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Abstract

Black-box adversarial attack on vision-language pre-trained models is a practical
and challenging task, as text and image perturbations need to be considered simul-
taneously, and only the predicted results are accessible. Research on this problem
is in its infancy, and only a handful of methods are available. Nevertheless, existing
methods either rely on a complex iterative cross-search strategy, which inevitably
consumes numerous queries, or only consider reducing the similarity of positive
image-text pairs but ignore that of negative ones, which will also be implicitly
diminished, thus inevitably affecting the attack performance. To alleviate the above
issues, we propose a simple yet effective framework to generate high-quality adver-
sarial examples on vision-language pre-trained models, named HQA-VLAttack,
which consists of text and image attack stages. For text perturbation generation, it
leverages the counter-fitting word vector to generate the substitute word set, thus
guaranteeing the semantic consistency between the substitute word and the original
word. For image perturbation generation, it first initializes the image adversarial
example via the layer-importance guided strategy, and then utilizes contrastive
learning to optimize the image adversarial perturbation, which ensures that the
similarity of positive image-text pairs is decreased while that of negative image-text
pairs is increased. In this way, the optimized adversarial images and texts are more
likely to retrieve negative examples, thereby enhancing the attack success rate. Ex-
perimental results on three benchmark datasets demonstrate that HQA-VLAttack
significantly outperforms strong baselines in terms of attack success rate.

∗Corresponding author.
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1 Introduction

Vision-Language Pre-training (VLP) models have become a cornerstone for cross-modal tasks,
achieving remarkable success in applications such as image-text retrieval [39, 4, 7], image caption-
ing [27], and visual grounding [20]. However, research has shown that these models are vulnerable to
adversarial attacks [19, 10, 37, 6, 11], posing significant societal concerns. Adversarial attacks inject
imperceptible perturbations to text and image inputs, aiming to manipulate predictions of victim
VLP models maliciously. Specifically, existing attacks can be broadly categorized into white-box
attacks [37, 21, 32] and black-box attacks [19, 10, 34, 14, 5]. In white-box attacks, attackers have full
access to the victim model, allowing them to exploit gradients for highly effective attacks. However,
the white-box setting can be too idealistic in real-world scenarios. In contrast, black-box attacks
assume limited access to the victim model, such as confidence scores or prediction labels, making
them more practical for real-world applications.

Black-box attacks can be categorized into query-based attacks [34, 14, 5, 18, 17] and transfer-based
attacks [19, 10, 35, 38]. Query-based attacks employ an iterative cross-search strategy that requires
repeatedly querying the victim model and utilizing its feedback to refine adversarial perturbations.
While effective, these methods incur substantial query costs, limiting their practicality in real-world
applications. In contrast, transfer-based attacks generate adversarial examples by optimizing them on
a surrogate model, leveraging feature similarity and generalization to maintain their effectiveness
against unseen victim models without requiring queries. Due to their independence from direct access
to the victim model, transfer-based attacks are particularly well-suited for real-world adversarial
scenarios, making their enhancement a critical research focus.
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Figure 1: The average cosine similarity of image-
text pairs optimized by SGA, DRA, and HQA-
VLAttack on the Flickr30K dataset using ALBEF
as the surrogate model.

As shown in Figure 1, existing transfer-based ad-
versarial attacks on VLP models primarily aim to
decrease the similarity of positive image-text pairs,
thus causing the victim model to retrieve more nega-
tive examples and improving the attack success rates.
Specifically, SGA [19] utilizes BERT-Attack for text
perturbation along with set-level guidance to explic-
itly reduce the similarity between positive image-text
pairs. In addition, DRA [10] enhances this approach
by incorporating trajectory-aligned diversified sam-
pling and text-guided selection, which maximizes the
semantic distance between positive image-text pairs,
further increasing the attack success rate. However,
both SGA and DRA primarily focus on reducing the
similarity of positive image-text pairs, inadvertently
reducing the similarity of negative pairs as well. Con-
sequently, VLP models may still be biased towards
retrieving positive examples, which can inevitably
diminish the overall attack success rates. For further experimental details regarding Figure 1, please
refer to Appendix A.

To address the limitation mentioned above, we propose a High Quality transfer-based Adversarial
Vision-Language Attack, namely HQA-VLAttack. The overview of HQA-VLAttack is depicted
in Figure 2. By “high quality”, we mean that HQA-VLAttack achieves a significantly higher attack
success rate compared to existing methods. Specifically, HQA-VLAttack first generates semantically
consistent adversarial texts, followed by adversarial images with low similarity to the original images.
Finally, contrastive learning is used to increase the distance between matched adversarial image-text
pairs while reducing the distance between unmatched pairs. Experimental results on three datasets and
three attack tasks demonstrate that HQA-VLAttack outperforms other strong baselines, establishing
it as an effective high-quality vision-language adversarial attack method2.

