the FAVA Train-split in Table-5. Notably, this
dataset differs from RAGTruth in that the hallucinations in the generations are inserted synthetically
using GPT-3, and thus potentially induce changes to the joint-distribution of the sequence level
probabilities. Indeed, we observe that output-token uncertainty estimates using entropy out-perform
even the attention-based scores in this setting. Thus, we observe that different detection methods may
prove optimal depending on the problem setup and underlying data distribution.

5.3 Time-Complexity Analysis

We compare the overall runtime cost of the proposed detection scores with other baselines using a
Llama-2-7b Chat model on the FAVA-Annotation dataset on a single Nvidia A5000 GPU in Figure-3.
We observe that the Logit and Attention scores are indeed very efficient, while the Hidden Score is
slightly slower since it uses SVD. We also observe that LLM-Check is considerably faster than most
baselines with speedups of up to 45x and 450x, since it only uses model representations with teacher

9

Target Model Measure White-box Black-box

Llama-2-7b Llama-2-13b Llama-2-70b GPT-4 Mistral-7b Overall

Hidden
Score

AUROC 54.11 59.67 59.31 61.87 53.68 57.24
Accuracy 56.33 59.66 58.42 68.52 54.15 57.62
TPR@5%FPR 8.14 12.41 9.9 3.7 5.18 8.37
F1 Score 61.51 50.42 66.14 67.86 32.58 47.45

Logit
(Perplexity)

AUROC 53.73 52.46 56.97 52.13 52.11 53.27
Accuracy 54.07 55.17 57.92 59.26 54.66 55.79
TPR@5%FPR 7.69 8.97 6.93 0.00 4.15 6.01
F1 Score 58.7 50.57 61.26 61.02 43.23 50.45

Logit
(Win Entropy)

AUROC 52.08 55.71 56.38 55.83 52.61 54.58
Accuracy 53.17 56.9 57.43 59.26 53.89 55.90
TPR@5%FPR 4.98 15.86 1.98 7.41 10.36 10.08
F1 Score 53.98 33.68 62.01 54.9 49.29 47.51

Logit
(Log Entropy)

AUROC 53.95 51.18 55.14 50.34 50.43 51.68
Accuracy 55.43 53.79 57.43 57.41 53.89 54.83
TPR@5%FPR 7.24 9.66 4.95 0.00 6.22 6.65
F1 Score 53.74 15.09 66.41 60 48.41 42.62

Attention
Score

AUROC 54.19 60.05 60.01 63.51 55.37 58.30
Accuracy 54.52 59.66 60.89 66.67 56.99 59.23
TPR@5%FPR 5.88 14.48 12.87 7.41 5.18 9.87
F1 Score 54.5 55.97 55.06 67.8 57.72 57.18

Table 4: Detection on the RAGTruth Dataset using Llama-2-7b model in white-box and black-box
setting, with the “Overall” column presenting the weighted average results for the black-box models.

Self-Prompt

FAVA Model

SelfCheckGPT

-Prompt INSIDE
(Ours)

Logit Entropy (Ours)

Attn Score (Ours)

Hidden Score

0

20

40

60

80

100

R
un

tim
es

(S
ec

s)

0.17

9.71

75.87

97.64

0.23 0.22 2.72

Sampling time
Detection time

Figure 3: Averaged runtime analysis of
different hallucination detection methods.

Model Measure AUROC Accuracy TPR @ 5% FPR

PPL Score 74.20 70.00 26.00
Window Entropy 77.00 72.00 34.00

Llama-2
Logit Entropy 74.36 71.00 26.00
Hidden Score 51.44 54.00 4.00
Attn Score 69.57 66.60 11.60

PPL Score 73.48 68.80 13.20
Window Entropy 78.44 72.00 28.00

Llama-3 Logit Entropy 79.24 73.60 28.00
Attn Score 71.91 68.20 19.60

Table 5: Detection results on synthetic hallucinations on
FAVA Train Split data with External References included.

forcing, without additional inference time overheads. This runtime analysis for the Eigenvalue based
methods represents the total time for computing Attention and Hidden scores from all 32 layers
of Llama-2-7b. That is, the Attention score computation for all 32 layers takes 0.22 seconds per
example, and the Hidden score computation for all 32 layers requires 2.72 seconds per example, when
averaged over the FAVA Annotation dataset. Since the overhead to compute scores for all layers is so
small, we expect that they can be utilized for real-time detection of hallucinations in model responses.

6 Conclusions

In this work, we analyze the problem of detecting hallucinations within a single response of an LLM,
and propose LLM-Check, an effective suite of techniques that only rely upon the internal hidden
representations, attention similarity maps and logit outputs of an LLM. We demonstrate the efficacy
of LLM-Check over broad-ranging settings and diverse datasets: from zero-resource detection to
cases where multiple model generations or external databases are made available at inference time, or
with varying access restrictions to the original source LLM. Moreover, we observe that LLM-Check
obtains considerable improvements over baseline methods in these settings, without requiring fine-
tuning or retraining of LLMs. Furthermore, by utilizing only teacher-forcing at inference time without
additional overheads, we show that LLM-Check is extremely compute-efficient, requiring only a
fraction of the runtime compared to other detection baselines, with speedups of up to 45x and 450x.

