
FedScale: Benchmarking Model and System
Performance of Federated Learning

Fan Lai, Yinwei Dai, Xiangfeng Zhu, Mosharaf Chowdhury

University of Michigan

Abstract

We present FedScale, a diverse set of challenging and realistic benchmark datasets1

to facilitate scalable, comprehensive, and reproducible federated learning (FL)2

research. FedScale datasets are large-scale, encompassing a diverse range of im-3

portant FL tasks, such as image classification, object detection, language modeling,4

speech recognition, and reinforcement learning. For each dataset, we provide a5

unified evaluation protocol using realistic data splits and evaluation metrics. To6

meet the pressing need for reproducing realistic FL at scale, we have also built7

an efficient evaluation platform to simplify and standardize the process of FL ex-8

perimental setup and model evaluation. Our evaluation platform provides flexible9

APIs to implement new FL algorithms and includes new execution backends with10

minimal developer efforts. Finally, we perform indepth benchmark experiments11

on these datasets. Our experiments suggest fruitful opportunities in heterogeneity-12

aware co-optimizations of the system and statistical efficiency under realistic FL13

characteristics. FedScale is open-source with permissive licenses and actively14

maintained,1 and we welcome feedback and contributions from the community.15

1 Introduction16

Available? Selected?
Drop out or

miss deadline?Training

Aggregation

Internet

Configuration

Y

N N

Y

N

Client Selection

ReportingExecution

Round i

R
ound i+1

Server

Client device

① Devices check-in with server; then
 sever selects a subset of clients

② Model and configuration are sent
 to selected devices

① ② ③

③ On-device training is performed; then model
 update is reported back if training succeeds

④

④ Server aggregates updates into the global
 model; then training moves to next round

Figure 1: Standard FL protocol [14, 54].

Federated learning (FL) is an emerging ma-17

chine learning (ML) setting where a logically18

centralized coordinator orchestrates many dis-19

tributed clients (e.g., smartphones or laptops)20

to collaboratively train or evaluate a model21

[14, 32] (Figure 1). It enables model train-22

ing and evaluation on end-user data, while23

circumventing high cost and privacy risks in24

gathering the raw data from clients, with ap-25

plications in diverse domains: for example,26

NVIDIA applies FL to create medical imag-27

ing AI [38]; Google runs federated training28

of NLP models in Google keyboard [17, 55];29

Apple performs federated evaluation and tuning of automatic speech recognition models on end-user30

devices [43]; IBM is deploying FL infrastructure to help detect financial misconducts [39].31

To address challenges arising from the heterogeneous execution speeds of client devices as well32

as non-IID data distributions, existing efforts have focused on optimizing different aspects of FL:33

(1) System efficiency: reducing computation load (e.g., using smaller models [47]) or communication34

traffic (e.g., local SGD [42]) to achieve faster on-device execution; (2) Statistical efficiency: designing35

1FedScale is available at https://github.com/SymbioticLab/FedScale.

Submitted to the 35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets
and Benchmarks. Do not distribute.

https://github.com/SymbioticLab/FedScale

Features OARF [30] LEAF [15] FedEval [16] FedML [28] Flower [13] FedScale

Heter. Client Dataset © © 7 © © 4

Heter. System Speed 7 7 7 7 7 4

Client Availability 7 7 7 7 7 4

Scalable Platform 7 7 © © 4 4

Real FL Runtime 7 7 7 7 7 4

Flexible APIs 7 7 7 4 4 4

Table 1: Comparing FedScale with existing FL benchmarks and libraries. © implies limited support.
We provide more details for this comparison in Appendix B.

data heterogeneity-aware algorithms (e.g., client clustering [26]) to obtain better training accuracy36

with fewer training rounds; (3) Privacy and security: developing reliable strategies (e.g., differentially37

private training [31]) to make FL more privacy-preserving and robust to potential attacks.38

The performance of an FL solution greatly depends on the characteristics of data, device capabilities,39

and participation of clients; overlooking any one aspect can mislead FL evaluation (§2). For example,40

dynamics of client system performance or availability (e.g., device drop-out or rejoining) can affect41

the dynamics of data availability (distribution shift of cross-device data), which may impair model42

convergence [20]; too few clients can lead to unstable statistical training convergence, but too many43

can slow down practical model aggregation because of heterogeneous system speed. As such, a44

comprehensive suite of benchmarks that combine diverse aspects of practical FL is crucial for45

systemic evaluation and comparison of different efforts.46

Existing benchmarks for FL are mostly borrowed from traditional ML benchmarks (e.g., MLPerf [40])47

or designed for simulated FL environments like TensorFlow Federated [12] or PySyft [8]. As shown48

in Table 1, existing benchmarks for FL fall short in multiple ways: (1) they are limited in the versatility49

of data for various real-world FL applications. Indeed, even though they may have quite a few datasets50

and FL training tasks (e.g., FedEval [16] and LEAF [15]), their datasets often contain synthetically51

generated partitions derived from conventional datasets (e.g., CIFAR) and do not represent realistic52

characteristics; (2) existing benchmarks often overlook different aspects of practical FL. For example,53

system speed and availability of the client are largely missing (e.g., FedML [8] and Flower [13]),54

which discourages FL efforts from considering system efficiency and leads to overly optimistic55

statistical performance (§2); (3) their experimental environments are unable to reproduce the practical56

scale of FL deployments. While real FL often involves thousands of participants in each training57

round [32, 55], existing benchmarking platforms – therefore, many existing FL solutions – are merely58

able to support the training of tens of participants per round; (4) they may lack user-friendly APIs59

for automated integration, resulting in great engineering efforts in benchmarking new plugins.60

Contributions: In this paper, we introduce FedScale, an FL benchmark to empower comprehensive61

Statistic
Data

Output
Metrics

System
Behavior

Data
Deployment

Different
Scale

Diverse
Tasks

Statistical
Efficiency

System
Efficiency

Privacy

Flexible
APIs

Scalable
Evaluation

Fast-forward
Simulation

Dynamics

Communi-
cation

Comput-
ation

Realistic
Data

FAR

Unified
Format

Privacy
Security

Figure 2: FedScale provides real FL data
and an automated evaluation platform.

and standardized FL evaluations. As shown in Figure 2,62

we make the following contributions:63

• To the best of our knowledge, we incorporate the most64

comprehensive FL datasets for evaluating different65

aspects of real FL deployments. FedScale currently66

has 18 realistic FL datasets spanning across small,67

medium, and large scales for a wide variety of task cat-68

egories, such as image classification, object detection,69

language modeling, speech recognition, machine trans-70

lation, recommendation, and reinforcement learning.71

To account for practical client behaviors, we include72

real-world measurements of mobile devices, and asso-73

ciate each client with his computation and communi-74

cation speeds, as well as availability status dynamics.75

• We build an automated evaluation platform, FedScale76

Automated Runtime (FAR), to simplify and standard-77

ize the FL evaluation in a more realistic setting. FAR78

integrates real FL statistical and system dataset, and79

2

thus can pinpoint various practical FL metrics needed in today’s work. FAR allows easy deploy-80

ment of new plugins with flexible APIs and can perform the training of thousands of clients in81

each round on a few GPUs efficiently. FAR is built atop of our recent work Oort [36], which has82

passed a rigorous artifact evaluation in OSDI 2021.83

• We perform indepth benchmark experiments for recent FL efforts in FedScale setting, and84

highlight the pressing need of co-optimizing system and statistical efficiency in a heterogeneity-85

aware manner, especially in tackling system stragglers and biased model performance.86

