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ABSTRACT
Semi-supervised video object segmentation (semi-VOS) is widely
used in many applications. This task is tracking class-agnostic ob-
jects by a given segmentation mask. For doing this, various ap-
proaches have been developed based on online-learning, memory
networks, and optical flow. These methods show high accuracy but
are hard to be utilized in real-world applications due to slow in-
ference time and tremendous complexity. To resolve this problem,
template matching methods are devised for fast processing speed,
sacrificing lots of performance. We introduce a novel semi-VOS
model based on a temple matching method and a novel temporal
consistency loss to reduce the performance gap from heavy mod-
els while expediting inference time a lot. Our temple matching
method consists of short-term and long-term matching. The short-
term matching enhances target object localization, while long-term
matching improves fine details and handles object shape-changing
through the newly proposed adaptive template attention module.
However, the long-term matching causes error-propagation due to
the inflow of the past estimated results when updating the template.
To mitigate this problem, we also propose a temporal consistency
loss for better temporal coherence between neighboring frames by
adopting the concept of a transition matrix. Our model obtains 79.5%
𝐽&𝐹 score at the speed of 73.8 FPS on the DAVIS16 benchmark.

CCS CONCEPTS
• Computing methodologies → Video segmentation.

KEYWORDS
Semi-supervised video segmentation, video tracking, lightweight
segmentation

1 INTRODUCTION
Video object segmentation (VOS) is essential in many applications
such as autonomous driving, video editing, and surveillance system.
In this paper, we focus on a semi-supervised video object segmen-
tation (semi-VOS) task, which is to track a target in a pixel-wise
resolution from a given annotated mask for the first frame.

For accurate tracking, many models have been developed, but it is
hard to use the models in real-world environment due to tremendous
computation. For example, one of popular method, online-learning,
fine-tunes model parameters using the first frame image and the cor-
responding ground truth mask [2, 20, 23, 26]. This strategy makes
the model more specialize in each video input, but, it requires addi-
tional time and memory for fine-tuning. Memory network method
achieves high accuracy than any other approaches. They stacks mul-
tiple target memories and match the current frame with the entries.
Therefore, the inference time and the required memories increase in
proportion to the number of frames. To solve these problems, GC

Figure 1: The speed (FPS) vs accuracy (𝐽&𝐹 score) on the
DAVIS2016 validation set. Our proposed TTVOS achieves high
accuracy with small complexity. HR/RN respectively denotes
HRNet/ResNet50 for the backbone network.

[16] conducted weighted-average to the multiple memories at each
time frame for generating one global context memory. However, it
needs an additional feature extraction step for updating the memory
from the current estimated mask and the image. Also, we believe
that it is not enough to directly comprehend spatial information since
the size of global context memory much smaller than original spatial
resolution size.

For increasing consistency of masks across frames, optical flow
is one of the popular methods in low-level vision which has been
applied in diverse video applications. In a video segmentation task,
it propagates a given mask or features by computing pixel-wise
trajectories or movements of objects [4, 9, 17, 38]. However, it is too
demanding to compute exact flow vectors which contain excessive
information for the segmentation task. For example, if we know the
binary information of whether a pixel is changed into the foreground
or background, we do not need an exact flow vector of each pixel.

The aforementioned methods have increased accuracy a lot, but
they require heavy inference time and memory. The template match-
ing approach resolves this problem by designing a target template
from a given image and annotation. However, the accuracy is lower
compared to other models because the matching method is too sim-
ple, and the template is hard to handle object shape variation