10

7 Acknowledgments

This project was supported in part by a grant from an NSF CAREER AWARD 1942230, ONR
YIP award N00014-22-1-2271, ARO’s Early Career Program Award 310902-00001, Army Grant
No. W911NF2120076, the NSF award CCF2212458, NSF Award No. 2229885 (NSF Institute for
Trustworthy AI in Law and Society, TRAILS), an Amazon Research Award and an award from
Capital One.

References
J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Altenschmidt,

S. Altman, S. Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/llama3/blob/
main/MODEL_CARD.md.

A. Azaria and T. Mitchell. The internal state of an llm knows when it’s lying, 2023.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural information
processing systems, 33:1877–1901, 2020.

C. Chen, K. Liu, Z. Chen, Y. Gu, Y. Wu, M. Tao, Z. Fu, and J. Ye. INSIDE: LLMs’ internal states
retain the power of hallucination detection. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=Zj12nzlQbz.

J. Duan, H. Cheng, S. Wang, A. Zavalny, C. Wang, R. Xu, B. Kailkhura, and K. Xu. Shifting attention
to relevance: Towards the uncertainty estimation of large language models, 2023.

J. Fu, S.-K. Ng, Z. Jiang, and P. Liu. Gptscore: Evaluate as you desire, 2023.

C. Gardent, A. Shimorina, S. Narayan, and L. Perez-Beltrachini. The WebNLG challenge: Generating
text from RDF data. In J. M. Alonso, A. Bugarín, and E. Reiter, editors, Proceedings of the
10th International Conference on Natural Language Generation, pages 124–133, Santiago de
Compostela, Spain, Sept. 2017. Association for Computational Linguistics. doi: 10.18653/v1/
W17-3518. URL https://aclanthology.org/W17-3518.

N. M. Guerreiro, E. Voita, and A. Martins. Looking for a needle in a haystack: A comprehensive
study of hallucinations in neural machine translation. In A. Vlachos and I. Augenstein, editors,
Proceedings of the 17th Conference of the European Chapter of the Association for Computational
Linguistics, pages 1059–1075, Dubrovnik, Croatia, May 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.eacl-main.75. URL https://aclanthology.org/2023.
eacl-main.75.

Z. Guo, M. Schlichtkrull, and A. Vlachos. A survey on automated fact-checking, 2022.

K. M. Hermann, T. Kociský, E. Grefenstette, L. Espeholt, W. Kay, M. Suleyman, and P. Blunsom.
Teaching machines to read and comprehend. In NIPS, pages 1693–1701, 2015. URL http:
//papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend.

Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii, Y. J. Bang, A. Madotto, and P. Fung. Survey of
hallucination in natural language generation. ACM Computing Surveys, 55(12):1–38, Mar. 2023.
ISSN 1557-7341. doi: 10.1145/3571730. URL http://dx.doi.org/10.1145/3571730.

S. Kadavath, T. Conerly, A. Askell, T. Henighan, D. Drain, E. Perez, N. Schiefer, Z. Hatfield-Dodds,
N. DasSarma, E. Tran-Johnson, S. Johnston, S. El-Showk, A. Jones, N. Elhage, T. Hume, A. Chen,
Y. Bai, S. Bowman, S. Fort, D. Ganguli, D. Hernandez, J. Jacobson, J. Kernion, S. Kravec,
L. Lovitt, K. Ndousse, C. Olsson, S. Ringer, D. Amodei, T. Brown, J. Clark, N. Joseph, B. Mann,
S. McCandlish, C. Olah, and J. Kaplan. Language models (mostly) know what they know, 2022.

A. Köpf, Y. Kilcher, D. von Rütte, S. Anagnostidis, Z. R. Tam, K. Stevens, A. Barhoum, D. Nguyen,
O. Stanley, R. Nagyfi, et al. Openassistant conversations-democratizing large language model
alignment. Advances in Neural Information Processing Systems, 36, 2024.

11

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://openreview.net/forum?id=Zj12nzlQbz
https://aclanthology.org/W17-3518
https://aclanthology.org/2023.eacl-main.75
https://aclanthology.org/2023.eacl-main.75
http://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend
http://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend
http://dx.doi.org/10.1145/3571730

L. Kuhn, Y. Gal, and S. Farquhar. Semantic uncertainty: Linguistic invariances for uncertainty
estimation in natural language generation, 2023.

T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. Parikh, C. Alberti, D. Epstein, I. Polosukhin,
J. Devlin, K. Lee, K. Toutanova, L. Jones, M. Kelcey, M.-W. Chang, A. M. Dai, J. Uszkoreit, Q. Le,
and S. Petrov. Natural questions: A benchmark for question answering research. Transactions
of the Association for Computational Linguistics, 7:452–466, 2019. doi: 10.1162/tacl_a_00276.
URL https://aclanthology.org/Q19-1026.

R. Lebret, D. Grangier, and M. Auli. Neural text generation from structured data with application
to the biography domain. In J. Su, K. Duh, and X. Carreras, editors, Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing, pages 1203–1213, Austin,
Texas, Nov. 2016. Association for Computational Linguistics. doi: 10.18653/v1/D16-1128. URL
https://aclanthology.org/D16-1128.