2 Background87

Existing efforts optimize for various goals of practical FL To tackle heterogeneous client data,88

FedProx [37], FedYogi [44] and Scaffold [33] introduce adaptive client/server optimizations that use89

control variates to correct for the ‘drift’ in model updates. Instead of training a single global model,90

some efforts resort to training a mixture of models [19, 22], clustering clients over training [27],91

or enforcing guided client selection [36]; To tackle the scarce and heterogeneous device resource,92

FedAvg [42] reduces communication cost by performing multiple local SGD steps, while some93

works compress the model update by filtering out or quantizing unimportant parameters [46, 34];94

After realizing the privacy risk in FL [24, 51], DP-SGD [25] enhances the privacy by introducing95

differential privacy, and DP-FTRL [31] applies the tree aggregation to add noise to the sum of96

mini-batch gradients to ensure privacy further. These FL efforts often navigate privacy-accuracy-97

computation trade-offs. As such, a realistic FL setting is crucial for comprehensive evaluations.98

Existing FL benchmarks can be misleading Existing benchmarks often lack realistic client99

statistical and system behavior datasets, and/or fail to reproduce large-scale FL deployments.100

0 500 1000 1500
Training Rounds

30

45

60

75

A
cc

ur
ac

y
(%

)

W/ Sys. Trace
W/o Sys. Trace

(a) Impact of system trace.

0 500 1000 1500
Training Rounds

30

45

60

75

A
cc

ur
ac

y
(%

)

20 Clients/Round
100 Clients/Round

(b) Impact of scale.

Figure 3: Existing benchmarks can mislead.2

Unfortunately, these limitations imply that101

they are not only insufficient for bench-102

marking diverse FL optimizations, but they103

can even mislead performance evaluations:104

(1) As shown in Figure 3(a), the statistical105

performance becomes worse when encoun-106

tering practical client behaviors (e.g., strag-107

glers and training failures), which indicates108

that existing benchmarks that do not have109

systems traces can produce overly opti-110

mistic statistical performance by overlook-111

ing systems characteristics; (2) FL training112

with hundreds of participants each round113

performs better than that with tens of par-114

ticipants (Figure 3(b)). As such, existing benchmark platforms can under-report existing FL optimiza-115

tions as they cannot support the practical FL scale with a large number of participants.116

3 FedScale Dataset: Realistic Workloads for Federated Learning117

FL performance relies on at least three aspects: (1) Client statistical data: the client dataset used118

for training or testing determines the statistical efficiency of FL tasks (e.g., convergence and model119

accuracy); (2) Client system behavior: the compute/communication speed of the client device and its120

availability over time determine the system efficiency of FL tasks (e.g., duration of each round and121

physical cost) and the availability of statistical data; and (3) Task categories: model and application122

combinations that are running can exhibit different reliance on client statistical data and execute at123

different system speeds. Because client data is tightly coupled with the client device, these aspects124

interplay with each other and can impact the performance of an FL optimization, be it for statistical125

efficiency, system efficiency, or privacy. As such, an ideal suite of FL benchmarking dataset should126

cover all three aspects and support FL deployments at diverse scales.127

We next introduce how we collected and partitioned realistic datasets in order to generate a versatile128

suite of FL datasets provided in FedScale.129

2We train the ShuffleNet model on OpenImage classification task. More experimental setups in Section 5.

3

Category Name Data Type #Clients #Instances Example Task

CV

iNature Image 2,295 193K Classification
OpenImage Image 13,771 1.3M Classification, Object detection

Google Landmark Image 43,484 3.6M Classification
Charades Video 266 10K Action recognition

VLOG Video 4,900 9.6K Classification, Object detection
Waymo Motion Video 496,358 32.5M Motion prediction

NLP

Europarl Text 27,835 1.2M Text translation
Blog Corpus Text 19,320 137M Word prediction

Reddit Text 1,660,820 351M Word prediction
CoQA Text 7,189 114K Question Answering

LibriTTS Text 2,456 37K Text to speech
Google Speech Audio 2,618 105K Speech recognition
Common Voice Audio 12,976 1.1M Speech recognition

Misc ML Taobao Text 182,806 20.9M Recommendation
Fox Go Text 150,333 4.9M Reinforcement learning

Table 2: Statistics of partial FedScale datasets (the full list and more details of data and its partition
are in Appendix A). FedScale has 18 real-world federated datasets; each dataset is partitioned by its
real client-data mapping. Note that we remove the sensitive information in these datasets.

0.25 0.50 0.75 1.00
Normalized Data Size

0.00

0.25

0.50

0.75

1.00

C
D

F
ac

ro
ss

C
lie

nt
s

Charades
GSpeech
OpenImage
Reddit

(a) Data size.

0.25 0.50 0.75 1.00
Pairwise Data Divergence

0.00

0.25

0.50

0.75

1.00

C
D

F
ac

ro
ss

C
lie

nt
Pa

ir
s

Charades
Gspeech
OpenImage
Reddit

(b) Data distribution.

Figure 4: Non-IID client data distribution.

101 102 103

Compute Latency (ms)

0.00

0.25

0.50

0.75

1.00

C
D

F
ac

ro
ss

C
lie

nt
s

(a) Compute capacity.

102 103 104 105

Network Throughput (kbps)

0.00

0.25

0.50

0.75

1.00

C
D

F
ac

ro
ss

C
lie

nt
s

(b) Network capacity.

Figure 5: Heterogeneous client system speed.

3.1 Client Statistical Dataset130

FedScale currently has 18 realistic FL datasets (Table 2), which can be used in various FL tasks (e.g.,131

federated training/testing or on-device fine-tuning). The raw data of these datasets are collected from132

different sources and stored in various formats. We clean up the raw data, partition them into new FL133

datasets, and streamline new datasets into consistent formats. Moreover, we categorize them into134

different FL use cases and provide Python APIs for integrating them into today’s frameworks.135

Realistic data and partitions We target realistic datasets with client information, and partition the136

raw dataset using the unique client identification. For example, OpenImage is a vision dataset collected137

by Flickr, wherein different mobile users upload their images to the cloud for public use. We use138

the AuthorProfileUrl attribute of the OpenImage data to map data instances to each client, whereby139

we extract the realistic distribution of the raw data. Following existing FL deployments [55], for140

each dataset, we assign its clients into the training, validation or testing groups, whereby we get the141

training, validation and testing set for it. Here, we pick four real-world datasets – video (Charades),142

audio (Google Speech), image (OpenImage), and text (Reddit) – to illustrate the characteristics of FL.143

Each dataset consists of hundreds or up to millions of clients and millions of data points. Figure 4144

reports the Cumulative Distribution Function (CDF) of the data distribution, wherein we see a high145

statistical deviation across clients not only in the quantity of samples (Figure 4(a)) but also in the data146

distribution (Figure 4(b)).3 Our findings confirm the non-IID data distribution in FL.147

3We report the pairwise Jensen–Shannon distance of the categorical distribution between two clients.

