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Summary
Achieving fast and stable off-policy learning in deep reinforcement learning (RL) is chal-

lenging. Most existing methods rely on semi-gradient temporal-difference (TD) methods for
their simplicity and efficiency but are consequently susceptible to divergence. While more
principled approaches like Gradient TD (GTD) methods have strong convergence guarantees,
they have rarely been used in deep RL. Recent work introduced the Generalized Projected
Bellman Error (GPBE), enabling GTD methods to work efficiently with nonlinear function ap-
proximation. However, this work is only limited to one-step methods, which are slow at credit
assignment and require a large number of samples. In this paper, we extend the GPBE objec-
tive to use multistep credit assignment based on the λ-return and derive three gradient-based
methods that optimize this new objective. We provide both a forward-view formulation com-
patible with experience replay and a backward-view formulation compatible with streaming
algorithms. Finally, we evaluate the proposed algorithms and show that they outperform both
PPO and StreamQ in Mujoco and MinAtar environments, respectively.

Contribution(s)
1. We extend the GPBE to incorporate multistep credit assignment based on λ-returns, defining

a new objective, the GPBE(λ) (Section 3).
Context: Patterson et al. (2022b) introduced the GPBE, which unifies and generalizes
previously known objectives for value estimation. However, it was only defined for the 1-
step TD error.

2. We derive three Gradient TD algorithms that optimize our proposed objective. We derive
both the forward view with the λ-return (Section 4) and the backward view with eligibility
traces (Section 6).
Context: Gradient TD methods were originally introduced with linear function approxi-
mation (Sutton et al., 2009), with a limited extension to nonlinear function approximation
that required second-order information (Maei et al., 2009). The recent work by Patterson
et al. (2022b) extended these methods to non-linear function approximation without a need
for second-order information. However, it was limited to the 1-step TD error.

3. We introduce Gradient PPO, a policy gradient algorithm that uses our sound forward-view
value estimation algorithms (Section 5).
Context: PPO (Schulman et al., 2017) is a widely-used policy gradient method that relies
on semi-gradient TD updates for value estimation. We build on PPO by replacing the value
estimation component with a new one that uses Gradient TD methods. This change required
non-trivial modification to PPO, resulting in our new algorithm, Gradient PPO. Gradient
PPO is the first policy gradient method that uses Gradient TD algorithms in a deep RL
setting with a replay buffer.

4. We introduce QRC(λ), which uses our backward-view eligibility traces and is suitable for
streaming settings (Section 6).
Context: Backward-view algorithms can make updates on each time step without delay,
making them efficient in streaming settings (Elsayed et al., 2024). QRC(λ) is the first
backward-view algorithm that uses Gradient TD methods in the streaming deep RL set-
ting.
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Abstract

Achieving fast and stable off-policy learning in deep reinforcement learning (RL) is1
challenging. Most existing methods rely on semi-gradient temporal-difference (TD)2
methods for their simplicity and efficiency but are consequently susceptible to diver-3
gence. While more principled approaches like Gradient TD (GTD) methods have strong4
convergence guarantees, they have rarely been used in deep RL. Recent work introduced5
the Generalized Projected Bellman Error (GPBE), enabling GTD methods to work ef-6
ficiently with nonlinear function approximation. However, this work is only limited to7
one-step methods, which are slow at credit assignment and require a large number of8
samples. In this paper, we extend the GPBE objective to use multistep credit assign-9
ment based on the λ-return and derive three gradient-based methods that optimize this10
new objective. We provide both a forward-view formulation compatible with experi-11
ence replay and a backward-view formulation compatible with streaming algorithms.12
Finally, we evaluate the proposed algorithms and show that they outperform both PPO13
and StreamQ in Mujoco and MinAtar environments, respectively.14

1 Introduction15

Estimating the value function is a fundamental component of most RL algorithms. All value-based16
methods depend on estimating the action-value function for some target policy and then acting17
greedily with respect to those estimated values. Even in policy gradient methods, where a param-18
eterized policy is learned, most algorithms learn a value function along with the policy. Many RL19
algorithms use semi-gradient temporal difference (TD) learning algorithms for value estimation, de-20
spite known divergence issues under nonlinear function approximation (Tsitsiklis & Van Roy, 1996)21
and under off-policy sampling (Baird, 1995), both of which frequently arise in modern deep RL22
settings.23

There have been significant advances towards deriving TD algorithms that are sound. This progress24
occurred once it became clear what objective underlies the TD solution. For a brief history, the mean25
squared Bellman error (BE) was an early objective, that produces a different solution than the TD26
fixed point but similarly aims to satisfy the Bellman equation. However, the BE was not widely-used27
because it is difficult to optimize without a simulator due to the double-sampling problem (Baird,28
1995). The mean squared projected Bellman error (PBE) for linear function approximation was29
introduced later, and a class of Gradient TD methods were derived to optimize this objective (Sutton30
et al., 2009). An early attempt to extend Gradient TD methods to nonlinear function approximation31
required computing Hessian-vector products (Maei et al., 2009). Patterson et al. (2022b) then in-32
troduced the generalized PBE (GPBE), which is based on the conjugate form of the BE (Dai et al.,33
2017), making it much simpler to derive Gradient TD methods for the nonlinear setting. This gener-34
alized objective was further extended to allow for robust losses in the Bellman error (Patterson et al.,35
2022a) and is a promising avenue for the development of sound value-estimation algorithms. The36
GPBE and robust extensions, however, have only been explored for the one-step setting.37
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Table 1: Related Gradient TD literature. Our paper is the first to define and optimize the GPBE(λ)
objective for nonlinear function approximation (see Section 4).

