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ABSTRACT

We consider the problem of minimizing a differentiable function f : R — R
using only function evaluations, in the zeroth-order (derivative-free) setting. We
propose three related monotone stochastic algorithms: the Monotonic Stochastic
Search (MSS), persistent Monotonic Stochastic Search (pMSS), and MSS variant
with gradient-approximation (MSSGA). MSS is a minimal stochastic direct-search
method that samples a single Gaussian direction per iteration and performs an
improve-or-stay update based on a single perturbation. For smooth non-convex
objectives, we prove an averaged gradient-norm rate O(v/d/+/T) in expectation,
so that O(d/e?) function evaluations suffice to reach E||V f(6?)||2 < e, improving
the quadratic dependence on d of deterministic direct search while matching the
best known stochastic bounds. In addition, we propose a practical variant, pMSS,
that reuses successful search directions with sufficient decrease, and establish that
it guarantees lim inf;_, . ||V f(6%)||2 = 0 almost surely. Since MSS relies solely
on pairwise comparisons between f(6') and f (0" + ays;), it falls within the class
of optimization algorithms that assume access to an exact ranking oracle. We then
generalize this framework to a stochastic ranking-oracle setting satisfying a local
power-type margin condition, and demonstrate that a majority vote over N noisy
comparisons preserves the O(d/e?) gradient complexity in terms of iteration count,
given suitably designed oracle queries. MSSGA uses finite-difference directional
derivatives while enforcing monotonic descent. In the smooth non-convex regime,
we show that the best gradient iterate satisfies min; <;<7 || V.f(6)||2 = o(1/VT)

almost surely. To the best of our knowledge, this result provides the first o(1/v/T)
almost-sure convergence guarantee for gradient-approximation methods employing
random directions. Furthermore, our analysis extends to the classical Random
Gradient-Free (RGF) algorithm, establishing the same almost-sure convergence
rate, which has not been previously shown for RGF. Finally, we show that MSS
remains robust beyond the smooth setting: when f is continuously differentiable,
the iterates satisfy lim inf;_, o |V f(6?)]|2 = 0 almost surely.

1 INTRODUCTION

We consider the problem of minimizing a function f : R? — R in the absence of access to its
derivatives, relying solely on a black-box oracle that provides function evaluations. The challenge
is to minimize f with as few oracle queries as possible. The methods used in this setting are called
derivative-free (or zeroth-order) methods. They are crucial in many machine learning applications
where computing gradients is impractical, expensive, or impossible. Examples include reinforcement
learning (Malik et al., 2020; Mania et al., 2018; Salimans et al., 2017), black-box adversarial attacks
on neural networks (Chen et al., 2017; Papernot et al., 2017; Ughi et al., 2022), hyperparameter
tuning of deep networks (Turner et al., 2021; Koch et al., 2018; Snoek et al., 2012) and multi-agent
target tracking (Al-Abri et al., 2021).

Two standard approaches have been proposed in the literature to address derivative-free optimization
problems. The first involves estimating gradients using finite differences (Flaxman et al., 2005;
Nesterov & Spokoiny, 2017). In (Nesterov & Spokoiny, 2017), it is shown that by estimating gradients
with two function evaluations at nearby points, in the smooth non-convex, the smooth convex and the
smooth strongly convex settings, one can obtain complexity bounds similar to those of traditional
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gradient descent, but with an additional linear dependence on the dimensionality d due to the cost
of estimating gradients. This approach has been extended to the stochastic optimization setting,
where the objective function is subject to randomness (Ghadimi & Lan, 2013; Duchi et al., 2015).
Moreover, a variance reduction technique, inspired by gradient-based methods, was successfully
adapted to the zeroth-order stochastic setting (Liu et al., 2018). The second approach to derivative-free
optimization focuses on identifying a direction s such that perturbing the current point along s leads
to an improvement in the objective function. Methods based on this idea are known as direct search
methods. The search directions can be either deterministic (Vicente, 2013) or stochastic (Golovin
et al., 2020; Bergou et al., 2020; Bakkali & Saadi, 2025). Deterministic direct search methods
have been shown to achieve complexity bounds similar to traditional gradient descent, but with
an additional quadratic dependence on the dimensionality (Vicente, 2013; Kone¢ny & Richtarik,
2014). In contrast, (Bergou et al., 2020) presents a stochastic variant, the stochastic three-point
(STP) method, which achieves a linear dependence on the dimension d in the smooth non-convex
setting, with a complexity bound of O(d/€?), to obtain an e-stationary point in expectation. This
improves upon the O(d? /%) complexity of earlier deterministic direct search methods. Recently, in
the smooth convex setting, the STP algorithm has been shown to maintain a linear dependence on
the dimensionality, with complexity bound of O(d/¢) (Bakkali & Saadi, 2025). However, this result
requires that the objective function has a bounded sublevel set.

Our Contribution & Related Work. Our main contributions are:

* A minimal monotone stochastic direct-search scheme (MSS). We introduce Algorithm 1,
which, at each iteration, samples a single Gaussian direction s; ~ N (0,1;) and sets
0!+ = argmin{ f(6"), f (6" +ays;)}. This can be seen as the natural stochastic extension of
deterministic direct search (DDS) (Hooke & Jeeves, 1961; Kolda et al., 2003; Vicente, 2013),
where the positive spanning set is replaced by a single random direction, and as a simplified
version of GLD and STP: GLD (Golovin et al., 2020) samples many perturbations, possibly
at several radii, and keeps the best, while STP (Bergou et al., 2020) evaluates f at two
symmetric points x; + a;s¢. For smooth non-convex objectives, we prove that with stepsizes

oy = ap/V/dt the averaged gradient norm satisfies Zthl E[IVf(©)]2] =0 (ﬁ) ,

so that O(d/e?) function evaluations suffice to reach E[||Vf(0?)||2] < & (theorem 2).
This improves upon the rate O(d?/s?) obtained by DDS methods and achieving the best
complexity bound for derivative free methods in the smooth non-convex setting. Although a

comparable O (\ /d/ T) rate for the best iterate was previously established for STP (Bergou

et al., 2020), implying that the dependence on d and ¢ is not new for a stochastic direct
search method, the following distinctions holds: i) MSS attains the convergence rate with a
conceptually simpler improve or stay update based on a single perturbation and can be viewed
as the natural stochastic extension of deterministic direct search. ii) The structure of MSS is
also better adapted to comparison based feedback. A stochastic ranking oracle, when queried
on a pair (x, y), returns a random outcome whose bias is a function of the value difference
f(y) — f(z), that is, it provides noisy information about which of the two vectors has the
smaller function value. MSS fits this interface exactly, since each iteration only requires
comparisons between the current point #* and one perturbed point ¢ + o s, in contrast
to STP which is built around decisions involving three points {6%, 0% + s, 0% — as;}.
For this reason MSS is the natural building block in our stochastic ranking oracle extension
(Section 2.3). iii) The single-direction design of MSS makes it especially amenable to a
persistent variant that reuses successful directions. We therefore introduce a new algorithm,
persistent Monotonic Stochastic Search (pMSS), a variant of MSS that reuses improving
directions with sufficient decrease across iterations, thereby benefiting from a momentum-
like effect that exploits successful improving directions, which is not the case for classical
stochastic direct-search methods.

