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Summary

Achieving fast and stable off-policy learning in deep reinforcement learning (RL) is chal-
lenging. Most existing methods rely on semi-gradient temporal-difference (TD) methods for
their simplicity and efficiency, but are consequently susceptible to divergence. While more
principled approaches like Gradient TD (GTD) methods have strong convergence guarantees,
they have rarely been used in deep RL. Recent work introduced the Generalized Projected
Bellman Error (GPBE), enabling GTD methods to work efficiently with nonlinear function ap-
proximation. However, this work is only limited to one-step methods, which are slow at credit
assignment and require a large number of samples. In this paper, we extend the GPBE objective
to support multistep credit assignment based on the A-return and derive three gradient-based
methods that optimize this new objective. We provide both a forward-view formulation com-
patible with experience replay and a backward-view formulation compatible with streaming
algorithms. Finally, we evaluate the proposed algorithms and show that they outperform both
PPO and StreamQ in MuJoCo and MinAtar environments, respectively. ¢

4Code available at https://github.com/esraaelelimy/gtd_algos

Contribution(s)

1. We extend the GPBE to incorporate multistep credit assignment based on A-returns, defining
a new objective, the GPBE(\) (Section 3).
Context: Patterson et al. (2022) introduced the GPBE, which unifies and generalizes
previously known objectives for value estimation. However, it was only defined for the one-
step TD error.

2. We derive three Gradient TD algorithms that optimize our proposed objective. We derive

both the forward view with the A-return (Section 4) and the backward view with eligibility
traces (Section 6).
Context: Gradient TD methods were originally introduced with linear function approxi-
mation (Sutton et al., 2009), with a limited extension to nonlinear function approximation
that required second-order information (Maei et al., 2009). The recent work by Patterson
et al. (2022) extended these methods to non-linear function approximation without a need
for second-order information. However, it was limited to the one-step TD error.

3. We introduce Gradient PPO, a policy gradient algorithm that uses our sound forward-view
value estimation algorithms (Section 5).
Context: PPO (Schulman et al., 2017) is a widely-used policy gradient method that relies
on semi-gradient TD updates for value estimation. We build on PPO by replacing the value
estimation component with a new one that uses Gradient TD methods. This change required
non-trivial modification to PPO, resulting in our new algorithm, Gradient PPO. Gradient
PPO is the first policy gradient method that uses Gradient TD algorithms in a deep RL
setting with a replay buffer.

4. We introduce QRC()\), which uses our backward-view eligibility traces and is suitable for
streaming settings (Section 6).
Context: Backward-view algorithms can make updates on each time step without delay,
making them efficient in streaming settings (Elsayed et al., 2024). QRC(]\) is the first
backward-view algorithm that uses Gradient TD methods in the streaming deep RL.
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Abstract

Achieving fast and stable off-policy learning in deep reinforcement learning (RL) is
challenging. Most existing methods rely on semi-gradient temporal-difference (TD)
methods for their simplicity and efficiency, but are consequently susceptible to diver-
gence. While more principled approaches like Gradient TD (GTD) methods have strong
convergence guarantees, they have rarely been used in deep RL. Recent work introduced
the Generalized Projected Bellman Error (GPBE), enabling GTD methods to work ef-
ficiently with nonlinear function approximation. However, this work is only limited to
one-step methods, which are slow at credit assignment and require a large number of
samples. In this paper, we extend the GPBE objective to support multistep credit as-
signment based on the A-return and derive three gradient-based methods that optimize
this new objective. We provide both a forward-view formulation compatible with expe-
rience replay and a backward-view formulation compatible with streaming algorithms.
Finally, we evaluate the proposed algorithms and show that they outperform both PPO
and StreamQ in MuJoCo and MinAtar environments, respectively. !

1 Introduction

Estimating the value function is a fundamental component of most RL algorithms. All value-based
methods depend on estimating the action-value function for some target policy and then acting
greedily with respect to those estimated values. Even in policy gradient methods, where a parameter-
ized policy is learned, most algorithms learn a value function along with the policy. Many RL algo-
rithms use semi-gradient temporal-difference (TD) learning algorithms for value estimation, despite
known divergence issues under nonlinear function approximation (Tsitsiklis & Van Roy, 1997) and
under off-policy sampling (Baird, 1995), both of which frequently arise in modern deep RL settings.

There have been significant advances towards deriving sound off-policy TD algorithms. This
progress occurred once it became clear what objective underlies the TD solution. For a brief history,
the mean squared Bellman error (BE) was an early objective, which produces a different solution
from the TD fixed point but similarly aims to satisfy the Bellman equation. However, the BE was
not widely used because it is difficult to optimize without a simulator due to the double-sampling
problem (Baird, 1995). The mean squared projected Bellman error (PBE) for linear function ap-
proximation was introduced later, and a class of Gradient TD methods were derived to optimize

ICode available at https://github.com/esraaelelimy/gtd_algos
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Table 1: Related Gradient TD literature. Our paper is the first to define and optimize the GPBE(\)
objective for nonlinear function approximation (see Section 4).

Linear Function Approximation Nonlinear Function Approximation
Objective one-step A-return 1-step A-return
PBE (Sutton et al., 2009) (Maei & Sutton, 2010) (Maei et al., 2009) Our paper
GPBE (Patterson et al., 2022) Our paper (Patterson et al., 2022)  Our paper

this objective (Sutton et al., 2009). An early attempt to extend Gradient TD methods to nonlin-
ear function approximation required computing Hessian-vector products (Maei et al., 2009). The
Generalized PBE (GPBE), is based on the conjugate form of the BE (Dai et al., 2017), making it
much simpler to derive Gradient TD methods for the nonlinear setting (Patterson et al., 2022). This
generalized objective was further extended to allow for robust losses in the Bellman error (Patterson
et al., 2023) and is a promising avenue for the development of sound value-estimation algorithms.
The GPBE and robust extensions, however, has not been extended to include multi-step updates.