Linear Function Approximation Nonlinear Function Approximation
Objective 1-step λ-return 1-step λ-return

PBE (Sutton et al., 2009) (Maei & Sutton, 2010) (Maei et al., 2009) Our paper
GPBE (Patterson et al., 2022b) Our paper (Patterson et al., 2022b) Our paper

In this paper, we extend the GPBE to incorporate multistep credit assignment using λ-returns. Ta-38
ble 1 summarizes the algorithmic gaps that we fill. We derive similar gradient variants as were39
derived for the one-step GPBE (Patterson et al., 2022b), but now also need to consider forward-view40
and backward-view updates for our proposed objective, GPBE(λ). We introduce Gradient PPO, a41
policy gradient algorithm that modifies PPO to use our sound forward-view value estimation algo-42
rithms. We also introduce QRC(λ), which uses backward-view eligibility traces and is suitable for43
streaming settings. We show that Gradient PPO significantly outperforms PPO in two Mujoco en-44
vironments and is comparable in two others. We show that QRC(λ) is significantly better in several45
MinAtar environments than StreamQ (Elsayed et al., 2024), a recent algorithm combining Q(λ) with46
a new optimizer and an initialization scheme for better performance in streaming settings. We inves-47
tigate multiple variants of our forward-view and backward-view algorithms, and as was concluded48
for GPBE(0) (Ghiassian et al., 2020; Patterson et al., 2022b), find that a variant based on regularized49
corrections called TDRC consistently outperforms the other variants. This work provides a clear50
conclusion on how to incorporate gradient TD methods with eligibility traces into deep RL methods51
and offers two new promising algorithms.52

2 Background53

We consider the Markov Decision Process (MDP) formalism where the agent-environment inter-54
actions are described by the tuple (S,A, p,R). At each time step, t = 1, 2, 3, . . ., the agent ob-55
serves a state, St ∈ S , and takes an action, At ∈ A according to a policy π : S × A → [0, 1],56
where S and A are finite sets of states and actions, respectively. Based on St and At, the en-57
vironment transitions to a new state, St+1 ∈ S , and yields a reward, Rt+1 ∈ R, with probability58
p(St+1 , Rt+1 | St, At). The value of a policy is defined as vπ(s)

def
= Eπ[Gt | St = s],∀s ∈ S, where59

the return, Gt
def
=

∑∞
i=0 γ

iRt+1+i, is the discounted sum of future rewards from time t and γ is a60
discount factor, γ ∈ [0, 1].61

The agent typically estimates the value function using a differentiable parameterized function, such62
as a neural network. We define the parameterized value function as v̂(s,w) ≈ vπ(s), where w ∈63
Rdw is a weight vector and dw < |S|. One objective to learn this value function is the mean squared64
Bellman error (BE)65

BE(w)
def
=

∑
s∈S

d(s)Eπ[δ | S = s]2 , (1)

where d is the state distribution1 and δ is the TD error for a transition (S,A, S′, R). The δ can be dif-66
ferent depending on the algorithm. For state-value prediction, we use δ def

= R+γv̂(S′,w)− v̂(S,w).67
For control, to learn optimal action-values q∗(s, a), we use δ

def
= R + γmaxa′∈A q̂(S′, a′,w)) −68

q̂(S,A,w). For control, we would additionally condition on A = a above and sum over (s, a) in-69
stead of s, but for simplicity of exposition, we only show the objectives for v̂. We can not generally70
reach zero BE, unless the true value function is representable by our parameterized function class.71
The BE objective is difficult to optimize, due to the double sampling issue, and we instead consider72
a more practical objective called the GPBE.73

1Note that we write the expectation with a sum to make the notation more accessible, but this can be generalized to
continuous state spaces using integrals.

2



Deep RL with Gradient Eligibility Traces

The GPBE objective generalizes and unifies several objectives and extends Gradient TD methods74
to nonlinear function approximation (Patterson et al., 2022b). The GPBE builds on the work by75
Dai et al. (2017) that avoids the double sampling by reformulating the BE using its conjugate form76
with an auxiliary variable h. Using the fact that the biconjugate of a quadratic function is x2 =77
maxh∈R 2xh− h2, we can re-express the BE as78

BE(w)
def
= max

h∈Fall

∑
s∈S

d(s)
(
2 δπ(s)h(s)− h(s)2

)
, (2)

where Fall is the space of all functions and δπ(s)
def
= Eπ[δt | St = s]. For a state s, the optimal79

h∗(s) = δπ(s), and we recover the BE. More generally, we learn a parameterized function that80
approximates this auxiliary variable h. LettingH be the space of the parameterized functions for h,81
the GPBE then projects BE intoH, and is defined as:82

GPBE(w) = max
h∈H

∑
s∈S

d(s)
(
2 δπ(s)h(s)− h(s)2

)
. (3)

Depending on the choice of H, the GPBE can express a variety of objectives. For a linear func-83
tion class, we recover the linear PBE, and for a highly expressive function class, we recover the84
(identifiable) BE (Patterson et al., 2022b).85

The GPBE can be optimized by taking the gradient of the objective, which results in a saddle point86
update called GTD2, or we can do a gradient correction update, which results in a preferable algo-87
rithm called TDC. Note that GTD2 and TDC were introduced for the linear setting (Sutton et al.,88
2009), but the same names are used when generalized to the nonlinear setting (Patterson et al.,89
2022b), so we follow that convention. TDC has been shown to outperform GTD2 (Ghiassian et al.,90
2020; White & White, 2016; Patterson et al., 2022b) and has been further extended to include a reg-91
ularization term, resulting in a better update called TDRC (Ghiassian et al., 2020; Patterson et al.,92
2022b).93

We briefly include the update rule for these three Gradient TD methods, as we will extend them in94
the following sections. For v̂ parameterized by w and ĥ parameterized by θ, all methods can be95
written as jointly updating96

wt+1 ← wt + α∆wt ,

θt+1 ← θt + α∆θt ,
(4)

where α ∈ (0, 1] is a step-size hyperparameter, or more generally an optimizer like Adam (Kingma97
& Ba, 2014) can be used. For GTD2, ∆wt is98