¢ Comparison-based MSS with a stochastic ranking oracle. We notice that MSS is inher-
ently comparison-based and can operate without ever reading function values. In section 2.3
we analyze Algorithm 3, which only queries a stochastic ranking oracle returning noisy
preferences between 6% and 6% + ays;. Under a local power-type margin on the preference
bias (Assumption 1), majority vote over N comparisons yields a descent inequality that
mirrors the exact-oracle case up to an additive O (N -1/ (2”)) penalty (theorem 4). Choosing
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N polynomial in 1/ recovers the same O(d/c?) gradient complexity in terms of itera-
tion count as in the exact-value setting. This places our method within the landscape of
preference-based optimization, but under significantly weaker structural assumption than
Bradley-Terry—type models, where the function linking the preference probabilities and the
function value differences must be known (Zhang & Ying, 2025). In particular, our analysis
does not require knowledge of the link function, and we note that our local power-type
margin assumption (Assumption 1) is both natural and, to the best of our knowledge, has
not previously been used in the literature.

A persistent monotone scheme with sufficient decrease (pMSS). Motivated by practice,
we introduce a persistent variant of MSS, Algorithm 2, which reuses a downbhill direction
over several iterations whenever it produces a sufficient decrease. As in MSS, any non-
increasing trial point 6% + S;s; with f(0% + B:s;) < f(6?) is accepted. Among such steps,
pMSS distinguishes: (i) sufficient-decrease moves, where f(0' + Bys;) < f(6!) — cf3?
and the same pair (s;, 8;) is kept at the next iteration, and (ii) marginal moves, where
(08 — B2 < f(0! + Bisi) < f(0Y), in which case the algorithm still moves to the trial
point but immediately resamples a fresh Gaussian direction and resets the stepsize from a
deterministic sequence {ay }; rejections also trigger resampling and a stepsize reset. This
mechanism induces a simple momentum-like behavior: once a direction yields a streak
of sufficient-decrease steps, the method advances along it for several iterations without
additional randomness, while preserving global monotonicity of f(6*). We analyse pMSS
via a block decomposition based on resampling times and show that, under smoothness and
standard diminishing-stepsize conditions, the iterates satisfy lim inf; . ||V f(6%)]2 = 0
almost surely (theorem 3). To the best of our knowledge, this is the convergence result for a
random search method with persistent directions.

A monotone gradient-approximation scheme (MSSGA). We introduce a variant of MSS
and RGF, called MSSGA (Algorithm 4). This algorithm uses finite-difference directional
derivatives in the spirit of Polyak’s scheme (Polyak, 1987, Section 3.4) and Random Gradient-
Free (RGF) methods (Nesterov & Spokoiny, 2017), but keeps the update only when it
decreases f. Very recently, El Bakkali et al. (Bakkali & Saadi, 2025) obtained the first
almost-sure convergence rates for stochastic direct-search methods in the smooth non-
convex regime, showing that STP achieves o(7~'/2%¢) for any ¢ > 0. In contrast, we
prove that MSSGA enjoys the sharper almost-sure rate o(1/+/T') for the best gradient iterate
(theorem 6), matching the optimal O(1/+/T) scaling known in expectation. To the best of
our knowledge, this result provides the first o(1/y/T") almost-sure convergence guarantee
for gradient-approximation methods employing random directions. Moreover, our argument
is not tied to the monotone acceptance rule and can be applied directly to the classical RGF
algorithm, yielding the same o(1/+/T) almost-sure rate in the smooth non-convex case.

Non-smooth analysis for monotone stochastic direct search. Finally, we study MSS
in a non-smooth regime where f is only assumed to be continuously differentiable and
the initial sublevel set is bounded (Assumption 2). When the search directions are drawn
uniformly from the sphere, and the stepsizes satisfy oy — 0 and Zt ap = 00, we show
that lim inf;, « ||V f(6")|]2 = 0 almost surely, hence the trajectory admits accumulation
points that are stationary (theorem 7). This extends the almost-sure stationarity theory for
stochastic direct-search methods beyond the smooth setting.

2 CONVERGENCE ANALYSIS FOR THE CLASS OF SMOOTH NON-CONVEX
FUNCTIONS

2.1 CONVERGENCE ANALYSIS FOR MSS ALGORITHM

In this subsection, we focus on the monotonic stochastic search algorithm, which is presented below:
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Algorithm 1 Monotonic Stochastic Search algorithm (MSS)

1: Input:

2: A € R? Initial parameter vector
{a¢}i>1: Step-size sequence
:fort=1,2,...do

Sample search direction: s; ~ N(0, 1)
0"+ = argminge (gr ge 40,5,y f(0)

AR AR

end for

Lemma 1. Let {6'},>1 be a sequence generated by algorithm 1. Assuming that f is L—smooth,
the following inequality holds for all t > 1:

Lda%
=

—— B [V (6)],] <E[7 (6] B[ (¢+)] + =5

Ver

The inequality in lemma 1 is analogous to the key inequality used in the analysis of gradient
descent (GD) for smooth functions. In the standard GD setting, where updates are given by
9+t = 9" — 1V f(6"), with L as the smoothness parameter of f, the smoothness of f ensures
the following descent property: 5— |V f(6")[|3 < f(6%) — f(6"1). This inequality ensures that the

averaged gradient norm iterate generated by GD algorithm, converges to zero at a rate of O(1/+/T).
Similarly, lemma 1 provides an analogous inequality tailored to our algorithm, which ensures a similar
convergence rate for the averaged gradient iterate produced by the MSS algorithm. Specifically, we
show that under the MSS algorithm, the averaged gradient iterate converges in expectation to zero at
arate of O(v/d/+/T). It’s worth noting that for GD method, the convergence rate is independent of
the dimensionality of the space.

Constant step size. By averaging the inequality of lemma 1 over the iterations 1 to 7', while using a

constant step size oy = jdL, we obtain the following theorem.

Theorem 1. Assume that f is L—smooth and lower and let T' > 1. By following algorithm 1

using the constant step size oy = %, we obtain:

ST LEIVAO)a) _ (V27 (£(6") — infoega £(0))  maoL\ [d
T S( Qo : - 2v/2 )\/7

Theorem 1 implies that for a fixed number of iterations 7', by choosing constant step sizes dependent
S EIVF(EO)]l2]
T

on 7', the average , and subsequently the best iterate min; << E[||V f(6")]|2], can

Vd
\/'ZT’
with T" > T, we must restart the iterations with a new step size dependent on 7”. We note also that
Theorem 1 does not imply that the best gradient iterate converges to zero, since the step sizes are tied
to a fixed accuracy. In the next theorem, we show that by choosing diminishing step sizes a; = O‘—\F‘),

dt
convergence is guaranteed.

be bounded above by an accuracy of order O,/ %) However, if we aim for a precision of order

Diminishing step sizes. We show that if {#"},>; is generated by algorithm 1 with step sizes
a; = ag/Vdt with ag > 0, then the averaged gradient norm iterate (1/7) Y ,_, [|V.f(6")]|2
converges in expectation to zero at a rate of O (\/& / \/T) . This result is stated in theorem 2.

