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Abstract—With the rapid advancement in multimodal fusion
technology, the integration of pathological images with genomics
data has achieved promising results in cancer survival prediction.
However, most existing multimodal models are not pre-trained
by combining pathology and genomics modalities, ignoring the
inherent task-agnostic associations between different modalities.
While some self-supervised methods align multimodal informa-
tion through pre-training objectives such as correlation and
mean square error, they lack in-depth multimodal interaction.
To address these issues, we propose ContraMAE, a contrastive
alignment masked autoencoder framework, to fuse pathologi-
cal images and genomics data for cancer survival prediction.
Concretely, we introduce a contrastive objective to align multi-
modality and construct their intrinsic consistency. Besides, we
design two reconstruction objectives to capture the complex rela-
tionships between multi-modalities by mutually compensating for
the information that each side lacks. In survival prediction, the
pathology and genomics encodings from the ContraMAE encoder
are concatenated as the final representation to generate a survival
risk score. Experimental results demonstrate that ContraMAE
outperforms existing state-of-the-art methods on five cancer
datasets sourced from The Cancer Genome Atlas (TCGA). The
code is available at https://github.com/SuixueWang/ContraMAE.

Index Terms—Masked autoencoder, Contrastive learning, Mul-
timodal pre-training, Pathology-genomics Alignment, Survival
prediction

I. INTRODUCTION

Cancer is a significant global health issue. It accounts for
nearly 10 million deaths worldwide each year, making it a
leading cause of death [8]. Among the diverse malignancies,
breast, lung, colorectal, liver, and stomach cancers emerge
as the most prevalent. Projections indicate that by 2040, the
global incidence of cancer will rise by 47%, from 19.3 million
in 2020 to 28.4 million. Typically, effective cancer treatments

rely heavily on subtype diagnosis and survival prediction [8],
[13]. Therefore, accurate survival prediction is important for
clinicians to develop reasonable treatment regimens and thus
improve patient survival rates.

In recent years, multimodal fusion methods have advanced
cancer survival prediction by integrating pathological images
and genomics data [3], [12], [14], [15]. For example, Wang
et al. [14] propose a GPDBN model with a bilinear feature
encoding module to enhance performance. Wu et al. [15]
introduce the CAMR model, which uses cross-aligned learning
to project diverse data types into a shared space and acquire
the respective representations for each data type. Chen et al.
[2] develop the MCAT framework, employing genomic-guided
co-attention and attention pooling for multimodal integration.
Zhou et al. [19] propose the CMTA framework to explore the
intrinsic cross-modal relationships. However, these methods
focus on multimodal fusion for survival prediction without
considering task-agnostic associations between modalities via
pre-training. In contrast, based on the pre-training paradigm,
Yao et al. [17] present DeepCorrSurv, which maximizes cor-
relation to align modalities. Ding et al. [3] use PathOmics to
align modalities by minimizing mean square error. Thus, the
existing multimodal fusion methods have two main limitations:
1) Most methods integrate multimodal data without pre-
training, overlooking task-agnostic relationships across modal-
ities; 2) Methods using self-supervised learning primarily align
multimodal data through objectives like correlation or mean
square error [3], [17], which may fail to capture complex
relationships between pathological images and genomics data.

In this paper, we propose ContraMAE, a contrastive align-
ment masked autoencoder framework to fuse pathological
images and genomics data for cancer survival prediction. To
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learn the intrinsic task-agnostic interactions between multi-
modalities, we present an improved masked autoencoder with
three pre-training objectives. Specifically, we first introduce
a pathology-genomics contrastive objective to align multi-
modality and construct the inherent consistency between dif-
ferent modalities. Then, we design two reconstruction objec-
tives, genomics reconstruction (GR), and pathology recon-
struction (PG), aiming to capture the complex relationships
between multi-modalities by mutually compensating for the
information that each side lacks. In survival prediction, we
concatenate the pathology and genomics encodings from the
ContraMAE encoder as the final representation to generate
a risk score for survival prediction. We conduct experiments
to compare ContraMAE with existing state-of-the-art methods
on five cancer datasets from The Cancer Genome Atlas
(TCGA). The experimental results demonstrate that Contra-
MAE achieves the highest C-index values on all five cancer
datasets, demonstrating the effectiveness of our framework.

In summary, our contributions are summarized as follows:
1) We propose a contrastive alignment masked autoencoder

framework, ContraMAE, that employs three pre-training
objectives to learn intrinsic task-agnostic relationships
between modalities for improving performance on the
downstream survival prediction task.

2) We introduce a contrastive objective that aligns in-
formation and establishes intrinsic consistency across
various modalities, which is beneficial for subsequent
multimodal data reconstructions.

