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ABSTRACT

Accurate segmentation of neurons in electron microscopy (EM) images plays a
crucial role in understanding the intricate wiring patterns of the brain. Existing
automatic neuron segmentation methods rely on traditional clustering algorithms,
where affinities are predicted first, and then watershed and post-processing algo-
rithms are applied to yield segmentation results. Due to the nature of watershed
algorithm, this paradigm has deficiency in both prediction quality and speed. In-
spired by recent advances in natural image segmentation, we propose to use query-
based methods to address the problem because they do not necessitate watershed
algorithms. However, we find that directly applying existing query-based meth-
ods faces great challenges due to the large memory requirement of the 3D data
and considerably different morphology of neurons. To tackle these challenges,
we introduce affinity-guided queries and integrate them into a lightweight query-
based framework. Specifically, we first predict affinities with a lightweight branch,
which provides coarse neuron structure information. The affinities are then used to
construct affinity-guided queries, facilitating segmentation with bottom-up cues.
These queries, along with additional learnable queries, interact with the image fea-
tures to directly predict the final segmentation results. Experiments on benchmark
datasets demonstrated that our method achieved better results over state-of-the-art
methods with a 2∼3× speedup in inference. Code will be released.

1 INTRODUCTION

Neuron segmentation in electron microscopy (EM) images has significant scientific importance for
connectomics research, which enables the comprehensive reconstruction of neural connections in the
nervous system and provides insights into the functioning of the brain (Winding et al., 2023; Scheffer
et al., 2020; Dorkenwald et al., 2022; Peddie et al., 2022). Reconstructing large-scale structures
typically involves handling vast amounts of data, ranging from terabytes to petabytes (Scheffer et al.,
2020). Given the intricate three-dimensional and densely packed nature of neurons, the manual
reconstruction process is extremely laborious and often requires years of effort from human experts
to reconstruct an entire brain (e.g., a Drosophila larval brain (Winding et al., 2023)).

In recent years, many methods (Funke et al., 2019; Lee et al., 2017; Knowles-Barley et al., 2016;
Huang et al., 2022b; Chen et al., 2024) have been proposed to address the challenges of neuron
segmentation by employing deep neural networks as an alternative to labor-intensive manual pro-
cedures. These methods usually follow a bottom-up segmentation paradigm, as depicted in Fig-
ure 1 (a). Initially, 3D affinities, which indicate the probabilities of neighboring voxels belonging
to the same neuron, are predicted using a neural network (e.g., 3D U-Net (Çiçek et al., 2016)) and
then transformed into fragments via a clustering algorithm where watershed (Meyer, 1992) is the
de-facto practice. Subsequently, these fragments are merged into final neuron segmentation results
through an agglomeration algorithm (Funke et al., 2019), which merges fragments based on their
affinities at interfaces. However, these methods, heavily relying on traditional clustering algorithms
such as watershed, suffer from several drawbacks that limit their application: (1) The watershed
algorithm usually produces fragments with unnatural boundaries such as straight lines, referred to
as artifacts, due to competition between seeds, leading to inaccurate segmentation results (as shown
in Section 4.4); (2) These methods may incorrectly merge different neurons and make them difficult
to distinguish in the agglomeration step; (3) The watershed algorithm lacks parallelizability, mak-
ing it unsuitable for GPU acceleration, resulting in inefficiency. Moreover, the large amount (e.g.,
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(a) Previous (b) Ours
Watershed Agglomeration3D U-Net Query-based Model

Affinities FragmentsVolume Image Segmentations Volume Image Segmentations
Queries

Figure 1: Comparison of the proposed model with previous neuron segmentation methods. (a)
Previous methods utilize neural networks to predict affinities, and then derive the final segmentation
results via watershed and agglomeration. (b) The proposed query-based model directly predicts the
segmentation results, which is more concise and efficient. Best viewed in digital with zoom-in.

more than 100 thousands in a volume (Huang et al., 2022b)) of generated fragments slows down the
subsequent post-processing steps such as agglomeration. Despite recent efforts to improve neuron
segmentation through various techniques (Chen et al., 2023; Funke et al., 2019; Huang et al., 2022a;
Liu et al., 2023b; 2022) (see Section 2), they still adhere to the traditional paradigm and, as a result,
encounter the aforementioned problems. Note that there are also methods (Januszewski et al., 2018;
Meirovitch et al., 2019) that work without using watershed, which we discuss in detail in Section 2.