Theorem 2. Let {0'},>1 be a sequence generated by algorithm I with step sizes o, = % for
ag > 0. Assuming that f is L—smooth and lower bounded, the following inequality holds for all

T 2> 2:
St BNVl _ (2v21(f(8") — infocpa £(6)) m /d
T S ( a0 ok + \/;LOZ()) T
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Remark 1. The bound in theorem 2 shows that the best gradient iterate mini << ||V f(6%)||2 also
converges to zero in expectation, at a rate of (9(\/% ) A similar convergence rate can be established

almost surely. Indeed, given € € (0, %), by applying lemma 1 with step size sequence {c }+>1 defined

by ay = f it follows that E {Z;Ozl Tf min << ||Vf(9t)|\2} < 00, and consequently,
t2 2 - -
o 1 . t . . t o .
Yot —I7 mili<e<r IVf(0)|2 < oo  a.s. We also have Tlgrclx3 in IVf£(6%)]l2 = 0 which

follows as a consequence of theorem 2. Applying (Bakkali & Saadi, 2025, Lemma 5), we conclude
that miny << |V f(6")]|2 = 0 (1/( ZtT:1 f)) , and since ZtT:1 f ~ Tz, it follows that
- - t2 t2

miny<i<7 |[Vf(0)]]2 =0 (T% almost surely. We include this for completeness, as the proof
- - 2

€

follows directly from (Bakkali & Saadi, 2025, Lemma 5) and the inequality given in lemma 1.

2.2 CONVERGENCE ANALYSIS FOR PMSS ALGORITHM

In this section we introduce the persistent Monotonic Stochastic Search algorithm (pMSS), a practical
variant of MSS. As in MSS, any non-increasing trial point 6% + 3,5, with (6% + 8;s,) < f(0%)
is accepted. pMSS then distinguishes two types of accepted steps: if the decrease is sufficient,
F(0F + Bisy) < f(0Y) — ¢ B2, it persists by reusing the same direction and step-size at the next
iteration; if the decrease is only marginal, i.e., f(0%) — c 82 < f(0! + Biss) < f(6%), it still moves to
the trial point but immediately resamples a new Gaussian direction and resets the step-size from a
fixed step-size sequence {ay },>1. When the trial point is worse, f (6" + Bys;) > f(6"), pMSS rejects
it and also resamples. This persistence mechanism lets pMSS chain several steps along particularly
good directions while preserving monotonicity.

Algorithm 2 Persistent MSS with sufficient decrease (pMSS)

1: Inputs: initial 1 € R stepsizes {ay }r>1 C (0,00); margin ¢ > 0.
2: k=1;draw s1 ~ N(0,1;); set 31 = a;.
3: fort=1,2,... do

4: if f(0' + Bis) < f(6') then > decrease (nonincrease) step
5: Ot = 0t + Bysy > accept
6: if f(0' + Bisi) < f(0') — ¢ /37 then > sufficient decrease
7: St41 = St» Brr1 = P > accept and persist
8: else

9: draw s; 11 ~ N(0,14); k =k + 1; set By1 = ag, > accept but do not persist
10: end if
11: else
12: g+l =gt > reject
13: draw s;11 ~ N(0,1); k =k + 1;set By11 = ax > reject and resample
14: end if
15: end for

Let (Q2, F,P) be a probability space on which all random variables {0*, 3;, s; }+>1 are defined. The
“pre-direction” information at each ¢ is given by: Fy := o(6', 81, 51,...,0" 1, 81, 501, 0%, B;).
For each t > 1 define the sufficient-decrease event Ay := { f(6" + Bys;) < f(6") — ¢} }, and
its complement R; := AE, which corresponds to the case where there is no sufficient decrease (this
includes both marginal accepts and rejections). In the algorithm, whenever R; occurs we draw a new
Gaussian direction at time ¢ + 1 and reset the stepsize from the sequence {ay }r>1.

Resampling times. We now formalize the times 75, at which a fresh direction is drawn. Set 77 := 1.
Recursively, define

0, if A, does not occur,
Pk = . y
sup{m >1: A Aty A pm— all occur}, if A;, occurs,
and then set 7,41 := Tx + pr + 1, with the convention that 75,4 ; := o0 if py, = oo.
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Case pr, = 0 (no sufficient decrease after resampling)

STpy1s ﬂ7k+1 = Qk+1

f f t
Tk Tk+1
=71+ 1

Case 0 < pr < oo (block with sufficient decrease)
A"’k’ ceey ATk+Pk—1 hold
Roptpy, holds  S7ii1s Bripq = Gkl
f f f f f f t
Tk Tk +1 Te+pr—1 Tkt pk Th+1
St = Srp, Bt =ak, YtE{Tk,...,Tk + pr}

Figure 1: Resampling times 73, and block lengths p; in pMSS.

Lemma 4 implies that resampling occurs infinitely many times almost surely. At each such resampling
time we draw a fresh Gaussian search direction, independent of the past. Therefore, by repeating the
proof of Lemma 1 at these resampling times, we obtain the following result.

Theorem 3. Assume that f is L—smooth, lower bounded, and that the stepsizes {ay}>1 in
Algorithm 2 satisfy: > o ar = oo and Y ;o a? < oo. Let {6'};>1 be generated by
Algorithm 2. We have:

lit@g)ngVf(Ht)H2 =0 almost surely.

Discussion and illustrative example. The persistence mechanism in pMSS is particularly ad-
vantageous for objectives where certain directions admit long sequences of successful steps with
sufficient decrease. Once such favorable directions are identified, pMSS is able to repeatedly exploit
them, in contrast to stochastic search methods, like STP, that must restart their exploration at each
iteration. This repeated isotropic exploration is costly, due to its linear dependence on the dimension.
Consequently, pMSS attains a more favorable exploration—exploitation trade-off. We illustrate this
first on a two-dimensional quadratic function f(z) = %(m% + 10*2:6) + z; — 0.222, whose
level sets form a long valley aligned with the x5-axis. Starting from the same point, STP keeps
resampling directions and therefore zigzags across the valley, making only small net progress toward
the minimizer. In contrast, once pMSS hits a sufficiently good direction, it keeps reusing it and
advances almost straight along the valley floor.

STP trajectory
—e— pMSS trajectory
e start

% minimizer

Convergence on tilted quadratic

STP
—— pMsS

0 50 100 150 200 250 300
Number of function evaluations

Figure 3: Function gap f(6%) — f* ver-
sus function evaluations on the same 2D
problem.

Figure 2: STP and pMSS trajectories on the
2D valley quadratic.
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We now embed the same valley in higher dimensions by adding orthogonal directions with unit
curvature, f(z) = %(x% +107 22+ 30, xf) + 21 — 0.2 2. Figure 4 compares STP and pMSS

on this function for d € {100, 300, 500, 1000} under a common budget of function evaluations. As
the dimension grows, the advantage of pMSS over STP increases with it.

dim = 50 dim = 200 dim =500 dim = 1000
r 1] 1 1014
10t 10 1 10 stp
\ pMSS
10°+ 6% 10°
T 107y ax10°
< . 3% 10°
= 10-24 10¢
2x10°
-3
10 100
0 1000020000 30000 40000 50000 0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
Number of function evaluations Number of function evaluations Number of function evaluations Number of function evaluations

Figure 4: Diagonal valley quadratic in dimensions d € {100, 300, 500, 1000}: function gap f(6*) —
f* versus number of function evaluations, averaged over 20 runs.