In this paper, we extend the GPBE to incorporate multistep credit assignment using A-returns. Ta-
ble 1 summarizes the algorithmic gaps that we fill. We derive similar gradient variants as were
derived for the one-step GPBE (Patterson et al., 2022), but now also need to consider forward-view
and backward-view updates for our proposed objective, GPBE()A). We introduce Gradient PPO, a
policy gradient algorithm that modifies PPO to use our sound forward-view value estimation algo-
rithms. We show that Gradient PPO significantly outperforms PPO in two MuJoCo environments
and is comparable in two others. We also introduce QRC()), which uses backward-view (i.e., el-
igibility trace updates) and is suitable for online streaming settings.”> We show that QRC()) is
significantly better in all MinAtar environments than StreamQ (Elsayed et al., 2024), a recent algo-
rithm combining Q(\) with a new optimizer and an initialization scheme for better performance in
streaming settings. We investigate multiple variants of our forward-view and backward-view algo-
rithms, as was concluded for GPBE(0) (Ghiassian et al., 2020; Patterson et al., 2022), we find that
a variant based on regularized corrections called TDRC consistently outperforms the other variants.
This work provides a clear way to incorporate gradient TD methods with eligibility traces into deep
RL methods and offers two new promising algorithms that perform well in practice.

2 Background

We consider the Markov Decision Process (MDP) formalism where the agent-environment inter-
actions are described by the tuple (S,.A,p, R). At each time step, t = 1,2,3,..., the agent ob-
serves a state, Sy € S, and takes an action, A; € A, according to a policy 7 : § x A — [0,1],
where S and A are finite sets of states and actions, respectively. Based on S; and A;, the en-
vironment transitions to a new state, S;y+1 € S, and yields a reward, R;1 € R, with probability
p(St4+1, Ret1 | St, Ar). The value of a policy is defined as v, (s) £E, [G¢ | St = s],Vs € S, where
the return, G e Zfio 'YiRt+1+i» is the discounted sum of future rewards from time ¢ with discount
factor y € [0, 1].

The agent typically estimates the value function using a differentiable parameterized function, such
as a neural network. We define the parameterized value function as 0(s, w) ~ v(s), where w €
R is a weight vector and d,, < |S|. One objective that can be used to learn this value function is
the mean squared Bellman error (BE):

BE(w) % 3 d(s) E+[5(s) | S = 52, (1)

seS

2 A setting motivated by hardware limitations where we replay buffers are not used and updates are made one sample at a
time. See Elsayed et al. (2024).
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where d is the state distribution® and 4 is the TD error for a transition (S, A4, S’, R). The & can be dif-
ferent depending on the algorithm. For state-value prediction, we use § = R+ ~i(S’, w) — 0(S, w).
For control, to learn optimal action-values g, (s,a), we use & = R + ymaxg e (S, a',w) —
4(S, A, w). For control, we would additionally condition on A = g and sum over (s, a) instead of s
in Eq. (1), but for simplicity of exposition, we only show the objectives for 0. We cannot generally
reach zero BE, unless the true values are representable by our parameterized function class for all
states with nonzero weight. The BE objective is difficult to optimize, due to the double sampling
and identifiability issues (Sutton & Barto, 2018), and we instead consider a more practical objective
called the GPBE.

The GPBE objective generalizes and unifies several objectives and extends Gradient TD methods
to nonlinear function approximation (Patterson et al., 2022). The GPBE builds on prior work (Dai
et al., 2017) that avoids the double sampling by reformulating the BE using its conjugate form
with an auxiliary variable h. Using the fact that the biconjugate of a quadratic function is 22 =
maxycg 2¢h — h2, we can re-express the BE as

BE(w) £ max Y d(s) (2 5:(s) h(s) — h(s)2) : 2)

heF,
all sES

where F,; is the space of all functions and 0, (s) “E, [0: | St = s]. For a state s, the optimal
h*(s) = 6, (s), and we recover the BE. More generally, we can learn a parameterized function that
approximates this auxiliary variable, h. Letting H be the space of the parameterized functions for
h, the GPBE then projects BE into H, and is defined as:

GPBE(w) = max d(s) (26x(s) h(s) — h(s)?) . 3)
ses

Depending on the choice of H, the GPBE can express a variety of objectives. For a linear func-
tion class, we recover the linear PBE, and for a highly expressive function class, we recover the
(identifiable) BE (Patterson et al., 2022).

The GPBE can be optimized by taking the gradient of Eq. (3), which results in a saddle-point
update called GTD2. Alternatively, we can do a gradient correction update, which results in the
emperically preferable algorithm called TDC. Note that GTD2 and TDC were introduced for the
linear setting (Sutton et al., 2009), but the same names are used when generalized to the nonlinear
setting (Patterson et al., 2022), so we follow that convention. TDC has been shown to outperform
GTD2 (Ghiassian et al., 2020; White & White, 2016; Patterson et al., 2022) and has been further
extended to include a regularization term, resulting in a better update called TDRC (Ghiassian et al.,
2020; Patterson et al., 2022).

We briefly include the update rule for these three Gradient TD methods, as we will extend them in
the following sections. For v parameterized by w and h parameterized by 6, all methods can be
written as jointly updating

Wil < Wy + aAwt s

“)
Ot-‘,—l < 01; + ozAOt s

where o € (0,1] is a step-size hyperparameter—or, more generally, an optimizer like Adam
(Kingma & Ba, 2014) can be used. For GTD2, Aw;, is

Awt = _}Al(Sty et)vwét = E(Sta et)(v’wﬁ(stv 'lU) - ’yvﬂl,ﬁ(st‘Fl’ w)) .
The TDC update replaces the term H(St, 0;)V 0 (Sy, w) with §;V,0(S¢, w), to get the update

Awy = 6,V 0(Ss, w) — h(St, 0;) Ve y0(Ses1, w) .