Neuron segmentation can be considered as a form of instance segmentation which has been ex-
tensively studied in computer vision. But it has notable differences from conventional instance
segmentation. Firstly, the input data involves 3D volume images rather than 2D images. Secondly,
the target objects in neuron segmentation are 3D neurons rather than natural objects with distinctive
appearance. Given the morphologically complex and homogeneous nature of neurons, which exhibit
dense distributions and similar appearances, distinguishing different neurons presents a significant
challenge. For example, region-based methods like Mask R-CNN (He et al., 2017) may encounter
difficulty in addressing this problem due to the ambiguity of bounding boxes, as pointed out in
Huang et al. (2022b). Recently, query-based instance segmentation methods have shown promise
in natural images, offering both efficiency and accuracy advantages (Cheng et al., 2022b;a; Zhang
et al., 2021). However, these methods cannot be directly applied to neuron segmentation because
their specific design for 2D natural images faces problems such as unaffordable memory overhead
when ported to 3D data.

In this work, we seek to explore the possibility of the query-based model in neuron segmentation,
which could potentially address the limitations associated with current methods. The motivation
is that the query-based model can directly predict the final segmentation results, thus avoiding the
inaccuracy and inefficiency caused by watershed. However, we found that transferring the query-
based methods to neuron segmentation is nontrivial. First, existing query-based models are tailored
for 2D natural images and cannot be directly transferred to 3D neuron segmentation due to the un-
affordable GPU memory overhead. Second, the distinct characteristics of neurons in EM, such as
their homogeneous appearance and intricate morphology, which differ significantly from objects in
natural images, could hinder the learning of queries. To tackle these challenges, we propose an
efficient EM neuron segmentation model (Figure 1 (b)) with Affinity-Guided Query (AGQ). AGQ
is constructed based on the predicted affinities from a lightweight affinity branch. It incorporates
bottom-up cues, allowing the model to initiate predictions from coarse approximations rather than
learning from scratch, thereby significantly reducing the learning difficulty. AGQ and learnable
queries interact with the volume image features and with each other, capturing the diverse morpho-
logical characteristics of neurons and complementing the predictions of each other.

We conducted experiments on benchmark datasets AC3/AC4 (Kasthuri et al., 2015) and ZE-
BRAFINCH (Kornfeld et al., 2017). The results demonstrated that our method achieved superior
results in terms of both accuracy and efficiency. In comparison to state-of-the-art methods, our
method achieved significantly lower errors with 200 ∼ 300% speedup. Note this speedup is signifi-
cant considering that a volume for connectomics research could reach the mm3 level (Zheng et al.,
2018; Winding et al., 2023; Shapson-Coe et al., 2024) and processing 0.001mm3 volume requires
hundreds of GPU hours plus hundreds of CPU hours(Sheridan et al., 2023).

The main contributions of the paper are summarized as follows:
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• By introducing affinity-guided queries, we devise a lightweight query-based neuron seg-
mentation method, eliminating the clustering algorithm used in traditional methods.

• Extensive experiments validated the effectiveness of our method, improving both the accu-
racy and efficiency of neuron segmentation over previous methods.

2 RELATED WORK

Neuron Segmentation. Previous methods mainly follow bottom-up segmentation fashion (Funke
et al., 2019; Lee et al., 2017; Huang et al., 2022b). They use a neural network (e.g., a 3D U-Net) to
predict affinities, followed by the watershed algorithm to transform affinities into fragments and an
agglomeration algorithm (Funke et al., 2019) to obtain the final results. The watershed and agglom-
eration algorithms require processing on the CPU, causing inefficiency. Recent advances include
improving visual representation (Chen et al., 2023; Sheridan et al., 2023), devising superior loss
functions (Funke et al., 2019), implementing label efficient supervision (Huang et al., 2022a; Liu
et al., 2023b), employing learnable agglomeration modules (Liu et al., 2022), and improving the
U-Net architecture (Luo et al., 2024; Sun et al., 2023). APViT (Sun et al., 2023) advanced U-Net
by improving the ViT architecture with tailored designs such as learnable prompt base. However,
these methods still follow the previous segmentation paradigm and suffer from inaccuracy and inef-
ficiency. FFN (Januszewski et al., 2018) processes one individual neuron at a time. Despite being
a new practice, FFN is two orders of magnitude slower than affinity-based methods and has similar
performance (Sheridan et al., 2023). 3C (Meirovitch et al., 2019) introduced combinational encod-
ing to process multiple neurons in parallel, but required multiple runs and could only merge those
neurons, making it more of a substitute for agglomeration. Instead, the proposed method directly
predict the final segmentation results via a query-based paradigm, which is concise and efficient.