2.3 CONVERGENCE ANALYSIS FOR MSS ALGORITHM WITH STOCHASTIC RANKING ORACLE

We remark that MSS is inherently comparison-based and does not require reading function values.
The analysis in section 2.1 assumed an exact (noise-free) comparator. We now relax this to a stochastic
ranking oracle that returns noisy preferences but is biased toward the correct ordering with a local
power-type advantage in the function-value gap. We formalize this in the following assumption.

Assumption 1. For any pair (6*,0%) € R? x R%, the oracle returns a single outcome o € {0, 1}
interpreted as “0? is better” (0 = 1) or “0' is better” (o = 0), with bias toward the truly better

point:
if f(0%) < f(61): Plo=1) > 5+ h(|f(6%) — F(1)]),
if f(01) < f(6%): Plo=0) > 5+ h(|f(6%) — F(6Y)]),
FI6") = f(6?): Plo=1)=1.

Here h : Ry — [0, 3] is nondecreasing (not necessarly continuous), h(0) = 0, and there exist r > 0,
k>0, and p > 1 such thatVx € [0,r], h(x) > kxP. We denote m, := h(r) > 0.

_ »
p=2, hi(x)=1(1-e™) p=2, hox)=3:%5 p=2, hs(x)=Ltan"1(xP)
057k=025r=10 K=025,r=1.0 K=025,r=1.0
0.4 0.44
0.4
0.3 ]
0.3 _ 03
x x X
< 0.2 < 0.21 < 0.2
0.1 — hx) 017 — h(x) 011 — h(x)
kx2on[0,r] kx2on[0,r] kx2 on [0, r]
0.0 0.0 0.0
r r T T T r r T T T T r
00 05 1.0 15 20 25 30 00 05 1.0 15 20 25 3.0 00 05 10 15 20 25 3.0
X X X
- P
p=4, hi(x)=1(1-e™) p=4, hx)=3:%5 p=4, hs(x)=%tan~*(xP)
057k=025r=1. 057k=025,r=1.0 057k=025,r=1.0
0.4 0.4+ 0.4
_ 0.3 _ 039 __ 0.3
x x X
< 0.2 < 0.2 < 024
0.14 —— h(x) 0.14 —— h(x) 0.11 —— h(x)
kx4 on[0,r] kx*on[0,r] kx*on [0, r]
0.04— 0.04— 0.04——
r T T T T r r T T T T r
00 05 10 15 20 25 3.0 00 05 1.0 15 20 25 3.0 00 05 10 15 20 25 3.0
X X X

Figure 5: Examples of admissible margin functions.

Algorithm. At iteration ¢, sample s; ~ N(0, I;), form the candidate 0! + ay sy, collect N i.i.d. oracle
outcomes on the pair, aggregate by majority, and accept if the majority prefers the candidate.
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Algorithm 3 MSS with Stochastic Ranking Oracle

1: Input: initial point § € RY, stepsizes (cv;), comparisons N

2: fort=1,2,... do

3:  Sample s; ~ N(0, )

4: Query oracle N times on (0°, 0" + a¢st), getog 1, ..., 0e,n € {0,1}

1 N
5: 6t = N nzz:l 1{Ot,n = 1}
6: g+l {et + oSy, Op > %a

¢, otherwise.
7: end for

Notation and decision events. Let

At = f(gt + atst) — f(gt)7 At = {515 > %}, Bt = {f(&t) > f(ﬂt + thst)}.

Since the update is accept-or—stay, f(6'71) = f(6%) + A;14,, to derive a descent inequality

comparable to the standard MSS bound in lemma 1 we control E[A; 1 4, | 6*] via the elementary split

Aily, = Ailp, + A¢(1a, — 1p,) . The first term coincides with the exact comparator
true-improvement term ranking-error term

case and can be upper bounded using L-smoothness and Gaussian symmetry, which yields a linear
decrease in ||V f(6?)||2 up to an O(da?) term, see Lemma 5. The second term captures ranking
mistakes. Under assumption 1, the majority vote error probability after /N comparisons decays as
exp(—2Nh(|A¢])?), which leads to two regimes: for small gaps, |A;| < 7, the local power margin
h(z) > kP controls the contribution of this term by O(N ~'/(P)), see Lemma 6 and Lemma 7;
for larger gaps, |A;| > r, the noise penalty is exponentially small in N and only rescales the exact
MSS bound by a factor e~ 2V ™7 with m, = h(r). Putting these ingredients together gives a descent
inequality of the form in Lemma 8, where the exact comparator bound from Lemma 1 is recovered
up to constants and an additional noise term of order N —1/(2P),

In4
Theorem 4. If N > {nj“ then e=2Nm? <
2m?

T

i and, forallt > 1,

1
(4epk?N) 3w

Qg

2V 21

E[IVF@)la] < B0 - F@"*)] + 2 Ldad +

e-complexity. Let f, := infy f(0) and Ay := f(0') — f, < co. Fix e € (0, 1] and take a constant
2

2p
stepsize iy = ﬁ. If, in addition, N N, := max < B?Ié—‘ , [4@11&2 (45§2L d) —‘ >7
then after 7. := [‘ﬁfijAﬂ iterations we have miny<;<7. E[[|[Vf(6")[|2] < e.

2.4 CONVERGENCE ANALYSIS FOR MSS ALGORITHM WITH GRADIENT APPROXIMATION

In this subsection, we focus on the monotonic stochastic search algorithm with gradient approximation,
which is presented below:
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Algorithm 4 Monotonic Stochastic Search algorithm with Gradient Approximation (MSSGA)

1: Input:
2: A € R? Initial parameter vector

3:  a > 0: Step size parameter
4: {%}t>1: Sequence of smoothing parameters
5. fort=1,2,...do
6: Sample a search direction s; uniformly from the unit sphere S~! = {v € R? : ||v||o = 1}
7: Update the current vector:
1 .
it — ALGMML) - rgr gr o FO0 42150 =5(6Y) 3 f(0)
’ vt
8: end for

We show that if {6}~ is generated by this algorithm with a step size parameter o < %, then the
averaged squared gradient norm, Zthl |V £(6")]|3, converges in expectation to zero at a rate of
@ (%) This result follows directly from theorem 5.

It is important to note that algorithm 4 is not a special case of algorithm 1, as it does not rely on a
predetermined step size sequence—the step sizes are instead chosen adaptively.

Lemma 2. Assume that f is L—smooth and let {0'};>1 be a sequence generated by algorithm 4
with a < % We have the following inequality for allt > 1:

< 24(E[£(8)] Bl E*) | dTL%g.

E[|V £(6°)I3]

(07

Remark 2. If the sequence of smoothing parameters satisfies Z:il 2 < oo, then lemma 2 im-

plies that >~ E[||V f(0")||3] < oo, which in turn implies that Jim E [IVF(OM)]3] = 0. By
—00

Cauchy-Schwarz inequality, we can then deduce that the gradient norm at the last iterate, |V f(0)

converges to zero in expectation.