P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W. tau Yih,
T. Rocktäschel, S. Riedel, and D. Kiela. Retrieval-augmented generation for knowledge-intensive
nlp tasks, 2021.

J. Li, Y. Yuan, and Z. Zhang. Enhancing llm factual accuracy with rag to counter hallucinations: A case
study on domain-specific queries in private knowledge-bases. arXiv preprint arXiv:2403.10446,
2024.

K. Li, O. Patel, F. Viégas, H. Pfister, and M. Wattenberg. Inference-time intervention: Eliciting
truthful answers from a language model. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=aLLuYpn83y.

A. Malinin and M. Gales. Uncertainty estimation in autoregressive structured prediction, 2021.

P. Manakul, A. Liusie, and M. J. F. Gales. Selfcheckgpt: Zero-resource black-box hallucination
detection for generative large language models, 2023.

A. Mishra, A. Asai, V. Balachandran, Y. Wang, G. Neubig, Y. Tsvetkov, and H. Hajishirzi. Fine-
grained hallucination detection and editing for language models, 2024.

C. Niu, Y. Wu, J. Zhu, S. Xu, K. Shum, R. Zhong, J. Song, and T. Zhang. Ragtruth: A hallucination
corpus for developing trustworthy retrieval-augmented language models, 2024.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance deep
learning library, 2019.

N. Rajani, L. Tunstall, E. Beeching, N. Lambert, A. M. Rush, and T. Wolf. No robots. https:
//huggingface.co/datasets/HuggingFaceH4/no_robots, 2023.

K. Shuster, S. Poff, M. Chen, D. Kiela, and J. Weston. Retrieval augmentation reduces hallucination
in conversation. arXiv preprint arXiv:2104.07567, 2021.

H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288, 2023.

E. Tulchinskii, K. Kuznetsov, K. Laida, D. Cherniavskii, S. Nikolenko, E. Burnaev, S. Barannikov,
and I. Piontkovskaya. Intrinsic dimension estimation for robust detection of AI-generated texts.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=8uOZ0kNji6.

N. Varshney, W. Yao, H. Zhang, J. Chen, and D. Yu. A stitch in time saves nine: Detecting and
mitigating hallucinations of llms by validating low-confidence generation, 2023.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, and A. N. Gomez. L. u. kaiser, and i.
polosukhin,“attention is all you need,”. Advances in neural information processing systems, 30:
5998–6008, 2017.

12

https://aclanthology.org/Q19-1026
https://aclanthology.org/D16-1128
https://openreview.net/forum?id=aLLuYpn83y
https://huggingface.co/datasets/HuggingFaceH4/no_robots
https://huggingface.co/datasets/HuggingFaceH4/no_robots
https://openreview.net/forum?id=8uOZ0kNji6
https://openreview.net/forum?id=8uOZ0kNji6

X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang, A. Chowdhery, and D. Zhou. Self-
consistency improves chain of thought reasoning in language models, 2023.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,
M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao,
S. Gugger, M. Drame, Q. Lhoest, and A. M. Rush. Huggingface’s transformers: State-of-the-art
natural language processing, 2020.

Y. Wu, J. Zhu, S. Xu, K. Shum, C. Niu, R. Zhong, J. Song, and T. Zhang. Ragtruth: A halluci-
nation corpus for developing trustworthy retrieval-augmented language models. arXiv preprint
arXiv:2401.00396, 2023.

F. Yin, J. Srinivasa, and K.-W. Chang. Characterizing truthfulness in large language model generations
with local intrinsic dimension, 2024. URL https://arxiv.org/abs/2402.18048.

M. Yuksekgonul, V. Chandrasekaran, E. Jones, S. Gunasekar, R. Naik, H. Palangi, E. Kamar,
and B. Nushi. Attention satisfies: A constraint-satisfaction lens on factual errors of language
models. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=gfFVATffPd.

M. Zhang, O. Press, W. Merrill, A. Liu, and N. A. Smith. How language model hallucinations can
snowball, 2023.

L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li, E. Xing, et al.
Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685, 2023.

13

https://arxiv.org/abs/2402.18048
https://openreview.net/forum?id=gfFVATffPd

Appendix

A Limitations and Future Work

1. Improving Hallucination Detection Performance: In this work, we consider different detection
methods using the internal representations and output probabilities of a well-trained LLM. We thus
assume access to at least one proxy open-source LLM such as Llama to compute our detection scores,
which may not always be feasible. This is however a mild assumption, as we do believe that this
covers a very large fraction of practical use cases encountered in the real-world. Moreover, the overall
detection rates have significant scope for further improvement, especially towards improving the True
Positive Rate at low False Positive Rates.

2. Mitigation of Hallucinations: While this work focuses on detection of hallucinations, the
mitigation of hallucinations in LLMs itself is not addressed directly. We hope that future works
can possibly build upon the scoring metrics proposed here towards reducing the frequency of
hallucinations, which would be a potentially significant contribution overall. We anticipate that
LLM-Check could be directly incorporated towards providing additional automated feedback in the
fine-tuning stage of LLMs with Reinforcement Learning, wherein output sample generations that
are detected to be hallucinatory in nature can be down-weighted appropriately. Additionally, the
detection methods can assist in flagging samples in a highly efficient manner towards a customized
human-feedback loop with RLHF, wherein annotators can introduce an orthogonal ranking which
reflects the desired extent of factuality for the sample generations so considered.

