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Abstract

Reinforcement learning (RL) tackles sequential decision-making problems
by creating agents that interacts with their environment. However, existing
algorithms often view these problem as static, focusing on point estimates for
model parameters to maximize expected rewards, neglecting the stochastic
dynamics of agent-environment interactions and the critical role of uncer-
tainty quantification. Our research leverages the Kalman filtering paradigm
to introduce a novel and scalable sampling algorithm called Langevinized
Kalman Temporal-Difference (LKTD) for deep reinforcement learning. This
algorithm, grounded in Stochastic Gradient Markov Chain Monte Carlo
(SGMCMC), efficiently draws samples from the posterior distribution of
deep neural network parameters. Under mild conditions, we prove that the
posterior samples generated by the LKTD algorithm converge to a stationary
distribution. This convergence not only enables us to quantify uncertainties
associated with the value function and model parameters but also allows
us to monitor these uncertainties during policy updates throughout the
training phase. The LKTD algorithm paves the way for more robust and
adaptable reinforcement learning approaches.

1 Introduction
Over the last decade, RL has achieved remarkable successes across a diverse array of tasks,
including robotics (Kormushev et al., 2013), video games (Silver et al., 2016), bidding strate-
gies (Jin et al., 2018), and ridesharing optimization (Xu et al., 2018b). As a mathematical
model, RL solves sequential decision-making problems by designing an agent that interacts
with the environment, the goal is to learn an optimal policy that maximizes the expected
total reward for the agent. Prominent value-based algorithms, including Temporal-difference
(TD) learning (Sutton, 1988), State–action–reward–state–action (SARSA) (Sutton & Barto,
2018), and Q-learning, aim to derive an optimal policy through learning values of states (or
Q-values). Traditionally, these methods treat the state value (or Q-value) as a deterministic
function, focusing on calculating point estimates of model parameters, thereby overlooking
the inherent stochasticity in agent-environment interactions.
In the context of RL, a fair algorithm should exhibit the features: (i) Uncertainty quantifica-
tion, which addresses the stochastic nature of the agent-environment interactions, thereby
enhancing the robustness of the learned policy; (ii) Dynamicity, which considers the dynamics
of the agent-environment interaction system, thereby enhancing the practicality of the RL
technique; (iii) Nonlinear approximation, which employs, for example, a deep neural network
to approximate the value function, thereby broadening the algorithm’s applicability; (iv)
Computational efficiency, which is scalable with respect to the model dimension and training
sample size, facilitating online learning. Therefore, in RL, it is more suitable to treat values
or model parameters as random variables rather than fixed unknowns, focusing on tracking
dynamic changes rather than achieving point convergence during the policy learning process.
To achieve these goals, the Kalman Temporal Difference (KTD) framework has been studied
for RL in the literature, as seen in references such as e.g., Geist & Pietquin (2010), Tripp &
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Shachter (2013), and Shashua & Mannor (2020). In these studies, values or their parameters
are treated as random variables, and the focus is on the tracking property of the policy
learning process. Specifically, KTD conceptualizes RL as a state-space model:

θt = θt−1 + wt,

rt = h(xt, θt) + ηt,
(1)

where θt ∈ Rp denotes the parameters at time step t with dimension p, wt ∈ Rp and ηt ∈ Rn

denote two independent multivariate Gaussian vectors, xt denotes a set of states and actions
collected at time step t, rt ∈ Rn denotes a vector of rewards, n denotes the number of samples,
and h(·) is a function to be defined in Section 2.2. Within the framework of state-space models,
the top equation in (1) is reffered to as the state evolution equation, while the bottom equation
is known as the measurement equation. Under the normality assumption and for a linear
measurement equation, where h(x, θ) is a linear function of θ, the Kalman filter (Kalman,
1960) is able to iteratively update the mean and variance estimates for θt conditioned on
the rewards (rt, rt−1, . . . , r1), enabling a proper quantification of the uncertainty associated
with the dynamic agent-environment interaction system. However, when h(x, θ) becomes
nonlinear, it necessitates the use of linearization techniques. Specifically, Geist & Pietquin
(2010) employs Unscented Kalman Filter (UKF) (Wan & Van Der Merwe, 2000), while
Shashua & Mannor (2020) utilize Extended Kalman Filter (EKF) Anderson et al. (1979)
to approximate the covariance matrices of θt. Unfortunately, both UKF and EKF becomes
computationally inefficient for high-dimensional parameter spaces, a common scenario when
employing large-scale neural networks to approximate h(·, ·). These filters require O(p2)
additional space to store the covariance matrix and O(np2) for matrix multiplications at each
iteration. Moreover, the linearization operation involved in these algorithms can degrade the
accuracy of estimation. To address the limitations encountered by KTD, we reformulate RL
as the following state space model:

θt = θt−1 + ϵt
2 ∇θ log π(θt−1) + wt,

rt = h(xt, θt) + ηt,
(2)

where wt ∼ N(0, ϵtIp), π(θ) represents a prior density function we impose on θ, and
{ϵt : t = 1, 2, . . .} is a positive sequence decaying to zero. Additionally, we propose to
update θt using the Langevinized Ensemble Kalman Filter (LEnKF) algorithm (Zhang et al.,
2023). With the formulation (2) and the LEnKF algorithm, we show in Section 3 that θt

converges to a proper distribution as the learning horizon t → ∞, enabling the uncertainty
associated with the dynamic agent-environment interaction system to be properly quantified.
Inclusion of the prior information in the state evolution equation generally robustifies the
performance of the RL algorithm. For instance, when employing a large-scale deep neural
network to approximate the function h(·, ·), selecting an appropriate π(·), such as a mixture
Gaussian distribution, can lead to the sparsification of the neural network. This enhances the
robustness of the learned policy according to the theory of sparse deep learning (Sun et al.,
2022). Compared to existing KTD algorithms, the proposed algorithm can directly handle
a nonlinear function h(·, ·) without the need for a linearization operator. The proposed
algorithm enables fast value tracking at a complexity of O(np) per iteration, scalable for
large-scale neural networks. It also enhances memory-efficiency as it replaces the storage for
the covariance matrix with particles, representing samples of θ. It is worth noting that both
the sample size n and the number of particles retained during the algorithm’s execution are
typically significantly smaller than the parameter size p. Lastly, we extend the convergence
theory of our proposed algorithm to include scenarios that utilize replay buffers, thereby
expanding its applicability beyond the on-policy framework.
Compared to model (1), our new formulation imposes slightly more restrictions on the
variability of θ through the prior π(θ), while still accounting for the dynamics of the system.
However, these restrictions do not diminish the generality and adaptivity of the model (2),
thanks to the universal approximation ability of deep neural networks that will be used in
approximating h(·, ·) in this paper.

Related Works Bootstrapped DQN (Osband et al., 2016) and Quantile Regression DQN
(Bellemare et al., 2017) also aim to learn the uncertainty estimates for the value function,
but they are not formulated under the KTD framework.
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2 Background
2.1 Markov Decision Process

The standard RL procedure aims to learn an optimal policy from the interaction experiences
between an agent and an environment, where the optimal policy maximizes the agent’s
expected total reward. The RL procedure can be described by a Markov Decision Process
(MDP) represented by {S,A,P, r, γ}, where S is set of states, A is a finite set of actions,
P : S × A × S → R is the state transition probability from state s to state s′ by taking
action a, denoted by P(s′|s, a), r(s, a) is a random reward received from taking action a at
state s, and γ ∈ (0, 1) is a discount factor. At each time step t, the agent observes state
st ∈ S and takes action at ∈ A according to policy ρ with probability Pρ(a|s), then the
environment returns a reward rt = r(st, at) and a new state st+1 ∈ S. For a given policy
ρ, the performance is measured by the state value function Vρ(s) = Eρ[

∑∞
t=0 γ

trt|s0 = s]
and the state-action value function Qρ(s, a) = Eρ[

∑∞
t=0 γ

trt|s0 = s, a0 = a], which are called
V -function and Q-function, respectively. Both functions satisfy the Bellman equation:

Vρ(s) = Eρ[r(s, a) + γVρ(s′)],
Qρ(s, a) = Eρ[r(s, a) + γQρ(s′, a′)],

(3)

where s′ ∼ P(·|s, a), a ∼ Pρ(·|s), a′ ∼ Pρ(·|s′), and the expectation Eρ[·] is taken over the
transition probability distribution P for a given policy ρ.

