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Abstract—Executing safe and precise flight maneuvers in
dynamic high-speed winds is important for the ongoing commodi-
tization of uninhabited aerial vehicles (UAVs). However, since the
relationship between various wind conditions and its effect on
aircraft maneuverability is not well understood, it is challenging
to design effective robot controllers using traditional control de-
sign methods. We present Neural-Fly, a learning-based approach
that allows rapid online adaptation by incorporating pre-trained
representations through deep learning. Neural-Fly builds on two
key observations that aerodynamics in different wind conditions
share a common representation and that the wind-specific part
lies in a low-dimensional space. To that end, Neural-Fly uses
a proposed learning algorithm, Domain Adversarially Invariant
Meta-Learning (DAIML), to learn the shared representation,
only using 12 minutes of flight data. This pretraining phase
enables rapid online learning through a composite adaptation law,
which only needs to update a set of linear coefficients for mixing
the basis elements to effectively correct for the wind effects.
When evaluated under challenging wind conditions generated
with the Caltech Real Weather Wind Tunnel with wind speeds
up to 43.6km/h (12.1m/s), Neural-Fly achieves precise flight
control with substantially smaller tracking error than state-
of-the-art nonlinear and adaptive controllers. In addition to
strong empirical performance, the exponential stability of Neural-
Fly results in robustness guarantees. Finally, our control design
extrapolates to unseen wind conditions, is shown to be effective
for outdoor flights with only on-board sensors, and can transfer
across drones with minimal performance degradation.

I. INTRODUCTION

The proliferation of uninhabited aerial vehicles (UAVs)
offers the prospect to revolutionize many aspects of our
daily lives but requires increased precision and robustness.
Applications range from drone delivery to drone rescue and
search, and from urban air mobility to autonomous farming
tools. Howevever, these applications demand precise and agile
control methods that can handle the complex aerodynamics
while adapting to changing environmental and operating con-
ditions. Flying in windy environments introduces even more
complexity because of the unsteady aerodynamic interactions
between the drone, the induced airflow, and the wind. These
unsteady and nonlinear aerodynamic effects substantially de-
grade the performance of conventional UAV control methods
that neglect to account for them in the control design. Our
recent work, Neural-Fly [1]], offers a solution, by pretraining a
neural network to enable rapid and robust online learning of
wind effects.
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Fig. 1: Neural-Fly design. Neural-Fly learns a model of
aerodynamics with linearly separated wind-variant and wind-
invariant components. A set of meta-trained basis functions, ¢,
is the wind-invariant representation of the aerodynamic effects.
A composite adaptation algorithm (that is, including tracking-
error-based and prediction-error-based terms) to update wind-
specific linear weights 4. The result is the wind-effect force
estimate, f = ¢a, which can be quickly adapted to new
wind conditions and used for precise control of the UAV in
challenging scenarios.

Prior approaches partially capture these effects with simple
linear or quadratic air drag models, which limit the tracking
performance in agile flight and cannot be extended to external
wind conditions [2]], [3]. Although more complex aerodynamic
models can be derived from computational fluid dynamics
[4]], such modelling is often computationally expensive, and
is limited to steady non-dynamic wind conditions. Adaptive
control addresses this problem by estimating linear parametric
uncertainty in the dynamical model in real time to improve
tracking performance. Recent state-of-the-art in quadrotor
flight control has used adaptive control methods that directly
estimate the unknown aerodynamic force without assuming
the structure of the underlying physics, but relying on high-
frequency and low-latency control [S]—[8]. In parallel, there
has been increased interest in data-driven modeling of aero-
dynamics (e.g., [9]-[12]), however existing approaches cannot
effectively adapt in changing or unknown environments such
as time-varying wind conditions.