2The source code is publicly available at https://github.com/HQA-VLAttack/HQA-VLAttack
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2 Related Work

2.1 White-Box Adversarial Attacks on VLP Models

White-box adversarial attacks [37, 32] assume that the attackers have full access to all information
about the victim model, including its architecture, training data, and gradients. This enables attackers
to directly exploit gradients and generate highly effective adversarial perturbations. Co-Attack [37]
extends this paradigm to multimodal settings by simultaneously perturbing both image and text
modalities, thereby leveraging intermodal dependencies to generate more effective adversarial exam-
ples. Its collaborative framework overcomes the limitations of single-modal attacks and significantly
increases the attack success rate in various vision-language tasks. However, the white-box assumption
can be too idealistic in real-world scenarios, as most developers will not release model details to the
public. This significantly limits the practical deployment of such attack methods.

2.2 Black-Box Adversarial Attacks on VLP Models

Black-box adversarial attacks restrict access to limited model output, such as confidence scores
or predicted labels, making them more practical for real-world applications. When targeting VLP
models, these attacks can be broadly categorized into query-based and transfer-based attacks.

Query-based attacks typically employ a complex iterative cross-search strategy on both image and
text inputs, leading to high query consumption. VLAttack [34] is one of the most advanced query-
based attacks, achieving state-of-the-art performance in attack success rate. It generates adversarial
examples by first independently perturbing images and texts, and then refining the adversarial
pair through an iterative cross-search strategy that jointly optimizes the multimodal embedding.
Although this method achieves effective attack performance, its reliance on a large number of queries
significantly limits real-world applicability.

Transfer-based attacks generate adversarial examples on a surrogate model and transfer them
to deceive the victim model, thereby eliminating the need for queries. This makes transfer-based
methods more practical for real-world applications. SGA [19] leverages set-level attacks by generating
adversarial examples from multi-scale images and multiple matching captions, thereby enhancing
cross-modal interactions and transferability. DRA [10] is a recent transfer-based method, which
enhances transferability by diversifying adversarial examples along the intersection region of the
adversarial trajectory and incorporates text-guided selection to mitigate overfitting. Most of these
methods also use input transformation techniques [31] to further improve transferability. However,
current methods lack consideration for negative image-text pairs, causing biased retrieval in VLP
models and limiting attack success rates. To address this issue, we propose a high-quality transfer-
based attack that reduces the similarity of positive pairs while increasing the similarity of negative
pairs. This approach makes VLP models more likely to retrieve negative examples, thereby improving
attack performance.

3 Problem Formulation

In image-to-text retrieval (TR) task, the retrieval function FTR takes an input image vi. The retrieval
model FTR retrieves the top-k candidate texts from a text set Dt = {t1, . . . , tn}, where n denotes
the set size. This retrieval process can be formulated as FTR(vi, Dt)k = {t(1), . . . , t(k)}.

In text-to-image retrieval (IR) task, the retrieval model FIR takes an input text ti = {x1, . . . , xL},
where L denotes the text length, and retrieves the top-k candidate images from an image set Dv =
{v1, . . . , vn}, where n denotes the set size. Mathematically, this retrieval procedure can be expressed
as FIR(ti, Dv)k = {v(1)i , . . . , v

(k)
i }.

Transfer-based multimodal adversarial attacks aim to generate image and textual adversarial example
sets, D′

v = {v′1, . . . , v′n} and D′
t = {t′1, . . . , t′n}, by applying pixel-level perturbations to images and

word-level perturbations to texts using a surrogate model fϕ. Here, we use (v′i, t
′
i) to represent a

positive adversarial image-text pair. Then a successful attack on the TR task can be formulated as:
t′i /∈ FTR(v

′
i, D

′
t)k s.t. ∥v′i − vi∥∞ ≤ ϵv, d(t

′
i, ti) ≤ ϵt, (1)

where ∥ ·∥∞ denotes the L∞ norm. The parameter ϵv represents the maximum allowable perturbation
for images, while d(·, ·) measures the distance between adversarial and original texts, with ϵt denoting
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Figure 2: The overall of HQA-VLAttack. First, the Text Attack module determines the substitute
word set and then generates the textual adversarial example t′i. Second, the Image Attack module
applies layer-importance based initial image adversarial example generation to obtain the initial
adversarial image example v′i, followed by contrastive learning-based image adversarial example
optimization for further refinement. Finally, the optimized adversarial examples are fed into the
victim model.

the maximum allowable perturbation for texts. Similarly, for the IR task:

v′i /∈ FIR(t
′
i, D

′
v)k s.t. ∥v′i − vi∥∞ ≤ ϵv, d(t

′
i, ti) ≤ ϵt. (2)

These conditions ensure that adversarial examples effectively degrade retrieval performance.