3) We design two reconstruction objectives to capture the
complex interactions across multiple modalities, where
each modality compensates for the missing information
in the other.

II. METHOD

In this section, we present the overview of the contrastive
alignment masked autoencoder (ContraMAE) framework for
survival prediction, as illustrated in Figure 1. We first delineate
ContraMAE architecture, comprising encoder and decoder
modules. Next, we introduce three pre-training objectives
utilized in ContraMAE, followed by the downstream survival
prediction task. Lastly, we detail the implementation settings.

A. ContraMAE Architecture

After preprocessing (described in Subsection III-A), let
P ∈ Rr×r×3 denote the representative region of a whole slide
image (WSI) in pathology, let G ∈ R3×d represent genomics
data containing RNA-Seq, miRNA, and DNA methylation. The
survival time and survival status are denoted as t and e.

ContraMAE Encoder. We crop the representative region of
WSI P into image patches P pat ∈ RL×(r′×r′×3), where L is
the number of patches. Then, the image patches are embedded
using a lightweight CNN, with the kernel size matching the
patch size and the number of output channels set to d. This
process yields L patch embeddings, each with d dimensions.
Concurrently, we embed the three types of genomic data using
a shared linear fully connected network.

P init = PatchEmbed (P pat) ,P init ∈ RL×d (1)

Ginit = Linear (G) ,Ginit ∈ R3×d (2)

Subsequently, we concatenate the CLS token embedding,
patch embeddings, and genomics embeddings, incorporating
their respective positional encodings. These combined embed-
dings serve as the input fed into the cross-modal encoder to
interact with two modalities:

Hin = [cinit,Ginit,P init] + [Ecls,EG,EP ] (3)

where Ecls is the position encoding of cls token. EG rep-
resents position encodings of genomics data corresponding
to three tokens: RNA-Seq, miRNA, and DNA methylation.
Ecls and EG are initilized to random vectors. EP represents
position encodings of image patches. Following ViT [4], EP

is a 2D-aware position encoding of the image patches, which
connects the X-axis encoding with the Y-axis encoding to
model the spatial relationships between pixels in an image by
introducing relative position and orientation information. As a
result, the input dimension is Hin ∈ R(1+3+L)×d. Following
that, Hin are fed into a cross-modal encoder implemented
with a standard ViT. It consists of several Transformer blocks,
each block contains a multi-head self-attention module and
a position-wise fully connected feed-forward network. More-
over, the scaled dot-product is introduced into the multi-head
self-attention module to compute adaptive weight from the
input embedding Hin. The processes in one Transformer
block can be formulated as:

headi = Attn
(
W

(i)
Q Hin,W

(i)
K Hin,W

(i)
V Hin

)
= Softmax

(
W

(i)
Q HinH

⊤
inW

(i)⊤
K√

d

)
W

(i)
V Hin

(4)

MSA (Hin) = Concat (head1, ..., headm)WO (5)

Hmsa = LN (MSA (Hin) +Hin) (6)

Hblock = LN (FFN (Hmsa) +Hmsa) (7)

where WQ, WK , and WV are three learnable weight matrices
multiplied by the queries Hin, keys Hin, and values Hin.
MSA, Concat, FFN, and LN denote the operations of multi-
head self-attention, concatenation, feed-forward network, and
layer normalization, respectively. m is the number of heads. As
a result, the encodings H ′

enc = [hcls,Henc] can be obtained
by iterating through k rounds if there are k Transformer blocks
in the encoder, where hcls represents the encoding of cls token
and Henc denotes encodings corresponding to genomics and
pathology.

ContraMAE Decoder. The cross-modal decoder aims to
(i) decode the encodings Henc and recover the original input
data; and (ii) further integrate the multimodal information.
Following MAE [5], we design a lightweight decoder with
the same structure as the ContraMAE encoder but with fewer
Transformer blocks and embedding dimensions. In the de-
coder, we also take Equation (4)-(7) to calculate each block’s
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Fig. 1. Illustration of the contrastive alignment masked autoencoder (ContraMAE) framework.

representation, let Hdec denote the final representations gen-
erated from the decoder.

B. Pre-training Objectives
We introduce three objectives, pathology-genomics con-

trastive learning (PGC), genomics reconstruction (GR), and
pathology reconstruction (PR), to pre-train our framework.

