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Abstract
Recent advances in speech synthesis have introduced unprece-
dented challenges in maintaining voice authenticity, particularly
concerning public figures who are frequent targets of imperson-
ation attacks. This paper presents a comprehensive methodol-
ogy for collecting, curating, and generating synthetic speech
data for political figures and a detailed analysis of challenges
encountered. We introduce a systematic approach incorporat-
ing an automated pipeline for collecting high-quality bonafide
speech samples, featuring transcription-based segmentation that
significantly improves synthetic speech quality. We experi-
mented with various synthesis approaches; from single-speaker
to zero-shot synthesis, and documented the evolution of our
methodology. The resulting dataset comprises bonafide and
synthetic speech samples from ten public figures, demonstrat-
ing superior quality with a NISQA-TTS naturalness score of
3.69 and the highest human misclassification rate of 61.9%.
Index Terms: Text-to-Speech, Database, political figures

1. Introduction
The last few years have seen an exceptional increase in the re-
alism of synthesized speech [1, 2, 3, 4, 5]. This high quality
of synthesized speech and the ability to distribute it through so-
cial media platforms are giving rise to manipulated information
in the digital ecosystem. According to a Global Risk Report
by the World Economic Forum, misinformation and disinfor-
mation are the most serious threats predicted over the next two
years [6]. The report states that approximately three billion peo-
ple are expected to participate in electoral polls across multiple
countries over the next two years, however, the widespread use
of misinformation and disinformation and the tools to dissem-
inate may undermine the legitimacy of newly elected govern-
ments. This can result in political unrest ranging from violent
protests and hate crimes to civil confrontation and terrorism.

These concerns have already manifested themselves in sev-
eral high-profile incidents. In 2022, a synthetic video portrayed
President Zelenskii allegedly asking for military surrender [7].
Subsequently, in 2024, a fake audio purported to be from Pres-
ident Biden was used in an attempt to influence voter partic-
ipation in the primary elections in New Hampshire [8]. The
scope of this threat became multi-national when London Mayor
Sadiq Khan was targeted through fabricated audio content re-
garding Armistice Day observations [9]. As speech synthe-
sis technologies advance in capability and accessibility, influ-
ential public figures face increasing exposure to voice spoof-
ing attacks that can systematically manipulate public opinion.
The development of robust audio spoofing detection systems
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has therefore become crucial. However, such systems require
comprehensive, high-quality datasets containing authentic and
synthetic speech samples from public figures. Creating these
datasets presents unique challenges, particularly when dealing
with prominent individuals whose voices are frequently targeted
for manipulation. This underscores the urgent need for system-
atic approaches to building and maintaining audio spoofing de-
tection datasets that can effectively protect high-profile individ-
uals from voice-based impersonation attacks.

In this paper, we present a comprehensive methodology
for collecting and generating synthetic speech data for high-
profile political figures while documenting the challenges en-
countered and the solutions developed throughout the process.
Our methodology emphasizes three key aspects: (1) compre-
hensive coverage of authentic speech in diverse real-world con-
texts, including political speeches, media interviews, and public
statements; (2) systematic curation of high-quality audio sam-
ples that capture the distinctive vocal characteristics and speech
patterns of each individual; and (3) creation of corresponding
synthetic speech using multiple text-to-speech (TTS) systems
to represent realistic spoofing scenarios. The process involves a
carefully designed pipeline to collect and process speech sam-
ples. First, we identify and collect high-quality source material
from publicly available videos, ensuring diverse speaking con-
texts and acoustic conditions. This is followed by rigorous pre-
processing steps, including speaker diarization to isolate the tar-
get speaker, automated transcription of speech segments, audio
quality assessment, and segmentation into chunks while pre-
serving the natural flow of speech. For each authentic speech
segment, we generate the corresponding synthetic speech using
various TTS approaches. The resulting dataset is available on
request at our lab datasets website1.