In this paper, we propose an adaptive template matching method
and a novel temporal consistency loss for semi-VOS. Our contribu-
tions can be summarized as follows: 1) We propose a new lightweight
VOS model based on template matching method by combining short-
term and long-term matching to achieve fast inference time and to
reduce the accuracy gap from heavy and complex models. More
specifically, in short-term matching, we compare the current frame’s
feature with the information in the previous frame for localization.
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In long-term matching, we devise an adaptive template for gener-
ating an accurate mask. 2) We introduce a novel adaptive template
motivated from GC for managing shape variation of target objects.
Our adaptive template is updated from the current estimated mask
without re-extracting features and occupying additional memory. 3)
To train the model, we propose a new temporal consistency loss for
mitigating the error propagation problem, one of the main reasons
for performance degradation, caused by inflow of the past estimated
results. To the best of our knowledge, this work is the first to ap-
ply the concept of consistency loss for the semi-VOS task without
optical flow. Our model generates a transition matrix to encourage
the correction of the incorrectly estimated pixels from the previous
frame and preventing their propagation to future frames. Our model
achieves 79.5% 𝐽&𝐹 score at the speed of 73.8 FPS on the DAVIS16
benchmark (See Fig. 1). We also verified the efficacy of the tem-
poral consistency loss by applying it to other models and showing
increased performance.

2 RELATED WORK
Optical flow: Optical flow which estimates flow vectors of moving
objects is widely used in many video applications [7, 12, 28, 31]. In
the semi-VOS task, it aligns the given mask or features with the esti-
mated flow vector. Segflow [4] designed two branches, each for im-
age segmentation and optical flow. The outputs of both branches are
combined together to estimate the target masks. Similarly, FAVOS
[17] and CRN [9] refined a rough segmentation mask by optical
flow.
Online-learning: The online-learning method is training the model
with new data in each inference iteration [14, 27, 45]. In the semi-
VOS task, model parameters are fine-tuned in the inference stage
with a given input image and a corresponding mask. Therefore, the
model is specialized for the given condition of the clip [2, 20, 23].
However, fine-tuning causes additional latency in inference time.
[26] resolved this issue by dividing the model into two sub-networks.
One is a lightweight network that is fine-tuned in the inference stage
for making a coarse score map. The other is a heavy segmentation
network without the need for fine-tuning. This network enables fast
optimization and relieves the burden of online-learning.
Memory network: The memory network constructs external mem-
ory representing various properties of the target. It was devised for
handling long-term sequential tasks in the natural language process-
ing (NLP) domain, such as the QA task [13, 30, 42]. STM [22]
adopted this idea for the semi-VOS task by a new definition of key
and value. The key encodes visual semantic clue for matching and
the value stores detailed information for making the mask. However,
it requires lots of resources because the amount of memory is in-
creased over time. Furthermore, the size of memory is the square of
the resolution of an input feature map. To lower this huge complexity,
GC [16] does not stack memory at each time frame, but accumulate
them into one, which is also of a smaller size than a unit memory of
STM. They does not make a (ℎ𝑤 × ℎ𝑤) memory like [39, 47] but a
(𝑐𝑘𝑒𝑦 × 𝑐𝑣𝑎𝑙 ) memory1 as similar channel attention module.
Template matching: Template matching is one of the traditional
method in the tracking task. It generates a template and calculates

1ℎ and 𝑤 are the height and the width of an input feature map for constructing memory,
and 𝑐𝑘𝑒𝑦 and 𝑐𝑣𝑎𝑙 are the number channels for the key and value feature maps.

similarity with input as a matching operation. Most works match
a feature map from a given image and a template following the
siamese network [1], but A-GAME [11] designed a target distribu-
tion by a mixture of Gaussian in an embedding space. It predicted
posterior class probabilities for matching. RANet [40] applied a
racking system to the matching process between multiple templates
and input for extracting reliable results. FEELVOS [33] calculated
distance map by local and global matching for better robustness.
SiamMask [37] used a depth-wise operation for fast matching and
makes a template from a bounding box annotation without accurate
annotated mask of a target.
Consistency Loss: Consistency loss is widely used for improv-
ing performance in semi-supervised learning, enhance robustness
from perturbation to input, enable stable training under specific con-
straints, and so on [10, 21, 46]. In VOS, consistency usually means
temporal coherence between neighboring frames by additional clue
from optical flow. [32, 35, 41].