3Note that we write the expectation with a sum to make the notation more accessible, but this can be generalized to
continuous state spaces using integrals.
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This update is called TD with corrections, because the first term is exactly the TD update and the
second term acts like a correction to the semi-gradient TD update. This modified update is motivated
by noting that h*(s) = 8, (s), and so replacing the approximation (.S, 6;) with an unbiased sample
0; instead is sensible. TDC has been shown to converge to the same fixed point as TD and GTD2
in the linear setting (Maei, 2011). Both GTD2 and TDC have the same Af; which can be written

as AQ;, = (5t — iL(St, Ht)) ngL(St, 6;). TDRC uses the same Aw, as TDC, but regularizes the
auxiliary variable:
20 = (6~ h(S1,6:)) Voh(St,0,) — 361,

where 8 € [0,00). For 8 = 0, TDRC is the same as TDC. As § is increased, h gets pushed
closer to zero and TDRC becomes closer to TD. TDRC was found to be strictly better than TDC,
even with a fixed 8 = 1 across several problems (Ghiassian et al., 2020; Patterson et al., 2022).
This improvement was further justified theoretically with a connection to robust Bellman losses
(Patterson et al., 2023), motivating regularization on h.

3 The Generalized PBE()\) Objective

The basis of GPBE is the 1-step TD error, which means that credit assignment can be slow. Reward
information must propagate backward one step at a time through the value function, via bootstrap-
ping. In this section, we extend the GPBE to incorporate multistep credit assignment using the
A-return.

First, let us define our multistep target. The simplest multistep return estimator is the n-step return,
defined as

n—1
ng) = (Z ’YiRt+1+i> + 7" 0(Stn, we) -

=0

The A-return is the exponentially weighted average of all possible n-step returns:
‘ o0
GrEA-NY ate, 5)
n=1

where A € [0,1]. The A-return is the return target for TD()) (Sutton, 1988) and comes with a
number of desirable properties: it smoothly interpolates between TD and Monte Carlo methods (a
bias-variance trade-off; Kearns & Singh, 2000), reduces variance compared to a single n-step return
(Daley et al., 2024b), and imposes a recency heuristic by assigning less weight to temporally distant
experiences (Daley et al., 2024a). We denote the error between the A-return target and the current

value estimate by
oo

5 E G = 0(Srwe) = (YN G ©

i=0
and refer to this quantity as the TD(\) error. We note that in the context of recent works, the TD(\)
error is often referred to as the generalized advantage estimate (GAE; Schulman et al., 2015).

The GPBE is defined using this TD()\) error. For 6)(s) = E.[6} | S; = s], we define the BE()\)
analogously to Eq. (1) as
BE(w, ) = " d(s) 5)(s)* .
seES

Following the earlier derivation of the GPBE in Eq. (3), with the definitions of & and the new &2 (s),
we can write the GPBE(\) objective as

GPBE(w,\) % max 3" d(s) (253(3) h(s) — h(s)Q) . 7)
sES
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When A = 0, we recover the original one-step GPBE objective (Patterson et al., 2022). In the
absence of function approximation, the GPBE and the GPBE(\) objectives lead to the same solution,
v, because their fixed points are both v,.. However, when function approximation is introduced, the
choice of A strongly impacts the minimum-error solution. In practice, intermediate A-values on the
interval (0, 1) will balance between solution quality, learning speed, and variance.

4 The Forward-View for Gradient TD()\) Methods

In this section, we develop several forward-view methods for optimizing the GPBE()) under non-
linear function approximation. Following the previous convention, we will overload the names
GTD2(\) and TDC(\) introduced for the linear setting because we are strictly generalizing them to
a broader function class.

GTD2()\): We derive this algorithm by taking the gradient of Eq. (7) w.r.t to both w and 6.

fv 3 d(s (25A h(s) ) 3 d(s)h(s) Va6 (s),

seS seS
%VQZCZ ) (283(5) h(s) — h()?) = 3 d(s)(52(s) — h(s)) Vah(s)
seS seS

We get a stochastic gradient descent update by sampling these expressions. For brevity throughout,
let V; & U(St, wy) and H; = o h(St, 6¢). The resulting update is then

Aw; = —H; V6, (8)
A8, = (6} — H,)VyH, . 9)

GTD2()) is a standard saddle-point update and should converge to a local optimum of the GPBE())
objective.

TDC()\): For TDC(0), we obtained an alternative gradient correction by adding the term (§; —
h(St))Vap®(St, w) to the GTD2(0) update. This was motivated by the fact that h(S;) approximates
§¢. We take a similar approach here, adding (5;' — H;)V,,9(S;, w;) to the GTD2()) update for w:

Aw;, = (6} — H;)V Vi — H, V07
= 0 VuVi — HiV (Vi +6)) . (10)

The #-update remains the same as Eq. (9). The result is the sum of a semi-gradient TD(\) update
and a gradient correction. However, the method is biased, as it assumes that H; has converged
exactly to 02(S;). This bias did not impact convergence of TDC in the linear setting, but as yet
there is no proof of convergence of TDC in the nonlinear setting. Similarly, it is not yet clear what
the ramifications are of using TDC(\) rather than GTD2()), although, in our experiments, we find
it is better empirically.

TDRC()): Finally, we extend the TDRC algorithm, and the extension simply involves adding a
regularization penalty with coefficient 5 > 0 to the update for h:

A8, = (5} — Hy)VoH,; — 36, . (11)

All the methods we derived in this section depend on the forward-view of the A-return from Eq. (5),
which means they need a trajectory of transitions to make an update. This makes these methods
appealing when there is a replay buffer to store and sample these trajectories. Further, the trajectories
should be on-policy to avoid the need to incorporate importance sampling ratios. It is not difficult
to incorporate importance sampling (we include these extensions in Appendix B, but significant
variance may arise when using importance sampling, which degrades performance in paractice. In
the next section we incorporate these forward-view updates into PPO, an algorithm that makes use
of both replay and on-policy trajectories.
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S Gradient PPO: Using the Forward-View in Deep RL

In this section, we introduce a new algorithm, called Gradient PPO, that modifies the PPO algorithm
(Schulman et al., 2017) to incorporate the forward-view gradient updates derived in the last section.