In this short paper, we discuss the general method and
applications of our recently-developed data-driven approach,
called Neural-Fly[1]], and how it can be used to pretrain
learning-based control algorithms. Our method, depicted in
Fig.|l} demonstrates an efficient algorithm to pretrain a neural
network so that it can be adapted to different environments.
Neural-Fly also demonstrates a robust method to update such
a neural network in real-time, using our robust adaptation
algorithm. Neural-Fly has been applied to deep-learning-based
trajectory tracking control, and it has allowed quick adap-
tation to rapidly-changing wind conditions with centimeter-
level position-error tracking of agile manuevers. Furthermore,
Neural-Fly has demonstrated the ability to transfer control
policies from one robot to another, and from limited range
of constant wind speeds to a wide range of time-varying wind
speeds.

II. THE NEURAL-FLY METHOD

Consider the general robot dynamics model

M(q)§+C(q,4)g+g(q) =u+ f(q,4,w) )]

where ¢,q,§ € R are the n dimensional position, velocity,
and acceleration vectors, M(gq) is the symmetric, positive
definite inertia matrix, C(g,q) is the Coriolis matrix, g(q)
is the gravitational force vector and u € R" is the control
force. Most importantly, f(g,qg,w) incorporates unmodeled
dynamics, and w € R™ is an unknown hidden state used
to represent the underlying environmental conditions, which
is potentially time-variant. Specifically, w represents the wind
profile, and each different wind profile yields different unmod-
eled aerodynamic disturbances for the UAV.

The Neural-Fly algorithm decomposes the unmodeled dy-
namics into a wind-condition-independent basis function
¢(g,¢) and a wind-condition-dependent linear coefficient
a(w), that is,

f(q.4.w) = ¢(q, g)a(w). 2

In the supplementary material for [1], we provided that the
decomposition ¢(g,¢)a(w) exists for any analytic function
f(g,q,w), analyze ability of our method to untangle the
dependance of ¢ on w, and demonstrate the stability and
robustness of the Neural-Fly adaptation algorithm and overall
method through stability analysis and experimental demonstra-
tions. Here, we will provide an overview of the algorithms and
provide some intuition for the key aspects that allow Neural-
Fly to transfer to new wind conditions and vehicles.

Our method has two main stages: an offline learning phase
and an online adaptive control phase used as real-time online
learning. For the offline learning phase, we have developed
Domain Adversarially Invariant Meta-Learning (DAIML) that
learns a wind-condition-independent deep neural network
(DNN) representation of the aerodynamics in a data-efficient
manner. The full algorithm is given in ?? 1. The output of the
DNN is treated as a set of basis functions that represent the
aerodynamic effects. This representation is adapted to different
wind conditions by updating a set of linear coefficients that

Algorithm 1: Domain Adversarially Invariant Meta-
Learning (DAIML)

Hyperparameter: « >0,0<n <1,y >0

Input: © ={D,,,, - ,Dwg}

Initialize: Neural networks ¢ and A

Result: Trained neural networks ¢ and &

1 repeat

2 Randomly sample D,,, from D

3 Randomly sample two disjoint batches B¢
(adaptation set) and B (training set) from D,

4 Solve the least squares problem

. TV

a*(¢) = argming Ticpe [y, — d(x))a

5 if ||a*|| > v then

6 ‘ a* —vy- ”Z—” > normalization

7 Train DNN ¢ using stochastic gradient descent
(SGD) and spectral normalization with loss

> (Hyij’ - $(x)a’

ieB

g a - loss (h(d)(x,(f))), k))

8 if rand () <7 then
Train DNN £ using SGD with loss

Sienloss (n(o(x")). k)

10 until convergence

mix the output of the DNN. DAIML is data efficient and
uses only 12 total minutes of flight data in just 6 different
wind conditions to train the DNN. DAIML incorporates several
key features which not only improve the data efficiency but
also are informed by the downstream online adaptive con-
trol phase. In particular, DAIML uses spectral normalization
[9], [13] to control the Lipschitz property of the DNN to
improve generalization to unseen data and provide closed-
loop stability and robustness guarantees. As seen in Fig. [
training data generated in different wind conditions can have
high correlation between the actual trajectory of the vehicle
and the wind condition present. To counter this correlation
and prevent overfitting, DAIML uses a discriminative network,
which ensures that the learned representation is wind-invariant
and that the wind-dependent information is only contained in
the linear coefficients that are adapted in the online control
phase. The result is that DAIML trains a concise representation
of the aerodynamics that is both data efficient and generalizes
well to new wind conditions and even new vehicles.