Pathology-Genomics Contrastive Learning. We introduce
a PGC objective behind the ContraMAE encoder, which aims
to align the modalities before the decoder and reconstruction.
Concretely, we split the encodings Henc from the encoder into
two parts: H(g)

enc and H(p)
enc, where H(g)

enc corresponds to the
encoding of genomics and H(p)

enc corresponds to the encoding
of pathology. Then, we aggregate the respective encoding via
average pooling:

h(g) = AvgPool
(
H(g)

enc

)
, h(g) ∈ R1×d (8)

h(p) = AvgPool
(
H(p)

enc

)
, h(p) ∈ R1×d (9)

Assuming that a training batch has N pathology-genomics
pairs, they can assemble N positive and N2 − N negative
pathology-genomics pairs, where the positive pair has a value
of 1 and the negative pair has a value of 0, which serve
as the ground truth. Next, we calculate softmax-normalized
pathology-to-genomics and genomics-to-pathology similarities
within a training batch as follows:

sp2gi =
exp

(
h
(p)⊤
i h

(g)
i /σ

)
∑N

j=1 exp
(
h
(p)⊤
i h

(g)
j /σ

) (10)

sg2pi =
exp

(
h
(g)⊤
i h

(p)
i /σ

)
∑N

j=1 exp
(
h
(g)⊤
i h

(p)
j /σ

) (11)

where σ is a learnable temperature parameter. Finally, the
cross-entropy loss function is used to compute contrastive
losses between predicted similarities and the ground truth.

Genomincs Reconstruction and Pathology Reconstruc-
tion. We design two reconstruction objectives: GR and PR.
GR randomly masks one of the three genomics types, and PR
randomly masks a portion of the pathology image patches.
The reconstruction tasks aim to predict the original genomics
data and image patches. This makes multimodal data deeply
interact, for example, pathology reconstruction partly relies
on unmasked genomics data, which provides biomolecular
information that pathology lacks. In addition, genomics recon-
struction also partially depends on unmasked image patches,
which include information regarding the microstructure of
cells, tissues, and organs that genomics cannot provide. These
two reconstruction objectives facilitate the mutual compen-
sation of multimodal information, fully capturing intricate
relationships between modalities.

Notably, the masked tokens in genomics data and image
patches are initialized with zero vectors and then inserted into
the encodings from the ContraMAE encoder. The order of
all the encodings (which include visible tokens and masked
tokens) is restored according to the original order.

We divide the final representations Hdec into genomics
representation h

(g)
dec and pathology representation h

(p)
dec. Subse-

quently, we employ two linear networks to map h
(g)
dec and h

(p)
dec

to the same dimensions as G and P pat, as the reconstructed
genomics data and pathological image patches. Finally, cross-
entropy losses between reconstructed results and original input
data are computed to train the model.
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C. Survival prediction

In survival prediction, the ContraMAE decoder is discarded,
the complete set of genomics data and pathological image
patches are fed into the ContraMAE encoder without masking
any tokens, and the representations of genomics data and
pathology can be defined using Equation (8)-(9), respectively.
We concatenate the representations of genomics data and
pathology to yield the final representation. Subsequently, a
linear network in the Cox layer is utilized to map the final
representation to a single-node layer as the risk score for
survival prediction, which can be written as:

zi = Linear([h(g),h(p)]) (12)

Additionally, the average negative log partial likelihood [15]
is used as the objective function in the Cox layer, which is
formulated as follows:

Lsurv = − 1

nE

∑
i:Ei=1

zi − log
∑

j:Tj>Ti

ezj

 (13)

where nE is the total number of uncensored samples.

D. Implementation Details

We execute experiments using the PyTorch library on a
Linux platform and run on a workstation with three NVIDIA
A100 80 GB GPUs. The number of Transformer blocks,
embedding dimension, and attention heads in the ContraMAE
encoder and decoder are set to (12, 768, 12) and (8, 512,
16), respectively. We use the AdamW optimizer to train
ContraMAE, with hyperparameters for learning rate, batch
size, and training rounds differing in pre-training (5e-3, 100,
2000) and survival prediction (8e-4, 50, 80). The size of
the representative region of the WSI is set to 1024×1024.
Following MAE [5], we randomly mask 75% of pathology
image patches during pre-training.

III. EXPERIMENTS

TABLE I
GENOMIC FEATURES AT VARIOUS PREPROCESSING STAGES.

Genomic data Initial genes Preprocess Final genesMethods Genes

RNA-Seq 59427 Rem, Var, Des 9249 300
miRNA 1881 Rem, Var, Des 1527 300
DNA methylation 485577 Kim, Var, Des 24889 300

Note: ’Kim’ represents the missing value interpolation method (KNNImputer), ’Rem’
denotes removing genes with missing values, ’Eli’ signifies eliminating genes with
zero variance, and ’Des’ means using the DESeq2 tool for gene differential expression
analysis.