5.1 Gradient PPO

Proximal Policy Optimization (PPO; Schulman et al., 2017) is a widely used policy-gradient method
that learns both a parameterized policy, the actor, and an estimate for the state-value function, the
critic. In PPO, the agent alternates between collecting a fixed-length trajectory of interactions and
performing batch updates using that trajectory to learn both the policy and the state-value function.
We will focus on the critic component of PPO, as that is the part learning the value function, and we
will modify it to use the gradient-based methods introduced in Section 4.

PPO updates depend on the Generalized Advantage Estimate (GAE; Schulman et al., 2015), which
is identical to the TD(A) error in Eq. (6). In practice, however, PPO updates must truncate the GAE
due to the finite length of the collected experience trajectory. Given a trajectory of length 7', the
truncated GAE can be written as 6} = Zz:ot_l(fy)\)idtﬂ, and we can form an estimate for the

A-return using that truncated GAE as:

Ghr Z0(Sy,w Z (YA, 6k - (12)

The value-function objective for PPO can then be written as follows:

1
Le(wr) = 5 (5(Swe) = se(Grr)” | (13)

where sg(.) denotes a stop gradient operation, so the gradient of the objective only accounts for the
gradient of ¥(s;, w;). PPO typically uses a stale target for G . 1.e., the A-return target is computed
once from the collected trajectory and is kept fixed for all the training epochs on that trajectory.
Although many PPO implementations heuristically clip this loss, we remove this component from
our algorithm for simplicity.

We now introduce Gradient PPO which changes the critic update for PPO to allow for Gradient
TD(A) updates. Gradient PPO introduces the following three changes.

Modification 1: We change PPO’s objective function, Eq. (13), to match the updates in Section 4.
We can write a new objective based on TDRC(\) as follows:

Lt('wt) = Sg (iL(Sf, 01»)) 5t>\T — Sg (51‘)\T — il(Sh 0f)> f)(St,wt). (14)

Modification 2: We introduce an objective function for the auxiliary variable h, which can be
written as:

L(8,) = ~sg (8 — h(5:.0,)) h(5,.8,) + 16,1 (1)

Modification 3: We need to compute the gradient for 6;'. As a result, we cannot use a stale target
as in Eq. (13). Instead, we need to recompute d;' and its gradient after each update. We do this by
sampling sequences from the minibatch instead of sampling independent samples. We then compute
a truncated 87\, based on the sampled sequences. In this case, the effective truncation for the A-return
is the length of the sequence sampled from a minibatch, 7, rather than the full trajectory length 7.
A similar approach to incorporate the A-return with replay buffers was previously introduced (Daley
& Amato, 2019). This approach might seem computationally expensive at first since w is used to
compute all the values included in 5 - estimation. However, a nice property of the gradient V,, 5

is that it can be easily computed recurswely as follows:

Vw6 = YAVwlpy 1 + Vidr.
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Then, given a sequence of length 7, V,,6;" and ;' can be estimated using Algorithm 1, where lines
in green highlight the additional computations required for Gradient PPO per a minibatch update.

Implementations for Gradient PPO can simply pass the newly defined loss functions, Eq. (14) and
Eq. (15), directly to an automatic differentiation. But implementations based on Algorithm 1 might
be more efficient as it allows for parallel computations of the values for all states. We show in
Appendix C.1 that using this parallel approach for computation results in Gradient PPO having
the same Steps Per Second (SPS) cost as PPO; there is no drop in runtime from these additional
calculations. We also provide a full algorithm for PPO and Gradient PPO in Appendix C.

Algorithm 1 Estimating TDRC(\) Updates for Gradient PPO

Input: A sequence of states, s, ... Syt
Input: The current weight parameters of the value function, w.
For all samples in the sequence, compute 9(s;, w) and V,0(s¢, w).
> This step is done in parallel by creating a batch of all observations.

forj=t+7—1,...,tdo

5j = Rj+1 + ’Yﬁ(SjJrh w) - 'lA)(Sj, w)

Vi; = Rjt1 +vVo(sjy1,w) — Vi(s;, w)

6]4\ =0; + 7)\(5}“

V(\i;\ =V, + 7/\V(\i;\7 ]
end for

5.2 Empirical Investigation of Gradient PPO

We now evaluate the performance of Gradient PPO across several environments from the MuJoCo
Benchmark (Todorov et al., 2012). For Gradient PPO, we performed a hyperparameter sweep for
the actor learning rate, the critic learning rate, and \. For the auxiliary variable h, we used the same
learning rate as the critic. We tested each hyperparameter configuration on all environments and
repeated the experiments across 5 seeds. Finally, based on the sweep results, we selected a single
hyperparameter configuration that worked reasonably well across all environments and evaluated it
for 30 more seeds—the two-stage approach (Patterson et al., 2024). We provide the ranges of values
we swept over in Appendix C.1 and the hyperparameters configuration that we will use in all Gradi-
ent PPO experiments in Table 4. For PPO, we used the default hyperparameters commonly used for
PPO with MuJoCo environments (Huang et al., 2022). We provide those default hyperparameters in
Table 3.

Figure 1 shows the Gradient PPO and Default PPO results across four MuJoCo environments. In
Ant and HalfCheetah, Gradient PPO clearly outperforms PPO. Both algorithms perform similarly in
Walker and Hopper.

Ant-v4 HalfCheetah-v4 Hopper-v4 Walker2d-v4
Gradient PPO\\‘ 3000 4000
; 4000 2000
Undiscounted
Returns 2000 3000
(30 runs)
2000 1000 1000 2000
1000
0

0 0 0

0 2 4 0 2 4 0 2 4 0 2 4

Env Steps 1e6 Env Steps  1€6 Env Steps le6 Env Steps le6

Figure 1: Gradient PPO and PPO evaluated on four MuJoCo environments. The solid lines are the
mean performance averaged over 30 seeds, and the shaded area is the standard error.

We also investigated the utility of using TDRC()) instead of TDC()) and GTD2(\) to estimate the
critic. Figure 2 shows the results with these variations. There is a marked difference in performance,
and these results suggest that both gradient corrections and regularization are needed to perform
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better when using gradient-based methods. This outcome aligns with our discussion in Section 2
and Section 4 about how TDRC has been shown to outperform TDC, which in turn outperforms
GTD2.