4

Different scales across diverse task categories To accommodate diverse scenarios in practical148

FL, FedScale includes small-, medium-, and large-scale datasets across a wide range of tasks, from149

hundreds to millions of clients. Some datasets can be applied in different tasks, as we enrich their use150

case by driving different metadata from the same raw data. For example, the raw OpenImage dataset151

can be used for object detection, and we extract each object therein and generate a new dataset for152

image classification. Moreover, we provide APIs for the developer to customize their dataset (e.g.,153

enforcing new data distribution or extracting a subset of clients).154

3.2 Client System Behavior Dataset155

Client device system speed is heterogeneous We formulate the system trace of different clients156

using AI Benchmark [1] and MobiPerf Measurements [7] on mobiles. AI Benchmark provides the157

training and inference speed of diverse models (e.g., MobileNet) across a wide range of device158

models (e.g., Huawei P40 and Samsung Galaxy S20), while MobiPerf has collected the available159

cloud-to-edge network throughput of over 100k world-wide mobile clients. As specified in real160

FL deployments [14, 55], we focus on mobile devices that have larger than 2GB RAM and connect161

with WiFi; Figure 5 reports that their compute and network capacity can exhibit order-of-magnitude162

difference. As such, how to orchestrate scarce resources and mitigate stragglers are paramount for163

high system efficiency.164

0 24 48 72 96 120
Timeline (h)

0

10

20

Pe
rc

en
t.

of
C

lie
nt

s
(%

)

Available clients

(a) Inter-device availability. (b) Intra-device availability.

Figure 6: Client availability is dynamic.

Client device availability is dynamic We in-165

corporate a large-scale user behavior dataset166

spanning 136k users [54] to emulate the behav-167

iors of clients. It includes 180 million trace168

items of client devices (e.g., battery charge or169

screen lock) over a week. We follow the real FL170

setting, which considers the device in charging171

to be available [12] and observe great dynamics172

in their availability: (i) the number of available173

clients reports diurnal variation (Figure 6(a)).174

This confirms the cyclic patterns in the client175

data, which can deteriorate the statistical per-176

formance of FL [20]. (ii) the duration of each177

available slot is not long-lasting (Figure 6(b)).178

This highlights the need of handling failures (clients become offline) during training, since the179

duration of each round (also a number of minutes) is comparable to that of each available slot.180

4 FAR: Evaluation Platform for Federated Learning181

1

Aggregator Simulator

Client Manager
Event Monitor

Client Selector
Communicator

Aggregation Handler

FedScale Data Loader

Client Simulator
Device Monitor

GPU 1

Communicator

Compute Engine (e.g., PyTorch)

GPU 2

FAR Platform

Metrics

Round to Acc.

Comm. Cost

Time to Acc.

① Submit config

Model Config

③ Output

② Simulation of Practical FL

Resource Manager

Comp. Cost

…

Accuracy/loss

Client
Simulator

Client
Simulator

Client
Simulator

Figure 7: FAR enables the developer to benchmark
various FL efforts with practical FL data and metrics.

Existing FL evaluation platforms can182

hardly reproduce the scale of practical FL183

deployments and fall short in providing184

user-friendly APIs, which requires great de-185

veloper efforts to deploy new plugins. As186

such, we introduce FedScale Automated187

Runtime (FAR), an automated and easily-188

deployable evaluation platform, to simplify189

and standardize the FL evaluation under190

a practical setting. FAR is based on our191

Oort project [36], which has been shown to192

scale well and can emulate FL training of193

thousands of clients in each round.194

Overview of FedScale Automated Run-195

time (FAR) FAR is an automated evalua-196

tion platform that can emulate realistic FL197

behaviors on GPU/CPU, while providing198

5

Module API Name Example Use Case

round_initialization_handler(*args) Client clustering
Aggregator round_completion_handler(*args) Adaptive/secure model aggregation
Simulator client_completion_handler(client_id, msg) Straggler mitigation

push_msg_to_client(client_id, msg) Model compression

Client select_clients(*args) Client selection
Manager select_model_for_client(client_id) Adaptive model selection

Client train(client_data, model, config) Local SGD/malicious attack
Simulator push_msg_to_aggregator(msg) Model compression

Table 3: Some example APIs. FedScale provides APIs to deploy new plugins for various designs.

various practical FL metrics, such as computation/communication cost, latency and wall clock time,199

for evaluating today’s efforts. As shown in Figure 7, FAR primarily consists of three components:200

• Aggregator Simulator: It acts as the aggregator in practical FL, which selects participants,201

distributes execution profiles (e.g., model weight), and handles result (e.g., model updates)202

aggregation. In each round, its client manager uses the client behavior trace to decide whether a203

client is available; then it selects the specified number of clients to participate that round. Once204

receiving new events, the event monitor will activate the handler (e.g., aggregation handler to205

perform model aggregation), or the communicator to send/receive messages. The communicator206

records the size (cost) of every network traffic, and its FL runtime latency (traffic_size
client_bandwidth).207

• Client Simulator: It works as the client in FL. FedScale data loader loads the federated dataset of208

that client and feeds this data to the compute engine to run real training/testing. The computation209

latency is determined by (#_processed_sample× latency_per_sample), and the communica-210

tor handles the network traffics and records the communication latency (traffic_size
client_bandwidth). At the211

same time, the device monitor handles different function calls specified by the developer; it will212

also terminate the simulation of this client and report failure(s) if the current runtime exceeds the213

available slot (indicated in the client availability trace).214

• Resource Manager: It orchestrates the available physical resource for evaluation to maximize the215

utilization of resource. For example, when the number of participants in that round exceeds the216

resource capacity (e.g., simulating thousands of clients on a few GPUs), the resource manager217

queues the overcommitted tasks of clients and schedules a new client simulation request from218

this queue once resource becomes available.219

Note that capturing runtime performance (e.g., wall clock time of training) is rather slow in practical220

FL (each client takes several minutes), but FAR enables fast-forward simulation for interactive221

development, since the real training on our platform often takes only a few seconds per round.222

FAR enables automated and standardized FL simulation FAR incorporates realistic FL traces,223

using the aforementioned trace by default, to automatically emulate the practical FL workflow: 1224

Task submission: FL developers specify their configurations (e.g., model and dataset), which can225

be federated training or testing, and the FAR resource manager will initiate the aggregator and226

client simulator on available resource (GPU, CPU, other accelerators, or even smartphones); 2 FL227

simulation: This evaluation stage follows the standardized FL lifecycle (in Figure 1). In each training228

round, the aggregator inquires the client manager to select the participants, whereby the resource229

manager distributes the client configuration to the available client simulators. After the completion230

of each client, the client simulator pushes the model update to the aggregator, which then performs231

the model aggregation. 3 Metrics output: During training, the developer can query the practical232

evaluation metrics on the fly. Figure 7 lists some popular metrics supported in FAR.233

FAR is easily-deployable and extensible for plugins FAR provides flexible APIs, which can234

accommodate with different execution backends (e.g., PyTorch and TensorFlow) by design, for the235

developer to quickly deploy new plugins for customized evaluations. Table 3 illustrates some example236

APIs that can facilitate diverse FL efforts, and Figure 9 dictates an example showing how these APIs237

6

Table 1

10 100 1000 10000

FedML 0.7

FAR 0.6 1.5 9.4 74.2

0.2 0 0 0

0.1 0.2 0.7 3.2

1.0

10.0

100.0

10 100 1000 10000

FedML
FAR

of Clients/Round (N)

0

10

100

0.
3 1.