Instance Segmentation. The mainstream methods in instance segmentation include two-stage (He
et al., 2017) and one-stage ones (Tian et al., 2020; Wang et al., 2020a;b). However, these methods
were not suitable for the neuron segmentation. Two-stage methods rely on boxes to distinguish
instances and cannot handle dense and widely distributed neurons. One-stage methods could not
guarantee recall. Recently, query-based instance segmentation algorithms (Fang et al., 2021; Cheng
et al., 2022a; Zhang et al., 2021) have emerged, which directly predict objects. However, these
methods cannot be directly applied to neuron segmentation because their specific design for 2D
natural images faces problems such as unaffordable memory overhead when ported to 3D data. Mo-
tivated by their success in natural images, we explore a lightweight query-based model coupled with
affinity-guided queries specially tailored for neuron segmentation task. It is worth noting that al-
though object detectors like Deformable DETR (two-stage version) (Zhu et al., 2021) also involve
predicted queries, we address significantly different tasks and problems, with plenty of design dif-
ferences (e.g., their predicted queries are implicit and do not work with learnable queries).

3D Medical and Biological Image Segmentation. The segmentation of organs or lesions from
CT (Wang et al., 2019; Zhou et al., 2019) or MRI (Ji et al., 2022; Zeng et al., 2020) images is
the primary focus of 3D medical image segmentation. These tasks mainly involve semantic-level
segmentation, which differs from the instance-level segmentation discussed in this paper. Building
upon the 3D U-Net (Çiçek et al., 2016), various studies have improved the segmentation quality
by refining the model structure, module design (Hatamizadeh et al., 2022; 2021; Peiris et al., 2022;
Shaker et al., 2024) and label efficiency (Wu et al., 2024; Zhou et al., 2023). The 3D biological image
segmentation tasks in electron microscopy include: mitochondria segmentation (Pan et al., 2023;
Mai et al., 2023; Lin et al., 2021), synapse detection (Lin et al., 2021) and soma segmentation (Liu
et al., 2023a). They typically follow the bottom up fashion, where a semantic-level segmentation is
first predicted and then converted into a instance-level segmentation by post-processing.

3 METHOD

In this section, we first introduce the preliminaries involving the problem definition of EM neuron
segmentation and the previous methods. We then present a brief overview of our method, including
the problem formulation and the framework. Subsequently, we detail the design and function of
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each module, as well as the training objectives. Finally, we describe how to apply our method on
the large 3D volume EM images via block assembly.

3.1 PRELIMINARIES

3.1.1 PROBLEM DEFINITION

Given a volume EM image I ∈ RD×H×W , a neuron segmentation algorithm is required to predict
the neuron id of all voxels, denoted as S ∈ ND×H×W , where D,H,W denote the depth, height,
and width of the image, respectively. Each id in S indicates the segmentation result of a specific
neuron, and id 0 indicates the background.

3.1.2 PREVIOUS METHODS

As shown in Figure 1(a), previous methods typically employ deep neural networks (e.g., 3D U-
Net) to predict affinities A ∈ [0, 1]3×D×H×W first. These affinities represent the probabilities that
neighboring voxels1 belong to the same neuron (Gao et al., 2019; Ke et al., 2018; Funke et al., 2019)
(see Appendix A for more explanation). Subsequently, a seeded watershed algorithm (Meyer, 1992)
is applied to extract the fragments G based on the predicted affinities:

G = Watershed(A) ∈ ND×H×W . (1)

Finally, the fragments G obtained from the seeded watershed algorithm are merged using an ag-
glomeration algorithm based on the statistics of the affinities at their interfaces, yielding the final
segmentation result:

St = Agglomeration(G,A) ∈ ND×H×W . (2)
The agglomeration usually only merges fragments and cannot dissolve incorrect mergers. Thus, the
seeds of the watershed are usually densely picked, incurring significant redundancy. On the one
hand, the redundancy causes unnatural boundaries such as straight lines, referred to as artifacts, due
to the competition between seeds; while on the other hand, it slows down the overall inference speed.

3.2 QUERY-BASED NEURON SEGMENTATION FRAMEWORK

To address the above issues, we aim to devise a concise and efficient query-based neuron segmen-
tation method. We adopt a new modeling manner and directly predict N potential segmentation
probability maps P ∈ (0, 1)N×D×H×W based on N queries. During inference, we obtain the
segmentation results Sa by simply taking argmax on the first dimension of P to obtain the seg-
mentation results (i.e., neuron id):

Sa = arg max
i∈1,...,N

(Pi,:,:,:) ∈ ND×H×W . (3)

Without the watershed algorithm, this modeling simplifies the inference process considerably and
could achieve faster inference than previous methods.

(a) Transformer Decoder (b) K-Net Decoder (c) Ours

Volume
Image Seg. Seg. Seg.Transformer

Decoder
3D U-Net 3D U-Net 3D U-Net

K-Net 
Decoder

K-Net 
Decoder

Volume
Image

Volume
Image

Query 
Generator

AGQ
LQLQ

LQ

Figure 2: Comparison of different query-based models. LQ and AGQ denotes learnable queries
and affinity-guided queries, respectively.