3. Principled Incorporation of Retrieved Data: Furthermore, we are also hopeful that future work
towards incorporating external references in a more principled manner could help in this detection
task using Retrieval Based Augmentation [Lewis et al., 2021]. For instance, the proposed detection
methods can perhaps serve as an initial screening mechanism: if potential hallucinations are detected,
a subsequent RAG-based query can be made. This process would be triggered when the detector
flags any indications of hallucination, allowing for a deeper, context-aware verification of the content
produced by the LLM with minimized running costs. This two-step method would not only enhance
the precision of the detection itself, but also integrates additional grounded verification steps to ensure
the reliability and accuracy of the model outputs.

4. Combining different Detection Techniques: We attempt to combine the different scoring methods
proposed for hallucination detection, namely using Eigen-analysis of internal LLM representations
and Output Token Uncertainty Quantification methods, towards a unified form of detection. We
observe that this problem can be reduced to that of learning a classifier that takes the different scores
as input and is trained to predict the absence or presence of hallucinations. We conducted preliminary
experiments towards this on the FAVA Annotation dataset using Logistic Regression, but observed
no appreciable gains over using the best performing individual method, the Attention Score, on this
dataset. We seem to observe that learning an optimal combination of the different scores in a manner
that it generalizes well across diverse truthful and hallucinatory inputs is a highly non-trivial task,
especially considering the different forms of hallucination highlighted in the fine-grained taxonomy
presented in the FAVA dataset. In this paper, we focus on fairly simple combinations of these scores,
given the strong motivation to keep the overall compute cost for detection very low to enable its
use in real-time systems. However, we do hope that future works can build upon the proposed
methods fruitfully to achieve significantly higher detection performance, albeit with a potentially
higher computational footprint.

B Broader Impact

In this work, we propose LLM-Check that can be used for efficient hallucination detection in critical
scenarios even when the ground-truth reference or multiple model responses might not be available.
We believe our work is an important step toward reliable hallucination detection in these constrained
scenarios. Our work could positively impact studying and mitigating hallucinations in LLMs. Similar
to other detection methods in the literature, a false detection with our method could lead to some
model generations being flagged as hallucinations or some hallucinated contents not being detected as
hallucinated. However, in our experiments, we show that our method LLM-Check reduces these errors

14

when compared to other baseline hallucination detection techniques. To the best of our knowledge,
direct negative societal impacts due to our work are minimal.

C Visualizing the Attention Scores

To inspect the variation across hallucinatory and non-hallucinatory examples, we utilize the FAVA
Train split dataset, since it consists of pairs of samples with and without hallucinations for the same
exact prompt. We make use of the following illustrative example, which post-tokenization contains the
same total number of tokens for both the hallucinated and truthful responses. This helps simplify the
comparison since the length-normalization is not an additional factor towards differentiating the scores.
We list the prompt xp (with the actual references shown shortened here for visualization purposes,
since they are fairly long), alongside the hallucinated Sample (HS) and the Truthful sample (TS):

Prompt xp: Read the following references:
Reference [1]: The Ballad of Big Al ...
Reference [2]: ...
Reference [3]: ...
Reference [4]: ...
Reference [5]: ...

Based only on the references provided, write a blog article.

Hallucinated Sample (HS): "The Song of Big Al" is a special episode of the nature documen-

tary series "Walking with Dinosaurs" that focuses on the life story of an Tyrannosaurus specimen
called "Big Al". The story is based on a well-preserved fossil of Big Al, which lived during
the Early Jurassic period approximately 145 million years ago. The episode was produced by the

BBC Natural History Unit and partnered with the National Geographic Channel , ProSieben, and
TV Asahi. Rumor has it that the episode was partially shot in Cresswell Craggs, UK. Additionally,
a behind-the-scenes episode called "Big Al Uncovered" was aired alongside "The Song of Big Al"

Truthful Sample (TS): "The Ballad of Big Al" is a special episode of the nature docu-

mentary series "Walking with Dinosaurs" that focuses on the life story of an Allosaurus specimen
called "Big Al". The story is based on a well-preserved fossil of Big Al, which lived during
the Late Jurassic period approximately 145 million years ago. The episode was produced by

the BBC Natural History Unit and partnered with the Discovery Channel , ProSieben, and TV
Asahi. Rumor has it that the episode was partially shot in Cresswell Craggs, UK. Additionally, a
behind-the-scenes episode called "Big Al Uncovered" was aired alongside "The Ballad of Big Al"

We observe that the overall response structure is quite similar, but key phrases such as "The Song of
Big Al" is hallucinated as "The Ballad of Big Al", "the Discovery Channel" is hallucinated as "the
National Geographic Channel", and "Tyrannosaurus specimen called “Big Al”" is hallucinated as
"Allosaurus specimen called “Big Al”".