4 The Proposed Method

4.1 Text Attack

4.1.1 Determining the Substitute Word Set

To generate adversarial texts, we first create the semantically consistent substitute word sets, which
are then used to replace words in the original text, ensuring effective perturbations that increase the
likelihood of deceiving VLP models. Previous methods typically employed the masked language
model (MLM) [8] to generate substitutes for specific positions in the text. However, MLM predictions
rely solely on context, which can lead to semantically inconsistent words. For example, in the
sentence “I [MASK] you.” [MASK] may be predicted as either “love” or “hate”. This inconsistency
can severely degrade the effectiveness of generating adversarial text.

To address this issue, we use the counter-fitting word vector [22] to generate the substitute word
set. Specifically, given a clean text ti = [x1, ..., xj , ..., xL], where xj denotes the j-th word in the
sentence, we generate a textual adversarial example t′i by replacing words in ti. For each word xj in
the sentence, if its corresponding word vector vxj exists in the counter-fitting word vector set Vcf ,
we select all synonyms x′

j whose word vectors vx′
j
∈ Vcf have a cosine similarity greater than τ

with vxj . If vxj does not exist in Vcf , we generate k synonyms using the method from BERT-Attack
[14]. This process can be formally defined as:

C(xj) =

{
x′
j | cos(vx′

j
,vxj

) > τ, if vxj
∈ Vcf ,

argmaxkfmlm(xj), otherwise,
(3)

where C(xj) denotes the set of substitute words for xj , and fmlm(·) represents the masked language
model used in BERT-Attack to generate synonyms.

4.1.2 Generating Textual Adversarial Example

Intuitively, image-text pairs with lower similarity on the surrogate model tend to have lower similarity
on the victim model as well, making these adversarial image-text pairs more likely to succeed in
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attacking the victim model. Therefore, to improve the attack success rate, we need to generate a
textual adversarial example t′i by applying synonym replacement, such that its similarity with the
corresponding image vi is lowest in the surrogate model. In several vision-language tasks, the text
often consists of a limited number of tokens. Consequently, we restrict the replacement to a single
word within the text to generate t′i. Specifically, for each word xj in the text ti = [x1, ..., xj , ..., xL],
we iteratively substitute xj with each synonym from its substitute word set C(xj), thereby generating
a set of candidate texts C(ti)j . We then aggregate all candidate sets to form the comprehensive
adversarial text collection C(ti). The adversarial example t′i is subsequently selected based on the
minimum cosine similarity to the original image, as formalized by the following equation:

t′i = argmax
t∗i ∈C(ti)

− cos(ET (t
∗
i , fϕ), EI(vi, fϕ)), (4)

where cos(·, ·) is the cosine similarity function, ET (t
∗
i , fϕ) denotes the text feature of t∗i extracted by

the text encoder of the surrogate model fϕ, EI(vi, fϕ) denotes the image feature of vi extracted by
the image encoder of the surrogate model fϕ.

4.2 Image Attack

4.2.1 Layer-Importance Based Initial Image Adversarial Example Generation

This step aims to generate an initial image adversarial example by minimizing its similarity to the
original image. Existing methods [34, 35] extract layer-wise representations and minimize their
similarity iteratively. However, they wrongly assume equal layer contributions, while actual influence
varies. To address this, we propose a layer-importance based method to generate an initial image
adversarial example. This method involves two steps: determining layer importance and generating
an initial image adversarial example.
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Figure 3: The cosine similarity of image fea-
ture and [CLS] token embedding across Lay-
ers.

Determining layer importance. We conduct an ex-
periment to quantify the contribution of each layer
in the model. As illustrated in Figure 3, we present
two similarity variation curves: (1) the cosine similar-
ity between the output feature of an image vi under
normal propagation, denoted as EI(vi, fϕ), and the
output feature obtained after skipping the l-th layer,
denoted as EI\l(vi, fϕ); (2) the cosine similarity be-
tween the [CLS] token embedding at the l-th layer,
EI(vi, fϕ)l,1, and the [CLS] token embedding at the
top layer Lp, EI(vi, fϕ)Lp,1. Further experimental
details are provided in Appendix B. The results in-
dicate that as the layer index increases, skipping a
layer exerts a more pronounced influence on the fi-
nal output, highlighting the greater significance of
higher layers. Similarly, the similarity trend of the
[CLS] token follows a comparable pattern, exhibiting
a smoother variation. Since different training strategies result in varying parameter sensitivities,
more substantial changes are observed in the top layers. Assigning higher importance weights to
higher layers can lead to adversarial examples that overfit the surrogate model, thereby reducing their
effectiveness across different models. The smooth variation observed in the [CLS] token suggests
that this issue can be mitigated by narrowing the importance weight gap between lower and higher
layers. Consequently, employing the cosine similarity between EI(vi, fϕ)l,1 and EI(vi, fϕ)Lp,1 as
the importance weight is a reasonable choice. Thus, the l-th layer importance weight is defined as:

wi,l = cos(EI(vi, fϕ)l,1, EI(vi, fϕ)Lp,1). (5)

In Eq. (5), a higher value of wi,l indicates greater layer importance in generating adversarial examples.