2.2 Kalman Temporal Difference (KTD) Algorithms

Let st = (s(1)
t , s

(2)
t , . . . , s

(n)
t )T , at = (a(1)

t , a
(2)
t , . . . , a

(n)
t )T , and rt = (r(1)

t , r
(2)
t , . . . , r

(n)
t )T

denote, respectively, a vector of n states, actions, rewards collected at time step t. Given the
Bellman equation, the function h(xt, θt) in (1) can be expressed as

h(xt, θt) =
{
Vθt

(st) − γVθt
(st+1), for V -function,

Qθt
(st,at) − γQθt

(st+1,at+1), for Q-function, (4)

where xt = {st,at, st+1,at+1}, Vθt(st) := (Vθt(s
(1)
t ), Vθt(s

(2)
t ), . . . , Vθt(s

(n)
t ))T , and

Qθt
(st,at) := (Qθt

(s(1)
t , a

(1)
t ), Qθt

(s(2)
t , a

(2)
t ), . . . , Qθt

(s(n)
t , a

(n)
t ))T . In this paper, we fo-

cus on Q-functions only, however, our algorithm also works for V-functions as indicated
below. The KTD framework works under the Gaussian assumption, i.e., θt follows a Gaussian
distribution at each stage t = 1, 2, . . .. To address the nonlinearity of the function h(x, θ),
the KOVA algorithm, as proposed by Shashua & Mannor (2020), employs the Extended
Kalman Filter (EKF) technique for calculating the mean and covariance matrices of θt. This
approach involves linearizing h(x, θ) based on the first-order Taylor expansion, namely:

h(xt, θ) ≈ h(xt, µ̂t−1) + ∇θh(xt, µ̂t−1)T (θ − µ̂t−1),
where µ̂t−1 denotes the estimator for the mean of θt−1. The KOVA algorithm, detailed
in Algorithm S1, however, encounters several significant challenges: (i) the approximation
accuracy for the true filtering distribution of θt is unknown; (ii) it exhibits high computational
complexity O(np2); and (iii) it demands considerable memory complexity, necessitating O(p2)
additional space for the covariance matrix. Alternatively, Geist & Pietquin (2010) recom-
mended the implementation of KTD using Unscented Kalman Filter (UKF). Nonetheless, this
alternative algorithm encounters similar challenges to those faced by KOVA, including issues
related to approximation accuracy, computational complexity, and memory requirements.

3 Langevinized Kalman Temporal Difference Algorithm
To overcome the limitations encountered by existing KTD algorithms, we introduce an
approach that integrates KTD with the LEnKF algorithm, leading to the development
of the Langevinized Kalman Temporal Difference (LKTD) algorithm. The LEnKF is a
reformulation of the Ensemble Kalman filter (EnKF) (Evensen, 1994) under the framework
of Langevin dynamics. The LEnKF inherits the forecast-analysis procedure from the EnKF
and the use of minibatch data from the Stochastic Gradient Langevin Dynamics (SGLD)
algorithm (Welling & Teh, 2011), making it scalable with respect to the state dimension p
and the mini-batch size n. Distinctively, the LEnKF algorithm is designed to converge to
the accurate filtering distribution, setting it apart from the traditional EnKF.
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3.1 The LKTD Algorithm
The LKTD algorithm is designed to solve the RL problem by framing it within the state-space
model outlined in equation (2). As previously explained, this model differs from the model
(1) by incorporating the prior information, π(θ), into the state evolution equation. This
incorporation generally enhances the robustness of the algorithm, especially when using a
deep neural network to approximate the function h(x, θ). Next, we can apply the variance
splitting technique (Zhang et al., 2023) to convert the model (1) into a state-space model with
a linear measurement equation, while allowing the state evolution equation to be nonlinear.
The variance splitting technique can be described as follows.
Without loss of generality, let’s assume that ηt ∼ N(0, σ2In) for each stage t, where In is an
n× n-identity matrix. By the state augmentation approach, we define

φt =
(
θt

ξt

)
, ξt = h(xt; θt) + ut, ut ∼ N(0, ασ2In), (5)

where ξt is an n-dimensional vector, and 0 < α < 1 is a pre-specified constant. Suppose
that θt has a prior distribution π(θ) as specified previously, the joint density function of
φt = (θ⊤

t , ξ
⊤
t )⊤ is given by π(φt) = π(θt)π(ξt|θt), where ξt|θt ∼ N(h(xt; θt), ασ2I). Based

on Langevin dynamics, we can reformulate (2) as the following model:

φt = φt−1 + ϵt
2
n

N
∇φ log π(φt−1) + w̃t,

rt = Htφt + vt,
(6)

where N > 0, w̃t ∼ N(0, n
N Bt), Bt = ϵtIp̃, p̃ = p + n is the dimension of φt; Ht = (0, In)

such that Htφt = ξt; vt ∼ N(0, (1 −α)σ2In), which is independent of w̃t for all t. We call N
the pseudo-population size, which scales uncertainty of the estimator of the system. Refer to
Lemma 1 and Theorem 1 for mathematical justifications for this issue.
By (5) and (6), xt, θt, ξt and rt form a hierarchical model with the conditional distribution

ξt|rt,xt,θt ∼ N (αrt + (1 − α)h(xt;θt), α(1 − α)σ2In), (7)

which, as shown by Zhang et al. (2023), eventually leads to an efficient particle filtering
algorithm for handling the state-space models with a nonlinear measurement equation.
Similar to LEnKF, we adopt the forecast-analysis procedure from EnKF to the model (6),
leading to Algorithm 1. It works in a single chain, different from particle filtering algorithms.
The time complexity of the algorithm is O(np). This attractive time complexity is due to the
special structure of Ht, rendering the matrix Kt and equation 10 easily computed. Regarding
the settings of K and α, we make the following remarks: First, as indicated by the Kalman
gain matrix Kt,k, only the ξ-component of φt,k is updated at each analysis step. Generally,
ξt,k converges rapidly, benefiting from second-order gradient information. Thus, K does not
need to be excessively large. Based on the property (7), Zhang et al. (2023) demonstrated
that LEnKF acts as a variance reduction version of SGLD if 0.5 < α < 1, recommending α
be set close to 1. In this paper, we default K = 5 and α = 0.9, initializing ξt,0 by rt at each
time step t to enhance the convergence of the simulation.

3.2 Convergence Theory
To study the convergence of Algorithm 1, it suffices to study the convergence of Algorithm
S2, which ignores the inner iterations for imputing the latent variables ξt and serves as the
prototype of Algorithm 1. Lemma 1 shows that Algorithm S2 is actually an accelerated
preconditioned SGLD algorithm. Its proof follows Theorem S1 of Zhang et al. (2023) .
Lemma 1. Algorithm S2 implements a preconditioned SGLD algorithm, for which

φa
t = φa

t−1 + ϵt
2 Σt∇φ log π(φa

t−1|zt) + et, (11)

where zt = (rt,xt) as defined in Algorithm S2, Σt = n
N (I−KtHt) is a constant matrix given

φt, et ∼ N(0, ϵtΣt), and the gradient term ∇φ log π(φa
t−1|zt) is given by ∇φ log π(φa

t−1|zt) =
N
n

∑n
i=1 ∇φ log π(z(i)

t |φa
t−1) + ∇φ log π(φa

t−1).
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Algorithm 1: Langevinized Kalman Temporal-Difference (LKTD)
Initialization: Draw θa

0 ∈ Rp drawn from the prior distribution π(θ).
for t=1,2,. . . , T do

Sampling: With policy ρθa
t−1

, generate a set of n transition tuples, denoted by
zt = (rt,xt) := {r(j)

t , x
(j)
t }n

j=1, where x(j)
t = (s(j)

t , a
(j)
t , s

(j)
t+1, a

(j)
t+1)T and

x
(j)
t = (s(j)

t , a
(j)
t , s

(j)
t+1)T correspond to the choices of the Q-function and V -function

in (4), respectively.
for k=1,2,. . . ,K do

Presetting: Set Bt,k = ϵt,kIp̃, Rt = 2(1 − α)σ2I, and the Kalman gain matrix
Kt,k = Bt,kH

⊤
t (HtBt,kH

⊤
t +Rt)−1.

Forecast: Draw w̃t,k ∼ Np(0, n
N Bt,k) and calculate

φf
t,k = φa

t,k−1 + ϵt,k

2
n

N
∇φ log π(φa

t,k−1) + w̃t,k, (8)

where φa
t,0 = (θa

t−1,K
⊤, r⊤

t )⊤ if k = 1, and the gradient term is given by

∇φ log π(φa
t,k−1) =

(
∇θ log π(θt,k−1) + 1

ασ2
N
n ∇θh(xt; θt,k−1)(ξt,k−1 − h(xt; θt,k−1))

− 1
ασ2 (ξt,k−1 − h(xt; θt,k−1))

)
.

(9)
Analysis: Draw vt,k ∼ Nn(0, n

N Rt) and calculate

φa
t,k = φf

t,k +Kt,k(rt −Htφ
f
t,k − vt,k) = φf

t,k +Kt,k(rt − rf
t,k). (10)

end
end

To establish the convergence of the preconditioned SGLD sampler (11), it suffices to establish
the convergence of the conventional SGLD sampler in the context of reinforcement learning
by noting the positive definiteness of the preconditioned matrix. Specifically, we have

Σt = n

N
(I −KtHt) = n

N
[I − ϵtH

T (ϵtHtH
T
t +Rt)−1Ht],

which implies Σt has bounded positive eigenvalues for all t ≥ 1.