2

9.
4

74
.2

0.
5

E
va

lu
at

io
n

D
ur

at
io

n/

R
ou

nd
 (m

in
)

1

Figure 8: FAR can support thousands of clients per
round, while FedML failed to run even 100 clients.

from fedscale.core.client import Client

class Customized_Client(Client):
Redefine training (e.g., for local

SGD/gradient compression)
def train(self,client_data,model,conf):

Code of plugin
...

Results will be sent to aggregator
return training_result

Figure 9: Add plugins by inheritance.

help to benchmark a new design of local client training with a few lines of code. Specifically, the238

developer can redefine client training function run_client by inheriting the base Executor module,239

and this plugin will be automatically integrated into FedScale during evaluations. Moreover, FAR240

can embrace new realistic (statistical client or system behavior) datasets with the built-in APIs. For241

example, the developer can import his own dataset of the client availability by leveraging the API242

(load_client_availability), and FAR will automatically force this trace during evaluations. We243

also provide more examples in Appendix C to demonstrate the ease of evaluating different today’s FL244

algorithms in FAR– a few lines are all we need!245

FAR is scalable and efficient FAR can perform large-scale simulations (e.g., thousands of partici-246

pants in each round) in both standalone (single CPU/GPU) and distributed (multiple CPUs/GPUs)247

setting. This is because: (1) FAR can support multiprocessing on a single GPU so that multiple248

client simulators can co-locate on the same GPU; (2) our resource manager monitors the fine-grained249

resource utilization of machines, queues the overcommitted simulation requests, adaptively dispatches250

simulation requests of the client across machines to achieve load balance, and then orchestrates the251

simulation based on the client mirror clock; (3) FAR maximizes the resource utilization by overlap-252

ping the communication and computation phrases of different clients. For example, the simulator can253

turn to train new clients while the communication of the last client is on the fly. As shown in Figure 8254
4, FAR not only runs faster than FedML [28] (using 10 clients per round), thus saving lots of GPU255

hours, but can support large-scale evaluations efficiently. Instead, state-of-the-art platforms hardly256

support the practical FL scale with hundreds of clients, because they mostly rely on the traditional257

ML architectures (e.g., the primitive parameter-server architecture), which are primarily designed for258

the traditional ML training on a number of workers with large batch size.259

5 Experiments260

In this section, we first show how FedScale can benefit the benchmarking of existing efforts optimizing261

for different aspects of FL. Moreover, we highlight some important insights to improve practical FL.262

Experimental setup We use 10 NVIDIA Tesla P100 GPUs in our evaluations. Following the real263

FL deployments [14, 55], the aggregator collects updates from the first N completed participants264

out of 1.3N participants to mitigate system stragglers in each round, and N = 100 by default. We265

pick two representative datasets in FedScale, which belong to different scales and tasks: (1) Speech266

Recognition: the small-scale Google Speech dataset, with 105K speech commands over 2600 clients.267

We train ResNet-18 [29] to recognize the command among 35 categories. (2) Image Classification:268

the middle-scale OpenImage dataset, with 1.3M images spanning 600 categories across 14k clients.269

We train ShuffleNet-V2 [57] to classify the image. These applications and models are widely used on270

mobile devices. We set the minibatch size of each participant to 20, and the number of local steps K271

to 20. We cherry-pick the hyper-parameters with grid search, ending up with an initial learning rate272

0.04. These settings are consistent with the literature.273

4We train the ShuffleNet model on OpenImage classification task. More experimental setups in Section 5.

7

0 200 400
Training Rounds

30

45

60

75

A
cc

ur
ac

y
(%

)
FedAvg
FedProx
FedYoGi
IID

(a) Convergence on Google speech.

0 500 1000 1500
Training Rounds

30

45

60

75

To
p-

5
A

cc
ur

ac
y

(%
)

FedAvg
FedProx
FedYoGi
IID

(b) Convergence on OpenImage.

1

Fi
na

l A
cc

ur
ac

y
(%

)

45

65

85

OpenImage

FedML FedScale

70.1
74.3

59.8
63.1

Google Speech

(c) Final model performance.

Figure 10: FedScale can benchmark the statistical FL performance. (c) shows existing benchmarks
can under-report the FedYoGi performance as they cannot support a large number of participants.

0 25 50 75
FL Runtime (hours)

30

45

60

75

To
p-

5
A

cc
ur

ac
y

(%
)

K=1
K=10
K=20

(a) FAR reports realistic FL clock.

Setting
FL runtime

(hours)

Evaluation time

(hours)

K=1 97 17

K=10 52 9

K=20 130 47

(b) FAR enables fast-forward eval. (c) FAR reports FL communication cost.

Figure 11: FedScale can benchmark realistic FL runtime. (a) and (b) report FedYoGi results on
OpenImage with different number of local steps (K); (b) reports the FL runtime to reach convergence.

5.1 How Does FedScale Help FL Benchmarking?274

Existing benchmarks are insufficient to evaluate the various metrics needed in today’s FL, and can even275

mis-report the FL performance due to their inability to reproduce the FL setting. Next, we crystallize276

the effectiveness of FedScale in benchmarking the different FL aspects over its counterparts.277

Benchmarking FL statistical efficiency. FedScale provides various realistic client datasets to278

benchmark the statistical efficiency of FL optimizations. Here, we experiment with three state-of-279

the-art optimizations (FedAvg, FedProx and FedYoGi) – each reinvents local SGD to mitigate the280

data heterogeneity – and the traditional IID data setting. Figure 10 reports the statistical training281

convergence, and we observe that: (1) while the round-to-accuracy performance and final model282

accuracy of non-IID settings are consistently worse than that of the IID setting, different tasks283

can have different preferences on the optimizations. For example, FedYoGi performs the best on284

OpenImage, but it is inferior to FedAvg on Google Speech. Existing benchmarks, however, are285

limited to quite a few FL tasks and scales, which can discourage the evaluation of FL efforts; and (2)286

existing benchmarks can under-report the FL performance due to their inability to reproduce the FL287

setting. Figure 10(c) reports the final model accuracy using FedML and FedScale, where we attempt288

to reproduce the scale of practical FL with 100 participants per round in both frameworks, but FedML289

can only support 30 participants because of its suboptimal scalability. We notice this inability of290

existing benchmarks caps the practical FL performance that the algorithm can indeed achieve.291

Benchmarking FL system efficiency. Existing system optimizations for FL focus on the practical292

runtime (e.g., wall-clock time in real FL training) and the FL execution cost. Unfortunately, existing293

benchmarks can hardly evaluate the FL runtime due to the lack of realistic system traces, but we now294

show how FedScale can help such benchmarking: (1) FAR enables fast-forward evaluations of the295

practical FL wall-clock time with fewer evaluation hours. Taking different number of local steps K in296

local SGD as an example [42], Figure 11(a) and Table 11(b) illustrate that FedScale can evaluate this297

8

0 20 40 60
FL Runtime (hours)

30

45

60

A
cc

ur
ac

y
(%

)
σ=0,K=100
σ=0.01,K=100
σ=0,K=30
σ=0.01,K=30

Figure 12: FedScale can
benchmark privacy efforts in
more realistic FL settings.