Ant-v4
5000{Gradient PP\O(TDRC)
N

4000
3000

HalfCheetah-v4

Walker2d-v4

Undiscounted Hopper-v4

Returns
(30 runs)

3000 4000

2000 3000

G
2000 1000 1000 2000
1000 500 1000
Gradient PPO (GTD2)g [\\“v"'\“”’
0 0 0
0 1 2 3 4 5 o 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Env Steps le6 Env Steps 1e6 Env Steps 1e6 Env Steps le6

Figure 2: Gradient PPO variations evaluated on 4 MuJoCo environments. The solid lines are the
mean performance averaged over 30 seeds, and the shaded area is the standard error.

6 The Backward View for Gradient TD()\) Methods

The forward-view algorithms we have derived so far have updates that depend on future information,
making them unrealizable without the delay introduced by experience replay. Alternatively, we can
use eligibility traces via backward-view algorithms that incrementally generate the correct parameter
updates on each time step. We now derive the backward view algorithms for optimizing GPBE()).

GTD2()): As we prove below, the following backward-view updates are equivalent to the forward-
view updates given in Eq. 8 and Eq. 9:

Aw; = —2'V,0, (16)
Aet déf 5tzf - HtVQHt 5 (17)
where
2 E AN+ Hy (18)
20 Sz + Vel (19)

for 2", <0, and 29, £ 0. We show in the following theorem that this backward-view algorithm
generates the same total parameter updates as the forward view under standard assumptions.

Table 2: Forward- and backward-view updates of our three proposed Gradient TD()) algorithms for
prediction with nonlinear function approximation.

Algorithm View Awy AB,
Forward ~ — H,;V,,0; (67 — Hy)Veo Hy
GTD2()\)
Backward =)'V, 0, 628 — H,VH,
TDCY) Forward 6}V, V; —H;V,, (Vi+6') (6 — Hy)VeH,
Backward 6,22 — H,V,,Vi—2'Vo, 6,20 — H Vgh,
TDRCOY Forward 6}V, V; —H; V., (Vi+57) (0} — Hy) Ve H,— 30,
Backward ;2% — H;V,Vi—2'Vo; 0,29 — H,NoH, —130,
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Theorem 6.1. Assume the parameters w and 0 do not change during an episode of environment
interaction. The forward and backward views of GTD2(\) are equivalent in the sense that they
generate equal total parameter updates:

> HVub) =) 2'Vbr, (20)
t=0 t=0
(6} — Hi)VoH; = Y (612f — H,VoH,). (21)
t=0 t=0
Proof. See Appendix A. O

TDC()): Let us slightly rewrite Aw; from Eq. (10) in the following way:

VoV + (—H Vo Vi) + (—HVid?) . (22)
——
TD(M) instantaneous B-GTD2(\)

correction

We see that Aw, from Eq. (22) decomposes into three terms: forward-view semi-gradient TD())
with off-policy corrections; an instantaneous correction that does not require eligibility traces; and
GTD2(\)’s term for Awy, for which we already derived and proved a backward-view equivalence
in Theorem 6.1. As a consequence, we immediately deduce that the backward view for TDC()) is

A’UJt g (StZ;w - HtiV} - Z;va(st, (23)
where
2P EAz® |+ Vi Vi, (24)

and 2" is the same as before in Eq. (18). A@; is generated by Eq. (17).
TDRC()): Likewise, the regularized backward-view 8 update is

A8, = 6,20 — HiNpH, — 36, (25)

where z¢ is once again generated by Eq. (19). Table 2 summarizes the forward view and the back-
ward view for all the algorithms introduced. We highlighted the update components that arise from
directly taking the gradient of GPBE(\) in green, the gradient correction components in blue, and
the regularization component in

Finally, we note that the backward view algorithms presented here do indeed update on every step,
unlike PPO, but the proof above only shows equivalence at the end of the episode, like the original
forward-backward equivalence of TD(\).

7 QRC()): Using the Backward-view in Deep RL

In this section, we extend the backward-view methods to action values and present three control
algorithms based on three backward-view updates presented earlier. Since these algorithms are
based on the backward view, they can make immediate updates without delay. Hence, they can
work effectively in settings where it is prohibitive to have a large experience replay buffer (i.e., on-
edge devices and mobile robots). Additionally, unlike forward-view methods, which require us to
use a truncated version of the updates, backward-view methods do not have this limitation.



Reinforcement Learning Journal 2025

7.1 QRC(N)

Extending the backward-view algorithms to action values is straightforward. Here, we present
the extensions to Q(A), but similar extensions can be done to other action-value methods, such
as SARSA()). Note that similar changes can be made to action-value methods using the forward
view.

Consider an action-value network parameterized by w, and write the TD error as:
0 = Ry +’7£I}€a§(§(st+lya/7wt> —q(St, Ap,wy) - (26)

The gradient of the TD error becomes the following:
Vw0t = YV, (glg}icj(StH, a, wt)) — Vo, G(Se, A, wy) . (27)

The auxiliary function for h is now predicting a function of both the states and actions: h; =
h(st,at, 0¢). Using these modifications, we can now write the updates for the control variant of
TDRC()\), which we refer to as QRC()\):

2" = yAz 1 + Va, 4(St, Ar, wi)

2=\ + H

29 =228 | + VeH, (28)
Aw; = 822 — HiVeu((Se, A, wi) — 20 Vi by
A8, = 6,20 — HNpH, — (6,

We can modify these updates to get QC()\), an update based on TDC()), by simply setting 5 = 0.
We can also get GQ(A), an update based on GTD2()) by setting S = 0 and removing the gradient
correction term (see Table 2). Finally, we follow Watkins’ Q()) in that we decay the traces as
described in the previous equations when a greedy action is selected and reset the traces to zero
when a non-greedy action is selected (Watkins, 1989).

7.2 Empirical Investigation of QRC())

We evaluated the performance of QRC(\) across all the environments from the MinAtar bench-
mark (Young & Tian, 2019). We compared the performance with Watkin’s Q(\) (Watkins, 1989)
and StreamQ algorithm (Elsayed et al., 2024), a recent algorithm combining Q(\) with a new opti-
mizer and an initialization scheme for better performance in streaming settings.