Figure 2 instantiates several query-based models, consisting of 3D U-Net backbone and decoders
to predict segmentation results. We create two baselines based on two mainstream decoder design
(Figure 2 (a) and (b)) from state-of-the-art query-based models on natural images (Zhang et al.,

1Each voxel has six neighbors, of which only three need to be predicted due to duplication.
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3D U-Net

Volume Image

GTPred.

Image Features 𝐹

Affinity 
Branch

Connected 
Components

Affinity-Guided 
Queries

Learnable 
Queries

c

3D Neuron Decoder

𝑀coarse

cMultiply Concat.

Bipartite
Matching 

Supervision

ℒfeature

ℒaffinity

ℒseg

Affinities

𝑃0

𝑄0

Figure 3: Overview of the proposed method. Q0 and P0 stand for the initial queries and segmen-
tation probability maps, respectively. Mcoarse denotes coarse binary masks. Laffinity,Lfeature,Lseg

are losses for predicted affinities, image features and segmentation probability maps, respectively.

2021; Cheng et al., 2021; 2022a). These two baselines have been adapted for the 3D data of neuron
segmentation to make the GPU memory usage affordable. However, we found that neither baseline
could tackle the task-specific challenges in neuron segmentation (see Section 4.6.1). The reason
could be that query-based methods on natural images typically involve only learnable queries that
are randomly initialized and updated by gradient descent. These queries lack inductive bias and does
not discriminate well between neurons which have the same appearance and complex structure. This
may underlie the difficulty encountered by these methods. In view of this, we propose to embed
certain prior knowledge of affinities into the generation of queries. We chose K-Net decoder as
shown in Figure 2 (c), since our experiments showed that it outperformed the Transformer decoder.

3.3 OVERVIEW OF THE PROPOSED METHOD

Figure 3 shows our framework, which consists of a 3D U-Net backbone network for feature extrac-
tion, a module to generate affinity-guided queries, and a 3D neuron decoder for directly predicting
segmentation results. We then describe each module in detail.

3.4 3D NEURON DECODER

Our efficient 3D neuron decoder is inspired by the query-based model for natural images (Zhang
et al., 2021). The decoder comprises multiple stages with the same structure, as depicted in Figure 4.
Each stage incorporates three inputs:

• The image features F ∈ RC×D×H×W , where C denotes the feature dimension 2;
• The segmentation probability maps from the previous stage Pi−1 ∈ (0, 1)N×D×H×W ;
• The neuron queries from the previous stage Qi−1 ∈ RN×C , where i denotes the current

stage (see Section 3.5 for the definition of P0 and Q0).

With these inputs, we initially update the neuron queries using image features and segmentation
predictions from the previous stage:

Q′
i = DyConvi(Qi−1, Pi−1F

⊺), (4)

where DyConvi is a dynamic convolution layer (Fang et al., 2021), and Pi−1F
⊺ ∈ RN×C . The

enhanced queries can better capture the structural information of the morphologically complex and
homogeneous neurons. Subsequently, these queries are processed through a self-attention layer
SelfAtti (Vaswani et al., 2017):

Qi = SelfAtti(Q
′
i), (5)

where the queries interact with each other to better distinguish among the neurons (e.g., deciding
which query predicts which neuron). Finally, these queries interact with the image features to gen-
erate the segmentation probability maps for the current stage,

Pi = Softmax(Lineari(Qi)F ), (6)

2The dimension of batch size is omitted for simplicity.
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Image Features
𝐹 ∈ ℝ𝐶×𝐷×𝐻×𝑊

× 𝐾
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𝑄𝑖−1 ∈ ℝ𝑁×𝐶

Seg. Prob. Maps 
𝑃𝑖−1 ∈ (0,1)𝑁×𝐷×𝐻×𝑊
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𝑄′𝑖 ∈ ℝ𝑁×𝐶

DyConv𝑖 SelfAtt𝑖

Linear𝑖
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……
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𝑄𝑖 ∈ ℝ𝑁×𝐶

Seg. Prob. Maps  
𝑃𝑖 ∈ (0,1)𝑁×𝐷×𝐻×𝑊

Figure 4: The detailed structure of the 3D Neuron Decoder. K denotes the number of stages.

where Lineari(Qi)F ∈ RN×D×H×W and softmax is applied along its first dimension. The Lineari
represents a linear layer. This global and direct prediction approach can mitigate potential systematic
artifacts that might arise from the watershed algorithm.