The remainder of this paper is organized as follows. Sec-
tion 2 provides a description of the existing relevant audio anti-
spoofing datasets and their limitations. Section 3 describes the
design considerations for audio data collection, the data collec-
tion pipeline, and the challenges faced. Section 4 describes the
process for generating synthetic speech samples and the corre-
sponding challenges. Finally, Section 5 provides the statistics
of the different datasets and their quality comparisons.

2. Existing Audio Anti-Spoofing Datasets
The research community has developed various datasets to ad-
vance the field of Audio Spoof Detection. We can broadly clas-
sify these datasets into two categories, based on their speaker
characteristics and intended applications. The first category,
General Purpose Speaker Datasets, comprises audio data of
anonymous speakers in controlled environments, focusing on

1https://datasets.issflab.net



Figure 1: Speech clips from Spoofceleb (Top Left) and In the
Wild (Top Right) with extended silence (Red tint) , less duration
and abrupt cut at the end (purple tint) . The bottom two plots
are from Famous figures dataset with an average duration of 8
seconds and Transcription based segments

developing generic audio spoof detection systems. The second
category, Identity-Specific Datasets, addresses the challenges of
protecting public figures from targeted voice spoofing attacks.

2.1. General-Purpose Speaker Datasets

General-purpose speaker datasets have played a vital role in the
advancement of audio spoofing detection research by providing
standardized benchmarks to evaluate detection systems. The
ASVspoof Challenge series [10, 11, 12, 13] has emerged as the
primary benchmark in this domain, systematically evolving to
address increasingly sophisticated spoofing attacks. The latest
iteration, ASVspoof 5 [13], represents a significant advance-
ment by incorporating crowd-sourced speech data and a diverse
range of deepfake attacks. It includes real-world speech ex-
tracted from the Multilingual Librispeech (MLS) English par-
tition [14], which consists of audiobook recordings. Based
on the ASVspoof series, the ASVSpoof Laundered Database
(ASVSpoofLD) [15] is developed by passing audio files from
the ASVSpoof19 LA eval partition through a series of laun-
dering attacks (additive noise, reverberation, recompression, re-
sampling, etc.), introducing additional complexity for detection
systems. The DeepFake Audio Detection Dataset (DFADD)
[16] and CODECFake dataset [17] represent contemporary
datasets specifically designed to evaluate detection systems
against recent neural TTS architectures and codec-based neural
speech synthesis methods. Both datasets are derived from the
VCTK corpus, which comprises high-quality speech recordings
collected in a controlled laboratory environment. The Multi-
Language Audio Anti-spoofing Dataset (MLAAD) [18] extends
the scope to cross-lingual scenarios, addressing the increasingly
global nature of audio spoofing threats.

These datasets share several key characteristics that define
their utility in audio anti-spoofing research, such as controlled
recording environments, standardized evaluation protocols, and
balanced attack representations. However, their focus on con-
trolled conditions, anonymous speakers, and the use of read
speech limits their applicability in scenarios requiring protec-
tion of specific individuals under real-world conditions.

2.2. Identity-Specific Datasets

In contrast to general-purpose datasets, identity-specific
datasets focus on protecting known individuals from targeted
voice spoofing attacks. The In-The-Wild (ITW) dataset [19]
represents a unique collection of real-world speech data that
bridges the gap between controlled laboratory evaluations and

practical applications. Unlike the previous datasets, the ITW
comprises 38 hours of speech data collected from various on-
line platforms and social media sources. A significant advance-
ment in identity-specific datasets is represented by SpoofCeleb
[20], which addresses several limitations of previous datasets by
utilizing real-world data from VoxCeleb1 [21]. The authors pro-
posed a fully automated pipeline to process VoxCeleb1 speech
samples and generate the corresponding synthetic speech.

Despite the use of genuine real-world audio samples,
SpoofCeleb exhibits important limitations in the context of tar-
geted speaker protection. Most notably, the dataset’s training
and evaluation partitions do not share common speakers, mak-
ing it more suitable for generic deepfake detection rather than
protecting specific individuals from targeted attacks. Moreover,
Figure 1 illustrates the data quality challenges in speech collec-
tion and their impact on the quality of the synthesis. The top
waveforms are from SpoofCeleb (left) and In the Wild (right)
datasets, which contain extended silences (red shading) and
abrupt cuts (purple shading), which can lead to poor prosody
and unnatural timing in synthetic speech. In contrast, the bot-
tom waveforms show our Famous Figures dataset segments,
which maintain an average duration of 8 seconds.