Generate initial image adversarial example. Given the computed layer importance, we optimize
an adversarial image that differs significantly from the original in important layers by minimizing the
weighted sum of feature similarities. Specifically, for an original image vi, we introduce a random
perturbation δ ∼ U(−ϵ, ϵ) to obtain v′i = vi + δ. We then compute the cosine similarity between the
features EI(vi, fϕ)l,j and EI(v

′
i, fϕ)l,j extracted from the j-th token at the l-th layer of the surrogate
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model for both vi and v′i. This optimization is formulated as:

Ll =

Lp∑
l=1

wi,l ×
1

Dp

Dp∑
j=1

cos(EI(vi, fϕ)l,j , EI(v
′
i, fϕ)l,j), (6)

where Dp denotes the number of tokens per layer. Minimizing Ll reduces the similarity between the
adversarial image v′i and the original image vi. Finally, we apply PGD [21] to optimize this objective
and generate the initial image adversarial example v′i.

4.2.2 Contrastive Learning Based Image Adversarial Example Optimization

To further reduce the similarity between positive image-text pairs and increase the similarity between
negative image-text pairs—thereby encouraging both the surrogate and victim models to retrieve
unmatched texts for v′i and ultimately enhancing the attack success rate—we employ a contrastive
learning approach to optimize the adversarial image v′i.

Specifically, let Tp denote the set of textual adversarial examples generated from the texts matched
with v′i in a batch of image-text pairs, along with their corresponding original texts. Let Tn denote
the set of adversarial texts that are unmatched with v′i within the same batch. During the optimization
process, we design the following loss function:

Lc =
∑

v∗
i ∈Trans(v′

i)

(λ
∑
t′i∈Tp

cos(ET (t
′
i, fϕ), EI(v

∗
i , fϕ)) +

∑
t′j∈Tn

cos(ET (t
′
j , fϕ), EI(v

∗
i , fϕ)), (7)

where Trans(v′i) is the scale transformation function, and λ is the penalty factor for positive image-text
pairs in contrastive learning.

By means of this loss function, on the surrogate model fϕ, for positive image-text pairs, we minimize
their similarity, that is, increase their distance in the feature space; for negative image-text pairs, we
maximize the similarity of their feature vectors, that is, reduce the distance between the two in the
feature space. As a result, the optimized adversarial image example is more likely to retrieve negative
texts, thereby improving the attack success rate. Finally, we utilize the PGD to optimize Lc and
obtain the refined image adversarial example v′i.

4.3 The Overall Procedure

HQA-VLAttack begins by extracting a batch of image-text pairs from the datasets Dt and Dv in each
round and optimizing them through the following procedure to generate D′

t and D′
v. The process

starts with a text attack: given an original image-text pair (vi, ti), HQA-VLAttack first determines
the substitute word set for each candidate word in ti. Using these substitute sets, it constructs
the textual adversarial example t′i. Following this, an iterative image attack is conducted. In each
iteration, HQA-VLAttack first initializes the image adversarial example v′i, then uses a contrastive
learning-based method to further optimize the image adversarial example. The detailed algorithm
procedure of HQA-VLAttack is given in Appendix C.

5 Experiment

5.1 Experimental Settings

Dataset. We conduct experiments on three widely-used public multimodal datasets Flickr30K [25],
MSCOCO [16], and RefCOCO+ [36]. The detailed dataset description is shown in Appendix D.
For the image-text retrieval task, we conduct experiments on the Flickr30K test set, which contains
1,000 images and 5,000 captions, as well as on the MSCOCO test set, which includes 5,000 images
and approximately 25,000 captions. For visual grounding and image captioning tasks, we use 3,000
images and 15,000 captions from RefCOCO+ as well as 10,000 images and 50,000 captions from
MSCOCO, respectively. We adopt the Karpathy split for experimental evaluation.

Models. We follow [19, 10] to evaluate two popular VLP architectures, the fused VLP and aligned
VLP models. Specifically, we select ALBEF [13] and TCL [33] as representatives of the fused VLP
category. ALBEF integrates a 12-layer visual transformer (ViT-B/16) [9] as the image encoder, and
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Table 1: Attack success rate (%) in image-text retrieval on the Flickr30K dataset. We present the
attack success rate metric R@1 for both IR and TR tasks, indicating the success of attacks at Rank 1.
∗ indicates white-box attacks.