∆wt = −ĥ(St,θt)∇wδt = ĥ(St,θt) (∇wv̂(St,w)− γ∇wv̂(St+1,w))

The TDC update replaces the term ĥ(St,θt)∇wv̂(St,w) with δt∇wv̂(St,w), to get the update99

∆wt = δt∇wv̂(St,w)− ĥ(St,θt)∇wγv̂(St+1,w)

This update is called TD with corrections, because the first term is exactly the TD update and the100
second term acts like a correction to the semi-gradient TD update. This modified update is justified101
by noting that h∗(s) = δπ(s) and so replacing the approximation ĥ(St,θt) with an unbiased sample102
δt instead is sensible. TDC has been shown to converge to the same fixed point as TD and GTD2103
in the linear setting (Maei, 2011), and generally has been found to outperform GTD2. Both GTD2104

and TDC have the same ∆θt which can be written as ∆θt =
(
δt − ĥ(St,θt)

)
∇θĥ(St,θt). TDRC105

uses the same ∆wt as TDC, but regularizes the auxiliary variable:106

∆θt =
(
δt − ĥ(St,θt)

)
∇θĥ(St,θt)− βθt.
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For β = 0, TDRC is the same as TDC, and as β is increased, h gets pushed closer to zero and107
TDRC becomes closer to TD. TDRC was found to be strictly better than TDC, even with a fixed108
β = 1 across problems (Ghiassian et al., 2020; Patterson et al., 2022b). This improvement was109
further justified theoretically with a connection to robust Bellman losses (Patterson et al., 2022a),110
motivating regularization on h.111

3 The Generalized PBE(λ) Objective112

The basis of GPBE is the 1-step TD error, which means that credit assignment can be slow. Reward113
information must propagate backward one step at a time through the value function, via bootstrap-114
ping. In this section, we extend the GPBE to incorporate multistep credit assignment using the115
λ-return.116

First, let us define our multistep target. The simplest multistep return estimator is the n-step return,117
defined as118

G
(n)
t

def
=

n−1∑
i=0

γiRt+1+i + γnv̂(St+n,wt) .

The λ-return is the exponentially weighted average of all possible n-step returns:119

Gλ
t

def
= (1− λ)

∞∑
n=1

λn−1G
(n)
t , (5)

where λ ∈ [0, 1]. The λ-return is the return target for TD(λ) (Sutton, 1988) and comes with a120
number of desirable properties: it smoothly interpolates between TD and Monte Carlo methods (a121
bias-variance trade-off; Kearns & Singh, 2000), reduces variance compared to a single n-step return122
(Daley et al., 2024b), and imposes a recency heuristic by assigning less weight to temporally distant123
experiences (Daley et al., 2024a). We denote the error between the λ-return target and the current124
value estimate by125

δλt
def
= Gλ

t − v̂(St,wt) =

∞∑
i=0

(γλ)iδt+i , (6)

and refer to this quantity as the TD(λ) error. We note that in the context of recent works, the TD(λ)126
error is often referred to as the generalized advantage estimate (GAE; Schulman et al., 2015).127

The GPBE is defined using this TD(λ) error. For δλπ(s)
def
= Eπ[δ

λ
t | St = s], we define the BE(λ)128

analogously to Eq. (1) as129
BE(w, λ)

def
=

∑
s∈S

d(s) δλπ(s)
2 .

Following the earlier derivation of the GPBE in Eq. (3), with the definitions of h and the new δλπ(s),130
we can write the GPBE(λ) objective as131

GPBE(w, λ)
def
= max

h∈H

∑
s∈S

d(s)
(
2δλπ(s)h(s)− h(s)2

)
. (7)

When λ = 0, we recover the original GPBE objective of Patterson et al. (2022b). In the absence132
of function approximation, the GPBE and the GPBE(λ) objectives lead to the same solution, vπ ,133
because their fixed points are both vπ . However, when function approximation is introduced, the134
choice of λ strongly impacts the minimum-error solution. In practice, intermediate λ-values on the135
interval (0, 1) will balance between solution quality, learning speed, and variance.136

4 The Forward-View for Gradient TD(λ) Methods137

In this section, we develop several forward-view methods for optimizing the GPBE(λ) under non-138
linear function approximation. Following the previous convention, we will overload the names139
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GTD2(λ) and TDC(λ) introduced for the linear setting because we are strictly generalizing them to140
a broader function class.141

GTD2(λ): We derive this algorithm by taking the gradient of Eq. (7) w.r.t to both w and θ.142

1

2
∇w

∑
s∈S

d(s)
(
2 δλπ(s)h(s)− h(s)2

)
=

∑
s∈S

d(s)∇wδλπ(s) ,

1

2
∇θ

∑
s∈S

d(s)
(
2 δλπ(s)h(s)− h(s)2

)
=

∑
s∈S

d(s)
(
δλπ(s)− h(s)

)
∇θh(s) .