3.2.1 Convergence of the LKTD algorithm under the on-policy setting
With a slight abuse of notations, we would prove the convergence of the following SGLD
sampler in the RL context:

θk = θk−1 + ϵkG(θk−1, zk) +
√

2β−1ϵkek, (12)
where ek ∼ N(0, Id), β is the inverse temperature, and k indexes stages of the RL process.
In pursuit of our objective, we introduce Assumption A1 as detailed in the Appendix. This
assumption aligns with the conditions outlined in Raginsky et al. (2017) to demonstrate
the convergence of SGLD in simulating a posterior distribution with a fixed dataset. To
tailor the sampler for RL, a context where the total sample size can be considered infinitely
large, we introduce the pseudo-population size N to prevent the degeneration issue of the
invariant distribution of θk, thereby reformulating RL as a sampling problem rather than an
optimization problem. As a result, the proposed method can perform robustly with respect
to the dynamics of the distribution π(z|θk). However, under appropriate assumptions (see
Remark 1), correct inference for the optimal policy can still be made based on the stationary
distribution νN (θ) ∝ exp(−βG(θ)), where G(θ) = O(N ) as stated in Theorem 1. Theorem 1
and the followed Corollary 1 establish the convergence of the LKTD algorithm under the
general nonlinear setting for the value and Q-functions. Their proofs are given in Appendix.
Theorem 1. Consider the SGLD sampler (12) with a polynomailly-decay learning rate
ϵk = ϵ0

kϖ for some ϖ ∈ (0, 1). Suppose the environment is stationary and Assumption A1
holds. If E(G(θk−1, zk)) = g(θk−1) holds for any stage k ∈ {1, . . . ,K}, β ≥ 1 ∨ 2

mU
, then
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there exist constants (C0, C1, C2, C3) independent of the learning rates such that for all
K ∈ N, the 2-Wasserstein distance between µK and νN can be upper bounded by

W2(µK , νN ) ≤ (12 + C2ϵ0( 1
1 −ϖ

K1−ϖ))
1
2 · [(C1ϵ

2
0( 2ϖ

2ϖ − 1) + δC0( ϵ0

1 −ϖ
K1−ϖ))

1
2

+ (C1ϵ
2
0( 2ϖ

2ϖ − 1) + δC0( ϵ0

1 −ϖ
K1−ϖ))

1
4 ] + C3 exp

(
− 1
βcLS

( ϵ0

1 −ϖ
K1−ϖ)

)
,

(13)

where µK(θ) denotes the probability law of θK , νN (θ) ∝ exp(−βG(θ)), G(θ) = O(N ) is the
anti-derivative of g(θ), i.e., ∇θG(θ) = g(θ), and cLS denotes a logarithmic Sobolev constant
satisfied by the νN . In addition, the constants (C0, C1, C2, C3) are given by

C0 = L2
U (κ0 + 2(1 ∨ e

mU
)(b+ 2B2 + d

β
)) +B2,

C1 = 6L2
U (C0 + d

β
), C2 = κ0 + 2b+ 2d,

C3 =
√

2cLS(log ∥ν0∥∞ + d

2 log 3π
mUβ

+ β(MUκ0

3 +B
√
κ0 +A+ b

2 log 3)).

Regarding statistical inference with the samples {θk : k = 1, 2, . . . ,K}, we have the remark:
Remark 1. Let ϕ(θ)) be a test function, which is bounded and differentiable. Suppose that
the conditions of Theorem 1 hold and (νN (θ), ϕ(θ)) satisfies the Laplace regularity condition
as given in Theorem 2.3 of Sun et al. (2022). Then, by Lapalce approximation, we have

ϕ̄N (θ) =
∫
ϕ(θ) exp(−βG(θ))dθ∫

exp(−βG(θ))dθ
= ϕ(θ∗) +O(r

4
n

N ), as K → ∞, (14)

where θ∗ denotes the maximizer of νN (θ) and thus the maximizer of ν∞(θ), and rn denotes the
connectivity of the sparse DNN learned for approximating the value or Q-function. Therefore,
when the number of total time steps K becomes large and N ≻ r4

n holds, we can make
inference for the policy using the Monte Carlo average ϕ̂ = [

∑K
k=1 ϵkϕ(θk)]/[

∑K
k=1 ϵk], which,

by letting K → ∞, forms a consistent estimator for ϕ(θ∗), the true value of ϕ(·) at the
optimal policy.
Remark 2. The choice of the pseudo population size N reflects our trade-off between
optimization and sampling. It acts as a tempering factor for the system. As N → ∞, we
have G(θ) → ∞ and, consequently, the stationary distribution νN (θ) degenerates to a delta
function centered at θ∗, as defined in Remark 1.

We note that the proof for the convergence of ϕ̂ toward the population mean ϕ̄N (θ) requires
that the learning rate sequence satisfies Assumption A2. This condition is readily met by the
polynomailly-decay learning rate sequence outlined in Theorem 1. Finally, we note that the
conclusions of Theorem 1 remains valid for Algorithm 1. Therefore, Remark 1 and Remark
2 also hold for this algorithm.
Corollary 1. The conclusions of Theorem 1 and Remark 1 remains valid for Algorithm 1.

3.2.2 Cooperation with Replay Buffer

In Section 3.2.1, we demonstrated the W2-convergence of LKTD algorithm under an on-policy
framework, where transition tuples zt are determined by the preceding parameter θt−1. In
contrast, off-policy algorithms obtain zt from replay buffers, a strategy that boosts data
efficiency and is frequently adopted in Q-learning algorithms. This section is dedicated to
establishing a convergence theory for the LKTD algorithm when it is integrated with a replay
buffer. In practice, the replay buffer B stores transition {zt,j}J

j=1 drawn from the stationary
distribution π(z|θt−1) at each time step t. Given its finite capacity, the replay buffer retains
only the transition tuples from the last R time steps. That is, the replay buffer at time
step t, denoted by Bt, contains only the transition tuples generated from {π(z|θτ )}t−1

τ=t−R.
In the population scope, we define the replay buffer at time step t, denoted by π̄(z|θR

t−1), as
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a mixture of finite number of stationary distributions {π(z|θt−i)}R
i=1. The replay buffer can

be explicitly written as

π̄(z|θR
t−1) = 1

R

R∑
i=1

π(z|θt−i), (15)

where θR
t−1 = {θt−i}R

i=1 and R ∈ N. Given the buffer’s structure, we assume that the samples
drawn from it are R-dependent. That is, zt and zt′ are independent for all zt ∈ Bt, zt′ ∈ Bt′

and |t − t′| > R. For some test function ϕ(θ) of interest, we define the posterior average
as: ϕ̄ =

∫
Θ ϕ(θ)νN (θ)dθ, where νN (θ) is the target distribution as defined in Theorem 1.

Let {θt}T
t=1 be the samples generated from LKTD algorithm, and the sample average ϕ̂ is

as defined in Remark 1. In Theorem 2, we show that although the gradient is biased due
to replay buffer, the bias and variance of ϕ̂ vanish asymptotically. In other words, we can
employ replay buffer to improve data-efficiency without losing the asymptotic consistency.
Theorem 2. Let {θt}T

t=1 be a sequence of updates generated from LKTD with replay buffer.
At each time t, the transition tuple zt is sampled from the replay buffer π̄(zt|θR

t−1). In
addition to the assumptions in theorem 1, we further assume the following holds:

(i) (Lipschitz)
∫

Z |π(z|θ) − π(z|ϑ)|2dz ≤ L∥θ − ϑ∥2;
(ii) (Integrability)

∫
Z ∥G(θ, z)∥2dz ≤ M and

∫
Z ∥G(θ, z)∥2π(z|θ)dz ≤ M , ∀θ ∈ Θ.

Then for a bounded test function ϕ, the bias of the LKTD can be bounded as:

|Eϕ̂− ϕ̄| = O( 1
ST

+
∑T

t=1 ϵ
2
t

ST
), E(ϕ̂− ϕ̄)2 = O( 1

ST
+

∑T

t=1 ϵ
2
t

S2
T

+
(
∑T

t=1 ϵ
2
t )2

S2
T

) (16)

4 Experiments

This section compares LKTD with prominent RL algorithms such as DQN, BootDQN
(Osband et al., 2016), QR-DQN (Bellemare et al., 2017) and KOVA (Shashua & Mannor,
2020). Using an simple indoor escape environment, we demonstrate the advantages of
LKTD in three aspects: (1) accuracy of Q-value estimation, (2) uncertainty quantification
of Q-values, and (3) optimal policy exploration. Furthermore, by employing more complex
environments like OpenAI gym, we demonstrate that LKTD is capable of learning better
and more stable policies for both training and testing.

4.1 Indoor escape environment

Figure 1: Indoor escape
environment

Figure 1 depicts a simple indoor escape environment, for which
the state space consists of 100 grids and the agent’s objective is
to navigate to the goal positioned at the top right corner. The
agent starts its task from the bottom left grid at time t = 0.
For every time step t, the agent identifies its current position,
represented by the coordinate s = (x, y). Based on a policy,
the agent chooses an action a ∈ {N,E,S,W}. The action taken
by the agent determines the adjacent grid to which it moves.
Following each action, the agent is awarded an immediate reward,
rt, drawn from the distribution N (−1, 0.01). It’s worth noting
that for most states, the Q-values for actions N and E are identical. This highlights the
importance of exploring diverse optimal policies to achieve a consistent and resilient policy.
Our experiment showcases the sampling framework are capable of learning a mixed optimal
policy in a single run. We compare the proposed sampling framework LKTD against existing
RL algorithms like DQN, BootDQN, QR-DQN and KOVA in the training of the deep
Q-network. Refer to section A.4.2 for the detailed experimental setup.
For each algorithm, we collect the last 3000 parameter updates to form a θ-sample pool,
denoted by θs = {θ̂i}, which naturally induces a sample pool of Q-functions Qs = {Qθ(·, ·)|θ ∈
θs}. We can obtain a point estimate of the Q-value at (s, a) by calculating the sample
average Q̂(s, a) = 1

n

∑n
i=1 Qθ̂i

(s, a). For uncertainty quantification, we can achieve one-step
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Figure 2: Boxplots for MSE(Q̂a) (for a ∈ {N,E}))

Figure 3: Boxplots for coverage rates (for a ∈ {N,E}))

value tracking by constructing a 95% prediction interval with the Q-value samples. Due to
the simplicity of this environment, the Q-values of optimal policy, denoted by Q∗(s, a), can
be calculated by Monte Carlo simulations. For each algorithm and parameter setting, we
conduct 100 runs and calculate two metrics: (1) the mean squared error (MSE) between
Q̂(s, a) and Q∗(s, a), denoted by MSE(Q̂a) for each action a, where the average is taken over
all states s; and (2) the coverage rate (CR) of the 95% prediction intervals.