For Q(\) and QRC(\), we used SGD and performed a hyperparameter sweep for different values
for the step size and A\. We tested each hyperparameter configuration in all environments and across
5 seeds. We then selected a single hyperparameter configuration that worked well across all envi-
ronments, and we evaluated it for 30 more seeds in all environments. We provide the ranges and
the final hyperparameters we used in Appendix D.1. For StreamQ, we used the hyperparameters
suggested by the paper and the accompanying code, and we repeated the experiments for 30 seeds
in all environments. Figure 3 shows the performance of all three algorithms across the 5 MinAtar
environments, and in all environments, QRC()\) outperforms both StreamQ and Q(\).

We evaluated the other two gradient-based algorithms, QC(\) and GQ2()\). Figure 4 shows the
results of this evaluation. The results are consistent with forward-view results in Section 5 in that
having both the gradient correction and the regularization is needed for better performance. How-
ever, here the regularization is not as critical as it was for Gradient PPO.

8 Conclusion

We proposed the GPBE()) objective, a multistep generalization of the Generalized Projected Bell-
man Error (Patterson et al., 2022) based on the A-return. We derived three algorithms for optimizing
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Undiscounted MinAtar/Asterix-v1 MinAtar/Breakout-v1 MinAtar/Freeway-vl MinAtar/Spacelnvaders-vl MinAtar/Seaquest-vl

Returns QRC(A)
(30 runs) 20

StreamQ
10

2 4 0 2 4
Env Steps 1e6 Env Steps 1e6 Env Steps 1e6 Env Steps 1le6 Env Steps 1e6

Figure 3: QRC()), Q()\) and StreamQ algorithms evaluated on the five MinAtar environments.
The solid lines are the mean performance averaged over 30 seeds, and the shaded regions are the
corresponding standard errors.

Undiscounted MinAtar/Asterix-v1 MinAtar/Breakout-v1 MinAtar/Freeway-vl  MinAtar/Spacelnvaders-vl MinAtar/Seaquest-vl
Returns QRC()
(30 runs) 20 QC(\)

30

4 20

2
Env Steps 1le6 Env Steps 1e6 Env Steps 1e6 Env Steps 1e6 Env Steps le6

Figure 4: All gradient-based backward view algorithms evaluated on the 5 MinAtar environments.
The solid lines are the mean performance averaged over 30 seeds, and the shaded regions are the
corresponding standard errors.

the new objective both in the forward view and in the backward view. Of the three algorithms we
developed, we showed that TDRC(J) is stable, fast, and results in a high-quality solution. We intro-
duced two Deep RL algorithms that use the newly derived update rules, and we showed that our new
algorithms outperform both PPO with a buffer and streaming algorithms without replay buffers. Fur-
ther work remains to verify the convergence guarantees for TDC()\) and TDRC()\), and extending
the gradient-based updates to more Deep RL algorithms.

A Proof of Theorem 6.1

Theorem 6.1. Assume the parameters w and 0 do not change during an episode of environment
interaction. The forward and backward views of GTD2()\) are equivalent in the sense that they
generate equal total parameter updates:

S H VW) =Y 2'Viby (20)
t=0 t=0

(6} — Hi)VeH, = (6,20 — H,VpH,). Q1)
t=0 t=0

In the proof below, we added importance sampling for generality.

Proof. We start by showing Eq. (20) holds. Note that

Hi Vo) = HipiVapd; + HiyApiprs1 Vaodis1 + He(YA)?pepes preaVaOiga - - .- (29)
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The total sum of these forward-view contributions is therefore

> " H Vb = (HopoVawdo + HoyApopi Ve + . ..) + (Hip1 Vadi + HiyAp1paVaeda +...) + ...
t=0

= (Hopo)Vawbo + (HoyApop1 + Hip1) Vs + . .. (30)

= 20Vlo + 20 V01 + ... (31)

=D " (32)
t=0

which proves Eq. (20). Next, consider Eq. (21). Notice that the equality holds if and only if

Z 5)VeH, = Z 6,29, (33)
t=0 t=0
and further note that
MV Hy = p:0: Vo Hy + YAppis10t:1Vo Hy + (YN)2piprsipesadesaVoH; + .. .. (34)

The total sum of these forward-view contributions is therefore

Z (S:\VgHt = (p050V0H0 + ’}/)\pop151VQH0 “+ ... ) + (p151VQH1 + 7)\p1p2§QVQH1 —+ ... ) +...
t=0

(35)
= do(poVeHo) + 61 (vApop1VeHo + p1VeHi) + ... (36)
=3l 3%
t=0
which establishes Eq. (33) to prove Eq. (21) and complete the proof. O
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Supplementary Materials

The following content was not necessarily subject to peer review.

B Gradient TD ()\) with Importance Sampling Correction

We now discuss the modifications needed when the experiences (S, A¢, Ry, St41) are collected by a

behaviour policy b rather than the target policy 7. Letting p; = Zéﬁ:llgf)) be the importance sampling

ratio at time ¢, we can scale the TD error by this factor to form a bias-corrected TD error 5,5 = P+0¢,
since Ep[p:04|S: = s] = Ex[0:|St = s] = (s) (Precup et al., 2000). By induction, it follows that
the bias-corrected TD(\) error is

02 EN N T pees | 0es = pe(7A41 + 60). (39)
i=0 j=0

The backward view traces will then be defined as follows:

h def

Zy = Pt (7/\%}11 + he), (40)
20 = pi(y\2l_) + Vohy) (41)

C Forward-View Algorithms

In this section, we provide the pseudocodes for the forward-view algorithms. We start with PPO
in algorithm 2. PPO alternates between two main components: collecting a fixed-length trajectory
of interactions using the current policy, and performing several steps of gradient updates using the
collected trajectory. The gradient updates involve updating the value function towards an estimate
of the A-return based on the collected trajectory, and updating the policy parameters using the log-
likelihood ratio. These steps are illustrated in algorithm 2. In the algorithm, we refer to the policy
and value function parameters used during the collection of the trajectory as 6,4 and w4, respec-
tively, while we refer to the most recent policy and value parameters as Wyey and @,,y,, those would
be the result of the most recent mini-batch update.