3 METHOD
In this section, we present our semi-VOS model. Section 3.1 intro-
duces the whole model architecture and how to manage multi-object
VOS. Section 3.2 explains the details of template attention module
for long-term matching. We also describe how to update the template
and how to produce a similarity map. Finally, Section 3.3 demon-
strates our temporal consistency loss and how to define new ground
truth for mitigating error propagation between neighboring frames.

3.1 Overall TTVOS Architecture
We propose a new architecture for VOS as shown in Fig. 2. Our
TTVOS consists of feature extraction, template matching, decoding,
and template update stages. The template matching is composed of
a short-term matching and a long-term matching. The short-term
matching enhances localization property by using previous informa-
tion. This uses a small feature map for producing a coarse segmenta-
tion map. However, this incurs two problems: 1) Utilizing only the
information of the previous frame causes the output masks overly de-
pendent on previous results. 2) This can not handle shape-changing
nor manifest detailed target shape due to a small feature map. To
resolve these problems, we propose long-term matching as an adap-
tive template matching method. This template is initialized from the
given first frame condition and updated at each frame. Therefore, it
can consider the whole frames and track gradually changing objects.
This module uses a larger feature map for getting more detailed
information for generating accurate masks. After then, our model
executes decoding and updates each templates step by step.

A backbone extracts feature maps 𝑓 𝑁𝑡 from the current frame,
where 𝑓 𝑁𝑡 denotes a feature map at frame 𝑡 with an 1/𝑁 -sized width
and height compared to the input. Short-term matching uses a small
feature map 𝑓 16𝑡 and the previous frame information for target lo-
calization: 𝑓 16𝑡−1 is concatenated with a previous mask heatmap
�̂�𝑡−1, which consists of two channels containing the probability of
background and foreground respectively. After then, this concate-
nated feature map is forwarded by several convolution layers for
embedding localization information from the previous frame. This
information is blended with 𝑓 16𝑡 to get an enhanced localization
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TTVOS: Lightweight Video Object Segmentation with Adaptive Template Attention Module and Temporal Consistency Loss

Figure 2: The overall architecture of TTVOS. A backbone feature is shared in all the processes of TTVOS for efficiency. There are
two types of template matching (long-term and short-term), decoding and template update stages in our model. The transition matrix
𝜋𝑡 is computed only in the training phase for enhancing temporal coherence.

property. In the long-term template matching stage, 𝑓 8𝑡 is concate-
nated with the previous mask heatmap, which is compared with
the adaptive template to produce a similarity map in the template
attention module. The details are in Section 3.2. At only training
time, a similarity map estimates a transition matrix to encourage
temporal consistency between neighboring frames as detailed in
Section 3.3. The resultant similarity map is concatenated with the
short-term matching result.

Finally, 𝑓 4𝑡 is added for a more accurate mask. We use Con-
vTranspose for upsampling and use PixelShuffle [29] in the final
upsampling stage to prevent the grid-effect. After target mask esti-
mation, 𝑓 16𝑡 and �̂�𝑡 are used for updating next short-term template
matching, and 𝑓 8𝑡 and �̂�𝑡 are utilized for next long-term template
matching. All the backbone features are also shared in the multi-
object case, but the stages of two template matching and decoding
are conducted separately for each object. Therefore, each object’s
heatpmap always has two channels for the probability of background
and foreground. At inference time, all the heatmaps are combined
by the soft aggregation method [6, 11].

3.2 Template Attention Module
We conjecture that pixels inside a target object have a distinct embed-
ding vector distinguished from non-target object pixels. Our model
is designed to find this vector by self-attention while suppressing the
irrelevant information of the target object. Each current embedding
vector updates a previous long-term template by weighted-average at
each frame. After then, the proposed module generates a similarity
map by template matching to enhance the detailed region as shown
in Fig. 3.