Flickr30K Dataset

Surrogate Model Victim Model ALBEF TCL CLIPViT CLIPCNN

Attack Method TR R@1 IR R@1 TR R@1 IR R@1 TR R@1 IR R@1 TR R@1 IR R@1

ALBEF

PGD 52.45∗ 58.65∗ 3.06 6.79 8.96 13.21 10.34 14.65
BERT-Attack 11.57∗ 27.46∗ 12.64 28.07 29.33 43.17 32.69 46.11
Sep-Attack 65.69∗ 73.95∗ 17.60 32.95 31.17 45.23 32.83 45.49
Co-Attack 77.16∗ 83.86∗ 15.21 29.49 23.60 36.48 25.12 38.89
SGA 97.24∗ 97.28∗ 45.42 55.25 33.38 44.16 34.93 46.57
DRA 96.14∗ 96.63∗ 49.74 58.83 39.14 48.39 41.38 51.66
HQA-VLAttack 99.79∗ 99.98∗ 73.02 77.60 52.15 62.05 59.64 65.59

TCL

PGD 6.15 10.78 77.87∗ 79.48∗ 7.48 13.72 10.34 15.33
BERT-Attack 11.89 26.82 14.54∗ 29.17∗ 29.69 44.49 33.46 46.06
Sep-Attack 20.13 36.48 84.72∗ 86.07∗ 31.29 44.65 33.33 45.80
Co-Attack 23.15 40.04 77.94∗ 85.59∗ 27.85 41.19 30.74 44.11
SGA 48.91 60.34 98.37∗ 98.81∗ 33.87 44.88 37.74 48.30
DRA 51.09 61.79 98.21∗ 98.33∗ 40.25 48.94 42.91 52.49
HQA-VLAttack 62.88 71.70 99.79∗ 99.93∗ 52.39 59.41 55.43 62.44

CLIPViT

PGD 2.50 4.93 4.85 8.17 70.92∗ 78.61∗ 5.36 8.44
BERT-Attack 9.59 22.64 11.80 25.07 28.34∗ 39.08∗ 30.40 37.43
Sep-Attack 9.59 23.25 11.38 25.60 79.75∗ 86.79∗ 30.78 39.76
Co-Attack 10.57 24.33 11.94 26.69 93.25∗ 95.86∗ 32.52 41.82
SGA 13.40 27.22 16.23 30.76 99.08∗ 98.94∗ 38.76 47.79
DRA 12.51 30.00 14.65 30.62 98.77∗ 99.00∗ 45.47 50.74
HQA-VLAttack 25.13 41.98 24.66 44.00 100.00∗ 100.00∗ 74.07 77.19

CLIPCNN

PGD 2.09 4.82 4.00 7.81 1.10 6.60 86.46∗ 92.25∗

BERT-Attack 8.86 23.27 12.33 25.48 27.12 37.44 30.40∗ 40.10∗

Sep-Attack 8.55 23.41 12.64 26.12 28.34 39.43 91.44∗ 95.44∗

Co-Attack 8.79 23.74 13.10 26.07 28.79 40.03 94.76∗ 96.89∗

SGA 11.42 24.80 14.91 28.82 31.24 42.12 99.24∗ 99.49∗

DRA 12.20 26.59 14.33 29.29 35.21 45.94 99.11∗ 99.49∗

HQA-VLAttack 20.75 38.66 22.13 42.45 62.82 69.46 99.87∗ 100.00∗

employs two 6-layer transformers as the text encoder and multimodal encoder, respectively. TCL
shares the same architectural framework as ALBEF but is distinguished by its unique pre-training
objectives. For the aligned VLP model, we focus on CLIP [26], which offers two distinct image
encoder variants: CLIPViT and CLIPCNN. These variants leverage ViT-B/16 and ResNet-101 [12]
as their respective base architectures for the image encoder.

Baselines. We compare HQA-VLAttack with the following baselines: (1) PGD [21] is a white-box
image adversarial attack method that iteratively maximizes model loss under perturbation constraints
via projected gradient descent. (2) BERT-Attack [14] is a black-box query-based textual adversarial
attack method that crafts context-aware substitutions via BERT to fool NLP models with minimal
edits. (3) Sep-Attack [19] is a black-box transfer-based multimodal adversarial attack method that
separately perturbs unimodal data without any cross-modal interactions. (4) Co-Attack [37] is a
white-box multimodal adversarial attack method that collaboratively perturbs both image and text
modalities to enhance adversarial effects. (5) SGA [19] is a black-box transfer-based multimodal
adversarial attack method that uses set-level attacks to boost adversarial transferability in vision-
language models. (6) DRA [10] is a recent black-box transfer-based multimodal adversarial attack
method that enhances adversarial transferability by diversifying adversarial examples along the
intersection region of the adversarial trajectory.