For the online adaptive control phase, we have developed
a regularized composite adaptive control law to enable fast
and robust adaptation to new wind conditions. The adaptation
algorithm is built from a Kalman Filter [14]], [15] estimator
of the linear coefficients, a(w). The underlying model used
in the Kalman Filter design naturally provides robustness and
regularization properties. The adaptation law derived from the
Kalman Filter is augmented with a tracking error term to make
the closed loop dynamics more stable during rapid adaptation.



The adaptation law updates the wind-dependent linear coeffi-
cients using a composite of the position tracking error term and
the aerodynamic force prediction error term. This approach
effectively guarantees stable and fast adaptation to any wind
condition and robustness against imperfect learning. Although
this adaptive control law could be used with a number of
learned models, the speed of adaptation is further aided by
the concise representation learned from DAIML.

The Neural-Fly adaptive control algorithm can be sum-
marized by the following control law, adaptation law, and
covariance update equations, respectively.

une = M(q)gr +C(q.4)4r +8(q) —Ks —¢(q.4)a
S~ ~—————
nominal model feedforward terms ~ PD feedback jearning-based feedforward
3)
d=  -dd  -P¢"R Y (pa-y) +PpTs (4)
~—— —_———

regularization term  prediction error term

P=-21P+Q-P¢ R '¢P

tracking error term
®)

where ung is the control law, 4 is the online linear-parameter
update, P is a covariance-like matrix used for automatic gain
tuning, s = § + Ag is the composite tracking error, y is the
measured aerodynamic residual force with measurement noise
€, and K, A, R, O, and A are gains.

A key result of the Neural-Fly method is robustness to
error in the learned representation of the unmodeled dynamics.
Here, we provide a brief overview of the stability and robust-
ness guarantees for the Neural-Fly method. First, we formally
define the representation error d(t), as the difference between
the unknown dynamics f(qg,qg,w) and the best linear weight
vector a given the learned representation ¢(q,q), namely,
d(t) = f(q,q,w) — ¢(q,q¢)a(w). The measurement noise for
the measured residual force is a bounded function e(¢) such
that y(z) = f(t) + €(¢). If the environment conditions are
changing, we consider the case that ¢ # 0. This leads to the
following stability theorem.

Theorem 1. If we assume that the desired trajectory has
bounded derivatives and the system evolves according to
the dynamics in Eq. (1), the control law Eq. (3), and the
adaptation law Eq. (@) and (3)), then the position tracking error
exponentially converges to the ball

lim figll < sup [Cilld()I+Calle()[I+C5 (Alla@)] + la @)D |,
(6)

where C1, C, and C3 are three bounded constants depending
on ¢, R,Q, K, A\, M and A.

The proof of this theorem is provided in the supplementary
material for [[1]].

III. RESULTS

We built a quadrotor UAV for our primary data collection
and all experiments, shown flying through narrow gates with
wind and smoke in Fig. 3] This vehicle features a wide-X
configuration, weighs 2.6kg, tilted motors, and is built off
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Fig. 2: Input-output correlation in the training data.
Histograms showing data distributions in different wind condi-
tions. Left: distributions of the x-component of the wind-effect
force, f,. This shows that the aerodynamic effect changes as
the wind varies. Right: distributions of the pitch, a component
of the state used as an input to the learning model. This shows
that the shift in wind conditions causes a distribution shift in
the input.

standard flight control software, PX4, and standard robotic
middleware, Robotic Operating System.

To study the generalizability and robustness of our approach,
we also use an Intel Aero Ready to Fly drone to collect an
alternate dataset. This dataset is used to train a representation
of the wind effects on the Intel Aero drone, which we test on
our custom UAV. The Intel Aero drone has a symmetric X
configuration, weighs 1.4kg, and does not have tilted motors.