We then analyze the eigenvalues of the attention kernel using a Llama-2-7b model, which are used to
compute the proposed Attention Score. We know from standard results that eigenvectors with distinct
eigenvalues are orthogonal, and thus we focus on analyzing the eigenvalues directly, rather than the
high-dimensional eigenvectors to illustrate and motivate the proposed method. We highlight the key
differentiating tokens along with the log-eigenvalue corresponding to that specific token position in
the attention mechanism at an intermediate layer which contributes to the total mean-log-determinant
in the proposed Attention Score in Table-6:

15

HS Token The Song of Big Al
logKerjj -4.99 -4.98 -5.56 -5.88 -5.69 µ = -5.42

TS Token The Ball ad of Big Al
logKerjj -4.99 -5.68 -5.57 -6.72 -6.22 -5.92 µ = -5.85

HS Token The National Geographic Channel
logKerjj -7.40 -5.61 -4.46 -5.84 µ = -5.83

TS Token The Disc overy Channel
logKerjj -7.45 -6.57 -5.88 -6.70 µ = -6.60

HS Token Ty ran n osa urus spec imen called " Big Al ". The
logKerjj -5.41 -5.52 -6.60 -5.27 -5.04 -5.63 -5.14 -6.02 -5.85 -6.29 -5.44 -4.81 -6.00 µ = -5.62

TS Token All osa urus spec imen called " Big Al ". The story
logKerjj -5.51 -5.35 -5.38 -6.17 -6.06 -6.45 -6.31 -6.34 -5.86 -5.92 -6.32 -5.05 µ = -5.91

Table 6: logKerjj computed over the diagonal of lower triangular attention kernels for substrings
containing Hallucinated Sample (HS) tokens and Truthful Sample (TS) tokens, averaged across
different attention heads. We observe that the overall mean µ over different tokens, is consistently
larger for Hallucinated Sample Tokens.

We thus observe that the log-eigenvalues of the Hallucinated response are indeed larger in value,
indicating that the rich latent space representations of the LLM are indeed indicative of the presence
of hallucinated text. In the third example pair of hallucinated and truthful samples, we see that
though the hallucinated details are split across more tokens than that in the truthful response, we
observe that the LLM is sensitive to the error as the log-eigenvalues corresponding to the tokens that
immediately follow the error are larger, again contributing to the overall detection that the overall
response is indeed hallucinated.

In Figure-4, we also visualize the cumulative difference in the logKerjj values from the first token
till the jth token (between 1 and total length) between the Hallucinated Sample (HS) and Truthful
sample (TS). Though we observe that the difference in log-eigenvalues between the hallucinated
and truthful responses is not entirely monotonic throughout the token sequence, we observe that the
log-eigenvalues corresponding to the hallucinated response are consistently larger over the whole
sequence when compared to the log-eigenvalues arising from the truthful response.

Figure 4: Difference between the cumulative sum of log-eigenvalues from the first token till the jth

token (between 1 and total length) between the Hallucinated Sample (HS) and Truthful sample (TS).

We observe this phenomenon in greater generality, such as for hallucinated responses of different
lengths compared to truthful ones. We highlight that this is a key advantage of using the mean-log-

16

determinant which normalizes using the length of the token sequence, as compared to scoring methods
such as Negative-log-likelihood which do not explicitly account for varying sequence lengths.

D Related Works (Continued)

In this section, we continue our discussion on related works due to paucity of space in the main
paper. Guerreiro et al. [2023] study hallucinations specifically in the setup of Neural machine
translation (NMT), and even propose mitigation techniques to overwrite hallucinatory sections of
the output. Malinin and Gales [2021] proposed to model predictive uncertainty by using a Dirichlet
Prior Network to explicitly parameterize a distribution over distributions on a simplex. Kuhn et al.
[2023] proposed Semantic Entropy (SE), wherein multiple sequences are first generated, and then
subsequently clustered based on bi-directional entailment again using a language model. After this
equivalence relation between different responses is established using clusters, they can be treated as
categorical datapoints, and thus the semantic entropy can be estimated. This technique is similar to
Semantic Entropy based estimation for a single response which is performed in “SelfCheckGPT with
BERTScore” and “SelfCheckGPT with NLI” in their original SelfCheck-GPT paper, but these are
seen to perform worse than their best scoring method “SelfCheckGPT with Prompt”. We note that
LLM-Check performs better than SelfCheckGPT-Prompt as well (Tables-2,3). Furthermore, Semantic
Entropy is very costly to estimate for real-time detection since the several model inference steps
are required to establish the clusters using the equivalence relation proposed. Both Predictive and
Semantic entropy quantify the total uncertainty over the distribution of all possible responses given a
fixed prompt, in sharp contrast to the primary focus of this paper, which analyzes the hallucinatory
behavior within a single fixed model response output on a given prompt. Thus, Predictive Entropy
and Semantic Entropy perform population-level uncertainty estimation akin to INSIDE, and is not
amenable to the single-response case.

Comparison with standard classifiers on hidden representations: Li et al. [2023] proposed Inference-
Time Intervention (ITI), which improves the truthfullness of LLMs by shifting internal model
activations along truth-correlated directions. To do this, the authors identify a sparse set of attention
heads with high linear probing accuracy for truthfulness using a base dataset such as TruthfulQA,
and subsequently perturb activations during autoregressive generation in inference time. We note
that methods that rely upon supervised training of classifiers on internal model representations
over samples with and without hallucinations, can add large computational overheads. For instance,
Inference-Time Intervention (ITI) relies upon training 1024 binary classifiers on the TruthQA datasets,
and thus becomes prohibitively expensive (as also noted by Chen et al. [2024]).