Evaluation Metrics. We use the Attack Success Rate (ASR) as the primary evaluation metric to
assess the transferability of adversarial attacks in both white-box and black-box settings. The ASR
reflects the overall success rate of the attacks, with a higher ASR indicating a higher quality attack
method. Additionally, we employ IR R@k, which measures the proportion of cases where none of
the top-k image retrieval results contain the correct image. Similarly, we use TR R@k to represent the
proportion of instances where none of the top-k caption retrieval results include the correct matching
caption.

Implementation Details. In our experiments, we adopt adversarial attack settings of SGA in order to
ensure the fairness of the comparison. For image attacks, we employ PGD with perturbation bound
ϵv = 2/255, step size α = 0.5/255, and iteration steps N = 10. We leverage a combination of
BERT-Attack and counter-filter word vectors to craft adversarial texts. The perturbation boundary is
set to ϵt = 1. For BERT-Attack, the length of the word list is W = 10. For the word vectors, the
similarity threshold is set to τ = 0.4. In contrastive learning, the positive pair penalty factor λ is set
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Table 2: Attack success rate (%) in image-text retrieval on the MSCOCO Dataset. We present
the attack success rate metric R@1 for both IR and TR tasks, indicating the success of attacks at
Rank 1. ∗ indicates white-box attacks.

MSCOCO Dataset

Surrogate Model Victim Model ALBEF TCL CLIPViT CLIPCNN

Attack Method TR R@1 IR R@1 TR R@1 IR R@1 TR R@1 IR R@1 TR R@1 IR R@1

ALBEF

PGD 76.70∗ 86.30∗ 12.46 17.77 13.96 23.10 17.45 23.54
BERT-Attack 24.39∗ 36.13∗ 24.34 33.39 44.94 52.28 47.73 54.75
Sep-Attack 82.60∗ 89.88∗ 32.83 42.92 44.03 54.46 46.96 55.88
Co-Attack 79.87∗ 87.83∗ 32.62 43.09 44.89 54.75 47.30 55.64
SGA 96.75∗ 96.95∗ 58.56 65.38 57.06 65.25 58.95 66.52
DRA 96.57∗ 96.47∗ 60.69 67.46 61.69 67.43 62.32 69.22
HQA-VLAttack 99.97∗ 99.97∗ 85.69 87.81 75.35 80.20 77.52 81.64

TCL

PGD 10.83 16.52 59.58∗ 69.53∗ 14.23 22.28 17.25 23.12
BERT-Attack 35.32 45.92 38.54∗ 48.48∗ 51.09 58.80 52.23 61.26
Sep-Attack 41.71 52.97 70.32∗ 78.97∗ 50.74 60.13 51.90 61.26
Co-Attack 46.08 57.09 85.38∗ 91.39∗ 51.62 60.46 52.13 62.49
SGA 65.93 73.30 98.97∗ 99.15∗ 56.34 63.99 59.44 65.70
DRA 68.06 75.86 98.99∗ 99.15∗ 63.30 63.99 64.24 65.70
HQA-VLAttack 81.90 86.32 99.97∗ 99.97∗ 70.77 76.22 73.52 78.22

CLIPViT

PGD 7.24 10.75 10.19 13.74 54.79∗ 66.85∗ 7.32 11.34
BERT-Attack 20.34 29.74 21.08 29.61 45.06∗ 51.68∗ 44.54 55.32
Sep-Attack 23.41 34.61 25.77 36.84 68.52∗ 77.94∗ 43.11 49.76
Co-Attack 30.28 42.67 32.84 44.69 97.98∗ 98.80∗ 55.08 62.51
SGA 33.41 44.64 37.54 47.76 99.79∗ 99.79∗ 58.93 65.83
DRA 35.96 48.00 36.32 48.56 99.66∗ 99.70∗ 64.41 69.99
HQA-VLAttack 56.05 66.03 54.10 65.25 100.00∗ 100.00∗ 88.93 89.26

CLIPCNN

PGD 7.01 10.62 10.08 13.65 4.88 10.70 76.99∗ 84.20∗

BERT-Attack 23.38 34.64 24.58 29.61 51.28 57.49 54.43∗ 62.17∗

Sep-Attack 26.53 39.29 30.26 41.51 50.44 57.11 88.72∗ 92.49∗

Co-Attack 29.83 41.97 32.97 43.72 53.10 58.90 96.72∗ 98.56∗

SGA 31.61 43.00 34.81 45.95 56.62 60.77 99.61∗ 99.80∗

DRA 33.26 45.15 33.89 46.49 59.60 64.87 99.51∗ 99.70∗

HQA-VLAttack 52.20 62.13 51.11 62.49 82.72 84.56 100.00∗ 100.00∗

Table 3: Cross-Task Transferability. The Baseline represents the original performance of IC and
VG on clean data. We utilize ALBEF to generate multi-modal adversarial examples for attacking
both Visual Grounding (VG) and Image Captioning (IC).