Neural-Fly was tested on an agile figure-8 trajectory and
compared with several methods that represent the state of art in
quadrotor control. Each method was tested in a variety of wind
conditions, including wind speeds inside the range of wind
speeds seen in training (O0m/s to 4.2m/s), and wind speeds
outside the range of wind speeds seen in training (8.5 m/s to
12.1m/s), and time varying wind speeds (8.5 +2.4 sin(¢)m/s)
that break the constant wind assumption made during training.
Using Neural-Fly, we report an average improvement of 66 %
over a nonlinear tracking controller [16]], 42 % over an £
adaptive controller [8]], and 35 % over an Incremental Nonlin-
ear Dynamics Inversion (INDI) controller [5]. These results
are all accomplished using standard quadrotor UAV hardware,
while running the PX4’s default regulation attitude control.
Our tracking performance is competitive even compared to
related work without external wind disturbances and with more
complex hardware (for example, [5] requires a 10-time higher
control frequency and onboard optical sensors for direct motor
speed feedback).

We also compare Neural-Fly with two variants of our
method: Neural-Fly-Transfer, which uses a learned representa-
tion trained on data from a the Intel-Aero drone, and Neural-
Fly-Constant, which only uses our adaptive control law with
a trivial non-learning basis. Neural-Fly-Constant, £;, and
INDI all directly adapt to the unknown dynamics without
assuming the structure of the underlying physics, and they
have similar performance. Neural-Fly-Transfer demonstrates
that our method is robust to changes in vehicle configuration
and model mismatch. This robustness is a key advantage of



TABLE I: Tracking error statistics in cm for different wind conditions. Two metrics are considered:

root-mean-square (RMS)

and mean.

Wind S[II’I?Z‘} 0 42 8.5 12.1 8.5 +2.4sin(7)
Method RMS Mean | RMS Mean | RMS Mean | RMS Mean | RMS Mean

Nonlinear 11.9 10.8 10.7 9.9 16.3 14.7 239 21.6 31.2 28.2

INDI 7.3 6.3 6.4 59 8.5 8.2 10.7 10.1 11.1 10.3

L1 4.6 4.2 5.8 5.2 12.1 11.1 22.7 21.3 13.0 11.6

NF-Constant 54 5.0 6.1 5.7 7.5 6.9 12.7 11.2 12.7 12.1

NF-Transfer 3.7 34 4.8 4.4 6.2 59 10.2 9.4 8.8 8.0

NF 3.2 2.9 4.0 3.7 5.8 53 9.4 8.7 7.6 6.9

Fig. 3: Agile flight through narrow gates. Neural-Fly was tested in the Caltech Real Weather Wind Tunnel where wind effects
can be visualized using smoke machines. The UAV follows an agile trajectory through narrow gates, which are slightly wider
than the UAV itself, under challenging wind conditions. These panels show the moment the UAV passed through the gate and
the complex interaction between the UAV and the wind.
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Fig. 4: Mean tracking errors in different wind conditions.
Solid lines show the mean error over 6 laps and the shade
areas show standard deviation of the mean error on each lap.

our method, which can be used to control a wide range of
quadrotor UAVs without requiring a new model to be trained
for each vehicle.

Finally, we demonstrate that our method enables a new set
of capabilities that allow the UAV to fly through low-clearance
gates following agile trajectories in gusty wind conditions

(Fig. B).

Together, these tests demonstrate not only the effectiveness
of our method, but also its robustness to modeling error
and generalization to new conditions, key considerations for
pretraining adaptable controllers.

IV. CONCLUSION

When measuring position tracking errors, we observe that
our Neural-Fly method outperforms state-of-the-art flight con-
trollers in all wind conditions. Neural-Fly can generalize to
new conditions, as demonstrated by its performance in wind
speeds outside the training range and in time varying wind
speeds. Furthermore, Neural-Fly is robust to changes in vehicle
configuration and modeling errors, as demonstrated by the
similar performance of Neural-Fly-Transfer. Our control algo-
rithm is formulated generally for all robotic systems described
by the Euler-Langrange equation, and should be applicable to
a wide range of robotic systems. Neural-Fly demonstrates a
new paradigm for designing adaptable controllers that can be
trained once and then used to control a wide range of vehicles.
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