Nevertheless, we experimented with standard classifiers on hidden representations on the FAVA
Annotation dataset. Namely, we create a train-test split of the dataset, and train classifiers on the
hidden representations corresponding to layer 20 and layer 30 of a Llama-2-7B model. We use
this split to ensure that we have about 100 testing samples balanced between classes (with and
without hallucinations) to obtain reliable evaluations of the classifiers so trained. We observe that
using layer 20, this method obtains AUROC, Accuracy and TPR@5%FPR of 55.76, 59.82 and
0.00 respectively, while using layer 30 we observe detection rates with AUROC, Accuracy and
TPR@5%FPR of 56.52, 61.61 and 1.79 respectively. We note that despite requiring supervised
training, this method performs significantly worse than the proposed Attention Score which achieves
AUROC, Accuracy and TPR@5%FPR of 72.34, 67.96 and 14.97 respectively. We hypothesize that
the generalization of these classifiers might not be adequate to achieve reliable detection performance
across the diverse hallucination samples and types as present in the FAVA dataset as the corresponding
hidden representations become similarly disparate.

Tulchinskii et al. [2023] utilizes the persistence homology dimension (PHD) from topological data
analysis, specifically to differentiate the inherent dimensionality for real and AI-generated texts,
distinct from the detection of hallucinated versus truthful, grounded responses. However, these
techniques developed towards characterizing the intrinsic dimensionality of data manifold can
plausibly be extended to differentiate between truthful and hallucinatory texts. Yin et al. [2024]
proposed to utilize a Distance-aware maximum likelihood estimation (MLE) for the Local Intrinsic
Dimension (LID), by fitting to a Poisson distribution, where the rate of the Poisson process is
parameterized by the intrinsic dimension, in order to determine the truthfulness of model responses.
We do note key differences, such as that LID estimation requires explicit optimization (minimization
of heteroskedastic weighted polynomial regression is performed), and utilizes the latent space

17

representation corresponding to the last token alone, in sharp contrast to our proposed method which
considers the latent representations over the entire token sequence. Furthermore, this technique re-
quires the availability of a large number of neighboring samples, such as 200 samples, to estimate LID
effectively. Thus, this technique is more similar to INSIDE and standard classifiers on trained hidden
representations, as compared to our work which focuses on detection in the single-response setting.

E Experimental Results (Continued)

Measure AUROC Accuracy TPR @ 5% FPR
Entity Hallucinations (374 samples)

PPL Score 60.14 59.89 5.35
Window Entropy 57.35 58.02 2.67
Logit Entropy 45.91 52.14 3.21
Hidden Score (Layer 20) 67.93 65.78 14.44
Attention Score (Layer 20) 64.64 61.23 21.39

Relation Hallucinations (50 samples)
PPL Score 58.08 62.00 4.00
Window Entropy 52.64 56.00 8.00
Logit Entropy 55.84 64.00 0.00
Hidden Score (Layer 21) 58.72 58.00 8.00
Attention Score (Layer 21) 64.32 66.00 4.00

Invented Hallucinations (120 samples)
PPL Score 69.03 68.33 5.00
Window Entropy 62.25 61.67 3.33
Logit Entropy 44.08 52.50 0.00
Hidden Score (Layer 20) 80.53 75.00 16.67
Attention Score (Layer 20) 75.22 69.17 31.67

Subjective Hallucinations (182 samples)
PPL Score 48.36 57.14 0.00
Window Entropy 54.76 56.59 1.10
Logit Entropy 61.15 62.09 4.40
Hidden Score (Layer 15) 56.32 60.99 8.79
Attention Score (Layer 21) 67.14 67.58 9.89

Unverifiable Hallucinations (174 samples)
PPL Score 49.25 59.77 1.15
Window Entropy 54.95 57.47 3.45
Logit Entropy 60.22 63.22 2.30
Hidden Score (Layer 20) 63.32 63.22 12.64
Attention Score (Layer 5) 67.83 69.54 10.34

Table 7: Hallucination Detection without References on the FAVA Annotated Dataset: Detection
metrics obtained on a balanced dataset with different forms of hallucinations as per the FAVA
taxonomy.

Here, we analyze the effectiveness of different detector types on different forms of hallucinations
as presented within the taxonomy introduced by FAVA. Thus, we consider samples that originate
from one of the following types of hallucinations: "entity", "relation", "contradictory", "invented",
"subjective" and "unverifiable".

We present these consolidated results in Table-7. Here, we again observe that the Attention Scores
are quite effective in detecting hallucinations across different types. However, we do observe fairly
large oscillations across layers in each of these settings, and the token-based measures might be more
consistent, even though their absolute numbers are slightly lower.