ITR → VG ITR → IC
Attack Val ↓ TestA ↓ TestB ↓ B@4 ↓ METEOR ↓ ROUGE-L ↓ CIDEr ↓ SPICE ↓
Baseline 58.46 65.89 46.25 39.7 31.0 60.0 133.3 23.8
Co-Attack 54.26 61.80 43.81 37.4 29.8 58.4 125.5 22.8
SGA 53.55 61.19 43.71 34.8 28.4 56.3 116.0 21.4
DRA 53.88 61.18 43.38 34.8 28.4 56.4 115.9 21.4
HQA-VLAttack 46.48 54.31 36.90 31.8 26.8 54.1 104.6 19.8

to −10, batch size is set to 16. Image scale sets S = {0.50, 0.75, 1.00, 1.25, 1.50}. Similarly, the
caption set is enlarged by augmenting the most matching caption pairs for each image in the dataset,
with the size of approximately five.

5.2 Experimental Results

5.2.1 Image-Text Retrieval Comparison

Our experiments focus on the Image-Text Retrieval (ITR) task, where we generate adversarial
examples across various surrogate models and evaluate the effectiveness of our method using the
Attack Success Rate (ASR) for both white-box and transfer attacks. As shown in Table 1 and Table 2,
our approach outperforms state-of-the-art methods in ASR on both Flickr30K and MSCOCO datasets.
Specifically, our method achieves nearly 100% ASR in white-box attacks, with both Text Retrieval
(TR) and Image Retrieval (IR) ASR reaching 100% when attacking CLIPViT on both Flickr30K and
MSCOCO.

In black-box attacks using models with the same architecture, attacking TCL with ALBEF as the
surrogate model results in ASR increases of 23.28% (TR) and 18.77% (IR) on Flickr30K, as well as
25.00% (TR) and 20.35% (IR) on MSCOCO. Similarly, when CLIPViT is used as the surrogate model
to attack CLIPCNN, ASR gains of 28.60% (TR) and 26.45% (IR) on Flickr30K, with corresponding
gains of 24.52% (TR) and 19.27% (IR) on MSCOCO.
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For attacks involving different model architectures, using ALBEF as the surrogate model to attack
CLIPViT results in ASR improvements of 13.01% (TR) and 13.66% (IR) on Flickr30K, as well as
13.66% (TR) and 12.77% (IR) on MSCOCO. Conversely, using CLIPViT as the surrogate model
to attack ALBEF yields ASR enhancements of 12.62% (TR) and 11.98% (IR) on Flickr30K, with
corresponding enhancements of 20.09% (TR) and 18.03% (IR) on MSCOCO.

These results demonstrate that HQA-VLAttack is a high quality attack method, significantly outper-
forming other approaches in terms of ASR.

5.2.2 Cross-Task ASR Comparison

To verify that HQA-VLAttack is not only effective in Image-Text Retrieval but also in other tasks,
we conduct experiments on Image Captioning and Visual Grounding. These tasks demand strong
cross-modal interaction and alignments, which are core components of multimodal learning.

Image Captioning. Image captioning is a generative task where the model [30, 29, 1] first encodes
the input image and then generates the corresponding textual description using a decoder based on
the encoded image features. In our experiment, we select ALBEF as the surrogate model to generate
adversarial examples for the Image-Text Retrieval (ITR) task and use BLIP as the victim model for
image captioning. The experiment is conducted on the MSCOCO dataset, and the generated captions
are evaluated using the following metrics: BLEU-4 (B@4) [24], METEOR [3], ROUGE [15], CIDEr
[28], and SPICE [2]. The results are shown in the Table 3. It can be seen that compared with the
second-best results, HQA-VLAttack improves the BLEU score by up to 3.0% and the CIDEr score
by up to 11.3%.

Visual Grounding. The task of visual grounding aims to locate the region in the image that
corresponds to a specific textual description. In our experiment, we use ALBEF as the surrogate
model to generate adversarial examples for the Image-Text Retrieval (ITR) task and select the ALBEF
model fine-tuned for visual grounding as the victim model. The experiment is conducted using the
RefCOCO+ dataset, and we employ Val, TestA, and TestB as evaluation metrics. As shown in Table 3,
HQA-VLAttack outperforms other methods significantly.