3. Dataset Design and Methodology
Our dataset design process is guided by three primary objec-
tives: (1) ensuring high-quality authentic speech samples across
various speaking contexts, (2) maintaining speaker diversity
while capturing sufficient data per individual to represent their
unique vocal characteristics, and (3) establishing a reproducible
pipeline for data collection that can be extended to include ad-
ditional public figures in the future.

3.1. Design Consideration

First, we established a criteria for selecting public figures based
on three key factors: (a) frequency of public appearances, en-
suring sufficient source material for data collection, (b) diversity
of speaking contexts, including formal speeches, media inter-
views, and public statements, and (c) likelihood of being tar-
geted for voice spoofing attacks based on their public influence.
We selected 10 high-profile public figures who met these cri-
teria. These figures include Anthony Blinken, Barack Obama,
Donald Trump, JD Vance, Joe Biden, Kamala Harris, Mathew
Miller, Tim Walz, Vivek Ramaswamy, and Elon Musk. Second,
we followed a systematic approach to the selection of the source
material. We only collected YouTube videos which have (a)
minimum resolution of 720p to ensure adequate audio quality,
(b) minimum video duration of 5 minutes to ensure adequate
speaking patterns, (c) publication date range of 2018-2024 to
ensure current speaking styles, and (d) clear speech with mini-
mal background noise.

3.2. Data Collection Pipeline

The data collection and processing pipeline is implemented as
a systematic automated workflow to ensure consistency and re-
producibility. The initial data acquisition begins with a care-
fully curated CSV file containing YouTube links to various
speeches, interviews, and public appearances of selected pub-
lic figures. Each entry in the CSV file includes metadata such
as the speaker’s identity, start time (the time at which the target
speaker starts speaking), content type (speech, interview, etc.),
publication date and the YouTube URL. As described in Figure
2, the data collection pipeline consists of the following stages:



Speaker Youtube Link Start t ime

Poltical Figure https://www.youtube.com/videolink 00:00:48

Youtube Audio Extractor

ytdlp Assembly AI

Whisper Large 

Transcription Module

Speaker Diarizer

Word_level_text Start_t ime End_Time

Hello 00:00:48 00:01:07

World ! 00:01:08 00:01:30

Sentence Level Chunk

Sentence Start_t ime End_time

Hello! How are you ? When did you come? 00:00:48 00:00:53

I am here to see you people 00:00:55 00:01:00

Noisy chunks remover

Figure 2: Schematic diagram for real audio data collection with
transcription based segmentation.

1. Audio Extraction: We utilize yt-dlp2 to directly download
audio from YouTube links. It uses ffmpeg to download the
best audio available in the WAV format, and resample it 16
kHz. Along with the YouTube video link, we specify the
target speaker’s speech starting time to trim the audio to begin
from the specified timestamp, ensuring that the first speaker
is the target speaker.

2. Speaker Diarization: We employ Assembly AI3 to isolate
segments that contain only the target speaker’s voice. This
step eliminates cross-talk and background speakers.

3. Transcription Generation: We integrate OpenAI Whisper
Large Turbo4 for transcription, which gave word-level tran-
scripts with timestamps. We also experimented with the
Google speech recognition api package and other commer-
cial tools; however, they generated text with less accuracy
and without proper punctuation.