2,

By averaging the sides of the inequality in lemma 2, we obtain the inequality in theorem 5.

Theorem 5. Assume that f is L—smooth, lower bounded and let {0"};>1 be a sequence generated
by algorithm 4 with o = % Forall T > 1, we have:

St EUVAO)I) _ 24L(/(6") ~ infpepa /0)) | dL* 572
T - T 4 T
In particular, lefil v2 < 00, we obtain a complexity bound of O (%)

Remark 3. Given that Zfi 1 2 < 0o, the Cauchy—Schwarz inequality together with theorem 5
T t

w = (’)(%). This bound shows that both the average gradient iterate

ﬁ)

VT

implies that

and the best gradient iterate converge to zero in expectation, at a rate of O (

We now establish that the convergence rate achieved for the best gradient iterate in expectation is also
attained almost surely, as detailed in theorem 6.

Theorem 6. Assume that f is L—smooth, lower bounded and let {0"};>1 be a sequence generated
by algorithm 4 with o < % and Y2, v} < co. We have:

1
. t _
1ISIySnTHVf(H N2 =0 (\/T) almost surely.
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2.5 CONVERGENCE ANALYSIS FOR MSS ALGORITHM IN THE NON-SMOOTH SETTING

In this section, we analyze the convergence of algorithm 1 when applied to non-smooth objectives,
using a uniform distribution over the unit sphere (instead of a Gaussian) to simplify the analysis.
Although f may lack smoothness (e.g., the gradient may not be Lipschitz), we work under the
following assumption.

Assumption 2. f is continuously differentiable, lower bounded, and the level set L(6') := {0 :
f(0) < f(6Y)} is bounded.

Good directions. For any € R?, define the set of “good” directions:

—1 . 1
Ag(0) = {seSd . <Vf(9),s>§—mllvf(9)llz}~

Intuitively, A4(0) contains directions that are sufficiently aligned with —V f (), ensuring a uniform
amount of decrease in function value whenever the gradient is non-negligible.

Theorem 7. Assume that assumption 2 holds, and let {0} be the sequence generated by algo-
rithm I when the search directions s; are drawn uniformly from the unit sphere. Suppose that
ay > 0forallt, ay — 0, and .o | oy = +o00. Then

litm inf |[V£(0")]2 = 0 almost surely.
e el

The proof, given in the appendix, combines the constant probability of sampling a good direction
(Lemma 9) with a uniform descent property (Lemma 10) to obtain an expected decrease inequality
(Lemma 11). A standard Robbins—Siegmund argument then yields theorem 7.

3  EXPERIMENTS

We evaluate MSS and pMSS in a policy-search setting with pairwise preference feedback, fol-
lowing the Zeroth-Order Policy Gradient (ZPG) framework (Zhang & Ying, 2025). For two poli-
cies mg, mpr with returns R(7p) and R(my), a synthetic preference is drawn as mpr > 79 <=
Bernoulli(o(R(me') — R(mg))) = 1, where o(t) = 1/(1 + e~ ") is the logistic link. Each policy
evaluation uses /N = 64 trajectories, aggregated into a single Bernoulli comparison (M = 1).

We consider CartPole-v1, InvertedPendulum-v5, and Swimmer-v5 from Gymnasium, with the same
neural policy architecture for all methods: a two-layer MLP with 64 hidden units per layer and
tanh activations. ZPG uses a random-direction finite-difference estimator with smoothing parameter
1 = 1072 and stepsize a = 10732, MSS and pMSS use a constant stepsize & = 10~!. In pMSS, a
candidate policy is accepted and the current search direction is reused only if the estimated probability
that it is better than the incumbent exceeds 0.7 (probability margin 0.7); otherwise a new random
direction is sampled. We run each method for a fixed budget of policy evaluations and report the
mean return over 10 seeds; shaded regions in Figure 6 show one standard deviation.

Figure 6 compares MSS, pMSS, and ZPG. On CartPole-v1, pMSS learns fastest and reaches near-
maximum reward, with MSS catching up later and ZPG clearly lagging behind. These results indicate
that monotonic stochastic search in policy space is at least competitive with, and often superior to,
zeroth-order gradient estimation in this preference-based setting.

CartPole-vl InvertedPendulum-v5 Swimmer-v5
500 1 500 1
—— MSS
400 J PMSS 400 1 200 1 ~~
— ZPG
2 300 300 4
2
& 200 200 1 100 1
100 4 100 4
04
0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 50 100 150 200 250 300

Policy Evaluations Policy Evaluations Policy Evaluations

Figure 6: Average return vs. evaluations on three control tasks.
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A APPENDIX

A.1 CONVERGENCE ANALYSIS FOR THE CLASS OF SMOOTH NON-CONVEX FUNCTIONS
A.1.1 CONVERGENCE ANALYSIS FOR MSS ALGORITHM

Proof of Lemma 1. Lett > 1. Since f is L-smooth, we have:

P8+ @use) < F(0) + 0 (TF(0),52) + g o i3

Rearranging the terms and using the fact that f(6**1) < f(6 + ays;), we obtain:

(V0% 5 < F(0%) — FO°) + Fod|sul}.

By multiplying by 1;(vf(0t),s,)<0}, We oObtain:

L
ar (VF(07), )1 (v p0r).sy<0 < f(O°) — fF(O'FT) +§af||St||§1{<w(9t),sf,>§o}-
NS
>0

This implies that:
L
al(VF(0), s)l1((wron.s0<op < FO) = FO) +5 i lsel31 (v s0).00 <0y L(ws0r)20p (1)

Since the PDF of the distribution N (0, ) is origin-symmetric, we obtain:

E[‘<vf(9t)75t>|1{(Vf(0‘),St>20} | et} = E[\<Vf(9t)7 *5t>|1{<Vf(0t),—St>zo} | et]
=E[(Vf(0"), s0)|1(vs00),50)<0y | 0'].

Since 1owrer),s)<0y  1(vrer),s)>0y = 1, it holds that:

E[[(VF(0"), s0) |1 5005020y | 0] = SE[(VFO"), 50)] | 7).

N |

12
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Combining this with eq. (1), we get:

(e% La2
éEHWf(Ht), sl [0 <E[FO)—F0") [ 01+ = Ellsil 314 (v 0.0 <0y (v s00)203 | 0'].

Since the PDF of the distribution N(0,1;) 1is origin-symmetric, ~we have:

E[lls.12
E{llsel1311(v(0r).s0) <03 Liw om0y | 0'] < [ > Jas g

If Vf(0") # 0, we have:

at
B [[(V7 (0),5)] |6] = |97 (6)],E H<m,st>
— IV£ (6%, EaunromylIs]

2 2
= IV, [ s s

SEIGIR

If Vf(0%) = 0, both sides of the equality above are trivially zero. Therefore, in both cases, we have:
E[(VF(6"), 50| 0] = /2 [V ("), and it follows tha:

]

1 + ; Ld f
mat va (et)HQ <E [f (et) —f (0 +1) ‘ 0 ] + 4a :
We conclude that:
1 Lda}
e [|VS (@)].] <E[F (0] ~E[7 (0°)] + ZFE.