Figure 2 presents a boxplot illustrating the distribution of MSE(Q̂a) (for a ∈ {N,E}) across
100 experiments for each algorithm. Here, we consider only the actions a ∈ {N,E}, since
{S,W} are sub-optimal actions at all states and the corresponding Q-values cannot be well
approximated due to the lack of enough transition tuples on them. Figure 2 indicates that
LKTD yields notably higher Q-value estimation accuracy compared to all other algorithms.
Moreover, the plot shows a clear trend that as the pseudo population size N grows, their
accuracy correspondingly improves. For uncertainty quantification, Figure 3 shows that the
coverage rates from the LKTD algorithm is close to the nominal 95% and independent of the
choice of pseudo population size, whereas the DQN, BootDQN and KOVA algorithms fail to
construct correct prediction intervals. Although QR-DQN approximates the distribution
of the Q-function, it does not provide the correct interval estimation for Q-values. These
observations on LKTD align well with the point we made in Remark 2.
Effective policy exploration is crucial for RL agents as it empowers them to adeptly learn
various optimal policies and navigate challenges like the local-trap issue. In this specific
environment, the Q-values for actions N and E are indistinguishable. Therefore, an algorithm
excelling in policy exploration should, during training, give equal consideration to both
optimal actions. To quantify policy exploration, we introduce the concept of mean policy
probability. For a given policy pool ϱ at state s, it’s defined as:

pϱ(a|s) = 1
|ϱ|

∑
ρ∈ϱ

1a(ρ(s)),

where ϱ represents the policy pool derived from the θ-sample pool obtained in a run of
the algorithm. In simpler terms, the mean policy probability measures the frequency of an
action chosen by the policy sample at a specific state. Figure 4 shows that LKTD effectively
explores the optimal policies across the majority of grids, whereas DQN sticks to one optimal
policy, failing to explore others. This implies that DQN tends to be locally trapped in RL,
compared to LKTD.
From a computational aspect, the LKTD algorithm stands out for its efficiency and scalability.
As detailed in Table A3, we have recorded the average computation time required by each
algorithm to execute a single parameter update. The findings indicate that LKTD scale
effectively in relation to network and batch size. Their time complexities align closely with
that of DQN. Conversely, the KOVA algorithm, due to its reliance on the calculation of the
Jacobian matrix and matrix inversion, proves to be computationally less efficient.
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(a) Optimal solution (b) LKTD (c) DQN
Figure 4: Mean policy probabilities for the indoor escape environment: (a) known optimal
solution; (b) learned by LKTD; (c) learned by DQN, failing to explore different policies.

4.2 Classical control problems

This section evaluates LKTD’s performance on four OpenAI gym challenges: Acrobot-v1,
CartPole-v1, LunarLander-v2, and MountainCar-v0, comparing it against DQN and QR-
DQN based on RL Baselines3 Zoo (Raffin, 2020) training framework. We conducted 100
replicates per experiment, with results in Figures 5 and A4, excluding the top and bottom
5% outliers. Mean reward curves are shown with solid lines, and a 90% confidence interval is
indicated by the colored regions, showcasing LKTD’s efficient exploration and robustness.
For experimental details, see section A.5.
Across all tested environments, LKTD consistently surpasses DQN and slightly better than
QR-DQN. LKTD’s ability to achieve markedly higher training reward indicates its capacity to
learn more robust policies against sub-optimal actions generated by random exploration. This
superiority is particularly pronounced in sensitive environments like CartPole-v1 (see Figure
5), where even a single misstep can lead to episode termination. Even when discounting
the noise from random exploration, LKTD’s evaluation rewards remain superior to DQN’s.
Additionally, when it comes to optimal policy exploration, LKTD can identify a more optimal
model within an equivalent computational timeframe as DQN, highlighting its efficiency in
policy exploration.

Figure 5: CartPole-v1: The left plot shows the cumulative rewards obtained during the
training process, the middle plot shows the testing performance without random exploration,
and the right plot shows the performance of best model learned up to the point t.

5 Conclusion

In this paper, we present a novel sampling framework designed to enhance SGD optimizers
for addressing deep reinforcement learning challenges. By redefining the state-space model
and introducing a pseudo population size, we enable SGMCMC algorithms, such as LKTD
and SGLD, to converge to the accurate posterior distribution under mild conditions. Our
approach outperforms existing value-based algorithms in benchmarks. Specifically, our LKTD
algorithm demonstrates greater computational efficiency and circumvents potential matrix
degeneration issues by eliminating the need for linearization, unlike the KOVA algorithm.
Compared to DQN and its variants, our framework not only provides more precise point
estimates of Q-values but also generates accurate prediction intervals for value tracking. In
gym environments, LKTD surpasses DQN and QR-DQN in robustness and efficiency of
optimal policy discovery. Overall, our framework signifies a significant advancement in deep
RL optimization, offering improvements in both efficiency and precision.
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A Appendix

A.1 Extended Kalman Temporal Difference algorithm

Let Σ̂t denote the estimator for the covariance matrix of θt. Additionally, for equation (1),
we let Wt ∈ Rp×p denote the covariance matrix of the Gaussian noise wt, and let Γt ∈ Rn×n

denote the covariance matrix of the Gaussian noise ηt. The resulting KTD algorithm is
Algorithm S1 given in the Appendix. The major issues with Algorithm S1 are (i) unknown
approximation accuracy: it is unclear how well N(µ̂t, Σ̂t) approximates the true distribution
of θt; (ii) computational complexity: it is O(np2) per iteration; and (iii) memory complexity:
it requires O(p2) additional space to store the covariance matrix Σ̂t.

Algorithm S1: Extended Kalman Temporal Difference Algorithm (KOVA Algorithm);
Shashua & Mannor (2020)
Initialize µ̂0;
for t=1,2,. . . ,T do

(i) Set predictions: µ̂ = µ̂t|t−1 = µ̂t−1 and Σ̂t|t−1 = Σ̂t−1 +Wt;
(ii) Generate n transition tuples {rt, h(xt, µ̂)} from the system via the

agent-environment interaction;
(iii) Calculate (p× n)-dim matrix ∇θh(xt, µ̂) and the Kalman gain matrix

Kt = Σ̂t|t−1∇θh(xt, µ̂)Γ−1
r̃t
,

where Γr̃t
= ∇θh(xt, µ̂)T Σ̂t|t−1∇θh(xt, µ̂) + Γt;

(iv) Update the mean and covariance matrix estimators:

µ̂t = µ̂t|t−1 + α̃Kt(rt − h(xt, µ̂t|t−1),
Σ̂t = Σ̂t|t−1 − α̃KtΓr̃tK

T
t ,

where α̃ is the learning rate.
end

A.2 The Prototype of the LKTD Algorithm

By ignoring the detail of state augmentation, the model (6) can be simulated using Algorithm
S2, which is the single-chain version of Algorithm 2 of Zhang et al. (2023).

Algorithm S2: Prototype of the LKTD Algorithm
Initialization: Start with an initial parameter sample φa

0 ∈ Rp, drawn from the prior
distribution π(φ);

for t=1,2,. . . ,T do
Presetting: Set Bt = ϵtIp, Rt = 2σ2In, and the Kalman gain matrix
Kt = BtH

⊤
t (HtBtH

⊤
t +Rt)−1;

Sampling: With policy ρφa
t−1

, generate a set of n transition tuples from the
stationary distribution µφa

t−1
, denoted by zt = (rt,xt) = {zt,j}n

j=1;
Forecast: Draw wt ∼ Np(0, n

N Bt) and calculate

φf
t = φa

t−1 + ϵt
2
n

N
∇ log π(φa

t−1) + wt. (A1)

Analysis: Draw vt ∼ Nn(0, n
N Rt) and calculate

φa
t = φf

t +Kt(rt −Htφ
f
t − vt) := φf

t +Kt(rt − rf
t ). (A2)

end
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A.3 Proofs for Theoretical Results

A.3.1 Assumptions

Assumption A1.

(C1) For any θ ∈ Θ, we are able to generate tuples z from a unique stationary distribution
π(z|θ), the function G : Θ × Z is measurable, and ∥g(θ)∥ = ∥

∫
Z G(θ, z)π(z|θ)dz∥ <

∞.

(C2) There exists a function G(θ), which is an anti-derivative of g(θ) with respect to θ,
i.e., ∇θG(θ) = g(θ), such that |G(0)| ≤ A for some constant A > 0; in addition,
there exists some constant B > 0 such that ∥g(0)∥ ≤ B.

(C3) There exists some constant LU > 0 such that
∥g(θ) − g(ϑ)∥ ≤ LU ∥θ − ϑ∥, ∀θ, ϑ ∈ Θ.