A. Data Preprocessing and Evaluation Metrics

We experiment with five cancer datasets from TCGA [10],
encompassing breast invasive carcinoma (BRCA), lung adeno-
carcinoma (LUAD), hepatocellular carcinoma (LIHC), stom-
ach adenocarcinoma (STAD), and lower grade glioma (LGG).
Each patient sample includes complete data types: RNA-Seq,
miRNA, DNA methylation, and pathological images.

Genomics. The numbers of genomics features on various
preprocessing stages are shown in Table I. For each cancer
dataset, we directly remove the genes that appear missing
values in RNA-Seq and miRNA, but employ KNNImputer [11]
to interpolate the missing values in DNA methylation. Next,
we eliminate genes with zero variance because they do not
provide any information. After that, we perform differential
gene expression analysis by Pydeseq2 [7] tool and genes
importance analysis by random survival forest model (RSF)
[6] to select the top 300 genes for each genomics type.

Pathology. The representative region of WSI is identified
based on previous work [18]. Pathological images captured at
5× magnification are cropped into overlapping tiles of 1024×
1024 pixels using a sliding window strategy, with a stride of
100 pixels. The image density of each tile is computed by
summing RGB values. Lastly, the tile with the highest density
is considered the subregion with the highest diagnostic value
and chosen as the representative WSI region.

Evaluation Metrics. We employ the concordance index (C-
index) [2] as the evaluation metric with values ranging from
0 to 1. A higher C-index value indicates better predictive
performance. A C-index value of 0.5 means that the model’s
predictions are equivalent to random chance. Moreover, we
assess all investigated methods with 5-fold cross-validation
splits on each cancer dataset.

B. Comparison with State-of-the-art Methods

We conduct experiments to compare ContraMAE with ex-
isting methods, which include the traditional methods, such as
LASSO-Cox and EN-Cox, and deep learning-based methods,
such as DeepCorrSurv, PathOmics, GPDBN, CAMR, MCAT,
and CMTA. Original HIPT only supports pathology modality,
we add a genomics-guided cross-attention, a Transformer,
and attention pooling operations to enable HIPT to fuse
pathological images with genomics data.

Table II illustrates all comparison models’ experimental re-
sults. Compared to traditional methods, all deep learning-based
methods obtain better performance. Notably, ContraMAE
achieves superior performance on all five cancer datasets,
with an overall C-index performance increase of 12.1% on
LASSO-Cox, 9.9% on EN-Cox, 6.7% on GPDBN, 5.5% on
CAMR, 2.1% on MCAT, 2.6% on HIPT, 2.5% on CMTA,
5.2% on DeepCorrSurv, and 2.9% on PathOmics, respectively.
Moreover, we analyze the Kaplan-Meier curves of the LIHC
dataset for further performance evaluation. In detail, we use
the median of the risk scores as a risk indicator to divide
LIHC patients into low-risk and high-risk groups. The Kaplan-
Meier curves and corresponding log-rank test p-values of deep
learning-based methods are presented in Figure 2. We can ob-
serve that ContraMAE better differentiates the survival curves
between the low-risk and high-risk groups, and ContraMAE
obtains competitive performance, with a p-value of 9.79e-
09, which is comparable to the best performance of CAMR
(p-value of 1.01e-09). The experimental results demonstrate
that our ContraMAE achieves excellent performance and more
precise discriminatory capability than existing methods.
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TABLE II
PERFORMANCE COMPARISON OF CONTRAMAE AND OTHER METHODS USING THE C-INDEX VALUE ON FIVE CANCER DATASETS

Method BRCA LUAD LIHC STAD LGG Overall

LASSO-Cox [9] 0.582±0.023 0.590±0.055 0.618±0.033 0.542±0.045 0.725±0.054 0.599
EN-Cox [16] 0.622±0.034 0.615±0.046 0.626±0.042 0.550±0.052 0.753±0.063 0.621
GPDBN [14] 0.636±0.047 0.615±0.053 0.643±0.019 0.587±0.025 0.844±0.025 0.653
CAMR [15] 0.656±0.072 0.647±0.059 0.691±0.052 0.587±0.029 0.803±0.044 0.665
MCAT [2] 0.663±0.041 0.664±0.026 0.711±0.029 0.622±0.034 0.844±0.032 0.699
HIPT [1] 0.651±0.075 0.653±0.042 0.694±0.042 0.631±0.048 0.842±0.028 0.694
CMTA [19] 0.680±0.063 0.670±0.046 0.708±0.034 0.631±0.039 0.840±0.038 0.695
DeepCorrSurv [17] 0.659±0.018 0.662±0.032 0.700±0.048 0.609±0.049 0.828±0.034 0.668
PathOmics [3] 0.694±0.074 0.662±0.027 0.690±0.013 0.622±0.034 0.848±0.032 0.691
ContraMAE (Ours) 0.702±0.023 0.679±0.028 0.725±0.019 0.641±0.020 0.853±0.041 0.720

ContraMAE

Fig. 2. Performance comparison of ContraMAE and other methods using Kaplan-Meier curves.