4. Audio Segmentation: We utilize transcription-based seg-
mentation that predicts word-level transcripts along with their
timestamps in the utterance, as illustrated in Figure 2. This
step processes word-level transcriptions with timestamps and
groups them into sentence segments based on the utterance
duration U , user-defined duration D, and the threshold dura-
tion T . Words are sequentially appended to a segment, and
when the duration of the segment reaches D−T seconds, the
process searches for a punctuation mark within the interval
[D − T,D + 1]. If a punctuation mark is found within this
range, the segment is finalized up to the punctuation, while
the remaining words are carried over to the next segment. If
no punctuation is detected, the segment extends up to D+ T
seconds, with an additional 0.25 seconds of silence appended
at the end. The last few words are discarded, if their cumu-
lative duration is less than D − 2T seconds. In addition,
incomplete sentences are discarded if the total segment count
exceeds

(
U
D

− 10
)
.

5. Quality Control: Our initial segmentation strategy involved

2https://github.com/yt-dlp/yt-dlp
3https://www.assemblyai.com/
4https://github.com/openai/whisper/
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Figure 3: Schematic diagram of speech production.

abrupt cutting at fixed intervals of n seconds or minutes. For
example, a 30-minute utterance would be divided into 300
segments of 6 seconds each. Through continuous experi-
mentation, we transitioned to silence- or speaker-pause-based
segmentation, as described in SpoofCeleb [20]. In this ap-
proach, if silence extends beyond 500 ms, the utterance is
segmented at that point. We evaluated the output audio seg-
ments based on specific criteria, such as silence duration,
sentence boundary completion, and SNR range. With the
updated segmentation approach, we achieved segments with
maximized voiced portions, completed sentence boundaries,
and naturally reduced noise.

4. Synthetic Speech Generation
The evolution of synthetic speech has progressed from su-
pervised neural models to self-supervised learning (SSL). Al-
though early models produced robotic-sounding speech despite
extensive training data, SSL-based methods significantly im-
proved quality through large-scale pre-training. The recent in-
tegration of Audio Language Models (ALMs) has further en-
hanced prosody and expressiveness.

4.1. Synthesis Pipeline

We first trained a total of 10 TTS models for each speaker using
the audio samples and their corresponding transcriptions gener-
ated through the data collection pipeline in Section 3.2. After
that, we used the transcripts and the trained models to gener-
ate synthetic speech. From our exploration, we have identified
three primary approaches to train TTS models.

4.1.1. Speaker-Specific Training

This approach involves training a model exclusively for a sin-
gle speaker, which requires at least 24 hours of speech data
(approximately 11,000 to 13,000 audio samples). The training
process includes creating file lists using bonafide audio samples
and their corresponding transcriptions, as mentioned in Figure
3. Training is performed using high-performance GPUs, such
as three NVIDIA A100 GPUs, and typically takes five days per
speaker. We train StyleTTS2 [22] only using this approach.
The synthetic speech generated through this approach exhibited
limitations in prosody and naturalness, which led us to explore
more efficient alternatives.



Table 1: Statistical overview of audio deepfake datasets

Dataset #Speakers Bonafide
Utterances

Synthetic
Utterances

Duration
(hrs) Speaking Contexts Synthesis Methods

ASVspoof19 LA 107 12,483 108,978 ∼100 Read speech A01-A19 (TTS & VC)
ASVspoof 5 585 148,656 423,740 ∼570 Read speech 44 TTS, VC systems
DFADD 109 44,455 163,500 ∼50 Read speech Diffusion- and Flow-matching TTS
CodecFake (EN) 110 44,242 269,903 ∼312 Read speech 7 Neural Audio Codecs
SpoofCeleb 1,251 248,000 2.5M+ ∼400 public appearances 23 TTS systems
In-The-Wild 54 19,963 11,816 ∼38 public appearances Unknown

Famous Figures 10 26,500 265,000 ∼590 public appearances 10 Open-source TTS models

Table 2: NISQAv2 prediction for in the wild datasets

Dataset type Avg. Naturalness Fake Miss-Rates(%)

ASVspoof19 LA 2.99 25
CodecFake (EN) 3.41 57.5
DFADD 3.39 24.4
MLAAD 3.53 34.8
In the wild 2.80 52.5
Spoof celeb 3.06 -
Famous Figures 3.69 61.9

4.1.2. Few-Shot Fine-Tuning

In this approach, a model pre-trained for multiple speakers
is adapted to a specific speaker using 1 to 3 hours of its
data through fine-tuning. We fine-tuned XTTSv2 [23] and
StyleTTS2 [22] for all speakers. This approach significantly
improved speech quality by effectively transferring prosody and
emotional features from the multi-speaker model.