(C4) The function G(θ) is (mU , b)-dissipative; that is, for some mU > 0 and b ≥ 0,

⟨θ, g(θ)⟩ ≥ mU ∥θ∥2 − b, ∀θ ∈ Θ.

(C5) There exist a constant δ and some constants MU and B such that

E∥G(θ, z) − g(θ)∥2 ≤ 2δ(M2
U ∥θ∥2 +B2), ∀θ ∈ Θ.

where the expectation is taken with respect to z ∼ π(z|θ).

(C6) The probability law µ0 of the initial hypothesis θ0 has a bounded and strictly positive
density p0 with respect to the Lebesgue measure on Θ, and

κ0 := log
∫

Θ
e∥θ∥2

p0(θ)dθ < ∞.

In particular, the condition (C4) is quite standard for establishing the existence of an invariant
distribution for θ, see e.g. Raginsky et al. (2017) and Xu et al. (2018a). It intuitively indicates
that the dynamics stays inside a bounded domain in high probability; if θk is far away from
the origin, then the dynamics are forced to get back around the origin.
Assumption A2. The learning rate sequence {ϵt} is decreasing, i.e., 0 < ϵk+1 < ϵk, and
satisfies that

i)
∞∑

k=1
ϵk = ∞; ii) lim

K→∞

∑K
k=1 ϵ

2
k∑K

k=1 ϵk
= 0.

A.3.2 Proof of Theorem 1

Proof. The proof of Theorem 1 follows from Theorem 2 of Zhang et al. (2020). For convenience,
we use t and k to index the continuous-time and discrete-time respectively. Firstly, we
consider the following SDE

dθt = −g(θt)dt+
√

2dWt, (A3)
where g(θ) =

∫
Z G(θ, z)π(z|θ)dz. Let νt denote the distribution of θt, and the stationary

distribution of (A3) is denoted by ν∞.

θk+1 = θk − ϵk+1G(θk, zk+1) +
√

2ϵk+1β−1ek+1. (A4)

Further, let µk denote the distribution of θk and Sk =
∑k

i=1 ϵi. Since
W2(µK , ν∞) ≤ W2(µK , νSK

) +W2(νSK
, ν∞), (A5)

we need to bound these two terms respectively.
For the first term, W2(µK , νSK

), our proof is based on the proof of Theorem 2 in Zhang
et al. (2020) with some modifications on learning rates. By definition, if zk+1 is sampled
from the stationary distribution π(z|θk), then G(θk, zk+1) is an unbiased estimator of g(θk),
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i.e., E[G(θk, zk+1)|Fk] = g(θk), ∀θk ∈ Θ ⊂ Rd. And we define p(t) which will be used in the
following proof:

p(t) = {k ∈ Z|Sk ≤ t < Sk+1} (A6)
Then we focus on the following continuous-time interpolation of θk:

θ(t) = θ0 −
∫ t

0
G(θ(Sp(s)), zp(s)+1)ds+

√
2
β

∫ t

0
dW(d)

s (A7)

where G ≡ Gk for t ∈ [Sk, Sk+1). And for each k, θ(Sk) and θk have the same probability
law µk. Since θ(t) is not a Markov process, we define the following process which has the
same one-time marginals as θ(t)

V (t) = θ0 −
∫ t

0
Hs(V (s))ds+

√
2
β

∫ t

0
dW(d)

s (A8)

with
Ht(x) := E

[
G(θ(Sp(t)), zp(t)+1)|θ(t) = x

]
(A9)

Let Pt
V := L(V (s) : 0 ≤ s ≤ t) and Pt

θ := L(θ(s) : 0 ≤ s ≤ t) and according to the proof of
Lemma 3.6 in Raginsky et al. (2017), we can derive a similar result for the relative entropy
of Pt

V and Pt
θ:

DKL(Pt
V ||Pt

θ) = −
∫
dPt

V log dPt
θ

dPt
V

= β

4

∫ t

0
E∥g(V (s)) −Hs(V (s))∥2ds

= β

4

∫ t

0
E∥g(θ(s)) −Hs(θ(s))∥2ds

(A10)

The last line follows the fact that L(θ(s)) = L(V (s)), ∀s. Then we will let t =
∑K

k=1 ϵk and
we can use the martingale property of the integral to derive:

DKL(P
∑K

k=1
ϵk

V ||P
∑K

k=1
ϵk

θ ) = β

4

K−1∑
j=0

∫ Sj+1

Sj

E∥g(θ(s)) −Hs(θ(s))∥2ds

= β

2

K−1∑
j=0

∫ Sj+1

Sj

E∥g(θ(s)) − g(θ(Sj))∥2ds

+ β

2

K−1∑
j=0

∫ Sj+1

Sj

E∥g(θ(Sj)) −Hs(θ(Sj))∥2ds

= βL2
U

2

K−1∑
j=0

∫ Sj+1

Sj

E∥θ(s) − θ(Sj)∥2ds (A11)

+ β

2

K−1∑
j=0

∫ Sj+1

Sj

E∥g(θ(Sj)) −Hs(θ(Sj)∥2ds (A12)

For the first part (A11), we consider some s ∈ [Sj , Sj+1), for which the following holds:

θ(s) − θ(Sj) = −(s− Sj)G(θk, zk+1) +
√

2
β

(W(d)
s − W(d)

Sj
)

= −(s− Sj)g(θk) + (s− Sj)(g(θk) −G(θk, zk+1)) +
√

2
β

(W(d)
s − W(d)

Sj
)

(A13)

Thus, we can use Lemma 3.1 and 3.2 in Raginsky et al. (2017) for the following result:
E∥θ(s) − θ(Sj)∥2 ≤ 3ϵ2j+1E∥g(θj)∥2 + 3ϵ2j+1E∥g(θj) −G(θj , zj+1)∥2 + 6ϵj+1d

≤ 12ϵ2j+1(L2
UE∥θj∥2 +B2) + 6ϵj+1d

β

(A14)
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Hence we can bound the first part, (choosing ϵ0 ≤ 1),

L2
U

2

K−1∑
j=0

∫ Sj+1

Sj

E∥θ(s) − θ(Sj)∥2ds ≤ L2
U

2

K−1∑
j=0

[12ϵ3j+1(L2
UE∥θj∥2 +B2) +

6ϵ2j+1d

β
]

≤ L2
U (

K−1∑
j=0

ϵ2j+1) max
0≤j≤K−1

[6(L2
UE∥θj∥2 +B2) + 3d

β
]

(A15)

≤ L2
U (π

2

6 ϵ20) max
0≤j≤K−1

[6(L2
UE∥θj∥2 +B2) + 3d

β
] (A16)

The second part (A12) can be bounded as follows:

1
2

K−1∑
j=0

∫ Sj+1

Sj

E∥g(θ(Sj)) −Hs(θ(Sj))∥2ds = 1
2

K−1∑
j=0

ϵj+1E∥g(θj) −G(θj , zj+1)∥2

≤ δSK max
0≤j≤K−1

(L2
UE∥θj∥2 +B2)

≤ δϵ0(1 + log(K)) max
0≤j≤K−1

(L2
UE∥θj∥2 +B2)

Due to the data-processing inequality for the relative entropy, we have

DKL(µK∥νSK
) ≤ DKL(Pt

V ∥Pt
θ)

≤ L2
U

2

K−1∑
j=0

∫ Sj+1

Sj

E∥θ(s) − θ(Sj)∥2ds+ 1
2

K−1∑
j=0

∫ Sj+1

Sj

E∥g(θ(Sj)) −Hs(θ(Sj))∥2ds

≤ L2
U (

K−1∑
j=0

ϵ2j+1) max
0≤j≤K−1

[6(L2
UE∥θj∥2 +B2) + 3d

β
] + δSK max

0≤j≤K−1
(L2

UE∥θj∥2 +B2)

≤ L2
U ϵ

2
0( 2ϖ

2ϖ − 1) max
0≤j≤K−1

[6(L2
UE∥θj∥2 +B2) + 3d

β
]

+ δϵ0( 1
1 −ϖ

K1−ϖ) max
0≤j≤K−1

(L2
UE∥θj∥2 +B2)

According to the proof of Lemma 3.2 in Raginsky et al. (2017), we can bound the term
E∥θk∥2

E∥θk+1∥2 ≤ (1 − 2ϵk+1mU + 4ϵ2k+1M
2
U )E∥θk∥2 + 2ϵk+1b+ 4ϵ2k+1B

2 + 2ϵk+1d

β

Similar to the statement of Lemma 3.2 in Raginsky et al. (2017), we can fix ϵ0 ∈ (0, 1 ∧
mU

4M2
U

∧ 1
mU

). Then, we can know that

E∥θk+1∥2 ≤ (1 − ϵk+1mU )E∥θk∥2 + 2ϵk+1(b+ 2B2 + d

β
) (A17)

where ϵK is the minimum of the decreasing learning rate sequence. There are two cases to
consider.