Proof of Theorem 2. Using lemma 1, for all t > 1, we have:

Lda%

B [[95 ()],] <EL (0] Bl (1)) + 2

V2r

Define the function g as follows: V0 € R?, g(6) = f(0) — infgcga f(6). Forall t > 1, we have:

@0 t t 141 La%
Norr ks [IV£(0")]2] < VE (E[g(6")] — E[g(6"+1)]) + o

13
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For T' > 2, summing over ¢, we obtain:

T+1 9 T
Qg " " " Log 1
E E Vf(6) E \/E (%) E t—1E[g(0")] + — E —

< g(0") — VTElg(" )] + Y FIOIL_ L Z/_ v

1 T+1 1 d 1 La%
<g(0") = VTE[g0" )] + g(6") > + VT

2/t — 1 2
_ 1 T+1 1 — 1 LO‘%
=g(0") — VT E[g(6"*")] + g(0") Tt+7 T
T-1 t
<g(0") = VTE[g(6" )] + g(6") /H ﬁ dx + LTO‘%\/T
< g(0") — VT E[g(0TF)] + g(0")VT —1 + %agﬁ

= J0") = nf 1)+ (J01) — FOTHWT + LT

0cR4

<2(f(0") - jnf, FO)VT + LTO‘%\FT

Thus, we conclude:

S BNV (wﬂ(() infgepa f(0)) 7 ) d

Tr
T o Ty gt

A.2 CONVERGENCE ANALYSIS FOR PMSS ALGORITHM

Lemma 3. Assume that f is lower bounded. Under algorithm 2, for all k > 1, we have
]P’(Tk<ooﬂpk:oo ):O.

Equivalently, on the event {1, < 0o} we have pj, < oo almost surely.

Proof of Lemma 3. Fix k > 1 and define the event By, := {7; < oo} N {pr = co}. We will show
that By, is empty, leading to the desired result. Let w € Bj. By definition of B), we have

Te(w) < oo and pg(w) = co.
Then have, for all ¢ > 75 (w),
FO (W) < F(0 (W) — caj.
It follows that for all n > 1, we have:
f(GT’“(w)JF”(w)) < f(@T’“(“)(w)) — nca%. 2)

Since f is bounded below on R?, letting n — oo yields a contradiction.

Therefore no such w can exist, and we conclude that
By =@, hence P(Bj)=0.

Equivalently, on the event {7}, < co} we must have p;, < oo almost surely. O

14
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Using lemma 3 we can show that a new Gaussian direction is sampled infinitely many times almost
surely.

Lemma 4. Assume that f is lower bounded. Under algorithm 2, we have almost surely:
(i) T, < oo forall k, (ii) T — o0 as k — oo.

In particular, resampling occurs infinitely many times almost surely.

Proof of Lemma 4. Using Lemma 3, we have:

IP’(Tk.<ooﬂ pkzoo):O forall k > 1.

Proof of (i). For each k£ > 1, define the event
Ep = {7, <00 = p < oo}.

Since P(py, = 00 N 7 < 00) = 0, we have P(E},) = 1 forevery k > 1. Let E := (,—, Ej. We
have P(E) = 1 because E is a countable intersection of events of probability one.

Fix w € E. We now argue pathwise.
Base case. By definition, 7 (w) = 1 < oo.
Induction step. Suppose T (w) < oo for some k > 1. Since w € Ey, the implication
Tr(w) < 00 = prlw) < 0o
holds, hence py(w) < co. By the definition of 741,
Trt1(w) = T + pr(w) + 1 < oo.

Thus, by induction, 7 (w) < oo forall k > 1.
Since this holds for every w € F and P(F) = 1, we conclude that IP’(Tk < oo for all k) = 1, which
proves (i).
Proof of (ii). Again we work on the event E of probability one, on which all 7 (w) are finite.
Fix w € E. For each k > 1 we have,

Tr1(w) = Te(w) + pe(w) +1 = 73(w) + 1.
Hence the sequence {71 (w)}r>1 is an increasing sequence of integers, so

T (w) —— oo.
k—o0

Since this holds for every w € E and P(E) = 1, we obtain
T, — o0 ask — oo almost surely,
which proves (ii).
Finally, note that at each time 74, the algorithm draws a fresh Gaussian direction s, ~ N(0,1y).

Since 7, < oo for all k¥ and 7, — oo almost surely, it follows that resampling occurs infinitely many
times almost surely. O

Proof of Theorem 3. Using Lemma 4, almost surely, for all £ > 1 we have 7, < co. Lett > 1.
Using the monotonic improvement of the algorithm and assuming that f is L-smooth, we have almost
surely

FO7) < FE) S FE7 + Brysr) S FO7) + B (I, 57 + 55 s

Since s, is a fresh Gaussian, independent of the filtration F,, we can repeat the proof of Lemma 1
to get

Lda?

——aE [V (6"),] S E[f (7)) - B[ (7)) + =5

T 3)

15



Under review as a conference paper at ICLR 2026

Summing from ¢t = 1 to N yields
1 ol T, T T Ld 2
m;aﬂﬁ[l!ww o) < E[F6™)] —E[f0™)] + T2

By monotonicity of the algorithm, f(6") is nonincreasing and hence E[f(6™)] < f(6'). If f is
bounded below by f, > —oo then E[f(§7V+1)] > f, for all N, and therefore

1N]Ev9ﬂ < [ Ld
\/T—W;at {H f( )Hz} < f( )—f*‘i'T;at-

Letting N — oo and using >, a7 < oo, we obtain
Zat [v57)]1,] < o @)

Define the nonnegative random variable S(w) = Y72, a; ||V (67 (w))]], € [0, +00].
By equation 4, we have: E[S] = >".° | a E“‘Vf(@”) HJ < 00. Since S > 0 and E[S] < oo, we
must have P(S = +o00) = 0.
Fix € > 0 and define
B. = {3K > 1such that |V (6™)||, > = forall ¢t > K }.

Suppose, for a contradiction, that P(B.) > 0. For every w € B there exists K (w) > 1 such that
IV (07 (w))||2 > € forall t > K(w), hence

o0

S(w):ZatHVf(G” H2 > Z are=c¢ Z ar =

t=1 t=K(w) t=K(w)

because Y -, a; = oo by assumption. Thus S(w) = +oo for all w € B., which implies P(S =
+00) > P(B;) > 0, contradicting P(S = +00) = 0. Therefore P(B.) = 0 for every ¢ > 0, and
hence:
lim ianVf (6’”) ||2 =0 almost surely.
t—o0

To extend this from the resampling times {7} to all iterations, define
C. = {ET > 1 such that |V £(6")||2 > & for all ¢ > T}.

Assume by contradiction that P(C.) > 0 for some ¢ > 0. By denoting D, = C. N {1, — oo},
using Lemma 4, we have P(D.) = P(C:) > 0. Let w € D,. There exist T( ), K (w) such that
IVF(0(w))|l2 > eforallt > T(w)and 74 (w) > T'(w) forall t > K (w). Thus

V(O ()], = & forallt> K(w).