4.1.3. Zero-Shot Synthesis

In this approach, a large-scale model pre-trained for multiple
speakers is adapted to a specific speaker using only a single
reference audio and text pair. Although models like XTTSv2
and StyleTTS2 have zero-shot capabilities, they struggled to
match the reference speaker’s voice accurately. However, re-
cent models integrating ALM based architectures have drasti-
cally improved the performance. From this category, we have
generated synthetic speech for all speakers using F5TTS[24],
E2TTS[25], FishSpeech [26], SSRSpeech [27], MaskGCT [28],
CozyVoice2 [29], LLASA,[30] and Zonosv0.1.

4.2. Speech Synthesis Challenges and Solutions

The development of synthetic speech for political figures pre-
sented unique challenges that required iterative solutions. We
discuss our progress through multiple approaches, highlighting
both the challenges encountered and the solutions implemented.

4.2.1. Challenges

We faced significant obstacles in our initial attempts to use po-
litical speech recordings to train TTS models. We faced fun-
damental limitations with Signal-to-Noise Ratio (SNR) mea-
surements for publicly available recordings (12.12dB), which
is substantially below the 30.25 dB benchmark established
by standard TTS datasets. The synthesis phase presented
two primary challenges: maintaining speaker identity and en-
suring natural-sounding output. Despite using various TTS
(Tacotron-Capacitron[31], GlowTTS[32]) and vocoder archi-
tectures (HiFi-GAN[33], UnivNet[34]), we encountered issues
with mechanical articulation and high-frequency noise.

4.2.2. Evolution of Solutions

Our solution strategy evolved through three key phases:
1. Audiobook Data Approach: We first attempted using high-

quality audiobook data (5-10 hours per speaker) from Ama-
zon Audible. While this improved signal quality and reduced
computational artifacts, particularly with HiFi-GAN vocoder,
the synthetic speech exhibited notable monotonicity, lacking
the dynamic range essential for political discourse.

2. Enhanced Segmentation: We implemented transcription-
based sentence-level segmentation using Whisper Large
Turbo’s word-level timestamps as described in Section 3.2.
This approach preserved linguistic coherence and improved
phoneme alignment, leading to reduced noise and more ac-
curate spectrogram generation.

3. Advanced Model Architecture: Finally, we transitioned to
Few-Shot and Zero-Shot TTS models, which demonstrated
superior performance compared to single-speaker training
approaches, effectively addressing our remaining challenges.

This iterative progression from traditional approaches to
more sophisticated solutions ultimately enabled us to achieve
higher quality synthetic speech while maintaining speaker-
specific characteristics and natural prosody.

5. Dataset Statistics and Analysis
To evaluate the perceptual quality and detection difficulty of
synthetic speech in datasets, we conducted subjective and ob-
jective assessments. For subjective evaluation, we implemented
a web-based listening test with 32 unique participants. Each
participant was presented with 14 randomly selected audio sam-
ples (two from each dataset, one real and one fake) and tasked
with classifying them as either genuine or synthetic speech.
The results revealed significant variations in detection difficulty
across datasets. Notably, our Famous Figures dataset achieved
the highest mis-classification rate at 61.9%, suggesting that its
synthetic speech samples more closely resemble natural speech
compared to other datasets. The misclassification rates for dif-
ferent datasets are shown in Table 2 column Fake Miss-Rates.

For an objective quality assessment, we used the NISQA-
TTS model [35], a deep learning-based model specifically de-
signed to evaluate the quality of synthetic speech. As shown in
Table 2, our Famous Figures dataset achieved impressive qual-
ity scores, with NISQA-TTS predicting naturalness of 3.69, sur-
passing both In the Wild and Spoof Celeb datasets.
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