We get a stochastic gradient descent update by sampling these expressions. For brevity throughout,143
let Vt

def
= v̂(St,wt) and Ht

def
= ĥ(St,θt). The resulting update is then144

∆wt = −Ht∇wδλt , (8)

∆θt = (δλt −Ht)∇θHt . (9)

GTD2(λ) is a standard saddle-point update and should converge to a local optimum of the GPBE(λ)145
objective.146

TDC(λ): For TDC(0), we obtained a gradient correct alternative by adding the term (δt −147
h(St))∇wv̂(St,w) to the GTD2(0) update. This was motivated by the fact that h(St) approximates148
δt. We take a similar approach here, adding (δλt −Ht)∇wv̂(St,wt) to the GTD2(λ) update for w:149

∆wt = (δλt −Ht)∇wVt −Ht∇wδλt

= δλt ∇wVt −Ht∇w(Vt + δλt ) . (10)

The θ-update remains the same as Eq. (9). The result is the sum of a semi-gradient TD(λ) update150
and a gradient correction. However, the method is biased, as it assumes that Ht has converged151
exactly to δλπ(St). This bias did not impact convergence of TDC in the linear setting, but as yet there152
is no proof of convergence of TDC in the nonlinear setting. Similarly, it is not yet clear what the153
ramifications are of using TDC(λ) rather than GTD2(λ), although once again, in our experiments,154
we find it is better empirically.155

TDRC(λ): Finally, we extend the TDRC algorithm, and the extension simply involves adding a156
regularization penalty with coefficient β ≥ 0 to the update for h:157

∆θt = (δλt −Ht)∇θHt − βθt . (11)

All the methods we derived in this section depend on the forward-view of the λ-return from Eq. (5),158
which means they need a trajectory of transitions to make an update. This makes these methods159
appealing when there is a replay buffer to store and sample these trajectories. Further, the trajectories160
should be on-policy to avoid the need to incorporate importance sampling ratios. It is not difficult161
to incorporate importance sampling (we include these extensions in Appendix B, but there is the162
potential for variance issues when using importance sampling. These two criteria motivate why we163
incorporate these forward-view updates into PPO in the next section.164

5 Gradient PPO: Using the Forward-View in Deep RL165

In this section, we introduce a new algorithm, called Gradient PPO, that modifies the PPO algorithm166
(Schulman et al., 2017) to incorporate the forward-view gradient methods derived in the last section.167

5.1 Gradient PPO168

Proximal Policy Optimization (PPO; Schulman et al., 2017) is a widely used policy-gradient method169
that learns both a parameterized policy, the actor, and an estimate for the state-value function, the170
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critic. In PPO, the agent alternates between collecting a fixed-length trajectory of interactions and171
performing batch updates using that trajectory to learn both the policy and the state-value function.172
We will focus on the critic component of PPO, as that is the part learning the value function, and we173
will modify it to use the gradient-based methods introduced in Section 4.174

PPO updates depend on the Generalized Advantage Estimate (GAE; Schulman et al., 2015), which175
is identical to the TD(λ) error in Eq. (6). In practice, however, PPO updates must truncate GAE176
due to the finite length of the collected experience trajectory. Given a trajectory of length T , the177
truncated GAE can be written as δλt:T =

∑T−t−1
i=0 (γλ)iδt+i, and we can form an estimate for the178

λ-return using that truncated GAE as:179

Gλ
t:T

def
= v̂(St,w) +

T−t−1∑
k=0

(γλ)kδt+k . (12)

The value-function objective for PPO can then be written as follows:180

Lt(wt) =
1

2

(
v̂(St,wt)− sg(Gλ

t:T )
)2

, (13)

where sg(.) denotes a stop gradient operation, so the gradient of the objective only accounts for the181
gradient of v̂(st,wt). PPO typically uses a stale target for Gλ

t:T . i.e., the λ-return target is computed182
once from the collected trajectory and is kept fixed for all the training epochs on that trajectory.183
Finally, most implementations consider a clipped version of this loss. But, for simplicity, we will184
drop the clipping part of the objective for our algorithm. Since the clipping, among other heuristics185
in PPO, is meant to stabilize the updates and prevent large updates, they might not be needed for186
gradient-based methods that can robustly handle off-policy updates.187

We now introduce Gradient PPO which changes the critic update for PPO to allow for Gradient188
TD(λ) updates. Gradient PPO introduces the following three changes.189

Modification 1: We change PPO’s objective function, Eq. (13), to match the updates in Section 4.190
We can write a new objective based on TDRC(λ) as follows:191

Lt(wt) = sg
(
ĥ(St,θt)

)
δλt:T − sg

(
δλt:T − ĥ(St,θt)

)
v̂(St,wt). (14)

Modification 2: We introduce an objective function for the auxiliary variable ĥ, which can be192
written as:193

Lt(θt) = −sg
(
δλt:T − ĥ(St,θt)

)
ĥ(St,θt) +

β

2
∥θt∥2. (15)

Modification 3: We need to compute the gradient for δλt . As a result, we cannot use a stale target194
as in Eq. (13). Instead, we need to recompute δλt and its gradient after each update. We do this by195
sampling sequences from the minibatch instead of sampling independent samples. We then compute196
a truncated δλt:τ based on the sampled sequences. In this case, the effective truncation for the λ-return197
is the length of the sequence sampled from a minibatch, τ , rather than the full trajectory length T .198
Daley & Amato (2019) used a similar approach to incorporate the λ-return with replay buffers. This199
approach might seem computationally expensive at first since w is used to compute all the values200
included in δ̂λt:τ estimation. However, a nice property of the gradient ∇w δ̂λt:τ is that it can be easily201
computed recursively as follows:202

∇wδλt = γλ∇wδλt+1 +∇wδt.

Then, given a sequence of length τ , ∇wδλt and δλt can be estimated using Algorithm 1, where lines203
in green highlight the additional computations required for Gradient PPO per a minibatch update.204

Implementations for Gradient PPO can simply pass the newly defined loss functions, Eq. (14) and205
Eq. (15), directly to an automatic differentiation. But implementations based on Algorithm 1 might206
be more efficient as it allows for parallel computations of the values for all states. We also provide207
a full algorithm for PPO and Gradient PPO in Appendix C.208

6



Deep RL with Gradient Eligibility Traces

Algorithm 1 Estimating TDRC(λ) Updates for Gradient PPO

Input: A sequence of states, st, . . . st+τ .
Input: The current weight parameters of the value function, w.
For all samples in the sequence, compute v̂(st,w) and∇wv̂(st,w).