For constructing the current embedding vector, the backbone fea-
ture 𝑓 8𝑡−1 and the previous estimated mask heatmap �̂�𝑡−1 are con-
catenated to suppress information far from the target object. In Fig. 3,
the concatenated feature map is denoted as 𝑋 ′

𝑡−1. 𝑋 ′
𝑡−1 is forwarded

to two separate branches𝑓 (·) and 𝑔(·), making 𝑓 (𝑋 ′
𝑡−1), 𝑔(𝑋

′
𝑡−1) ∈

R𝑐𝑡𝑝×𝐻×𝑊 . After then, the feature maps are reshaped to 𝑐𝑡𝑝 × 𝐻𝑊

and producted to generate an embedding matrix 𝐼 as follows:

𝐼 = 𝜎 (𝑓 (𝑋 ′
𝑡−1) × 𝑔(𝑋 ′

𝑡−1)
𝑇 ) ∈ R𝑐𝑡𝑝×𝑐𝑡𝑝 . (1)

Here, 𝜎 is a softmax function applied row-wise. 𝐼𝑖, 𝑗 is the (𝑖, 𝑗)
element of 𝐼 , corresponds to an 𝑖th channel’s view about 𝑗 th channel
information by dot-producting along 𝐻𝑊 direction. 𝑋 ′

𝑡−1 hampers
the inflow of information far from the target object by �̂�𝑡−1. Thus
𝐼𝑖, 𝑗 considers only pixels inside or near the target object, and this
operation is similar to global pooling and region-based operation [3]
in terms of making one representative value from the whole 𝐻𝑊 -
sized channel and concentrating on a certain region. For example, if
the hexagon in Fig. 3(a) indicates the estimated location of the target
from the previous mask, the information outside of the hexagon
is suppressed. Then 𝑓 (𝑋 ′

𝑡−1) and 𝑔(𝑋 ′
𝑡−1) are compared with each

other along the whole 𝐻𝑊 plane. If the two channels are similar, the
resultant value of 𝐼 will be high (red pixel in Fig. 3(a)); otherwise,
it will be low (blue pixel). Finally, we have 𝑐𝑡𝑝 embedding vectors
of size 1 × 𝑐𝑡𝑝 containing information about the target object. The
final long-term template 𝑇𝑃𝑡 is updated by weighted-average of the
embedding matrix 𝐼 and the previous template 𝑇𝑃𝑡−1 as below:

𝑇𝑃𝑡 =
𝑡 − 1
𝑡

𝑇𝑃𝑡−1 +
1
𝑡
𝐼 . (2)

The template attention module generates a similarity map 𝑆𝑡 ∈
R𝑐𝑡𝑝×𝐻×𝑊 by attending on each channel of the query feature map
𝑞(𝑋𝑡 ) ∈ R𝑐𝑡𝑝×𝐻×𝑊 through the template 𝑇𝑃𝑡 as follows:

𝑆𝑡 = 𝑇𝑃𝑡 × 𝑞(𝑋𝑡 ). (3)

In doing so, the previous estimated mask heatmap �̂�𝑡−1 enhances
the backbone feature map 𝑓 8𝑡 around the previous target object
location by forwarding the concatenated feature to a convolution
layer resulting in a feature map 𝑋𝑡 . Then, 𝑋𝑡 is forwarded to several
convolution layers to generate a query feature map 𝑞(𝑋𝑡 ) as shown
in Fig. 3. In Eq. (3), the similarity is measured between each row
of 𝑇𝑃𝑡 (template vector) and each spatial feature from 𝑞(𝑋𝑡 ), both
of which are of a length 𝑐𝑡𝑝 . When the template vector is similar to
the spatial feature, the resultant 𝑆𝑡 value will be high (red pixel in
Fig. 3(a)). Otherwise, it will be low (blue in Fig. 3(a)). After then,
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(a) (b)

Figure 3: (a) Process in a template attention module. Here, a red (blue) color means a high (low) similarity between two information.
The size of 𝑓 (𝑋 ′