3.5 AFFINITY-GUIDED QUERY

To enhance the learning efficiency of the 3D neuron decoder, we propose the affinity-guided queries.
These queries are designed to include coarse neuron structure information, allowing the decoder to
initiate the process from it rather than from scratch. Initially, we utilize an affinity branch composed
of multiple convolutional layers to predict affinities based on image features F ,

A = AffinityBranch(F ) ∈ (0, 1)3×D×H×W . (7)

Subsequently, the predicted affinities are averaged along the first dimension to derive Ā ∈
(0, 1)D×H×W , which is then thresholded to create a 3D binary mask. We use the mean value of
A across all dimensions, refered as a, as the threshold. This is to ensure that there is at least one
foreground connected component during training. Following this, a fast connected component
extraction algorithm (Wu et al., 2005) is employed to generate coarse masks:

Mcoarse = ConnectedComponent(Ā > a), (8)

where Mcoarse ∈ {0, 1}Na×D×H×W comprises a collection of (denoted as Na) boolean masks. By
multiplying and averaging each of these masks with the image features, we obtain the respective
affinity-guided queries Qaffinity ∈ RNa×C , where C denotes the feature dimension. These queries
encapsulate the rudimentary neuron structure details, thereby facilitating the subsequent stages and
reducing their reliance on training data. This enhancement leads to improved segmentation accuracy.

Due to the possibility of incorrect merging in Mcoarse, the number of affinity-guided queries could
be less than the actual number of neurons, resulting in missing neurons not being predicted. Thus
we also use Nl learnable queries Qlearnable ∈ RNl×C . We concatenate them with affinity-guided
queries together as the initial queries of the 3D neuron decoder (i.e., N = Na +Nl),

Q0 = Concat(Qaffinity, Qlearnable) ∈ R(Na+Nl)×C . (9)

Note that Na varies between passes through the network while Nl is kept constant. The learnable
queries are expected to interact with affinity-guided queries through self-attention layer (in Equa-
tion (5)) to recognize and predict the missing neurons. The initial segmentation probability maps P0

are created by taking the product3 of Q0 (post a linear layer) and image features F , which is then
passed through a softmax function, i.e., P0 = Softmax(Linear0(Q0)F ).

3.6 TRAINING OBJECTIVES

During training, we employ three loss functions to supervise the predicted affinities, the image
features, and the final segmentation results, respectively,

L = Laffinity + Lfeature + Lseg, (10)

where Laffinity denotes the binary cross-entropy loss, Lfeature denotes the contrastive loss, and Lseg

is a weighted combination of dice loss and cross-entropy loss. See Appendix B for more details.

3The two matrices have the shapes N ×C and C × (D ×H ×W ), with reshaping omitted for simplicity.
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3.7 BLOCK ASSEMBLY

Due to the extensive coverage of volumetric EM images across large continuous regions (e.g.,
100×1024×1024 voxels), it is impractical to directly input the entire volume into the network.
Current methods utilize a sliding-window technique, which generates affinity on individual cropped
blocks (e.g., 17×257×257 voxels) and then assembles them together for watershed and agglomer-
ation. The sliding stride is smaller than the block’s size (typically half) to reduce border effects.
In our method, the predictions of the blocks also require assembly. To achieve this, we reuse the
agglomeration function, but for merging the results of distinct blocks instead of fragments. Another
difference is that we do not necessitate overlap to address border effects, which is an advantage over
previous methods. More details are discussed in Appendix C.

4 EXPERIMENT

4.1 DATASETS AND METRICS

Datasets. To validate the effectiveness of our method, we conducted experiments on the bench-
mark datasets AC3/AC4 (Kasthuri et al., 2015) and ZEBRAFINCH (Kornfeld et al., 2017). AC3
and AC4 are two human-labeled sub-volumes extracted from the mouse somatosensory cortex
dataset (Kasthuri et al., 2015), with dimensions of 256 × 1024 × 1024 and 100 × 1024 × 1024,
respectively. The ZEBRAFINCH dataset contains 33 volumes (approximately 150 × 150 × 150),
of which we used 30 volumes as a training set and 3 volumes as a test set. More details about the
datasets can be found in Appendix D.

Metrics. We utilized the widely used Variation of Information (VOI) (Nunez-Iglesias et al., 2013)
and Adapted Rand Error (Arand) (Arganda-Carreras et al., 2015) as the evaluation metrics. VOI
can be further divided into two types of errors, VOIsplit and VOImerge, which refer to the errors
of segmenting a single neuron into multiple segments and merging multiple neurons into the same
segment, respectively. Both VOI and Arand indicate errors, with a lower value indicating better
accuracy. Further elaboration can be found in Appendix E.

4.2 IMPLEMENTATION DETAILS

By default, we employed a 3D neuron decoder with two stages (i.e., K = 2 in Figure 4), comprising
100 learnable queries and a maximum of 100 affinity-guided queries. For feature extraction, we
adopted a 3D U-Net with ResBlock (He et al., 2016) (i.e., ResUNet (Xiao et al., 2018)). We used
Adam optimizer and trained 20k iterations by default. Training was performed on 8× NVIDIA 3090
GPUs and costed about 40 hours. More implementation details are provided in Appendix F.