▷ This step is done in parallel by creating a batch of all observations.
for j = t+ τ − 1, . . . , t do

δj = Rj+1 + γv̂(sj+1,w)− v̂(sj ,w)
∇δj = Rj+1 + γ∇v̂(sj+1,w)−∇v̂(sj ,w)
δλj = δj + γλδλj+1

∇δλj = ∇δj + γλ∇δλj+1

end for

5.2 Empirical Analysis of Gradient PPO209

We now evaluate the performance of Gradient PPO across several environments from the MuJoCo210
Benchmark (Todorov et al., 2012). For Gradient PPO, we performed a hyperparameter sweep for211
the actor learning rate, the critic learning rate, and λ. For the auxiliary variable h, we used the same212
learning rate as the critic. We tested each hyperparameter configuration on all environments and213
repeated the experiments across 5 seeds. Finally, based on the sweep results, we selected a hyper-214
parameter configuration that worked reasonably well across all environments and evaluated it for 30215
more seeds. We provide the ranges of values we swept over in Appendix D and the hyperparameters216
configuration that we will use in all Gradient PPO experiments in Table 4. For PPO, we used the217
default hyperparameters commonly used for PPO with Mujoco environments (Huang et al., 2022).218
We provide those default hyperparameters in Table 3.219

Figure 1 shows the Gradient PPO and Default PPO results across four MuJoCo environments. In220
Ant and HalfCheetah, Gradient PPO clearly outperforms PPO. Both algorithms perform similarly in221
Walker and Hopper.222
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Figure 1: Gradient PPO and PPO evaluated on four MuJoCo environments. The solid lines are the
mean performance averaged over 30 seeds, and the shaded area is the standard error.

We also investigated the utility of using TDRC(λ) instead of TDC(λ) and GTD2(λ) to estimate the223
critic. Figure 2 shows the results with these variations. There is a marked difference in performance,224
and these results suggest that both gradient corrections and regularization are needed to perform225
better when using gradient-based methods. This outcome aligns with our discussion in Section 2226
and Section 4 about how TDRC has been shown to outperform TDC, which in turn outperforms227
GTD2.228

6 The Backward View for Gradient TD(λ) Methods229

The forward-view algorithms we have derived so far have updates that depend on future information,230
making them unrealizable without the delay introduced by experience replay. Alternatively, we can231
use eligibility traces via backward-view algorithms that incrementally generate the correct parameter232
updates on each time step. We now derive the backward view algorithms for optimizing GPBE(λ).233
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Figure 2: Gradient PPO variations evaluated on 4 Mujoco environments. The solid lines are the
mean performance averaged over 30 seeds, and the shaded area is the standard error.

GTD2(λ): As we prove below, the following backward-view updates are equivalent to the forward-234
view updates given in Eq. 8:235

∆wt
def
= −zht ∇wδt , (16)

∆θt
def
= δtz

θ
t −Ht∇θHt , (17)

where236

zht
def
= γλzht−1 +Ht , (18)

zθ
t

def
= γλzθ

t−1 +∇θHt , (19)

for zh−1
def
= 0, and zθ

−1
def
= 0. We show in the following theorem that this backward-view algorithm237

generates the same total parameter updates as the forward view under standard assumptions.238

Theorem 6.1. Assume the parameters w and θ do not change during an episode of environment239
interaction. The forward and backward views of GTD2(λ) are equivalent in the sense that they240
generate equal total parameter updates:241

∞∑
t=0

Ht∇wδλt =

∞∑
t=0

zht ∇wδt , (20)

∞∑
t=0

(δλt −Ht)∇θHt =

∞∑
t=0

(δtz
θ
t −Ht∇θHt) . (21)

Proof. See Appendix A.242

Table 2: Forward- and backward-view updates of our three proposed Gradient TD(λ) algorithms for
prediction with nonlinear function approximation.

Algorithm View ∆wt ∆θt

B-GTD2(λ)
Forward −Ht∇wδλt (δλt −Ht)∇θHt

Backward −zht ∇wδt δtz
θ
t −Ht∇θHt

B-TDC(λ)
Forward δλt ∇wVt −Ht∇w (Vt+δλt ) (δλt −Ht)∇θHt

Backward δtz
w
t −Ht∇wVt−zht ∇wδt δtz

θ
t −Ht∇θht

B-TDRC(λ)
Forward δλt ∇wVt −Ht∇w (Vt+δλt ) (δλt −Ht)∇θHt−βθt

Backward δtz
w
t −Ht∇wVt−zht ∇wδt δtz

θ
t −Ht∇θHt −βθt
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TDC(λ): Let us slightly rewrite ∆wt from Eq. (10) in the following way:243

δλt ∇wVt︸ ︷︷ ︸
TD(λ)

+ (−Ht∇wVt)︸ ︷︷ ︸
instantaneous

correction

+ (−Ht∇wδλt )︸ ︷︷ ︸
B-GTD2(λ)

. (22)

We see that ∆wt from Eq. (22) decomposes into three terms: forward-view semi-gradient TD(λ)244
with off-policy corrections; an instantaneous correction that does not require eligibility traces; and245
GTD2(λ)’s term for ∆wt, for which we already derived and proved a backward-view equivalence246
in Theorem 6.1. As a consequence, we immediately deduce that the backward view for TDC(λ) is247

∆wt
def
= δtz

w
t −Ht∇wVt − zwt ∇wδt, (23)

where248

zw
t

def
= γλzw

t−1 +∇wVt, (24)

and zht is the same as before in Eq. (18). ∆θt is generated by Eq. (17).249

TDRC(λ): Likewise, the regularized backward-view θ update is250

∆θt
def
= δtz

θ
t −Ht∇θHt − βθt, (25)

where zθ
t is once again generated by Eq. (19). Table 2 summarizes the forward view and the back-251

ward view for all the algorithms introduced. We highlighted the update components that arise from252
directly taking the gradient of GPBE(λ) in green, the gradient correction components in blue, and253
the regularization component in orange.254