In Figure 5, we show the ROC curves for logit-based detectors on the annotated FAVA dataset for
entity and relation hallucinations. Note that the negative detector scores might help detect some kinds
of hallucination instances. For example, while negative perplexity scores help in entity hallucination
detection, positive perplexity scores help in relation hallucination detection. This implies that the

18

(a) Entity Hallucinations (b) Relation Hallucinations

Figure 5: ROC curves for logit-based detection schemes with the annotated FAVA dataset. Figures 5a
and 5b show the detection of entity and relation hallucinations, respectively. As observed here, taking
the negative detection scores helps with detecting various kinds of hallucinations.

detection scheme could be perhaps improved by using interval based detection, rather than threshold
based detection. Thus, for the logit level detection scores, it is beneficial to consider both positive
and negative scores to obtain large difference in detection performance.

E.1 Experimental Details and Hyperparameter Choices

For all our evaluations, we use Pytorch [Paszke et al., 2019] models, primarily open-source LLM
models available on Huggingface [Wolf et al., 2020]. By default, we set the generation configuration
of the Huggingface model to be {"temperature": 0.6, "top_p": 0.9, "top_k": 50, "do_sample": True}.
For the setting of Logit Entropy, we consider the top 50 tokens as the selected candidates to compute
the score. For the computation of Hidden scores, we do not observe a noticeable difference between
using the covariance matrix of hidden representations, and a centered covariance matrix (as used in
INSIDE). For the Hidden scores and Attention scores, we report the best of results obtained over all
the layers, varying between 1 and 32 for Llama-2-7b and Vicuna-7b. For the FAVA Annotated dataset,
we utilize a balanced subset consisting of 167 pairs of samples with and without hallucinations
present. On the FAVA train set, we evaluate our results on the first 250 examples, which again consist
of pairs of samples with and without hallucination, so to obtain 500 total samples. For the SelfCheck
dataset, we utilize all 1908 annotated sentences provided. For detecting hallucinations in a given
sentence, an increasing passage context is utilized by incorporating prior sentences arising from
the same model response, since detection of hallucinations within a single sentence without the
appropriate context will be ill-defined. Moreover, the model is prompted using "This is a Wikipedia
passage about {concept}:" to specify the concept within WikiBio. This is not required in the case of
consistency based methods, since the other reference samples explicitly provide this concept as is.

E.2 Robustness Across Domains

In this paper, we attempt to cover an adequately diverse extent of domains between the FAVA-
Annotation dataset, FAVA-train split, SelfCheckGPT Dataset and RAGTruth dataset. Indeed, the
FAVA Annotation dataset itself spans four different data sources: Knowledge-intensive queries
sampled from the Open Assistant dataset [Köpf et al., 2024], Open QA prompts from the No Robots
dataset [Rajani et al., 2023], Instruction-following and WebNLG [Gardent et al., 2017] datasets.
In addition, the FAVA-train split consists of Wikipedia articles and Question Answering datasets
[Kwiatkowski et al., 2019], while SelfCheckGPT Dataset consists of Annotations from the WikiBio
dataset [Lebret et al., 2016]. Lastly, the RAGTruth dataset consists of annotations from the CNN/Daily
Mail dataset [Hermann et al., 2015]. To further assess robustness across sub-domains, we utilize
the FAVA Annotation dataset, since the individual samples are explicitly labeled with the original
dataset that they were derived from. Namely, FAVA Annotation dataset lists the following three
named datasets: Open Assistant, Instruction-following and WebNLG. We compute the mean attention
scores for each of these data-subsets, and observe the following values: -4.97, -4.94 and -5.12 over

19

Figure 6: Layer-wise Analysis obtained with (a) Hidden Score and (b) Attention Score, on the left
and right respectively for a Llama-7B model on the FAVA-Annotation dataset. Here, we can observe
that the Attention based scores tend to yield higher AUROC, Accuracy and TPR@5%FPR, but can
oscillate more strongly across layers. Moreover, we point out that Layer 19 using Attention Score
obtains the highest TPR@5%FPR of 23.35%, though its AUROC is slightly lower than Layer 21.

the Instruction-following dataset, Open Assistant dataset and WebNLG dataset respectively. We thus
observe that the scoring method is indeed consistent across different domains, and expect such results
to continue to hold over subdomains of other commonly used datasets.

E.3 Performance Differences compared to results reported by Prior Baselines

While the SelfCheckGPT paper shows that SelfCheckGPT-Prompt is the strongest baseline in their
comparisons versus other approaches, we observe a extreme reduction in performance when we
perform our evaluations with Llama-2 for SelfCheckGPT-Prompt, which is also the default model
used in the released SelfCheck Github repository in the whitebox non-API setting. We posit that the
SelfCheckGPT-Prompt results might have been potentially biased due to the fact that the multiple
responses were indeed generated by GPT-3 (text-davinci-003) over the WikiBio dataset, and similar
models were then used for the final evaluation. Moreover, it does appear that output uncertainty
estimation based detectors, though generally weaker than the Hidden or Attention scores, can be
salient detectors such as in the case with synthetic hallucinations in the FAVA-train data split.
Furthermore, the exact entropy based scores considered in this paper are slightly more sophisticated
than the ones considered in the SelfCheckGPT paper.