𝑡−1) and 𝑔(𝑋𝑡−1) is 𝑐𝑡𝑝 × 𝐻𝑊 , but we draw feature maps as 𝑐𝑡𝑝 × 𝐻 ×𝑊 for the sake of convenient understanding. (b)
The detailed structure of a template attention module and a template update. An operation (a,b,c) denotes the input channel, output
channel, and kernel size of convolution operation, respectively.

the global similarity feature 𝑆𝑡 and modified feature map 𝑓 8′𝑡 are
concatenated to make the final feature map by blending both results
as shown in the bottom of Fig. 3(b).

To reduce computational cost while retaining a large receptive
field, we use group convolution (group size of 4) with a large kernel
size of 5 × 5 for generating 𝑓 (·), 𝑔(·) and 𝑞(·). While, depth-wise
convolutions cost less than the group convolution, we do not use
them because their larger group count adversely impacts the model
execution time [19]. We select LeakyReLU as the non-linearity to
avoid the dying ReLU problem. We empirically determine that using
a point-wise convolution first then applying the group convolution
achieves better accuracy (shown in Fig. 3(b)).

Our template attention module has some similarity to GC but is
conceptually very different and computationally much cheaper, as
shown in Table 1. Unlike GC, which is a memory network approach,
our method is a kind of template matching approach. Specifically,
GC extracts backbone features again from the new input combining
image and mask for generating new memory. Then, it produces a
global context matrix by different-sized key and value. However, our
template method just combines the current estimated mask and the
already calculated backbone feature. Then, we use the same-sized
feature maps for self-attention to construct multiple embedding
vectors representing various characteristics of the target.

3.3 Temporal Consistency Loss
Our adaptive template deals with the target shape-changing problem
by analyzing a backbone feature and an estimated mask along the
whole executed frames. However, using previous estimation incurs
the innate error propagation issue. For example, when the template
is updated with a wrong result, this template will gradually lead
to incorrect tracking. If the model gets right transition information
about how to correct the wrong estimation in the previous frame, the
model can mitigate this error propagation problem. For this reason,
we calculate a transition matrix 𝜋𝑡 from the output feature map of
the template attention module as shown in Fig. 2. We design a novel
template consistency loss 𝐿𝑡𝑐 by 𝜋𝑡 , and this loss encourages the
model to get correction power and to attain consistency between

Read Seg Update #Param 𝐽&𝐹
GC 1.05 G 36.8 G 37.1 G 38 M 86.6
Ours 0.08 G 5.29 G 0.06 G 1.6 M 79.5

Table 1: The complexity and accuracy comparison between GC
and ours when the input image size is 480 × 853. Read, Seg, and
updates mean the requirement of FLOPS for reading a memory
or a template, making a segmentation mask without a decoding
stage, and updating a memory or a template. Our method re-
duces lots of computations for updating the template.

neighboring frames:

𝜋𝑡 = 𝐻𝑡 − �̂�𝑡−1, 𝐿𝑡𝑐 = | |𝜋𝑡 − 𝜋𝑡 | |22 . (4)

As a new learning target, we make a target transition matrix from
ground truth heatmap 𝐻𝑡 and previous estimated mask heatmap �̂�𝑡−1
as in Eq. (4). Note that the first and the second channel of 𝐻𝑡 are the
probability of background and foreground from a ground truth mask
of frame 𝑡 , respectively. By Eq. (4), the range of 𝜋𝑡 becomes (−1, 1)
and 𝜋𝑡 consists of two channel feature map indicating transition
tendency from 𝑡−1 to 𝑡 . In detail, the first channel contains transition
tendency of the background while the second is for the foreground.
For example, if the value of 𝜋

𝑖, 𝑗

𝑡,2, the (𝑖, 𝑗) element of 𝜋𝑡 in the
second channel, is closer to 1, it helps the estimated class at position
(𝑖, 𝑗) to change into foreground from frame 𝑡 − 1 to 𝑡 . On the other
hand, if it is close to −1, it prevents the estimated class from turning
to the foreground. Finally, when the value is close to 0, it keeps the
estimated class of frame 𝑡 − 1 for a frame 𝑡 result.