4.3 QUANTITATIVE RESULTS

We first conducted experiments on the AC3/AC4 dataset and presented the results in Table 1. The
results were reproduced utilizing the pytorch connectomics codebase (Lin et al., 2021) (e.g.,
ResUNet (Xiao et al., 2018) and SwinUNETR (Hatamizadeh et al., 2021)) or referenced from pub-
lished papers (e.g., PEA (Huang et al., 2022b) and FragViT (Luo et al., 2024)). Our method was
compared with these watershed-based methods in terms of both accuracy and efficiency.

Regarding accuracy, our method generally outperformed these methods, exhibiting superior perfor-
mance in metrics such as the lowest VOI and competitive Arand. This shows the strong potential of
our method, as a brand new neuron segmentation method. The achievement of the lowest VOIsplit
(indicating errors in predicting a neuron as multiple segments) aligns with our motivation to avoid
the extensive fragments associated with the watershed algorithm.

Regarding efficiency, our method significantly surpassed previous methods, due to its concise neuron
segmentation modeling and framework. Firstly, our method did not generate segmentation results
from affinities, eliminating the need for overlap prediction to address border effects (as discussed
in Section 3.7). As a result, the model’s inference time was reduced. Secondly, with its compact
modeling, our method predicted segmentation results without the need of watershed, thus entirely
saved this time. Finally, despite reusing the agglomeration function (as explained in Section 3.7), our
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Table 1: Results on the AC3/AC4 dataset. ”-” indicates that the value is unavailable. Inference times
were tested with an NVIDIA 3090 GPU and 64 Intel Xeon Gold CPUs, which represent the time
(in seconds) to process the full test set. ‘∗’ indicates results obtained from published papers (Huang
et al., 2022b; Luo et al., 2024). VOIs and VOIm are short for VOIsplit and VOImerge, respectively.

Metrics Inference Time

VOIs VOIm VOI Arand Model Watershed Agg. Total

ResUNet (Xiao et al., 2018) 1.037 0.258 1.295 0.154 81.2 30.8 35.8 147.8
SeUNet (Lin et al., 2021) 1.031 0.251 1.282 0.156 83.1 30.7 36.0 149.8

UNETR (Hatamizadeh et al., 2022) 2.750 0.281 3.031 0.220 37.0 41.4 133.0 211.4
SwinUNETR (Hatamizadeh et al., 2021) 1.238 0.191 1.429 0.110 80.0 32.5 43.1 155.6

LSD (Sheridan et al., 2023) 1.448 0.229 1.677 0.134 229.9 29.7 26.5 286.1
ML-De (De Brabandere et al., 2017) 1.575∗ 0.615∗ 2.190∗ 0.196∗ - - - -

SuperHuman (Lee et al., 2017) 1.145∗ 0.263∗ 1.408∗ 0.122∗ 52.3 28.4 19.4 100.1
MALA (Funke et al., 2019) 1.304∗ 0.242∗ 1.546∗ 0.120∗ - - - -
PEA (Huang et al., 2022b) 0.852∗ 0.232∗ 1.084∗ 0.094∗ 60.2 37.1 25.4 122.7
FragViT (Luo et al., 2024) 0.868∗ 0.191∗ 1.054∗ 0.093∗ >60.2 ≃37.1 ≃25.4 >122.7
APViT (Sun et al., 2023) 0.767∗ 0.209∗ 0.976∗ 0.078∗ >60.2 ≃37.1 ≃25.4 >122.7

AGQ (ours) 0.677 0.290 0.967 0.095 27.6 N/A 6.1 33.7

Table 2: Results on the ZEBRAFINCH dataset. Results on three test volumes are reported. Inference
times were tested with an NVIDIA 3090 GPU and 64 Intel Xeon Gold CPUs, which represent the
time (in seconds) required to process all the test volumes.

Volume-1 Volume-2 Volume-3 Infer. Time

VOI Arand VOI Arand VOI Arand Total

ResUNet (Xiao et al., 2018) 0.272 0.013 1.967 0.135 1.003 0.154 21.1
SeUNet (Lin et al., 2021) 0.271 0.012 1.894 0.152 1.021 0.162 21.0

UNETR (Hatamizadeh et al., 2022) 3.013 0.403 3.394 0.529 2.665 0.360 17.7
SwinUNETR (Hatamizadeh et al., 2021) 0.744 0.206 2.022 0.154 0.693 0.035 34.9

SuperHuman (Lee et al., 2017) 0.268 0.011 1.867 0.107 0.721 0.042 16.6
PEA (Huang et al., 2022b) 0.208 0.009 1.715 0.122 0.534 0.028 17.4

AGQ (ours) 0.177 0.008 1.278 0.134 0.338 0.024 6.4

results were relatively complete with fewer regions to process, leading to significant time savings in
the agglomeration step. Overall, our method achieved a speedup of about 340% over ResUNet and
260% over PEA. Regarding FragViT and APViT, the inference time was estimated, as the code was
unavailable. The estimation was made due to FragViT and APViT employing the same watershed
and post-processing method as PEA but with a heavier network.