7 QRC(λ): Using the Backward-view in Deep RL255

In this section, we extend the backward-view methods to action values and present three control256
algorithms based on three backward-view updates presented earlier. Since these algorithms are257
based on the backward view, they can make immediate updates without delay. Hence, they can258
work effectively in settings where it is prohibitive to have a large experience replay buffer, i.e., on-259
edge devices and mobile robots. Additionally, unlike forward-view methods, which require us to260
present a truncated version of the updates, backward-view methods do not have this limitation.261

7.1 QRC(λ)262

Extending the backward-view algorithms to action values is straightforward. Here, we present263
the extensions to Q(λ), but similar extensions can be done to other action-value methods, such264
as SARSA(λ). Note that similar changes can be made to action-value methods using the forward265
view.266

Consider an action-value network parameterized by w, and write the TD error as:267

δt = Rt+1 + γmax
a′∈A

q̂(St+1, a
′,wt)− q̂(St, At,wt) .

The gradient of the TD error becomes the following:268

∇wt
δt = γ∇wt

(
max
a′∈A

q̂(St+1, a
′,wt)

)
−∇wt

q̂(St, At,wt) .

The auxiliary function for h is now predicting a function of both the states and actions: ht
def
=269

h(st, at,θt). Using these modifications, we can now write the updates for the control variant of270
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TDRC(λ), which we refer to as QRC(λ):271

zw
t = γλzw

t−1 +∇wt
q̂(St, At,wt)

zht = γλzht−1 +Ht

zθ
t = γλzθ

t−1 +∇θHt

∆wt = δtz
w
t −Ht∇w q̂(St, At,wt)− zht ∇wδt

∆θt = δtz
θ
t −Ht∇θHt − βθt

(26)

We can modify these updates to get QC(λ), an update based on TDC(λ), by simply setting β = 0.272
We can also get GQ(λ), an update based on GTD2(λ) by setting β = 0 and removing the gradient273
correction term (see Table 2). Finally, we follow Watkins’ Q(λ) in that we decay the traces as274
described in the previous equations when a greedy action is selected and reset the traces to zero275
when a non-greedy action is selected (Watkins, 1989).276

7.2 Empirical Analysis of QRC(λ)277

We evaluated the performance of QRC(λ) across all the environments from the MinAtar bench-278
mark (Young & Tian, 2019). We compared the performance with Watkin’s Q(λ) (Watkins, 1989)279
and StreamQ algorithm (Elsayed et al., 2024), a recent algorithm combining Q(λ) with a new opti-280
mizer and an initialization scheme for better performance in streaming settings.281

For Q(λ) and QRC(λ), we used SGD and performed a hyperparameter sweep for different values for282
the step size and λ. We tested each hyperparameter configuration in all environments and across 5283
seeds. We then selected the hyperparameter configuration that worked well across all environments,284
and we evaluated it for 30 more seeds in all environments. We provide the ranges and the final285
hyperparameters we used in Appendix E. For StreamQ, we did not do a hyperparameter sweep,286
as the paper claimed that their algorithm is robust to hyperparameters and does not need a sweep287
over them. Hence, we report the results of the StreamQ algorithm based on running their available288
code with its default hyperparameters across 30 seeds in all environments. Figure 3 shows the289
performance of all three algorithms across the 5 MinAtar environments, and in all environments,290
QRC(λ) outperforms both StreamQ and Q(λ).2291
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Figure 3: QRC(λ), Q(λ) and StreamQ algorithms evaluated on the five MinAtar environments.
The solid lines are the mean performance averaged over 30 seeds, and the shaded regions are the
corresponding standard errors.

We evaluated the other two gradient-based algorithms, QC(λ) and GQ2(λ). Figure 4 shows the292
results of this evaluation. The results are consistent with forward-view results in Section 5 in that293
having both the gradient correction and the regularization is needed for better performance. How-294
ever, here the regularization is not as critical as it was for Gradient PPO.295

2Note that StreamQ results are lower than what was reported by Elsayed et al. (2024) on SpaceInvaders and Seaquest.
However, we obtained those results from their publicly available code without any modifications.
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Figure 4: All gradient-based backward view algorithms evaluated on the 5 MinAtar environments.
The solid lines are the mean performance averaged over 30 seeds, and the shaded regions are the
corresponding standard errors.

8 Conclusion296

We proposed the GPBE(λ) objective, a multistep generalization of the Generalized Projected Bell-297
man Error (Patterson et al., 2022b) based on the λ-return. We derived three algorithms for optimizing298
the new objective both in the forward view and in the backward view. Of the three algorithms we299
developed, we showed that TDRC(λ) is stable, fast, and convergent to a high-quality solution. We300
introduced two Deep RL algorithms that use the newly derived update rules, and we showed that301
our new algorithms outperform both PPO with a buffer and streaming algorithms without replay302
buffers.303

A Proof of Theorem 6.1304

Theorem 6.1. Assume the parameters w and θ do not change during an episode of environment305
interaction. The forward and backward views of GTD2(λ) are equivalent in the sense that they306
generate equal total parameter updates:307

∞∑
t=0

Ht∇wδλt =

∞∑
t=0

zht ∇wδt , (20)

∞∑
t=0

(δλt −Ht)∇θHt =

∞∑
t=0

(δtz
θ
t −Ht∇θHt) . (21)

In the proof below, we added importance sampling for generality.308

Proof. We start by showing Eq. (20) holds. Note that309

Ht∇w δ̂λt = Htρt∇wδt +Htγλρtρt+1∇wδt+1 +Ht(γλ)
2ρtρt+1ρt+2∇wδt+2 . . . . (27)

The total sum of these forward-view contributions is therefore310
∞∑
t=0

Ht∇wδλt = (H0ρ0∇wδ0 +H0γλρ0ρ1∇wδ1 + . . . ) + (H1ρ1∇wδ1 +H1γλρ1ρ2∇wδ2 + . . . ) + . . .