C. Ablation Study

Ablation study of modalities. To investigate the influences
of various modalities on survival prediction performance, we
perform an ablation study on BRCA, LUAD, and LIHC
datasets by removing genomics or pathology modalities, re-
spectively. As shown in Table III, the multimodal approach
outperforms unimodal across three datasets, with a C-index
improvement of 2.9% for genomics and 6.3% for pathology.

TABLE III
ABLATION STUDY OF MODALITIES.

Modality BRCA LUAD LIHC Overall

Genomics 0.652±0.042 0.660±0.032 0.706±0.028 0.673
Pathology 0.605±0.048 0.645±0.051 0.668±0.054 0.639
Multimodal 0.702±0.023 0.679±0.028 0.725±0.019 0.702

Ablation study of pre-training objectives. To assess the
impact of different pre-training objectives on model perfor-
mance, we conduct an ablation study comparing contrastive
learning, reconstruction, and training from scratch. As shown
in Table IV, the model without pre-training performs the
worst. The combination of two reconstruction objectives out-
performs contrastive learning, indicating that reconstruction

contributes more to multimodal fusion. Moreover, using all
three objectives yields the best performance, demonstrating
the effectiveness of our pre-training strategy.

TABLE IV
ABLATION STUDY OF PRE-TRAINING OBJECTIVES.

Objectives BRCA LUAD LIHC Overall

From scratch 0.665±0.038 0.635±0.051 0.667±0.048 0.656
Contrastive learning 0.670±0.028 0.661±0.034 0.685±0.019 0.672
Two reconstructions 0.668±0.036 0.666±0.038 0.698±0.032 0.677
All objectives 0.702±0.023 0.679±0.028 0.725±0.019 0.702

D. Study of Risk Score Computing Methods
To explore the most effective risk computing method, we

compare the following methods:
• M1: Henc are average-pooled and linearly mapped to a

single-node layer to produce the survival risk score.
• M2: h(g) and h(p) are linearly projected onto separate

single-node layers, and their outputs are summed to
generate the survival risk score.

• M3: The cls token encoding from ContraMAE encoder,
h(cls), is linearly mapped to a single-node layer to
produce the survival risk score.
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• M4 (Ours): Our survival risk score computing method.
As shown in Table V, splitting the encoder outputs into

two branches for survival risk calculation (e.g., M2 and M4)
improves performance. Notably, M4 achieves the highest C-
index of 0.702, indicating it as the most effective fusion
strategy for survival prediction.

TABLE V
THE STUDY OF RISK SCORE COMPUTATION METHODS IN THE COX LAYER.

Computing methods BRCA LUAD LIHC Overall

M1 0.668±0.056 0.636±0.047 0.702±0.056 0.669
M2 0.672±0.037 0.660±0.045 0.713±0.063 0.682
M3 0.668±0.029 0.642±0.036 0.692±0.052 0.667
M4 0.702±0.023 0.679±0.028 0.725±0.019 0.702

E. Study of Image Patch Size

The representative region size of the WSI is set as 1024×
1024. However, various patch sizes, such as 64×64, 128×128,
256 × 256, and 512 × 512, should be explored for cropping.
To identify the optimal patch size, we evaluate performance
across different patch sizes. As shown in Figure 3, ContraMAE
consistently achieves the best performance with 128 × 128
patches. Notably, both increasing the size to 256 × 256 or
512 × 512 and reducing it to 64 × 64 result in a significant
drop in survival prediction performance.

Fig. 3. The influence of patch sizes on the survival prediction performance.

IV. CONCLUSION

We propose ContraMAE, a contrastive alignment masked
autoencoder framework, to integrate pathological images and
genomics data for cancer survival prediction. We pre-train
ContraMAE with three objectives to learn inherent task-
agnostic relationships between modalities. Specifically, we
first introduce a contrastive objective to align modalities and
establish their intrinsic consistency. Then, we design two
reconstruction objectives to capture the intricate interactions
between modalities by mutually compensating for the informa-
tion that each side does not possess. In survival prediction, we
concatenate the pathology and genomics encodings from the
ContraMAE encoder to generate the risk scores. Experimental
results demonstrate that ContraMAE outperforms the existing
methods on all five datasets sourced from TCGA.
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