We further conduct experiments to assess the adversarial transferability of our method on Multi-
modal Large Language Models (MLLMs)[23]. Figure 5 shows adversarial examples generated by
our method that successfully mislead state-of-the-art closed-source MLLMs to produce incorrect
responses. Detailed experimental settings as well as additional experiments are provided in Appendix
G.

5.2.3 Ablation Study and Parameter Investigation

We conduct experiments on ITR to evaluate the effects of different modules and batch sizes B in the
proposed HQA-VLAttack. Specifically, we use the Flickr30K dataset, with ALBEF as the surrogate
model, and employ the Attack Success Rate (ASR, %) as the metric. We also investigate the impact
of the penalty factor λ in Appendix F.
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Figure 4: Ablation Study on Component Effectiveness
and Batch Size Impact on Attack Success Rate.

Module Ablation Experiment. When in-
vestigating the effectiveness of different
components, we select TCL as the victim
model. The results are shown in the Fig-
ure 4a. "w/o CF" refers to the omission
of the counter-fitting word vector for gen-
erating substitute words during the deter-
mining the substitute word set phase. "w/o
LI" refers to the case where no layer impor-
tance is used during the layer-importance
based initial image adversarial example
generation phase, and each wi,l is set to
1. "w/o IG" refers to the omission of the
Layer-Importance Based Initial Image Ad-
versarial Example Generation phase in the
image attack process. "w/o IO" refers to the omission of the Contrastive Learning Based Image Ad-

9



Figure 5: Adversarial Transferability between GPT-4o and Claude-3.7 Sonnet. The images on the left
show the responses generated by Claude-3.7 Sonnet when provided with adversarial images and the
prompt “Describe this image”, while the images on the right display the outputs produced by GPT-4o
under the same prompt.

versarial Example Optimization. It is evident that all components contribute to the HQA-VLAttack’s
performance, validating the effectiveness of each proposed component.

Batch Size B. To investigate the impact of different batch sizes B on attack success rate, we conduct
an ablation analysis, and the results are shown in Figure 4b. As B increases, the contrastive learning
process incorporates more unmatched texts, which helps guide the generation of adversarial images,
leading to a noticeable increase in the attack success rate. These results highlight the effectiveness of
a larger batch size in improving adversarial transferability. However, to balance attack performance
with computational efficiency, we ultimately selected B = 16 as the optimal batch size.

6 Conclusion

In this paper, we propose a novel method, HQA-VLAttack, to achieve high-quality adversarial attacks
against Vision-Language Pre-training (VLP) models. For text attack, HQA-VLAttack ensures seman-
tic consistency between the substitute word and the original word by utilizing counter-fitting word
vectors to identify an appropriate set of substitute words. For image attack, HQA-VLAttack generates
the initial image using a layer-importance-based approach, minimizing the similarity between the
initial and original images. Moreover, by contrastive learning-based optimization, HQA-VLAttack
reduces the similarity between positive image-text pairs while enhancing the similarity between nega-
tive image-text pairs. This forces the victim model to prioritize the retrieval of negative image-text
pairs. Extensive experimental results demonstrate that HQA-VLAttack significantly outperforms
strong baselines without requiring queries to the victim model, underscoring its effectiveness as a
high-quality attack. In future work, we aim to explore further optimization strategies to refine the
model and enhance its adversarial attack performance.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction provide a comprehensive outline of the motiva-
tions and contributions of the paper, which are subsequently examined and validated through
thorough experimentation.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our method in Appendix I
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: This paper does not involve extensive theoretical assumptions.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all the hyperparameter settings in the experimental settings and
Appendix F. Additionally, we submit our code in the supplementary materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All data utilized in this study are sourced from open-source platforms, ensuring
their openness, transparency, and accessibility. We submit our code and execution scripts as
supplementary materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all the hyperparameter settings in the experimental settings and
Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We follow prior works and use the same random seed for reproducibility. As
the results are stable and previous studies rarely report statistical significance analysis, we
do not include error bars or confidence intervals.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We list the detailed computer resources In Appendix F
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We rigorously adhered to the NeurIPS Code of Ethics in our research, ensuring
integrity, respect for all stakeholders, compliance with ethical guidelines, and absolute
anonymity.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The broad impacts are detailed in Appendix J.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper presents no release of data or models with significant misuse
potential, like pretrained language models or scraped datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: In this paper, we acknowledge the creators or original owners of all assets,
including code, data, and models, respecting intellectual property rights.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The paper introduces new assets via code, which are thoroughly documented
in the supplemental material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not utilize crowdsourcing or conduct research involving human
participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This paper utilizes LLMs solely for assessing experimental outcomes in
Appendix G and they are not central to the study’s main content.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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