= (H0ρ0)∇wδ0 + (H0γλρ0ρ1 +H1ρ1)∇wδ1 + . . . (28)

= zh0∇wδ0 + zh1∇wδ1 + . . . (29)

=

∞∑
t=0

zht ∇wδt, (30)

which proves Eq. (20). Next, consider Eq. (21). Notice that the equality holds if and only if311

∞∑
t=0

δ̂λt ∇θHt =

∞∑
t=0

δtz
θ
t , (31)
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and further note that312

δ̂λt ∇θHt = ρtδt∇θHt + γλρtρt+1δt+1∇θHt + (γλ)2ρtρt+1ρt+2δt+2∇θHt + . . . . (32)

The total sum of these forward-view contributions is therefore313
∞∑
t=0

δλt ∇θHt = (ρ0δ0∇θH0 + γλρ0ρ1δ1∇θH0 + . . . ) + (ρ1δ1∇θH1 + γλρ1ρ2δ2∇θH1 + . . . ) + . . .

(33)

= δ0(ρ0∇θH0) + δ1(γλρ0ρ1∇θH0 + ρ1∇θH1) + . . . (34)

= δ0z
θ
0 + δ1z

θ
1 + . . . (35)

=

∞∑
t=0

δtz
θ
t , (36)

which establishes Eq. (31) to prove Eq. (21) and complete the proof.314
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Supplementary Materials371
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373

B Gradient TD (λ) with Importance Sampling Correction374

We now discuss the modifications needed when the experiences (St, At, Rt, St+1) are collected by a375
behaviour policy b rather than the target policy π. Letting ρt =

π(At|St)
b(At|St)

be the importance sampling376

ratio at time t, we can scale the TD error by this factor to form a bias-corrected TD error δ̂t
def
= ρtδt,377

since Eb[ρtδt|St = s] = Eπ[δt|St = s] = δ(s) (Precup et al., 2000). By induction, it follows that378
the bias-corrected TD(λ) error is379

δ̂λt
def
=

∞∑
i=0

(γλ)i

 i∏
j=0

ρt+j

δt+i = ρt(γλδ̂
λ
t+1 + δt). (37)

The backward view traces will then be defined as follows:380

zht
def
= ρt(γλz

h
t−1 + ht) , (38)

zθ
t

def
= ρt(γλz

θ
t−1 +∇θht) , (39)

C Gradient PPO381

The full PPO algorithm is expanded in algorithm 2 and the full Gradient PPO with B-TDRC updates382
algorithm is in algorithm 3.383

D Experimental Details of Gradient PPO384

Table 3 contains all the hyperparameters used for PPO experiments. Table 4 contains all the hy-385
perparameters used for Gradient PPO experiments, and Table 5 shows the ranges we used for the386
sweep.387

E Experimental Details of MinAtar388

Table 6 shows the final hyperparameters used for QRC(λ), QC(λ) and GQ2(λ) in all MinAtar envi-389
ronments and Table 7 shows the ranges used for the sweep.390
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Algorithm 2 PPO with Advantage Estimates

Input: a differentiable policy parametrization π(a|o, θθθ)
Input: a differentiable state-value function parametrization v̂(o,w)
Algorithm parameters: learning rate α, rollout length τ , mini-batche size n, number of epochs k,
value coefficient c1, entropy coefficient c2, clip coefficient ϵ, max gradient norm c.
for iteration = 1, 2, · · · , τ do

Run πold(a|o, θθθold) for τ timesteps and save transitions of
⟨ot, At+1, Rt+1, log πold(At+1|ot, θθθold), v̂(ot, θθθold)⟩, . . . ,
⟨ot+τ−1, At+τ , Rt+τ , log πold(At+τ |ot+τ−1, θθθold), v̂(ot+τ−1,wold)⟩

Calculate v̂(ot+τ ,wold) ▷ For bootstrapping

Set Â
(γ,λ)

t+τ = 0

for j = t+ τ − 1, . . . , t do
δj = Rj+1 + γv̂(oj+1,wold)− v̂(oj ,wold)

Â
λ

j = δj + γλÂ
λ

j+1

Ĝλ
j = Â

λ

j + v̂(oj ,wold)
end for

Construct a batch of τ transitions, each transition is:
⟨oi, Ai+1, Ri+1, log πold(Ai+1|oi, θθθold), v̂(oi,wold), Ĝ

λ
i,wold

,Â
(γ,λ)

i,wold
⟩

for epoch = 1, . . . , k do ▷ Learning
Shuffle the transitions
Number of minibatches,m = τ/n
Divide the data into m mini-batches of size n
for mini-batch = 1, . . . ,m do

Calculate: log πnew(a|o,θθθnew), v̂(o,wnew) for samples in the mini-batch.
Normalize Â

λ
estimates.