On ZEBRAFINCH dataset (Table 2), our model also exhibited general better accuracy on the three
test volumes, with a speedup of about 200%. For example, our method achieved significantly lower
VOI on all test volume and was 230% and 170% faster than ResUNet and PEA, respectively. For
deployment, our model consumed 6.5G GPU and 5.4G CPU memory during inference on these
datasets, suitable for most computing devices.

4.4 QUALITATIVE RESULTS

We present a qualitative comparison of segmentation results on AC3/AC4 obtained using previous
methods and our method in Figure 5. The first two rows display the results on a 2D section, il-
lustrating that our method can avoid the artifacts present in previous methods. In the second row,
indicated by white arrows, the watershed-based methods generated numerous unnatural boundaries
(i.e., artifacts). In contrast, our method employed a learning-based approach to predict the final
result directly, effectively reducing this issue.

The third row in Figure 5 showcases the 3D morphology of several predicted neurons. Highlighted
by colored arrows, our method excels in reconstructing the neuronal structure. We observed that tra-
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Volume Image Ground Truth ResUNet SuperHuman PEA AGQ (Ours)

Ground Truth ResUNet SuperHuman PEA AGQ (Ours)

Figure 5: Visualization comparison of segmentation results obtained from different methods. The
top two rows present a 2D slice alongside two zoomed-in regions, highlighting artifacts with white
arrows. The third row illustrates neuron structures in 3D space, with colored arrows indicating
locations that are prone to failed reconstruction. Best viewed in digital with zoom-in.

ditional methods struggle with locations characterized by thin branches or myelin sheaths, indicating
the limitations of relying solely on affinities. Predicted affinities in these areas may be uncertain or
distorted. Some failure cases of our method are presented and discussed in Appendix G.

4.5 ANALYSIS

To delve deeper into the roles of various queries in prediction, we visualized the intermediate outputs
of the 3D neuron decoder in Figure 6. Mcoarse, P0, P1, P2 denote the coarse masks and results at
different decoder stages, respectively (refer to Section 3.4). Each color denote a mask corresponding
to a specific query. Initially, Mcoarse exhibits numerous merging errors (highlighted by yellow
arrows) and only predicts a fraction of neurons. This is due to inherent errors in the predicted
affinities (indicated by red arrows), such as the ambiguity in the boundaries of the myelin sheath.
This also implies that relying solely on affinities as traditional methods, could raise potential issues.

Instead, our method gradually resolved these issues. As depicted by the yellow arrows in Figure 6,
these missing (or incorrectly merged) neurons were progressively recovered through the integration
of learnable queries. This indicates the distinct roles of the two query types: affinity-guided queries
provide initial predictions, while learnable queries aid in retrieving incorrectly merged neurons. See
Appendix H for quantitative analysis.

Volume Image Ground Truth Pred. Affinities 𝑀coarse 𝑃0 𝑃1 𝑃2

Figure 6: Visualization of the segmentation at different stages in the 3D neuron decoder. The
images depict 2D sections, which inherently exist in a 3D space. Therefore, the masks in Mcoarse

may interconnect in 3D. Incorrectly merged neurons in Mcoarse are highlighted by yellow arrows,
whereas issues with the predicted affinities are indicated by red arrows. Best viewed in color.

4.6 ABLATION STUDY

We conducted ablation experiments on the AC3/AC4 dataset to analyze the individual effects of each
module. We report both the metrics on blocks and on the full test set (i.e., before and after block

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

assembly). Note that the models were trained for 10k iterations to save training costs, thus there is a
discrepancy with the results in Table 1. More ablation experiments can be found in Appendix I.

4.6.1 DESIGN OF NEURON DECODER

As shown in Table 3, the K-Net style decoder achieved better results, probably due to its more
explicit way of extracting instance features. Consequently, we chose the K-Net style decoder as a
baseline and incorporated the proposed affinity-guided queries to achieve the best results.

Table 3: Design of neuron decoder.
Block Full

VOI Arand VOIsplit VOImerge VOI Arand
Transformer Decoder 1.245 0.184 1.695 1.138 2.833 0.395

K-Net Decoder 0.710 0.087 1.131 0.562 1.693 0.160
Ours 0.538 0.065 0.781 0.397 1.177 0.141

4.6.2 EFFECT OF AFFINITY-GUIDED AND LEARNABLE QUERIES

We studied the effectiveness of affinity-guided queries (AGQ) in Table 4. Completely excluding
AGQ significantly deteriorated results (denoted as LQ in the table). Merely increasing the number
of learnable queries (i.e., Double LQ) did not lead to improved results, suggesting that enhancing
segmentation quality solely by increasing query quantity is insufficient.