The reason why we use �̂�𝑡−1 instead of 𝐻𝑡−1 is illustrated in
Fig. 4. Fig. 4(b) shows ground truth masks, and (c) is the estimated
masks at frame 𝑡 − 1 (top) and 𝑡 (bottom). First row of Fig. 4(e) is a
visualization of (𝐻𝑡 −𝐻𝑡−1) that guides the estimation to maintain
the false positive region from the frame 𝑡 − 1 to 𝑡 . Second row of Fig.
4(e) is a visualization of (𝐻𝑡 − �̂�𝑡−1) that guides the estimation to
remove false positive region of the frame 𝑡−1. Fig. 4(d) is marked by
blue color for denoting false estimation results comparing between
(b) and (c). As shown in Fig. 4(d), the transition matrix 𝜋𝑡 helps

4



291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

TTVOS: Lightweight Video Object Segmentation with Adaptive Template Attention Module and Temporal Consistency Loss

Figure 4: ((a)-(d)) frame 𝑡 − 1 and 𝑡 from top to bottom. (a) Input image. (b) Ground truth. (c) Our result. (d) Estimated mask
with color marking. Blue color means wrong segmentation result, and the blue region in frame 𝑡 is corrected from frame 𝑡 − 1. (e)
Visualizing 𝜋𝑡,2. Top: 𝐻𝑡 − 𝐻𝑡−1, Bottom: 𝐻𝑡 − �̂�𝑡−1. 𝐻𝑡 − 𝐻𝑡−1 can not remove false positive region in the top of (c).

reducing the false positive region from frame 𝑡 − 1 to 𝑡 . With 𝐿𝑡𝑐 ,
the overall loss becomes:

𝐿𝑜𝑠𝑠 = 𝐶𝐸 (𝑦𝑡 , 𝑦𝑡 ) + 𝜆𝐿𝑡𝑐 , (5)

where 𝜆 is a hyper-parameter that controls the balance between the
loss terms, and we set 𝜆 = 5. 𝐶𝐸 denotes the cross entropy between
the pixel-wise ground truth 𝑦𝑡 at frame 𝑡 and its predicted value 𝑦.

4 EXPERIMENT
Here, we show various evaluations by using DAVIS benchmarks [24,
25]. DAVIS16 is a single object task consisting of 30 training videos
and 20 validation videos, while DAVIS17 is a multiple object task
with 60 training videos and 30 validation videos. We evaluated our
model by using official benchmark code 2. The DAVIS benchmark
reports model accuracy by average of mean Jaccard index 𝐽 and mean
boundary score 𝐹 . 𝐽 index measures overall accuracy by comparing
estimated mask and ground truth mask. 𝐹 score focuses more contour
accuracy by delimiting the spatial extent of the mask.
Implementation Detail: We used HRNetV2-W18-Small-v1 [36]
for a lightweight backbone network and initialized it from the pre-
trained parameters from the official code3. We froze every backbone
layer except the last block. The size of the smallest feature map
is 1/32 of the input image. We upsampled the feature map and
concatenated it with the second smallest feature map whose size is
1/16 of the input image. We used ADAM optimizer for training our
model. First, we pre-trained with synthetic video clip from image
dataset, after then we trained with video dataset with single GPU
following [11, 22, 33, 37].
Pre-train with images: We followed [16, 22, 40] pre-training
method, which applies random affine transformation to a static image
for generating synthetic video clip. We used the saliency detection
dataset MSRA10K [5], ECSSD [43], and HKU-IS [15] for various
static images. Synthetic video clips consisting of three frames with
a size of 240 × 432 were generated. We trained 100 epochs with an
initial learning rate to 1𝑒−4 and a batch size to 24.
Main-train with videos: We initialized the whole network with
the best parameters from the previous step and trained the model
to video dataset. We used a two-stage training method; for the first