0 5 10 15 20 25
Percentage of Corrupted Clients

50

60

70

Fi
na

lA
cc

ur
ac

y
(%

)

W/o Defense
W/ Defense

Figure 13: FedScale can
benchmark security optimiza-
tions with realistic FL data.

Kuiper

1

1

2

3

4

5

0 150 300 450

Download Model
Compute
Upload Updates

C
lie

nt
 ID

Timeline of a Round (s)

69

124

151

259

416

Round completion

Figure 14: System stragglers
greatly slow down model aggrega-
tion in practical FL.

impact of K on practical FL runtime in a few hours. This allows the developer to evaluate large-scale298

system optimizations efficiently; and (2) FAR can dictate the FL execution cost by using realistic299

system traces. For example, Figure 11(c) reports the practical FL communication cost in achieving300

the performance of Figure 10, while Figure 14 reports the system duration of individual clients. These301

system metrics can facilitate developers to navigate the accuracy-cost trade-off.302

Benchmarking FL privacy and security. FedScale can evaluate the statistical and system effi-303

ciency for privacy and security optimizations in more realistic FL settings than its counterparts. Here,304

we give an example of how FedScale can benchmark the DP-SGD [25, 31], which applies differential305

privacy to improve the client privacy. We experiment with different privacy target σ (σ=0 indicates306

no privacy enhancement) and different number of participants per round K. Figure 12 shows that the307

current scale of participants (e.g., K=30) that today’s benchmarks can support can mislead the privacy308

evaluations too: while we notice great performance degradation in the training convergence of taking309

the privacy optimization (i.e., σ=0.01) when K=30, this performance drop is decent in the practical310

FL scale (K=100). Instead, FedScale is able to benchmark their performance in more FL realistic311

settings for various privacy use cases, such as wall-clock time, communication cost introduced in the312

privacy optimization, and the number of rounds needed to leak the privacy on realistic client data.313

As for benchmarking the FL security, we follow the example setting of recent backdoor attacks [50,314

51] on the OpenImage, where corrupted clients flip their ground-truth labels to poison the training.315

We benchmarked two settings: one without security enhancement, while the other one clips the316

model updates as [50]. As shown in Figure 13, state-of-the-art optimizations can mitigate the attacks317

without hurting the overall performance when a small fraction of clients are corrupted. However,318

more enhancements are needed as we notice a great accuracy drop as more clients become corrupted.319

5.2 Opportunities for Future FL Optimizations320

Heterogeneity-aware co-optimizations of communication and computation Existing opti-321

mizations for the system efficiency often apply the same strategy on all clients (e.g., us-322

ing the same number of local steps [42] or compression threshold [46]), while ignoring the323

heterogeneous client system speed. When we outline the timeline of 5 randomly picked324

50 60 70 80 90 100
Accuracy (%)

0.00

0.02

0.04

0.06

Pr
ob

ab
ili

ty
D

en
si

ty

Figure 15: Biased accuracy distri-
butions of the trained ShuffleNet
model across clients.

participants in our training of the ShuffleNet (Figure 14), we325

find that: (1) system stragglers can greatly slow down the round326

aggregation in practical FL; and (2) simply optimizing the com-327

munication or computation efficiency may not lead to faster328

rounds, as the last participant can be bottlenecked by the other329

resource. Here, optimizing the communication can greatly ben-330

efit Client 4, but it achieves marginal improvement on the round331

duration as Client 5 is bottlenecked by computation. As such,332

there is an urgent need of co-optimizing the communication333

and computation efficiency while being heterogeneity-aware.334

Co-optimizations of statistical and system efficiency Most335

of today’s FL efforts focus on either optimizing the statistical or336

the system efficiency, whereas we observe there exists a great337

need for jointly optimizing both efficiency: (1) practical FL suf-338

9

fers biased model performance across clients (Figure 15). This can originate from the heterogeneous339

data and system behaviors, because the system behavior determines the availability of client data340

over training, wherein predicting this system behavior can curb the statistical drift in advance (e.g.,341

prioritizing the use of upcoming offline clients). Moreover, the popular random client selection can342

deemphasize clients with slow speed, leading to poor accuracy on slow clients; and (2) statistical343

optimizations can leverage the heterogeneity nature of client system speed. For example, instead of344

applying a one-fit-all strategy for all clients, faster workers can trade more system latency against345

better statistical benefits. For example, faster workers can contribute larger but more accurate model346

updates when using gradient compression.347

6 Conclusion348

To enable scalable, robust, and reproducible research of federated learning, we introduce FedScale,349

a diverse set of realistic FL datasets in terms of scales, task categories and client system behaviors.350

We provide realistic federated datasets for benchmarking today’s FL efforts. To enable efficient and351

standardized FL evaluations, we introduce, FAR, a more scalable evaluation platform than the existing.352

FAR performs fast-forward evaluation of the practical FL setting and produces FL runtime metrics353

needed in today’s work. More subtly, FAR provides ready-to-use realistic datasets and flexible APIs354

to allow more FL applications, such as benchmarking the performance of Neural Architecture Search,355

model inference, and a broader view of federated data analytics (e.g., multi-party computation).356

Societal Impacts and Limitations We expect FedScale to be a standard benchmark in federated357

learning, contributing to the significant advancements of the field. One potential negative impact358

is that FedScale might narrow down the scope of future papers to the tasks and dataset types that359

have been included so far. In order to mitigate such a negative impact and limitation, we have made360