Algorithm 3 shows the modifications needed to combine PPO with TDRC()) to produce Gradient
PPO. We highlight the main changes over the PPO algorithm in blue. Gradient PPO introduces three
new parameters: 1) Truncation length, 7', which represents the sequence length used to compute the
A-returns. 2) Learning rate for the auxiliary variable h, «y,. 3) Regularization coefficient /3, we found
that simply setting 3 = 1 worked well for all the experiments we presented. Additionally, for the
gradient updates, we construct a mini-batch of sequences and estimate the \-returns per sequence.
Note that a major change over PPO is that the A-returns are estimated per minibatch using the latest
parameters rather than stale estimates. As mentioned in the main paper, this change allows us to
take the gradient of the 0 with respect to the latest parameters, which is needed for updates of the
GTD algorithms.

C.1 Experimental Details of PPO and Gradient PPO

For PPO, we used the default hyperparameters widely used for PPO, which reproduce the best-
reported performance for PPO on MuJoco (Huang et al., 2022). We include those hyperparameters
in Table 3 for completeness.

For Gradient PPO, we first performed a hyperparameter sweep for A, actor learning, and critic
learning rate. We show the ranges used for the sweep in Table 5. We repeated the experiments for
each hyperparameter configuration in that sweep over 5 seeds. Based on that sweep, we chose the
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Algorithm 2 PPO Algorithm

Input: a differentiable policy parametrization m(als,8)

Input: a differentiable state-value function parametrization ¢(s, w)

Algorithm parameters: learning rate «, rollout length 7, mini-batche size n, number of epochs k,
value coefficient ¢y, entropy coefficient cs, clip coefficient €, max gradient norm c.

for iteration = 1,2,--- do

Run 74(als, @q4) for 7 steps. > Collect a trajectory of interactions

Calculate O(S¢4+, Wold) > For bootstrapping
A(7,A L .

Set AEL) =0 > initialization GAE estimate.

forj=t+7—1,...,tdo > Calculating GAE using the collected trajectory of interactions.
d; = Rjt1 +70(sj41, Woia) — 0(55, Wola)

~(7,A) ~(7,N)
Aj’y =0 +’Y)\Aj11

A (7, N
Gj)‘ = Agj ) + ’U(Sj7 Wold)
end for
for epoch=1,...,kdo > Learning

Shuffle the transitions
Divide the data into m mini-batches of size n, where m = 7/n.
for mini-batch=1,...,m do
Calculate: 10g Tpew (als, Onew), (S, Wnew) for samples in the mini-batch.

. A7 .
Normalize A(7 ) estimates per batch.

Policy objective: L, = —1 1 min(rjﬁyv’vii,clipe(rj )AEVWX),

m(a;|8;,0new)
m(a;[s;,001)

Value objective: L, = £ " max((8(s}, Waew) — G) »(clip, (8) — G2)°),
where clip, (0) = clip(0(sj, Wnew), 1 — €,1 4+ €)
Calculate the entropy of the policy: L, = 1 Z;L:l S(m(sj,0new))
Calculate the total loss: L = L, + c1 Ly, — ca L
Calculate the gradient g
if ||g|| > ¢ then
g 1d
end if
Update the parameters using the gradient to minimize the loss function.
end for
end for
end for

where r; = and clip, (r;) = clip(r;,1 —€,1 +€).

llal

hyperparameters that generally performed well across all environments, Table 4. Finally, we fixed
those hyperparameters configurations for all environments and ran the algorithm again for 30 seeds
using those hyperparameters.

SPS
(30 runs) Ant-v4 HalfCheetah-v4 Hopper-v4 Walker2d-v4

400

0 0
PPO Gradient PPO PPO Gradient PPO PPO Gradient PPO

PPO Gradient PPO

Figure 5: SPS for Gradient PPO and PPO evaluated on four MuJoCo environments. The bars
indicate the mean across 30 runs and the black bars indicate the standard error.
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Algorithm 3 Gradient PPO: PPO with TDRC()\)

Input: a differentiable policy parametrization 7 (als, 0)

Input: a differentiable state-value function parametrization o(s, w)

Input: a differentiable auxiliary function parametrization fz(s, 0r)

Algorithm parameters: learning rate «, rollout length 7, mini-batche size n, number of epochs k,
entropy coefficient ¢y, clip coefficient €, max gradient norm ¢, Truncation Length 7", /1 learning
rate o, regularization coefficient 5 = 1

for iteration = 1,2, --- do
Run moq(als,Boq) for 7 steps. > Collect a trajectory of interactions
Calculate 9(S¢4r, Wold) > For bootstrapping

Construct a batch of 7 sequences, where each sequence is:
(84y @541, Rig1,10g Tora(aig1]si,0o1a), 0(8i, Wold)) s - - -
(Sit1, ivry1, Riyri1,108 Tora(@ir 1|8yt O0o1a), 0(SigT, Wold))
for epoch=1,...,kdo > Learning
Shuffle the sequences
Divide the data into m mini-batches of size n, where m = 7/(n x T).
for mini-batch=1,...,m do
forj=t+T7T-1,...,tdo > This loop is parallelized over the sequences.
(5‘]' - R]’Jrl + ['(SjJrl-, Wne\\) - [(5] Wnew)
V(S.iwm = Rjy1 +vVO(Sjt1, Wnew) — VO(Sj, Wnew)
(5‘7/‘\ =05 + “,r/\(%\i 1
V(S‘? =Vo; + 7,/\V5?+1
end for
Calculate: 10g myeq (a8, Opew ) for samples in the mini-batch.
Policy objective: L, = —+ >, min(r;0} clip,(r;)d})
where 7; = %, and clip,(r;) = clip(r;,1 —€,1 +€)
Calculate the entropy of the policy: Lg = + Z?:I S(7(s5,0new))
Calculate the total loss: L = L, — c2Lg
Calculate the gradient §
if ||g|| > ¢ then
9 19
end if
Update the policy using the gradient to minimize the loss function.
Update value parameters using the following update:
(5;\Vw1r,g — htVa (v + (55\) (62 — hy)Veh; — B0, ¢

Update h parameters using the following update:
((5[\ - h/,)ve}l/, — B0
end for
end for
end for

Finally, to show that the additional calculations don’t affect the run time of Gradient PPO, we plotted
the Steps Per Second (SPS) for both PPO and Gradient PPO across all environments. Figure 5 shows
that the SPS values are almost the same moving from PPO to Gradient PPO.