2https://github.com/davisvideochallenge/davis2017-evaluation
3https://github.com/HRNet/HRNet-Semantic-Segmentation

100 epochs, we only used Youtube-VOS with 240 × 432 image. We
then trained on the DAVIS16 dataset with 480 × 864 image for an
additional 100 epochs. Both training, we used 8 consecutive frames
with a batch size to 8 and set an initial learning rate to 1𝑒−4.

4.1 DAVIS Benchmark Result
Comparison to state-of-the-art : We compared our method with
other recent models as shown in Table 2. We report backbone mod-
els and training datasets for clarification because each model has
a different setting. Furthermore, we also show additional results
with ResNet50 because some recent models utilized ResNet50 for
extracting features.

Our result shows the best accuracy among models with similar
speed. Specifically, SiamMask is one of the popular fast template
matching methods, and our model has better accuracy and speed
than SiamMask on both DAVIS16 and DAVIS17 benchmark. When
we used ResNet50, our model has better or competitive results
with FRTM-VOS, A-GAME, RANet, and FEELVOS. Also, this
ResNet50 based model decreases DAVIS16 accuracy by 2.8% but
the speed becomes 1.6 times faster than GC. Therefore, our method
achieves favorable performance among fast VOS models and reduces
the performance gap from the online-learning and memory network
based models.
Ablation Study : For proving our proposed methods, we performed
an ablative analysis on DAVIS16 and DAVIS17 benchmark as shown
in Table 3. SM and LM mean short-term matching and long-term
matching, respectively. When we do not use short-term matching or
long-term matching, we replaced the original matching method into
concatenating the previous mask heatmap and the current feature
map. After then the concatenated feature map is forwarded by several
convolution layers. Lup represents updating the long-term template
at every frame. If not used, the model never updates the template.
TC denotes using temporal consistency loss. Without this, the model
only uses a cross entropy loss. M denotes using the original ground
truth mask for the initial condition; if M is not checked, a box-
shaped mask is used for the initial condition like SiamMask. Exp1
is using only short-term matching, and Exp2 is using only long-
term matching. Exp3-6 uses both matching methods. Table 3 is the
corresponding accuracy for each ablation experiment, and Fig. 6
visualizes efficacy of each template matching.
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Model Method Train Dataset
Method Backbone OL Memory YTB Seg Synth DV17 DV16 FPS
OnAVOS [34] VGG16 o - - o - 67.9 85.5 0.08
OSVOS-S [20] VGG16 o - - o - 68.0 86.5 0.22
FRTM-VOS [26] ResNet101 o o o - - 76.7 83.5 21.9
STM [22] ResNet50 - o o - o 81.8 89.3 6.25
GC [16] ResNet50 - o o - o 71.4 86.6 25.0
OSMN [44] VGG16 - - - o - 54.8 73.5 7.69
RANet [40] ResNet101 - - - - o 65.7 85.5 30.3
A-GAME [11] ResNet101 - - o - o 70 82.1 14.3
FEELVOS [33] Xception 65 - - o o - 71.5 81.7 2.22
SiamMask [37] ResNet50 - - o o - 56.4 69.8 55.0
TTVOS (Ours) HRNet - - o - o 58.7 79.5 73.8
TTVOS-RN (Ours) ResNet50 - - o - o 67.8 83.8 39.6

Table 2: Quantitative comparison on DAVIS benchmark validation set. OL and Memory denotes online-learning approach and mem-
ory network approach. YTB is using Youtube-VOS for training. Seg is segmentation dataset for pre-training by Pascal [8] or COCO
[18]. Synth is using saliency dataset for making synthetic video clip by affine transformation.