FedScale open-source at: https://github.com/SymbioticLab/FedScale, and will regularly361

update our datasets and tasks, based on the input from the community.362

References363

[1] AI Benchmark: All About Deep Learning on Smartphones. http://ai-benchmark.com/364

ranking_deeplearning_detailed.html.365

[2] Common Voice Data. https://commonvoice.mozilla.org/en/datasets.366

[3] Fox Go Dataset. https://github.com/featurecat/go-dataset.367

[4] Google Open Images Dataset. https://storage.googleapis.com/openimages/web/368

index.html.369

[5] iNaturalist 2019. https://sites.google.com/view/fgvc6/competitions/370

inaturalist-2019.371

[6] LibriVox – Free public domain audiobooks. https://librivox.org/.372

[7] MobiPerf. https://www.measurementlab.net/tests/mobiperf/.373

[8] PySyft. https://github.com/OpenMined/PySyft.374

[9] Reddit Comment Data. https://files.pushshift.io/reddit/comments/.375

[10] Stack Overflow Data. https://cloud.google.com/bigquery/public-data/376

stackoverflow.377

[11] Taobao Dataset. https://tianchi.aliyun.com/dataset/dataDetail?dataId=56&378

lang=en-us.379

[12] TensorFlow Federated. https://www.tensorflow.org/federated.380

[13] Daniel J. Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Titouan Parcollet, Pedro Porto Buarque381

de Gusmao, and Nicholas D. Lane. FLOWER: A friendly federated learning framework. arXiv382

preprint arXiv:2007.14390, 2021.383

[14] Keith Bonawitz, Hubert Eichner, and et al. Towards federated learning at scale: System design.384

In MLSys, 2019.385

[15] Sebastian Caldas, Sai Meher, Karthik Duddu, and et al. Leaf: A benchmark for federated386

settings. NeurIPS’ Workshop, 2019.387

[16] Di Chai, Leye Wang, Kai Chen, and Qiang Yang. FedEval: A benchmark system with a388

comprehensive evaluation model for federated learning. In arxiv.org/abs/2011.09655, 2020.389

[17] Mingqing Chen, Rajiv Mathews, Tom Ouyang, and Françoise Beaufays. Federated learning of390

out-of-vocabulary words. In arxiv.org/abs/1903.10635, 2019.391

10

https://github.com/SymbioticLab/FedScale
http://ai-benchmark.com/ranking_deeplearning_detailed.html
http://ai-benchmark.com/ranking_deeplearning_detailed.html
http://ai-benchmark.com/ranking_deeplearning_detailed.html
https://commonvoice.mozilla.org/en/datasets
https://github.com/featurecat/go-dataset
https://storage.googleapis.com/openimages/web/index.html
https://storage.googleapis.com/openimages/web/index.html
https://storage.googleapis.com/openimages/web/index.html
https://sites.google.com/view/fgvc6/competitions/inaturalist-2019
https://sites.google.com/view/fgvc6/competitions/inaturalist-2019
https://sites.google.com/view/fgvc6/competitions/inaturalist-2019
https://librivox.org/
https://www.measurementlab.net/tests/mobiperf/
https://github.com/OpenMined/PySyft
https://files.pushshift.io/reddit/comments/
https://cloud.google.com/bigquery/public-data/stackoverflow
https://cloud.google.com/bigquery/public-data/stackoverflow
https://cloud.google.com/bigquery/public-data/stackoverflow
https://tianchi.aliyun.com/dataset/dataDetail?dataId=56&lang=en-us
https://tianchi.aliyun.com/dataset/dataDetail?dataId=56&lang=en-us
https://tianchi.aliyun.com/dataset/dataDetail?dataId=56&lang=en-us
https://www.tensorflow.org/federated

[18] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. EMNIST: an extension392

of MNIST to handwritten letters. In arxiv.org/abs/1702.05373, 2017.393

[19] Canh T. Dinh, Nguyen H. Tran, and Tuan Dung Nguyen. Personalized federated learning with394

moreau envelopes. In NeurIPS, 2020.395

[20] Hubert Eichner, Tomer Koren, H. Brendan McMahan, Nathan Srebro, and Kunal Talwar.396

Semi-cyclic stochastic gradient descent. In ICML, 2019.397

[21] Scott Ettinger, Shuyang Cheng, Benjamin Caine, Chenxi Liu, Hang Zhao, Sabeek Pradhan,398

Yuning Chai, Benjamin Sapp, Charles Qi, Yin Zhou, Zoey Yang, Aurelien Chouard, Pei399

Sun, Jiquan Ngiam, Vijay Vasudevan, Alexander McCauley, Jonathon Shlens, and Dragomir400

Anguelov. Large scale interactive motion forecasting for autonomous driving : The waymo401

open motion dataset. CoRR, abs/2104.10133, 2021.402

[22] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning with403

theoretical guarantees: A model-agnostic meta-learning approach. In 34th Conference on404

Neural Information Processing Systems (NeurIPS 2020), 2020.405

[23] David F. Fouhey, Weicheng Kuo, Alexei A. Efros, and Jitendra Malik. From lifestyle vlogs to406

everyday interactions. In CVPR, 2018.407

[24] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting gradients408

- how easy is it to break privacy in federated learning? In NeurIPS, 2020.409

[25] Robin C. Geyer, Tassilo Klein, and Moin Nabi. Differentially private federated learning: A410

client level perspective. In NeurIPS, 2017.411

[26] Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An efficient framework412

for clustered federated learning. In 34th Conference on Neural Information Processing Systems413

(NeurIPS 2020), 2020.414

[27] Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An efficient framework415

for clustered federated learning. In NeurIPS, 2020.416

[28] Chaoyang He, Songze Li, Jinhyun So, and Xiao Zeng. FedML: A research library and bench-417

mark for federated machine learning. In arxiv.org/abs/2007.13518, 2020.418

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image419

recognition. In CVPR, 2016.420

[30] Sixu Hu, Yuan Li, Xu Liu, Qinbin Li, Zhaomin Wu, and Bingsheng He. The OARF421

benchmark suite: Characterization and implications for federated learning systems. In422

arxiv.org/abs/2006.07856, 2020.423

[31] Peter Kairouz, Brendan McMahan, Shuang Song, Om Thakkar, Abhradeep Thakurta, and424

Zheng Xu. Practical and private (deep) learning without sampling or shuffling. In425

arxiv.org/abs/2103.00039, 2021.426

[32] Peter Kairouz, H. Brendan McMahan, and et al. Advances and open problems in federated427

learning. In Foundations and Trends R© in Machine Learning, 2021.428

[33] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Sebastian U. Stich,429

and Ananda Theertha Suresh. SCAFFOLD: Stochastic controlled averaging for federated430

learning. In ICML, 2020.431

[34] Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian U Stich, and Martin Jaggi. Error feed-432

back fixes signsgd and other gradient compression schemes. In arXiv preprint arXiv:1901.09847,433

2019.434

[35] Philipp Koehn. Europarl: A Parallel Corpus for Statistical Machine Translation. In Conference435

Proceedings: the tenth Machine Translation Summit, 2005.436

[36] Fan Lai, Xiangfeng Zhu, Harsha V. Madhyastha, and Mosharaf Chowdhury. Oort: Efficient437

federated learning via guided participant selection. In USENIX Symposium on Operating438

Systems Design and Implementation (OSDI), 2021.439

[37] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia440

Smith. Federated optimization in heterogeneous networks. In MLSys, 2020.441

[38] Wenqi Li, Fausto Milletari, and Daguang Xu. Privacy-preserving federated brain tumour442

segmentation. In Machine Learning in Medical Imaging, 2019.443

[39] Heiko Ludwig, Nathalie Baracaldo, Gegi Thomas, and et al. Ibm federated learning: An444

enterprise framework white paper v0.1. In arxiv.org/abs/2007.10987, 2020.445

[40] Peter Mattson, Christine Cheng, Cody Coleman, and et al. Mlperf training benchmark. In446