This means D. C B, and therefore P(D.) < P(B.) = 0, a contradiction. Hence P(C.) = 0 for
every € > 0, which is equivalent to

liminf [V f(6")|2 =0 almost surely.
t—o0

This proves the theorem. O

A.3 CONVERGENCE ANALYSIS FOR MSS ALGORITHM WITH STOCHASTIC RANKING ORACLE

Lemma 5. Assume that f is L-smooth. Under Algorithm 3, for all t > 1,

E[A 15, |61 <

oy . L 9
Vo + —das.
o INFACRIIP 9 Qi
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Proof of Lemma 5. By L-smoothness, we have: Ay < oy (Vf(6%), s;) + £a7 ||s;||*. Therefore
A;1p, < min(Ay,0) < min(a(VF(0),54), 0) + %afHStHQ,

where we used min(y + b,0) < min(y,0) + b for any b > 0. Taking conditional expectation and

using s; ~ N(0, ),

E[A;1p, |0'] < o, E[min{(Vf(6"),s:), 0} | 6] + Laf E[||s]I3]

(VF(0"),5¢) — f(Vf((’t%SOI
2

= E +%daf

:_%]EHWf ), 800 |0'] + £ da?

(), + 3 dat.
O

The next lemma shows that the probability of a wrong accept/reject decision decays exponentially in
both the number of votes IV and the margin i (|A|).

Lemma 6. Assume assumption 1. Conditionally on (0%, s;) and when A; # 0,

E[|14, —15,||6% 5] < exp(f2N h(IAtl)z)

Proof of lemma 6. By definition, we have: ‘1At — 13t| = l{A AB }, so that:

EHlAt — ]'Bt’ ’ 9t78t:| = P(AtABt ’ 9t78t) .

Write Ay = f(0" 4+ aysy) — f(0) and p; := P01 = 1] 6%, s;). By independence the 0 1, ..., 0t N
are i.i.d. Bernoulli(p;) conditional on 6%, s;.

Assume now that A, < 0. By the oracle assumption: P(o;1 = 1| 6,s;) > £ + h(|A;]). It holds

that:
9 St>

(Tormmty = 3) SE[Loramny 10 5e] = 3 = h(A0) |65

9t7 St>

2 \

P(Ot—f<0|9t St = (

N
Z(l{ot n=1} — ) <0

=
M=

<P

3
Il
-

>0

Z

- P(N (1{‘" n=1} 7 ) - (E[l{ot,lzl} |6, s¢] — é) < —h(Ay)

<exp(—2N h(|At|)2) (by Hoeffding’s inequality).
But {6; < 1} is exactly the misclassification event A;AB; in this case.

Assume now that Ay > 0. By the oracle assumption: P(o¢,1 = 0 | 6%, s;) > 3 + h(|A¢[). It holds that:

N
1
p(5,l>0 .9’573):]?< l71{0 n=1}) <0 tgt,S)
tT 2 ’ b N;(Q t, 1) t

N
1
<P N Z(% - l{otmzl}) < E[l{ot,n,:o} | et,St} o % _ h(At) 9t7 .
n=1
>0
N
1
= <N;(é - l{ot,n,:1}> - (% _E[l{ot,n:l} | 0t75t]) < —h(At) 9t75t>

<exp(—2N h(At)2) (by Hoeffding’s inequality).
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which is the misclassification event A; /A Bz in this case. Combining both cases we obtain the desired result. [

The next lemma upper-bounds the ranking-error term.

Lemma 7. Assume that f is L—smooth and assumption 1 holds. Under algorithm 3, for all
t > 1, we have:

B, ~ 180 [#]] < L+ o290t (a2 1950 + Fdod)

1

L 2p

where C), , := e~ 2» <4p/-§2)

Proof of Lemma 7. Condition on (6%, s;). By Lemma 6 and Assumption 1, if A; # 0, we have:

EHlAt — 13t| ’0t,st] < exp(—ZNh(|At|)2) < eiQNKz‘A"‘zpl“At‘gr} + 672Nm21{mt|>r}.

then, if A; # 0, we have:

2

2 2p _ m
E[JAd [La, = 15[ [0 5] < [Adfe 2000 1y + [Ar]em?V
We remark that the inequality above holds trivially if A; = 0. By taking expectation given 6, we get:

E[|At| |1At — 1Bt| ‘ Ht} < s?p]xe_QN“%M + e_QNm?‘EUAA ’9t] .
xe(0,r

The map ¢(z) = xe 9" attains its maximum at 2* = (2pa)~Y/P) with value
e1/(2P)(2pa)~1/(2P) | With @ = 2Nk? we obtain the first term as C), ,N~/(2P). For the sec-
ond term, L-smoothness gives [A¢| < oy [(Vf(6), s:)| + Za?|[s¢||3, and since s, ~ N(0, 1),

E[(Vf(0),s:)]]6'] = \/g IV £(0")||2 and E[||s;]|3] = d. Combine the bounds. O

Putting lemma 5 and lemma 7 together gives a descent inequality for Algorithm 3.

Lemma 8. Assume that f is L—smooth and assumption 1 holds. Under algorithm 3, for all
t > 1, we have:

] —2Nm?2 t t t+1 L —2Nm? Cp,x

1-2 ) E 0 < E|f(0")— f(0 —d 1 . .

m( ¢ ) [Iw£(69)12] < E[£(6") = £(6" )]+ at( +e )+Nﬁ
Proof of Theorem 4. 1t is a direct consequence of Lemma 8. O

A.3.1 CONVERGENCE ANALYSIS FOR MSS ALGORITHM WITH GRADIENT APPROXIMATION

Proof of Lemma 2. For all § € R%, we denote:

{V% £(68) = L€ +us0=10")

Vo F(8) = (VI8 51)
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Let ¢ > 1. Using the smoothness of f and the monotonic improvement property of the algorithm, we

obtain:

E[f(0'+1) | 6] < E[f (0" - af(ﬁt + ’Yt:;) — f(et)st) 6]
E[f(6" = aV,, f(6")s:) | 6']

E

IN

= E[J(0") ~ a¥., S0V F(0) + & (a0, 5(6)° |

a((?stf(et) ~ Vs f(09)* (Vs f(89)° + (V&f(9t))2>
2 2

E[f(6") +
(T, £(09)° 1 0]
= E[£(6) = 5(Va f(6))” + S(Va f(6) = Vi S(6)?
allo=d) g
(Vaef (69 + 5 (Ve S(6) = Vi £(6)) | 61].

Using the smoothness of f, we obtain the following bound:

L
| F(0" + yise) — F(07) — (% V f(0°),50)] < 5%2”3:&”%
This implies:
- 1,2
JE[ Vo f(67) = Vs f(6") ] |9t] R
Therefore:

2
al® ,

SE(VF(0%),50) | 0] = SE(V,, £(6))? | '] < E[F(6) - F(01) | 6] + “—2.