Figure 5: Example of parkour for frame 1, 34 and 84 from top to Bottom. Column (a) shows input images overlapped with the ground
truth masks. RM-LongM denotes estimated results removing long-term matching information by replacing to zeros.

Exp SM LM Lup TC M DV17 DV16
1 o - - - o 57.0 75.9
2 - o o - o 54.5 78.8
3 o o o - o 57.5 77.1
4 o o o o - 58.6 77.6
5 o o - o o 57.2 77.4
6 o o o o o 58.7 79.5

Table 3: Ablation study on DAVIS16 and DAVIS17. SM, LM,
TC means short-term matching, long-term matching and tem-
poral consistency loss. Lup represents updating long-term tem-
plate at every frame, and M is using original ground truth mask
for initial condition.

We found that short-term matching helps maintain objects ID
from localization clue, and long-term matching improves mask qual-
ity by enhancing the detailed regions. For example, Exp1 keeps

Figure 6: Horsejump-high example of ablation study for frame
3 and 37 from top to bottom. (a) Ground truth. (b) Using only
short-term matching. (c) Using only long-term matching. (d)
Our proposed method (Exp6).

object ID but fails to make an accurate mask for horse legs, as shown
in Fig. 6(b). On the contrary, Exp2 makes accurate shape but loses
green-object (rider) ID as shown in Fig. 6(c). Exp2 shows perfor-
mance degradation on multi-object tracking task (DAVIS 17) due
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TTVOS: Lightweight Video Object Segmentation with Adaptive Template Attention Module and Temporal Consistency Loss

Backbone DV17 DV16

FRTM-VOS [26]
ResNet101 76.7 83.5
ResNet18 70.2 78.5

with TC Loss
ResNet101 76.6 85.2
ResNet18 71.8 82.0

Table 4: DAVIS17 and DAVIS16 results when additional apply-
ing temporal consistency loss (TC Loss).

to failure in maintaining object ID, even it generates more accurate
masks than Exp1. Therefore, Exp1 achieves better performance in
DAVIS17, and Exp2 shows high accuracy in DAVIS16. Exp3 gets
every advantage from both template matching methods, and Fig.
6(d) is our proposed method results (Exp6), which do not lose ob-
ject ID and generate delicate masks with high performance on both
benchmarks.

Exp4-6 explain why our model shows better performance than
SiamMask, even using a more lightweight backbone. The initial
condition of the box shape mask does not degrade performance a lot
comparing with Exp6. However, when the model does not update the
long-term template, the accuracy degrades a lot from our proposed
method.
Temporal Consistency Loss : We conducted further experiments
for proving the efficacy of our temporal consistency loss with FRTM-
VOS, which is one of the fast online-learning methods, using ResNet101
and ResNet18 for the backbone network. We implemented our pro-
posed loss function based on FRTM-VOS official code4, and fol-
lowed their training strategy. Our proposed loss is more useful in
the lightweight backbone network (ResNet18) as shown in Table 4.
When we applied our loss to the ResNet101 model, the accuracy
on DAVIS17 decreased slightly by 0.1%, but it increased 1.7% on
DAVIS16. In the ResNet18 model, we improved the accuracy a
lot on both DAVIS17 and DAVIS16. We conjecture that using our
loss not only improves mask quality but also resolves a problem of
overfeating due to fine-tuning by a given condition.

5 CONCLUSION
Many semi-VOS methods have improved accuracy, but they are hard
to utilize in real-world applications due to tremendous complexity.
To resolve this problem, we proposed a novel lightweight semi-VOS
model consisting of short-term and long-term matching modules.
The short-term matching enhances localization, while long-term
matching improves mask quality by an adaptive template. However,
using past estimated results incurs an error-propagation problem. To
mitigate this problem, we also devised a new temporal consistency
loss to correct false estimated regions by the concept of the transi-
tion matrix. Our model achieves fast inference time while reducing
the performance gap from heavy models. We also showed that the
proposed temporal consistency loss can improves accuracy of other
models.
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