MLSys, 2020.447

[41] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel. Image-based448

recommendations on styles and substitutes. In SIGIR, 2015.449

11

[42] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.450

Communication-efficient learning of deep networks from decentralized data. In AISTATS, 2017.451

[43] Matthias Paulik, Matt Seigel, Henry Mason, and et al. Federated evaluation and tuning for452

on-device personalization: System design and applications. In arxiv.org/abs/2102.08503, 2021.453

[44] Sashank Reddi, Zachary Charles, and et al. Adaptive federated optimization. In454

arxiv.org/abs/2003.00295, 2020.455

[45] Siva Reddy, Danqi Chen, and Christopher D. Manning. Coqa: A conversational question456

answering challenge. arXiv preprint arXiv:1808.07042, 2019.457

[46] Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita Ivkin, Ion Stoica, Vladimir Braverman,458

Joseph Gonzalez, and Raman Arora. Fetchsgd: Communication-efficient federated learning459

with sketching. In ICML, 2020.460

[47] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.461

Mobilenetv2: Inverted residuals and linear bottlenecks. In CVPR, 2018.462

[48] J. Schler, M. Koppel, S. Argamon, and J. Pennebaker. Effects of age and gender on blogging. In463

Proceedings of AAAI Spring Symposium on Computational Approaches for Analyzing Weblogs,464

2006.465

[49] Gunnar A. Sigurdsson, Gül Varol, Xiaolong Wang, Ali Farhadi, Ivan Laptev, and Abhinav466

Gupta. Hollywood in homes: Crowdsourcing data collection for activity understanding. In467

ECCV, 2016.468

[50] Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh, and H Brendan McMahan. Can you really469

backdoor federated learning. In arxiv.org/abs/1911.07963, 2019.470

[51] Hongyi Wang, Kartik Sreenivasan, Shashank Rajput, Harit Vishwakarma, Saurabh Agarwal,471

Jy yong Sohn, Kangwook Lee, and Dimitris Papailiopoulos. Attack of the tails: Yes, you really472

can backdoor federated learning. In NeurIPS, 2020.473

[52] Pete Warden. Speech commands: A dataset for limited-vocabulary speech recognition. In474

arxiv.org/abs/1804.03209, 2018.475

[53] Tobias Weyand, Andre Araujo, Bingyi Cao, and Jack Sim. Google landmarks dataset v2 a476

large-scale benchmark for instance-level recognition and retrieval. In arxiv.org/abs/2004.01804,477

2020.478

[54] Chengxu Yang, Qipeng Wang, and et al. Characterizing impacts of heterogeneity in federated479

learning upon large-scale smartphone data. In WWW, 2021.480

[55] Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas Kong, Daniel481

Ramage, and Françoise Beaufays. Applied federated learning: Improving Google keyboard482

query suggestions. In arxiv.org/abs/1812.02903, 2018.483

[56] Heiga Zen, Viet Dang, Rob Clark, Yu Zhang, Ron J. Weiss, Ye Jia, Zhifeng Chen, and484

Yonghui Wu. Libritts: A corpus derived from librispeech for text-to-speech. arXiv preprint485

arXiv:1904.02882, 2019.486

[57] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient487

convolutional neural network for mobile devices. In CVPR, 2018.488

12

A Introduction of FedScale Datasets489

Category Name Data Type #Clients #Instances Example Task

CV

iNature [5] Image 2,295 193K Classification
FEMNIST [18] Image 3,400 640K Classification
OpenImage [4] Image 13,771 1.3M Classification, Object detection

Google Landmark [53] Image 43,484 3.6M Classification
Charades [49] Video 266 10K Action recognition

VLOG [23] Video 4,900 9.6K Classification, Object detection
Waymo Motion [21] Video 496,358 32.5M Motion prediction

NLP

Europarl [35] Text 27,835 1.2M Text translation
Blog Corpus [48] Text 19,320 137M Word prediction

Stackoverflow [10] Text 342,477 135M Word prediction, Classification
Reddit [9] Text 1,660,820 351M Word prediction

Amazon Review [41] Text 1,822,925 166M Classification, Word prediction
CoQA [45] Text 7,189 114K Question Answering

LibriTTS [56] Text 2,456 37K Text to speech
Google Speech [52] Audio 2,618 105K Speech recognition
Common Voice [2] Audio 12,976 1.1M Speech recognition

Misc ML Taobao [11] Text 182,806 20.9M Recommendation
Fox Go [3] Text 150,333 4.9M Reinforcement learning

Table 4: Statistics of FedScale datasets. FedScale has 18 realistic client datasets, which are from the
real-world collection, and we partitioned each dataset using its real client-data mapping.

FedScale currently has 18 realistic federated datasets across a wide range of scales and task categories490

(Table 4). Here, we provide the description of some representative datasets, and the reader can refer491

to FedScale repository (https://github.com/SymbioticLab/FedScale) for more datasets.492

Google Speech Commands. A speech recognition dataset [52] with over ten thousand clips of493

one-second-long duration. Each clip contains one of the 35 common words (e.g., digits zero to nine,494

"Yes", "No", "Up", "Down") spoken by thousands of different people.495

OpenImage. OpenImage [4] is a vision dataset collected from Flickr, an image and video hosting496

service. It contains a total of 16M bounding boxes for 600 object classes (e.g., Microwave oven). We497

clean up the dataset according to the provided indices of clients. In our evaluation, the size of each498

image is 256 × 256.499

Reddit and StackOverflow. Reddit [9] (StackOverflow [10]) consists of comments from the Reddit500

(StackOverflow) website. It has been widely used for language modeling tasks, and we consider each501

user as a client. In this dataset, we restrict to the 30k most frequently used words, and represent each502

sentence as a sequence of indices corresponding to these 30k frequently used words.503

VLOG. VLOG [23] is a video dataset collected from YouTube. It contains more than 10k Lifestyle504

Vlogs, videos that people purportedly record to show their lives, from more than 4k actors. This505

dataset aimed at understanding everyday human interaction and contains labels for scene classification,506

hand-state prediction task, and hand detection.507

LibriTTS. LibriTTS [56] is a large-scale text-to-speech dataset. It is derived from audiobooks that508

are part of the LibriVox project [6]. There are 585 hours of read English speech from 2456 speakers509

at 24kHz sampling rate.510

Taobao. Taobao Dataset [11] is a dataset of click rate prediction about display Ad, which is511

displayed on the website of Taobao. It is composed of 1,140,000 users ad display/click logs for512

13

https://github.com/SymbioticLab/FedScale

8 days, which are randomly sampled from the website of Taobao. We partitioned it using its real513

client-data mapping.514

Waymo Motion. Waymo Motion [21] is composed of 103,354 segments each containing 20515

seconds of object tracks at 10Hz and map data for the area covered by the segment. These segments516

are further broken into 9 second scenarios (8 seconds of future data and 1 second of history) with 5517

second overlap, and we consider each scenario as a client.518

B Comparison with Existing FL Benchmarks519

In this section, we compare FedScale with existing FL benchmarks in more details.520