• If 1 − 2ϵKmU + 4ϵ2KM2
U ≤ 0, then from (A17) it follows that

E∥θk+1∥2 ≤ 2ϵ0(b+B2 + d

β
)

≤ E∥θ0∥2 + 2(b+B2 + d

β
)
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• If 0 ≤ 1 − 2ϵKmU + 4ϵ2KM2
U ≤ 1, then iterating (A17) gives

E∥θk∥2 ≤ (1 − ϵkmU )E∥θk−1∥2 + 2ϵk(b+ 2B2 + d

β
)

≤ e−ϵkmUE∥θk−1∥2 + 2ϵk(b+ 2B2 + d

β
)

≤ e−mU SkE∥θ0∥2 + 2(b+ 2B2 + d

β
)

k∑
i=1

ϵie
−mU (Sk−Si)

≤ E∥θ0∥2 + 2(b+ 2B2 + d

β
)e−mU Sk

k∑
i=1

ϵie
mU Si

≤ E∥θ0∥2 + 2(b+ 2B2 + d

β
)e−mU Sk · emU ϵ0

∫ Sk

0
emU xdx

≤ E∥θ0∥2 + 2(b+ 2B2 + d

β
)e−mU Sk · emU ϵ0( 1

mU
emU Sk − 1

mU
)

≤ E∥θ0∥2 + 2(b+ 2B2 + d

β
)e

mU ϵ0

mU

≤ E∥θ0∥2 + 2(b+ 2B2 + d

β
) e

mU

Now, we have

max
0≤j≤K−1

(L2
UE∥θj∥2 +B2) ≤ (L2

U (κ0 + 2(1 ∨ e

mU
)(b+ 2B2 + d

β
)) +B2) := C0

We denote the 6L2
U (C0 + d

β ) as C1 and we can derive

DKL(µK∥νSK
) ≤ C1ϵ

2
0( 2ϖ

2ϖ − 1) + δC0ϵ0( 1
1 −ϖ

K1−ϖ)

Then according to Lemma 3.3 in Raginsky et al. (2017), if we denote κ0 + 2b+ 2d as C2, we
can derive the following result:

W2(µK , νSK
) ≤ (12 + C2SK) 1

2 · [DKL(µK∥νSK
) 1

2 +DKL(µK∥νSK
) 1

4 ]

≤ (12 + C2ϵ0( 1
1 −ϖ

K1−ϖ)) 1
2 · [(C1ϵ

2
0( 2ϖ

2ϖ − 1) + δC0ϵ0( 1
1 −ϖ

K1−ϖ)) 1
2

+ (C1ϵ
2
0( 2ϖ

2ϖ − 1) + δC0ϵ0( 1
1 −ϖ

K1−ϖ)) 1
4 ]

Now we derive the bound for W2(νSK
, ν∞). By following the results in Raginsky et al. (2017)

that there exist some positive constants (C3, cLS),

W2(νSK
, ν∞) ≤ C3 exp

(
− SK

cLS

)

A.3.3 Proof of Corollary 1

Proof. By Theorem 1 of Ma et al. (2015), Algorithm 1 works as a pre-conditioned SGLD
algorithm with the pre-conditioner Σt, and it has the same stationary distribution as the
SGLD algorithm (12). By (13), we have the 2-Wasserstein distance convergence for algorithm
(12) under the given assumptions. Therefore, for Algorithm 1, we also have W2(µT , νN ) → 0
as T → ∞ by noting that Σt is positive definite for any t.
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A.3.4 Proof of Theorem 2

Proof. By following the proof in Chen et al. (2015), we define the functional ψ that solves
the Poisson Equation:

Lψ(θt) = ϕ(θt) − ϕ̄ (A18)
And ψ satisfies the following smoothness condition
Assumption A3. ψ and its up to 3rd-order derivatives, Dkψ, are bounded by a function V,
i.e., ∥Dkψ∥ ≤ CkVpk for k = (0, 1, 2, 3), Ck, pk > 0. Furthermore, the expectation of V on
{θt} is bounded: sups∈(0,1) Vp(sθ + (1 − s)Y ) ≤ C(Vp(θ) + Vp(Y )), ∀θ, Y , p ≤ max{2pk}
for some C > 0.
Assumption A4. Let Σt be the preconditioner, and assume that λt,ℓ ≤ infk λmin(Σt) ≤
supk λmax(Σt) ≤ λt,u for some λt,ℓ and λt,u, where λmax(·) and λmin(·) denote the largest
and smallest eigenvalues, respectively.

First let us denote
L̃t = ΣtG(θt−1, zt) · ∇θ + 1

2ΣtΣ⊤
t : ∇θ∇⊤

θ (A19)

the local generator of LKTD with replay buffer, where a · b := a⊤b is the vector inner
product, A : B := tr{A⊤B} is the matrix double dot product. Furthermore, let L be the
true generator of the LKTD without replay buffer, that is, replacing the stochastic gradient
in L̃t with the true gradient. As a result, we have the relation:

L̃t = L + ∆Vt, (A20)
where ∆Vt := (G(θt−1, zt) − g(θt−1))⊤Σt∇θ, where g(θt−1) =

∫
Z G(θt−1, z)π(z|θt−1)dz is

the true gradient, and G(θt−1, zt) is the stochastic gradient calculated using transition tuples
sampled from the replay memory. By following the proof of Theorem 1 in Li et al. (2016),
we can derive the estimation error as follows:

ϕ̂− ϕ̄ = Eψ(θt) − ψ(θ0)
ST

+ 1
ST

T −1∑
t=1

(Eψ(θt−1) −ψ(θt−1)) +
T∑

t=1

ϵt
ST

∆Vtψ(θt−1) +O(
∑T

t=1 ϵ
2
t

ST
)

(A21)
By taking expectation on both side, we derived the bias as:

|Eϕ̂− ϕ̄| = O( 1
ST

+
∑T

t=1 ϵt∥E∆Vt∥
ST

+
∑T

t=1 ϵ
2
t

ST
) (A22)

To prove the consistency of ϕ̂, we need to bound the term 1
ST

∑T
t=1 ϵt∥E∆Vt∥. By Assumption

A3 and A4, it is sufficient to prove that
∑T

t=1 ϵt∥Eζt∥ is bounded, where ζt = G(θt−1, zt) −
g(θt−1) is the gradient bias at time t. Let ḡ(θR

t−1) :=
∫

Z G(θt−1, z)π̄(z|θR
t−1)dz be the

expectation of the biased gradient given the replay buffer π̄(z|θR
t−1). By applying assumption

(i) and (ii), we can bound the conditional expectation of the gradient bias

∥E[ζt|Ft−1]∥2 = ∥ḡ(θR
t−1) − g(θt−1)∥2

≤ ∥
∫

Z
G(θt−1, z) · (π̄(z|θR

t−1) − π(z|θt−1))dz∥2

≤ (
∫

Z
∥G(θt−1, z)∥ · |π̄(z|θR

t−1) − π(z|θt−1)|dz)2

≤
∫

Z
∥G(θt−1, z)∥2dz ·

∫
Z

|π̄(z|θR
t−1) − π(z|θt−1)|2dz

≤ M

∫
Z

1
R

R∑
i=1

|π(z|θt−i) − π(z|θt−1)|2dz

≤ ML

R

R∑
i=1

∥θt−i − θt∥2

(A23)
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By Jensen’s inequality,

∥E[E[ζt|Ft−1]]∥2 ≤ E∥E[ζt|Ft−1]∥2

≤ E[ML

R

R∑
i=1

∥θt−i − θt∥2]

≤ C
1
R

R∑
i=1

E∥θt−i − θt−1∥2

≤ C
1
R

R∑
i=1

i−1∑
j=1

(i− 1)E∥θt−j − θt−j−1∥2

(A24)

Now, we want to bound the expected square difference between parameter updates

E∥θt − θt−1∥2 = E∥ϵtΣtG(θt−1, zt) +
√

2ϵtet∥2

≤ 2ϵ2t ∥Σt∥2E∥G(θt−1, zt)∥2 + 4ϵt∥Σt∥
≤ 2ϵ2tλ2

maxE∥G(θt−1, zt)∥2 + 4ϵtλmax

≤ O(ϵ2t )

(A25)

Combine the results in (A24) and (A25), we have

∥E[ζt]∥2 ≤ C
1
R

R∑
i=1

i−1∑
j=1

(i− 1)E∥θt−j − θt−j−1∥2

≤ C
1
R

R∑
i=1

i−1∑
j=1

(i− 1)O(ϵ2t−j)

≤ C
R− 1

2 O(ϵ2t−R)

≤ O(ϵ2t−R) = O(ϵ2t )

(A26)

By (A26), the operator norm ∥E∆Vt∥ is of order O(ϵt). Combining this result with (A22)
we can derive the bound for the bias

|Eϕ̂− ϕ̄| = O( 1
ST

+
∑T

t=1 ϵt∥E∆Vt∥
ST

+
∑T

t=1 ϵ
2
t

ST
)

= O( 1
ST

+
∑T

t=1 ϵ
2
t

ST
+

∑T
t=1 ϵ

2
t

ST
)

= O( 1
ST

+
∑T

t=1 ϵ
2
t

ST
)

(A27)

Now, consider the L2 convergence of ϕ̂. Since E∆Vt is nonzero under the setting of replay
buffer, we follow the proof of Theorem 3 in Chen et al. (2015) with some modification. The
MSE of ϕ̂ can be written as

E(ϕ̂− ϕ̄)2 ≤ CE
{ (Eψ(θt) − ψ(θ0))2

S2
T

+
∑T −1

t=1 (Eψ(θt−1) − ψ(θt−1))2

S2
T

+
( T∑

t=1

ϵt

ST
∆Vtψ(θt−1)