D Backward-View Algorithms

In this section, we provide the pseudocode and the hyperparameters details for the backward-view al-
gorithms. Algorithm 4 shows the pseudocode for QRC()\) where at each timestep, the agent samples
an action from an e-greedy policy and takes one step in the environment to observe the subsequent
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reward and next state. Then, based on that transition make an update its parameters using the traces
it is carrying and also updates those traces.

Algorithm 4 QRC()\) Algorithm

Input: a differentiable state-value function parametrization Gy,
Input: a differentiable auxiliary function parametrization hg
Algorithm parameters: learning rate «,, h learning rate c,, exploration parameter e.
Initialize z¢ + 0
Initialize z{° < 0
Initialize 2 < 0
Observe initial state Sy
for iterationt = 1,2,--- do
Sample an action A; ~ 7. > We use an e-greedy policy.
Take action Ay, observe R;y1 and Si41.
Compute J; and V,,, d; according to Eq. 26 and Eq. 27, respectively.
Update the traces z¢, 2z, and 2 according to Eq.28.
Compute Aw; and Af; according to Eq.28. © To use the other algorithmic variants, replace
those equations with other backward-view algorithms in Table 2.
Update the parameters w1 < w: + agAw;
Update the parameters 0;y1 < 0 + apAG;
if episode terminated or A; is non-greedy then

reset the traces 22, 2%, and 2 to zeros.
end if
end for

D.1 Experimental Details of MinAtar

In our experiments with QRC()), we used the normalization wrappers and the sparse initialization
proposed by Elsayed et al. (2024). However, we used SGD as the optimizer presented Elsayed
et al. (2024) can’t be easily mapped to our updates. That choice was made so that the difference in
performance between those algorithms can be associated with the Gradient TD updates.

For QRC()), we first performed a hyperparameter sweep over A, and the learning rate for both the
value network and the h network. We include the values used for the sweep in 6 and the final
hyperaprameters used in Table 7.

Finally, we estimated the SPS for both QRC()\) and StreamQ, and we show the estimated values
in Figure 6. We note that for StreamQ, we used the available implementations provided by the
original paper to ensure reproducibility (Elsayed et al., 2024), which were implemented in PyTorch.
However, for our QRC()\), we had an implementation in Jax, so we acknowledge the comparison of
the SPS here has other confounding factors. Nevertheless, we show it to ensure that our runtime is
not badly affected by the marginal additional computation required for the auxiliary variable h.

SPS
(30 runs) MinAtar/Asterix-v1 MinAtar/Breakout—vl1250 MinAtar/Freeway-vl MinAtar/Spacelnvaders-vl MinAtar/Seaquest-vl

1250
1250 1000
1000 1000

1000 1000 800 800
750

750 750 600 600

500 500 500 400 400

250 250 250 200 200

0 0 0 0
StreamQ QRC(A) StreamQ QRC(A) StreamQ QRC(N) StreamQ QRC(A) StreamQ
(Pytorch) (Pytorch) (Pytorch) (Pytorch) (Pytorch)

Figure 6: SPS for QRC()) and StreamQ algorithms on MinAtar environments.
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Name

Default Value

Policy Network

Value Network

Buffer size

Num epochs

Mini-batch size

GAE, \

Discount factor, ~y

Clip parameter

Input Normalization
Advantage Normalization

Value function loss clipping

Max Gradient Norm
Optimizer

Actor step size
Critic step size
Optimizer €

(64, tanh, 64, tanh, Linear) + Standard deviation variable
(64, tanh, 64, tanh, Linear)
2048

4

64

0.95

0.99

0.2

True

True

True

0.5

Adam

0.0003

0.0003

1x107°

Table 3: The default hyperparameters used for PPO. The hyperparmaeters values are based on the
implementation details by Huang et al. (2022).

Name

Default Value

Policy Network
Value Network
Buffer size

Num epochs
Mini-batch size

A

Discount factor, ~
Clip parameter

Input Normalization
Advantage Normalization
Max Gradient Norm
Optimizer

Actor step size

Critic step size

h step size
regularization coef, 8
Optimizer €

(64, tanh, 64, tanh, Linear) + Standard deviation variable
(64, tanh, 64, tanh, Linear)

2048

4

256 (split into 8 sequences of length 32)
0.95

0.99

0.2

True

True

0.5

Adam

0.0003

0.003

0.003

1.0

1x107°

Table 4: The hyperparameters used for Gradient PPO in all the MuJoCo experiments.

Name

Sweep Range

A
Actor step size
Critic step size

regularization coef, 5

[0.7,0.8,0.9,0.95]

[0.001,0.003, 0.0001, 0.0003, 0.00001, 0.00003]
[0.001,0.003, 0.0001, 0.0003, 0.00001, 0.00003]
[1.0,0.0]

Table 5: Hyperparameter ranges used for the sweep experiments for Gradient PPO.
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Name Default Value

A [0.7,0.8,0.9,0.95]

Optimizer SGD

step size [0.001,0.0001,0.00001,0.000001]
h step scale [1.0,0.1]

regularization coef, 5 [1.0,0.0]

Table 6: Hyperparameters ranges used for the sweep experiments in MinAtar.

Name Default Value
A 0.8

Input Normalization =~ True
Optimizer SGD

step size 0.0001

h step size 0.1
regularization coef, 5  1.0/0.0

start exploration e, 1.0

end exploration e, 0.01

exploration fraction 0.2

Table 7: Final hyperparameters used for QRC(\) experiments with MinAtar