Data Heterogeneity Existing benchmarks for FL are mostly limited in the variety of realistic521

datasets for real-world FL applications. Even they have various datasets (e.g., LEAF [15]) and522

FedEval [16]), their datasets are mostly synthetically derived from conventional datasets (e.g.,523

CIFAR) and limited to quite a few FL tasks. These statistical client datasets can not represent realistic524

characteristics and are inefficient to benchmark various real FL applications. Instead, FedScale525

provides 18 comprehensive realistic datasets for a wide variety of tasks and across small, medium,526

and large scales, and these datasets can also be used in data analysis to motivate more FL designs.527

System Heterogeneity The practical FL statistical performance also depends on the system het-528

erogeneity (e.g., client system speed and availability of the client), which has inspired lots of529

optimizations for FL system efficiency. However, existing FL benchmarks have largely overlooked530

the system behaviors of FL clients, which can produce misleading evaluations, and discourages the531

benchmarking of system efforts. To emulate the heterogeneous system behaviors in practical FL,532

FedScale incorporates real-world traces of mobile devices, and associates each client with his system533

speeds, as well as the availability. Moreover, it is non-trivial to emulate these behaviors at scale, so534

we develop FAR, which is more efficient than the existing.535

Scalability Existing frameworks, perhaps due to the heavy burden of building complicated sys-536

tem support, largely rely on the traditional ML architectures (e.g., the primitive parameter-server537

architecture of Pytorch). These architectures are primarily designed for the traditional large-batch538

training on a number of workers, and each worker often trains a single batch at a time. However,539

this is ill-suited to the simulation of thousands of clients concurrently: (1) they lack tailored system540

implementations to orchestrate the synchronization and resource scheduling, for which they can easily541

run into synchronization/memory issues and crash down; (2) their resource can be under-utilized, as542

FL evaluations often use a much smaller batch size than that in the traditional architecture.543

Tackling all these inefficiencies requires domain-specific system designs, and the FAR is refactored544

atop of our Oort project [36]. Specifically, we first built an advanced resource scheduler: It monitors545

the fine-grained resource utilization of machines, queues the overcommitted simulation requests,546

adaptively dispatches simulation requests of the client across machines to achieve load balance,547

and then orchestrates the simulation based on the client mirror clock. Moreover, given a much548

smaller batch size in FL, we maximize the resource utilization by overlapping the communication549

and computation phrases of different client simulations. The former and the latter make FedScale550

more scalable across machines and on single machines, respectively.551

Modularity As shown in Table 1, some existing frameworks (e.g., LEAF and FedEval) do not552

provide user-friendly modularity, which requires great engineering efforts to benchmark different553

components, and we recognize that FedML and Flower provide the API modularity in this table too.554

On the other hand, FAR’s modularity for easy deployments and broader use cases is not limited to555

APIs (Figure 7): (1) FAR Data Loader: it simplifies and expands the use of realistic datasets. e.g.,556

developers can load and analyze the realistic FL data to motivate new algorithm designs, or imports557

new datasets/customize data distributions in FedScale evaluations; (2) Client simulator: it emulates558

the system behaviors of FL clients, and developers can customize their system traces in evaluating559

the FL system efficiency too; (3) Resource Manager: it hides the system complexity in training560

large-scale participants simultaneously for the deployment.561

14

from fedscale.core.client_manager import ClientManager
import Oort

class Customized_ClientManager(ClientManager):
def __init__(self, *args):

super().__init__(*args)
self.oort_selector = Oort.create_training_selector(*args)

Replace default client selection algorithm w/ Oort
def resampleClients(self, numOfClients, cur_time, feedbacks):

Feed Oort w/ execution feedbacks from last training round
oort_selector.update_client_info(feedbacks)
selected_clients = oort_selector.select_participants(numOfClients, cur_time)

return selected_clients

Figure 16: Evaluate new client selection algorithm [36].

from fedscale.core.client import Client

class Customized_Client(Client):
Customize the training on each client
def train(self,client_data,model,conf):

Get the training result from
the default training component
training_result = super().train(

client_data, model, conf)

Implementation of compression
compressed_result = compress_impl(

training_result)
return compressed_result

Figure 17: Evaluate model compression [46].

from fedscale.core.client import Client

class Customized_Client(Client):
Customize the training on each client
def train(self,client_data,model,conf):

Get the training result from
the default training component
training_result = super().train(

client_data, model, conf)

Clip updates and add noise
secure_result = secure_impl(

training_result)
return secure_result

Figure 18: Evaluate security enhancement [50].

C Examples of New Plugins562

In this section, we demonstrate several examples to show the ease of integrating today’s FL efforts563

for realistic evaluations in FedScale.564

At its core, FAR provides flexible APIs on each module so that the developer can access and customize565

methods of the base class. Note that FAR will automatically integrate new plugins into evaluations,566

and then produces practical FL metrics. Figure 16 demonstrates that we can easily evaluate new client567

selection algorithms, Oort [36], by modifying a few lines of the clientManager module. Similarly,568

Figure 17 and Figure 18 show that we can extend the basic Client module to apply new gradient569

compression [46] and enhancement for malicious attack [50], respectively.570

D FedScale Maintenance571

Availability of data and platform We have made FedScale open-source on the Github (https:572

//github.com/SymbioticLab/FedScale). So the code and dataset can be downloaded from573

this repository. For each dataset, we provide detailed descriptions (README.md) of the source,574

organization, format and use case under the repository. So far, these datasets are host on Dropbox,575

and we are migrating them to the stable storage of AWS. For the evaluation platform FAR, we provide576

the configuration and job submission guideline as well. We encourage the reviewer to refer to our577

repository for more details.578

Maintenance plan and responsibility. We are actively updating our benchmark weekly, based on579

the feedback from the community. Currently, our dataset and platform are subject to the Apache-2.0580

15

https://github.com/SymbioticLab/FedScale
https://github.com/SymbioticLab/FedScale
https://github.com/SymbioticLab/FedScale

License. We respect the contributor of each dataset in following ways: (1) we provide the scripts for581

the developer to preprocess the downloaded raw data from its original source. This will absolutely582

obey the rule of each contributor; (2) for those publicly available and widely-used dataset, we583

temporally host the processed data on our repository. However, we are creating permissive license584

for each dataset and acknowledgment to respect their contributor, and highlight all assets in our585

repository are for research purpose only; (3) for all assets in our work, we have removed the sensitive586

information and use anonymous information to partition the data; (4) we are keeping in touch with all587

the contributors, and will fix any issues (e.g., by removing that dataset) once that happens.588

16

	Introduction
	Background
	FedScale Dataset: Realistic Workloads for Federated Learning
	Client Statistical Dataset
	Client System Behavior Dataset

	FAR: Evaluation Platform for Federated Learning
	Experiments
	How Does FedScale Help FL Benchmarking?
	Opportunities for Future FL Optimizations

	Conclusion
	Introduction of FedScale Datasets
	Comparison with Existing FL Benchmarks
	Examples of New Plugins
	FedScale Maintenance