)2

+ C(
∑T

t=1 ϵ
2
t

ST
)2

}
(A28)

Let ∆Vt = E∆Vt + δ⊤
t Σt∇θ, where δt = (G(θt−1, zt) − ḡ(θR

t−1)) has mean 0. Since zt’s are
R-dependent due to the structure of replay buffer, Cov(δt, δt′) = 0 for all |t− t′| > R. By
assumption (ii), E∥δt∥2 is bounded. Hence, we can derive the following bound:
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E∥
T∑

t=1

ϵt
ST

∆Vt∥2 ≤ 2∥
T∑

t=1

ϵt
ST

E∆Vt∥2 + 2E∥
T∑

t=1

ϵt
ST

δtΣt∇θ∥2

≤ 2(
T∑

t=1

ϵ2t
S2

T

)(
T∑

t=1
∥E∆Vt∥2) + 2C

∑
|t−t′|<R

ϵtϵt′

S2
T

Cov(δt, δt′)

= O( (
∑T

t=1 ϵ
2
t )2

S2
T

+ R
∑T

t=1 ϵ
2
tE∥δt∥2

S2
T

)

= O( (
∑T

t=1 ϵ
2
t )2

S2
T

+
∑T

t=1 ϵ
2
t

S2
T

)

(A29)

Finally, we can derive the MSE as

E(ϕ̂− ϕ̄)2 = O( (
∑T

t=1 ϵ
2
t )2

S2
T

+
∑T

t=1 ϵ
2
t

S2
T

+ 1
ST

) (A30)

A.4 More Numerical Results

A.4.1 Implementation of the SGLD and SGHMC algorithm

The notion of pseudo population introduced in the proposed LKTD algorithm can also
be applied to SGLD and SGHMC algorithm. As implied by Lemma 1, we can directly
implement equation (11) with Σt being restricted to an identity matrix, which leaves the
same stationary distribution. The pseudocode of SGLD and SGHMC are given in Algorithm
S3 and Algorithm S4, where K is set to match the computation of LKTD.

Algorithm S3: SGLD for RL sampling framework
Initialization: Draw θa

0 ∈ Rp drawn from the prior distribution π(θ).
for t=1,2,. . . , T do

Sampling: With policy ρθa
t−1

, generate a set of n transition tuples, denoted by
zt = (rt,xt) := {r(j)

t , x
(j)
t }n

j=1, where x(j)
t = (s(j)

t , a
(j)
t , s

(j)
t+1, a

(j)
t+1)T and

x
(j)
t = (s(j)

t , a
(j)
t , s

(j)
t+1)T correspond to the choices of the Q-function and V -function

in (4), respectively.
for k=1,2,. . . ,K do

Presetting: Set Bt,k = ϵt,kIp̃.
Draw w̃t,k ∼ Np(0, n

N Bt,k) and calculate

θt,k = θt,k−1 + ϵt,k

2
n

N
∇θ log π(θt,k−1|zt) + w̃t,k, (A31)

where θt,0 = θt−1,K if k = 1, and the gradient term is given by

∇θ log π(θt,k−1|zt) = ∇θ log π(θt,k−1) + 1
σ2

N
n

∇θh(xt; θt,k−1)(rt − h(xt; θt,k−1))
(A32)

end
end

A.4.2 Indoor escaping environment

This section serves as a complement to Section 4.1 in the main text, offering more comprehen-
sive experiment settings and numerical results to compare SGMCMC sampling algorithms
with non-sampling algorithms. The SGMCMC sampling algorithms considered comprise
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Algorithm S4: SGHMC for RL sampling framework
Initialization: Draw θa

0 ∈ Rp drawn from the prior distribution π(θ), momentum
coefficient α.

for t=1,2,. . . , T do
Sampling: With policy ρθa

t−1
, generate a set of n transition tuples, denoted by

zt = (rt,xt) := {r(j)
t , x

(j)
t }n

j=1, where x(j)
t = (s(j)

t , a
(j)
t , s

(j)
t+1, a

(j)
t+1)T and

x
(j)
t = (s(j)

t , a
(j)
t , s

(j)
t+1)T correspond to the choices of the Q-function and V -function

in (4), respectively.
Set vt,0 = 0
for k=1,2,. . . ,K do

Presetting: Set Bt,k = ϵt,kIp̃.
Draw w̃t,k ∼ Np(0, α n

N Bt,k) and calculate

vt,k = (1 − α)vt,k−1 + ϵt,k

2
n

N
∇θ log π(θt,k−1|zt) + w̃t,k

θt,k = θt,k−1 + vt,k

(A33)

where θt,0 = θt−1,K if k = 1, and the gradient term is given by

∇θ log π(θt,k−1|zt) = ∇θ log π(θt,k−1) + 1
σ2

N
n

∇θh(xt; θt,k−1)(rt − h(xt; θt,k−1))
(A34)

end
end

LKTD, SGLD, and SGHMC, while the non-sampling algorithms encompass DQN, BootDQN,
QR-DQN, and KOVA.
In this experiment, the Q-function is approximated by a deep neural network with two hidden
layers of sizes (32, 32). The agent updates the network parameters every 10 interactions,
for a total of 106 action steps. The replay buffer size is set to 104. For action selection, we
use ϵ-greedy exploration with a final exploring rate of ϵ = 0.01. The batch size is 100. To
achieve sparse deep neural network, we follow the suggestion in Sun et al. (2022), let the
deep neural network parameters be subject to a mixture Gaussian prior:

θ ∼ (1 − λ)N (0, σ2
0) + λN (0, σ2

1) (A35)

where λ ∈ (0, 1) is the mixture proportion and σ2
0 is usually set to a small number compare

to σ2
1 . We set σ1 = 0.5, σ0 = 0.05 and λ = 0.5 in all SGMCMC simulations. In equation (2),

the reward rt is assumed to be a Gaussian distribution with variance σ2. For indoor escape
environment, the reward is given by N (−1, 0.01); that is, we set σ2 = 0.01.
For BootDQN, the number of "heads" is configured to 10, with the Bernoulli probability set
at 0.5. For QR-DQN, the return distribution is approximated by 10 quantiles.
For this problem, the optimal policy is not unique, any policy that choose either action N or
action E at any inner state is an optimal policy. Despite that there are multiple optimal
policies, they all share the same Q-function, denoted by Q∗(·, ·). Since we adopt ϵ-greedy
exploration, we re-denoted Q∗(·, ·) by Q∗

ϵ (·, ·) to indicates its dependence on the ϵ-greedy
exploration strategy. For all state-action pairs (s, a), the Q-value Q∗

ϵ (s, a) can be estimated
by Monte Carlo simulations. Note that Q∗

ϵ (·, ·) is the target function that the deep neural
network is to approximate.
For each algorithm, we collect from the last 3000 parameter updates to form a θ-sample
pool, denoted by θs = {θ̂i}, which naturally induces a sample pool of Q-functions Qs =
{Qθ(·, ·)|θ ∈ θs}. We can obtain a point estimate of the Q-value at (s, a) by calculating the
sample average Q̂(s, a) = 1

n

∑n
i=1 Qθ̂i

(s, a). For uncertainty quantification, we can achieve
one-step value tracking by constructing a 95% prediction interval with the Q-value sample
pool.
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Figure A1: Boxplots for MSE(Q̂a) (for a ∈ {N,E}))

Figure A2: Boxplots for coverage rates

For each algorithm and parameter setting, we conduct 100 runs and calculate two metrics
for each action at each run: (i) the mean squared error (MSE) between Q̂(s, a) and Q∗

ϵ (s, a),
denoted by MSE(Q̂a), where the average is taken over all grids, that is,

MSE(Q̂a) = 1
|S|

∑
s∈S

|Q̂(s, a) −Q∗
ϵ (s, a)|2,

and (ii) the coverage rate (CR) of the 95% prediction interval of Q∗
ϵ (s, a), that is, the

probability of Q∗
ϵ (s, a) falling inside the prediction interval. Figure A1 and Figure A2 show

the boxplots of MSE(Q̂a) (with a ∈ {N,E}) and coverage rates, respectively. In Figure A1,
the SGMCMC algorithms exhibit significantly smaller MSEs compared to other algorithms.
It is worth noting that as the pseudo population increases, the MSE decreases, which
supports the theoretical result in Remark 1. As shown in Figure A2, the coverage rates of
all SGMCMC algorithms achieve the nominal 95% and independent of the choice of pseudo
population size, whereas the DQN, BootDQN and KOVA algorithms fail to construct correct
prediction intervals. Although the QR-DQN algorithm achieves a slightly higher coverage
rate than DQN, the results prove that it does not converge to the correct return distribution.