Policy objective: Lp = − 1
n

∑n
j=1 min(rjÂj,wold ,clipϵ(rj)Âj,wold)

where rj =
π(aj |sj ,θθθnew)
π(aj |sj ,θθθold)

, and clipϵ(rj) = clip(rj , 1− ϵ, 1 + ϵ)

Value objective: Lv = 1
n

∑n
j=1 max((v̂(oj ,wnew)− Ĝλ

j,wold
)
2
,(clipϵ(v̂)− Ĝλ

j )
2
),

where clipϵ(v̂) = clip(v̂(oj ,wnew), 1− ϵ, 1 + ϵ)
Calculate the entropy of the policy: 1

n

∑n
j=1 S(π(oj , θθθnew))

Calculate the total loss: L = Lp + c1Lv − c2S(π(st, θθθnew))
Calculate the gradient ĝ
if ∥ĝ∥ > c then

ĝ ← c
∥ĝ∥ ĝ

end if
Update the parameters using the gradient to minimize the loss function.

end for
end for

end for
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Algorithm 3 PPO with TDRC(λ) (Gradient PPO)

Input: a differentiable policy parametrization π(a|o,θ)
Input: a differentiable state-value function parametrization v̂(o,w)

Input: a differentiable auxiliary function parametrization ĥ(o,θh)
Algorithm parameters: learning rate α, rollout length τ , mini-batche size n, number of epochs
k, value coefficient c1, entropy coefficient c2, clip coefficient ϵ, max gradient norm c,Truncation
Length T , h learning rate αh, regularization coefficient β = 1
for iteration = 1, 2, · · · , τ do

Run πold(a|o,θ) for τ timesteps and save transitions of
⟨ot, At+1, Rt+1, log πold(At+1|ot, θθθold), v̂(ot, θθθold)⟩, . . . ,
⟨ot+τ−1, At+τ , Rt+τ , log πold(At+τ |ot+τ−1, θθθold), v̂(ot+τ−1,wold)⟩

Calculate v̂(ot+τ ,wold) ▷ For bootstrapping

Set Â
(γ,λ)

t+τ = 0

Construct a batch of τ
T sequences, each sequence is:

⟨oi, Ai+1, Ri+1, log πold(Ai+1|oi, θθθold), v̂(oi,wold)⟩, . . .
⟨oi+T , Ai+T+1, Ri+T+1, log πold(Ai+T+1|oi+T , θθθold), v̂(oi+T ,wold)⟩

for epoch = 1, . . . , k do ▷ Learning
Shuffle the sequences
Number of minibatches,m = τ/(n ∗ T )
Divide the data into m mini-batches of size n
for mini-batch = 1, . . . ,m do

Compute the value gradients for all samples.
for j = t+ τ − 1, . . . , t do ▷ This loop can be parallelized over the sequences.

δj = Rj+1 + γv̂(oj+1,wnew)− v̂(oj ,wnew)
∇δjwnew

= Rj+1 + γ∇v̂(oj+1,wnew)−∇v̂(oj ,wnew)

δλj = δj + γλδλj+1

∇δλj = ∇δj + γλ∇δλj+1

end for
Calculate: log πnew(a|o,θθθnew), for samples in the mini-batch.
Policy objective: Lp = − 1

n

∑n
j=1 min(rjÂj,wold ,clipϵ(rj)Âj,wold)

where rj =
π(aj |sj ,θθθnew)
π(aj |sj ,θθθold)

, and clipϵ(rj) = clip(rj , 1− ϵ, 1 + ϵ)

Calculate the entropy of the policy: 1
n

∑n
j=1 S(π(oj , θθθnew))

Calculate the total loss: L = Lp − c2S(π(st, θθθnew))
Calculate the gradient ĝ
if ∥ĝ∥ > c then

ĝ ← c
∥ĝ∥ ĝ

end if
Update the policy using the gradient to minimize the loss function.
Update Value parameters using the following update:
δλt ∇wvt − ht∇w(vt + δλt ) (δ

λ
t − ht)∇θht − βθh,t

Update h parameters using the following update:
(δλt − ht)∇θht − βθh,t

end for
end for

end for
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Name Default Value
Policy Network (64, tanh, 64, tanh, Linear) + Standard deviation variable
Value Network (64, tanh, 64, tanh, Linear)
Buffer size 2048
Num epochs 4
Mini-batch size 256
GAE, λ 0.95
Discount factor, γ 0.99
Clip parameter 0.2
Input Normalization True
Advantage Normalization True
Value function loss clipping True
Max Gradient Norm 0.5
Optimizer Adam
Actor step size 0.0003
Critic step size 0.0003
Optimizer ϵ 1× 10−5

Table 3: PPO Hyperparameters and their default values

Name Default Value
Policy Network (64, tanh, 64, tanh, Linear) + Standard deviation variable
Value Network (64, tanh, 64, tanh, Linear)
Buffer size 2048
Num epochs 4
Mini-batch size 256 (split into 8 sequences of length 32)
λ 0.8
Discount factor, γ 0.99
Clip parameter 0.2
Input Normalization True
Advantage Normalization True
Max Gradient Norm 0.5
Optimizer Adam
Actor step size 0.0003
Critic step size 0.003
h step size 0.003
regularization coef, β 1.0
Optimizer ϵ 1× 10−5

Table 4: Gradient PPO Hyperparameters and their default values
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Name Sweep Range
λ [0.7, 0.8, 0.9, 0.95]

Actor step size [0.001, 0.003, 0.0001, 0.0003, 0.00001, 0.00003]

Critic step size [0.001, 0.003, 0.0001, 0.0003, 0.00001, 0.00003]

regularization coef, β [1.0, 0.0]

Table 5: Hyperparameter ranges that were used for the sweep experiments for Gradient PPO.

Name Default Value
λ 0.8
Input Normalization True
Optimizer SGD
step size 0.0001
h step size 0.001
regularization coef, β 1.0/0.0
start exploration ϵ, 1.0
end exploration ϵ, 0.01

Table 6: Hyperparameters for MinAtar

Name Default Value
λ [0.7,0.8,0.9,0.95]
Optimizer SGD
step size [0.001,0.0001,0.00001,0.000001]
h step scale [1.0,0.1]
regularization coef, β [1.0,0.0]

Table 7: Hyperparameters ranges for MinAtar sweep
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