F Layerwise Analysis for Eigenvalue based Scores

F.1 Layerwise Analysis and Layer Selection

As noted in Section-5.3, we observe that the method is computationally efficient even when all model
layers are used for computing Hidden or Attention scores. Indeed, the runtime analysis shown in
Figure-3, represents the total runtime for computing Attention scores and Hidden scores from all 32
layers of Llama-2-7b. That is, the Attention score computation for all 32 layers takes 0.22 seconds
per example, while the Hidden score computation for all 32 layers requires 2.72 seconds per example
when averaged over the FAVA Annotation dataset. Since the overhead to compute scores for all layers
was so small, we expect that they can be utilized for real-time analysis.

20

Figure 7: Results across different layers of Llama-2-7B obtained using sample subsets of 5, 20 and
50 pairs, as well as the complete dataset. We observe that general layerwise trends begin to hold with
fairly limited sample pairs, and can help choose an optimal layer in an efficient manner.

In this section, we investigate methods towards layer selection for the eigenvalue based scoring
methods with low computational overhead. From Figure-6, we first observe that the performance
obtained with the Hidden score is extremely stable across layers, and thus it is relatively easy to
choose, though we recommend a middle-level layer such as layer 20 for a 32 layer, 7-billion parameter
model such as Llama-2. On the other hand, we do indeed observe a larger degree of oscillations
across layers with the Attention score. Here, we perform an experiment to potentially rapidly select
layers, by plotting the results obtained using few samples, and subsequently check if the overall
performance on the dataset can be estimated using this for each layer.

We present these evaluations in Figure-7. We do indeed observe a fair degree of agreement between
results obtained with 5, 20 and 50 pairs as compared to the full dataset. In general, we do observe that
the layers between 19 and 23 achieve close-to-optimal performance for the Attention score computed
on a 32 layer, 7-billion parameter model such as Llama-2. We hypothesize that for the white-box
setting, while the very early layers are involved in feature extraction, and the last layers are involved
more towards making an optimal next-token prediction, the layers after the midpoint of the network
are quite suitable for hallucination detection. In the black-box setting, this is much more difficult
since it is non-trivial to map representations of intermediate layers between different LLMs, especially
when the original LLM has many more layers, as with GPT-4 or Llama-2-70B. Furthermore, the
optimal layer can depend on factors such as the structure of knowledge presented within an example.
For instance, samples within the SelfCheck dataset were created by performing a sentence-level
split of paragraphs generated by GPT-3 based on WikiBio data, with corresponding sentence-level
annotations. However, for detecting hallucinations in a given sentence, an increasing passage context
is utilized by incorporating prior sentences arising from the same model response since detection of
hallucinations within a single sentence without the appropriate context is not well-defined. Thus, in
these cases of increasing context for sentence level detection, even early-layers are observed to be
optimal, as compared to the case seen with other datasets such as FAVA-Train, FAVA-Annotation or
RagTruth which are more standardized in their structure.

21

F.2 Layerwise Detection Results on the RAGTruth Dataset

(a) Llama-2-7b (b) Llama-2-7b

(c) Llama-2-13b (d) Llama-2-13b

(e) Llama-2-70b (f) Llama-2-70b

(g) GPT-4 (h) GPT-4

(i) Mistral-7b (j) Mistral-7b

Figure 8: Performance for different layers with Hidden Score (left column) and Attention Score
(right) on the RAGTruth dataset. All these scores are with the Llama-2-7b model.

22

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, the claims made in the abstract and introduction are faithfully supported
by the experimental evaluations presented in Section-5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, we detail the limitations in Section-A of the appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

23

Justification: We make some theoretical arguments in Section-4, and is self-contained.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, we include all required details to reproduce the main results, and also
make the codebase for LLM-Check available on GitHub.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

24

Answer: [Yes]

Justification: Yes, we include all required details to reproduce the main results, and also
make the codebase for LLM-Check available on GitHub.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, we provide these details in Section 5 and Section E.1. We do not train any
models in this work.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We run our scoring functions deterministically with teacher-forcing, since the
hallucination datasets include the sampled tokens explicitly. Thus, we get exactly the same
values with reruns on the same data splits.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:[Yes]

Justification: We run our experiments mainly on Nvidia A5000 and A6000 GPU cards. We
provide the timing experiments on a single Nvidia A5000 GPU in Section 5.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, we conform to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Yes, we include our broader impact statement in Section-B

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

26

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: Our paper analyses hallucination detection in LLMs, and thus does not pose
added safety risks, but rather helps reduce such risks. We explain more in Section-B as well.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, we properly credit authors and licenses for the different models and
datasets used in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

27

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release new datasets or new models.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

28

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

29

	Introduction
	Related Works
	Taxonomy and Formalisms for Hallucination Detection
	Proposed Method
	Experimental Results
	Detection Results on Datasets with no External References as Context
	Detection Results on Datasets with External References
	Time-Complexity Analysis

	Conclusions
	Acknowledgments
	Limitations and Future Work
	Broader Impact
	Visualizing the Attention Scores
	Related Works (Continued)
	Experimental Results (Continued)
	Experimental Details and Hyperparameter Choices
	Robustness Across Domains
	Performance Differences compared to results reported by Prior Baselines

	Layerwise Analysis for Eigenvalue based Scores
	Layerwise Analysis and Layer Selection
	Layerwise Detection Results on the RAGTruth Dataset