In Table A1, we have recorded the trimmed mean (standard deviation) of MSE(Q̂a) (for
a ∈ {N,E}) over 100 runs, where trimmed means are calculated by excluding the outliers.
The outliers are the values that falls outside the interval (Q1-1.5IQR, Q3+1.5IQR), where Q1
and Q3 are, resepctively, the 1st and 3rd quartiles of the samples, and IQR = Q3 - Q1. Both
tables indicate that SGMCMC algorithms are more accurate than non-sampling algorithms
in Q-function approximation. Regarding uncertainty quantification, Table A2 presents the
trimmed mean of the coverage rates and lengths of prediction intervals. It is worth noting
that the prediction interval shrinks as the pseudo population size increases, which aligns
with our theory as mentioned in Remark 1.
From a computational aspect, the LKTD and SGLD algorithms stand out for their efficiency
and scalability, compared to the existing tracking algorithm KOVA. As detailed in Table
A3, we have recorded the average computation time required by each algorithm to execute a
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Figure A3: Boxplots for the range of prediction intervals

Table A1: Trimmed mean of MSE(Q̂a) (a ∈ {N,E}) over 100 runs

Algorithm ϵt N East North
LKTD 1e-5 2500 0.00031 (0.00018) 0.00035 (0.00026)
LKTD 1e-5 5000 0.00023 (0.00015) 0.00023 (0.00015)
LKTD 1e-5 10000 0.00020 (0.00012) 0.00022 (0.00013)
SGLD 1e-5 2500 0.00029 (0.00016) 0.00031 (0.00016)
SGLD 1e-5 5000 0.00021 (0.00010) 0.00021 (0.00013)
SGLD 1e-5 10000 0.00019 (0.00012) 0.00018 (0.00010)
SGHMC 1e-5 2500 0.00020 (0.00014) 0.00021 (0.00021)
SGHMC 1e-5 5000 0.00016 (0.00009) 0.00017 (0.00011)
SGHMC 1e-5 10000 0.00016 (0.00010) 0.00016 (0.00010)
DQN 1e-3 - 0.10890 (0.14942) 0.08630 (0.10870)
BootDQN 1e-3 - 0.11200 (0.18036) 0.08757 (0.14150)
QR-DQN 1e-2 - 0.00635 (0.00453) 0.00583 (0.00342)
KOVA 1 - 0.00584 (0.00812) 0.00533 (0.00771)

Table A2: Trimmed means of coverage rates and prediction interval widths over 100 runs

Description East North
Algorithm ϵt N CR Range CR Range
LKTD 1e-5 2500 0.94419 (0.00946) 0.35163 (0.03169) 0.94394 (0.01004) 0.35271 (0.03257)
LKTD 1e-5 5000 0.94458 (0.00952) 0.32217 (0.03195) 0.94440 (0.00989) 0.32079 (0.03223)
LKTD 1e-5 10000 0.94577 (0.01003) 0.31259 (0.03316) 0.94537 (0.00979) 0.31198 (0.03327)
SGLD 1e-5 2500 0.94411 (0.01316) 0.38984 (0.02707) 0.94474 (0.01141) 0.38938 (0.02712)
SGLD 1e-5 5000 0.94589 (0.01191) 0.35993 (0.02893) 0.94618 (0.00924) 0.35930 (0.02813)
SGLD 1e-5 10000 0.94636 (0.00878) 0.33496 (0.02148) 0.94648 (0.00906) 0.33559 (0.02167)
SGHMC 1e-5 2500 0.94633 (0.00890) 0.34193 (0.02125) 0.94578 (0.00931) 0.34144 (0.02140)
SGHMC 1e-5 5000 0.94704 (0.00854) 0.33553 (0.02439) 0.94622 (0.00885) 0.33586 (0.02458)
SGHMC 1e-5 10000 0.94682 (0.00893) 0.32756 (0.02000) 0.94659 (0.00874) 0.32659 (0.01990)
DQN 1e-3 - 0.41132 (0.20317) 0.23791 (0.05742) 0.41142 (0.19289) 0.23736 (0.06317)
BootDQN 1e-3 - 0.37995 (0.18066) 0.19207 (0.04146) 0.39634 (0.19053) 0.18339 (0.02263)
QR-DQN 1e-2 - 0.85690 (0.07660) 0.40063 (0.05326) 0.86395 (0.06097) 0.39800 (0.05206)
KOVA 1 - 0.24133 (0.15194) 0.04756 (0.02534) 0.25709 (0.15602) 0.04987 (0.02886)
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single parameter update, utilizing an 4-core AMD Epyc 7662 Rome processor. The findings
indicate that both LKTD and SGLD scale effectively in relation to network and batch size.
Their time complexities align closely with that of DQN. Conversely, the KOVA algorithm,
due to its reliance on the calculation of the Jacobian matrix and matrix inversion, proves to
be computationally less efficient.

Table A3: Computation time for the indoor escaping example

Algorithm hidden layer batch size gradient steps (iterations) cpu time (×10−3) time per iteration
LKTD [32, 32] 100 5 6.63 1.326
LKTD [32, 32] 200 5 7.36 1.472
LKTD [64, 64] 100 5 7.43 1.486
SGLD [32, 32] 100 5 7.15 1.430
SGLD [32, 32] 200 5 7.44 1.488
SGLD [64, 64] 100 5 7.36 1.472
SGHMC [32, 32] 100 5 7.47 1.494
SGHMC [32, 32] 200 5 8.25 1.650
SGHMC [64, 64] 100 5 8.08 1.616
DQN [32, 32] 100 1 1.80 1.80
DQN [32, 32] 200 1 2.32 2.32
DQN [64, 64] 100 1 1.86 1.86
BootDQN [32, 32] 100 1 2.29 2.29
BootDQN [32, 32] 200 1 2.68 2.68
BootDQN [64, 64] 100 1 2.26 2.26
QR-DQN [32, 32] 100 1 2.41 2.41
QR-DQN [32, 32] 200 1 2.95 2.95
QR-DQN [64, 64] 100 1 2.51 2.51
KOVA [32, 32] 100 1 44.20 44.20
KOVA [32, 32] 200 1 87.00 87.00
KOVA [64, 64] 100 1 251.00 251.00

A.5 Classic control problems

This section evaluates the performance of LKTD on four classical control problems in
OpenAI gym (Brockman et al., 2016), including Acrobot-v1, CartPole-v1, LunarLander-v2
and MountainCar-v0. We compare LKTD with DQN and QR-DQN under the framework of
RL Baselines3 Zoo (Raffin, 2020). The detailed hyperparameter setting is listed in Table
A4 and Table A5. Each experiment is duplicated 100 times, and the training progress is
recorded in Figure 5 and Figure A4. At each time step, the best and the worst 5% of the
rewards are considered as outliers and excluded in the plots. Due to the adaptability of
our sampling framework, LKTD can be easily applied to DQN algorithm by modifying the
state-space model in equation (2) as

θt = θt−1 + ϵt
2 ∇ log π(θt−1) + wt,

yt = h(xt, θt) + ηt,
(A36)

where h(xt, θt) = [Qθt
(st,1, at,1), . . . , Qθt

(st,n, at,n)] and yt = rt + γQθt
(st+1,at+1). With

suitable constraints on the semi-gradient, we can modify Theorem 1 to guarantee the
convergence. In the four classic control problems, LKTD shows its strength in efficient
exploration and robustness. In Figure A4, the lines represent the mean reward curves.
For each algorithm, the colored area covers 90% of the reward curves. We consider 3
types of reward measurements, training reward, evaluation reward and the best model
reward. Training reward records the cumulative reward during training, which include the
ϵ-exploration errors. Evaluation reward calculates the mean reward over 5 testing trails at
100 time point throughout the training progress. The best evaluation reward records the
performance of the best learned model.
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(a) Acrobot-v1

(b) LunarLander-v2

(c) MountainCar-v0

Figure A4: The first column shows the cumulative rewards obtained during the training
process, the second column shows the testing performance without random exploration, and
the third column shows the performance of best model learned up to the point t.

Table A4: Hyperparameters

Environment CartPole-v1 MountainCar-v0
Hyperparameters LKTD DQN QR-DQN LKTD DQN QR-DQN
learning rate 2.5e-5 2.3e-3 2.3e-3 1.0e-4 4.0e-3 4.0e-3
N (pseudo population) 20000 - - 20000 - -
σθ (prior) 1 - - 0.5 - -
σ (observation) 1 - - 1 - -
target update interval 1 10 10 100 600 600
γ(discount factor) 0.99 0.99 0.99 0.98 0.98 0.98
training steps 1e5 1e5 1e5 2e5 2e5 2e5
batch size 64 64 64 128 128 128
buffer size 1e4 1e5 1e5 1e4 1e5 1e5
learning starts 1000 1000 1000 0 0 0
train freq 4 256 256 32 16 16
gradient steps 1 128 128 16 8 8
exploration fraction 0.16 0.16 0.16 0.2 0.2 0.2
exploration final eps 0.04 0.04 0.04 0.07 0.07 0.07
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Table A5: Hyperparameters (cont.)

Environment LunarLander-v2 Acrobot-v1
Hyperparameters LKTD DQN QR-DQN LKTD DQN QR-DQN
learning rate 5.0e-6 6.3e-4 1.5e-3 5.0e-5 6.3e-4 6.3e-4
N (pseudo population) 20000 - - 20000 - -
σθ (prior) 1 - - 1 - -
σ (observation) 1 - - 1 - -
target update interval 1 250 1 1 250 250
γ(discount factor) 0.99 0.99 0.995 0.99 0.99 0.99
training steps 2e5 2e5 2e5 1e5 1e5 1e5
batch size 128 128 128 128 128 128
buffer size 2.5e4 5e4 1e5 5e4 5e4 5e4
learning starts 0 0 10000 0 0 50000
train freq 4 4 256 4 4 4
gradient steps 4 4 256 4 4 4
exploration fraction 0.24 0.12 0.24 0.12 0.12 0.12
exploration final eps 0.05 0.10 0.18 0.05 0.1 0.1
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