8
Assume that §° € {v € R? | Vf (v) # 0}. We have:
2

E[[(75(6%), 50"

0'] = IV 56" I3E

Let R(6") be an orthogonal matrix such that R(6") W = 1. We have:
E[[(7r@), 501" [6'] = 1V £@)IZE [[¢REO") Ter, 50| 0]
= IVFOIZE [[(er, R@Ds0)[* |o7]
= IVFE)IBE [[{er, 50I°]
= ZI9 (6 BEls:]

G

This implies that E [(V f(8"),5,)% | 0"] = L[|V f(6")||3. Assuming 6" ¢ {6 € R |V f(#
the inequality still holds. Combmmg this w1th inequality (6), we obtain:

L2
SV I3 < ELF(8Y) - 76" | 0]+ “Sa2.
By taking expectation, we get:
2(E[f(68)] — E[f(0tT1 dL2

o 4
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Proof of Theorem 6. Let X7 = (minj<;<r ‘|Vf(0t)‘|2)2 for all ' > 1. Since Y ;2,72 < oo,
using lemma 2, we have E[>";°, X;| = >°7° E[X;] < co. Then ) ;= X; < oo almost surely.

Now fix T' > 1. Since { X, };>1 is non-increasing, we have:

2T—-1 )
TXor < Z X; < ZXi-
i=T i=T

i li X, =0al ly, it holds that:
SmceTl_rgO; ; = 0 almost surely, it holds that

TXor — 0 almost surely, i.e., (27)Xor =o0(1) as..
A similar argument gives (27" + 1) X211 = o(1) almost surely.

Combining these results, we deduce that:

1
Xr=o0 (T> almost surely.

B CONVERGENCE ANALYSIS FOR MSS ALGORITHM IN THE NON-SMOOTH
SETTING

In this appendix we provide the auxiliary lemmas and proof of theorem 7. Throughout we assume
assumption 2 and that d > 3.

Recall the set of good directions

. 1
Aaf) 1= {s €87 (VF0).5) <~ = IVFO) L .

and let U (S%~1) denote the uniform distribution on the unit sphere.

Lemma 9. Let d > 3. For every § € R%, we have

1
Pd = ]P)SNM(Sdfl){SEAd(Q)} > Z

Proof of Lemma 9. Fix any unit vector u and let Z = (u, s) with s ~ U/(S?~!). Then, using (Vignat
& Plastino, 2005, Theorem 2), Z has density on (—1,1):

— cg(1—2% c —7“%)
fa(z) = ca(l )7, d_ﬁr(%)'

For d > 3, f4 is even and nonincreasing on [0, 1). Then:

pd:P{ZS—L}Zl—/Omfd(z)dz > l_ifd(o):}_i

0 2 2 a2 2 9va "’
r(3)
Using Wendel’s inequality, I dzl) < % < \/E, we have ¢4 < % Hence
2
1 < 1 d 1 < 1
— ¢ = = =,
ovd ' T 2/aVar T 2/er T 4
We conclude that pg > 1. O
Proof. O
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Lemma 10. Assume that assumption 2 holds. For all € > 0, there exists r. > 0 such that, for all
0 € L(0Y), all s € Ay(0), and all o € (0,7.), we have

IVF(O)ll2 2 € = f(0+as) < f(0) - a|[VF(0)]2.

1
4/d

Proof of Lemma 10. Let K := {x : infyc (g1 ||z — y[|]2 < 1}. K is compact and V f is uniformly

continuous on K. For a € [0,1] and any § € L(#'), s € S¢~1, ¢ € [0,1], the points ¢ and
0 + tas € K. Define on [0, 1], the function y as follows:

pla) = sup [V f(6+tas) -V f(0
oeL(ot), sest—1,
t€[0,1]

M

then () — 0 as « | 0. In fact, since V f is continuous on the compact K, by Heine theorem, it is
uniformly continuous, meaning that for any fixed 6 > 0, there exists 7 > 0, for all =,y € K such that
l|z —y||2 <, wehave ||V f(z) — Vf(y)||]2 < 6. Let 0 < a < min(1, ), we get that for all € £(6),
seS¥ L andt € [0,1], ||Vf(0 +tas) — Vf(0)||2 < 6. This implies that if 0 < o < min(1,), we
have p(a) < §. Which means that p(«) — 0 as « | 0.

Fix 6 € L£(0') and s € Ay(0).
For any o > 0,

1

F(0+as) — [(0) = a(VF(0), 5) + a/ (VF(0+ tas) — V(0), s) dt
0
< 2= IV O)l2+ on(o).
Let € > 0. Since u(a) — 0 as « | 0, there exists 7. > 0 such that for all @ € (0,r.), we have

wla) < 4\6/3. (01), all s € Aq(0), and all o € (0,7.), if |[|[Vf(0)||2 > € then we
have:

F(0+as) < £(6) — ﬁ IV £(0)]|2-
O

Lemma 11. Assume that assumption 2 holds. Let {0} be a sequence generated by algorithm 1
using the uniform distribution over the unit sphere. Let € > 0 and let r. > 0 be as in Lemma 10.
Then, for all t such that oy < re,

E[f(671) 107 < ) = 1= VIO Lgwsoonaza-

Proof of Lemma 11. Let By := {||V f(6")||2 > ¢} and Cy := { s, € Aq(6") }. If oy < 7, Lemma 10
gives

FOOF) < (0" + ouse) < f(0) — fllW(Gt)H on E; N Ce.

Thus f(0"+!) < f(6") —

)| 15,nc, . We deduce that:

E[f(0"*1) ] '] < f(0") — pdjf IV£(6Y)] 18,

Sf(ot)f 16\/&

IV £ 15,

We now prove the main convergence result.
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Proof of Theorem 7. Fix € > 0. Since oy — 0, there exists T, with a; < r for all ¢ > T,. Taking
expectations in Lemma 11 and summing from ¢ = T, to N — 1, forany N > T, + 1, yields

N-1
E[f(0™)] < E[F(07)] = 5 D aP(IVF(E)]l2 > o).
t=T.
Since {E[f(6")]}+>0 is bounded below. Therefore:

3" a (V)2 > o) < oc.

t=T.

Now define the random variables X; := 1|y (0t)||,>¢}- We have:

E[ 3 atxt} =3 wEX] = Y aP(IVF0))e > €) < oo,

t=T.
which implies )" . o X; < oo almost surely.

Since Y ;2 oy = oo by assumption, >, ;X; < oo almost surely implies that X; = 0 for
infinitely many ¢ almost surely. In other words, for each fixed € > 0:

P(There are infinitely many ¢ such that ||V f(6")|]2 < €) = 1.

To establish that lim inf; o, ||V f(6%)||2 = 0 almost surely, we need to show:
. . t _ _
P(llgérolfHVf(@ N2 = 0) =1.

Note that lim inf; o ||V f(6")]|]2 = 0 if and only if for every € > 0, there are infinitely many ¢ such
that ||V f(6")]]2 < e.
Consider a sequence ¢, | 0 (e.g., €5 = 1/k). For each k, we have:

P(There are infinitely many ¢ such that ||V f(6")||2 < €x) = 1.

Since this holds for each k and there are countably many %, we can take the intersection:

]P’( m {there are infinitely many ¢ such that ||V f(6")||» < Ek}) =1
k=1

If a trajectory belongs to this intersection, then for every ¢ > 0, we can find k such that ¢;, < ¢, and
thus there are infinitely many ¢ with ||V f(6%)||2 < ex < €. This means lim inf;_, . ||V f(6%)||2 = 0
for this trajectory.

Therefore,
. . t _ _
P(llgg(}lfHVf(ﬂ N2 = 0) =1
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