The effect of learnable queries (LQ) was validated by comparing the results with and without them,
as shown in Table 4 (AGQ v.s. LQ + AGQ). The incorporation of learnable queries notably enhanced
the segmentation results, particularly in mitigating merging errors (i.e., VOImerge). This finding
aligned with our motivation that learnable queries could retrieve incorrectly merged neurons.

Table 4: Effect of affinity-guided queries.
Block Full

VOI Arand VOIsplit VOImerge VOI Arand
LQ 0.710 0.087 1.131 0.562 1.693 0.160

Double LQ 0.695 0.082 1.078 0.650 1.729 0.209
AGQ 0.836 0.102 0.822 0.881 2.010 0.229

LQ+AGQ 0.538 0.065 0.781 0.397 1.177 0.141

4.6.3 AFFINITY GUIDANCE

We compare different ways of leveraging affinity guidance to validate whether affinity-guided query
is the optimal. Two naive baselines are concatenating affinities or coarse segmentation onto image
features, which can fuse information from affinities into image features instead of queries. As shown
in Table 5, AGQ yielded the best results, showing its effect in leveraging bottom-up cues.

Table 5: Results of different approaches of using bottom-up cues.
Block Full

VOI Arand VOIsplit VOImerge VOI Arand
Concat affinities 0.836 0.102 0.836 0.102 2.010 0.229

Concat coarse segmentation 0.869 0.104 0.975 0.917 1.893 0.213
Affinity guided queries 0.538 0.065 0.781 0.397 1.177 0.141

5 CONCLUSION AND DISCUSSION

We propose a new method named AGQ for neuron segmentation in 3D volume EM images. Diverg-
ing from previous methods that heavily rely on watershed, our method offers a more concise and
efficient solution. Extensive experiments validated the effectiveness of our method, which achieved
superior results and a 2∼3× speedup. We hope our method could advance the development of
large-scale neuron reconstruction, thereby deepening our understanding of the brain. Future work
includes exploring improved ways to handle large volumes and focused improvements for failure
cases (failure cases and limitations are discussed in Appendix G).
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A MORE EXPLANATIONS ABOUT AFFINITIES

The affinities indicate that whether the adjacent voxels belong to the same neuron, which have a
shape of 3 × D × H × W where D,H,W is the depth, height and width of the volume image,
respectively. For each voxel, these three values indicate the connection between the current voxel
(i, j, k) and its three neighboring voxels: (i − 1, j, k), (i, j − 1, k), and (i, j, k − 1), respectively.
Note that due to redundancy, the voxel (i, j, k) does not need to predict the connection on the other
side (e.g., the connection between (i, j, k) and (i+1, j, k) can be predicted by the voxel (i+1, j, k)).

The corresponding ground truth affinity value is 1 if and only if the neighboring voxels both belong
to the same neuron, and 0 in all other cases (e.g., belonging to different neurons or belonging to
background). We present a 2D example in Figure 7 demonstrating the cases of different boundary
widths between two neurons (neuron A and neuron B).

width=0 width=1 width=2
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Figure 7: A 2D example demonstrating the cases of different boundary widths between two neurons
(neuron A and neuron B).

B MORE DETAILS ON TRAINING OBJECTIVES

B.1 SEGMENTATION LOSS Lseg

To enable the end-to-end training, following DETR (Carion et al., 2020), we first identify the cor-
respondence between predictions and the ground-truth masks via the bipartite matching and then
calculate the segmentation loss based on these matched pairs. The predictions are represented as
segmentation probability maps P ∈ (0, 1)N×D×H×W . The ground-truth masks are denoted as
MGT ∈ {0, 1}N×D×H×W (padded with empty masks4). The optimal bipartite matching between
the predictions and the ground-truth masks, symbolized as a permutation σ̂ of N indices, is deter-
mined using the Hungarian algorithm (Carion et al., 2020),

σ̂ = argmin
σ

N∑
i

DICE(Pσ(i),M
GT
i ), (11)

where DICE denotes the dice coefficient (Milletari et al., 2016). Upon establishing the correspon-
dence σ̂, the segmentation loss is computed by combining dice loss and cross-entropy loss with
weighted summation:

Lseg = λDICE · LDICE(Pσ̂,M
GT) + λCE · LCE(Pσ̂,M

GT), (12)

where the loss weights are specified as λDICE = 3 and λCE = 0.3, Pσ̂ denotes the rearrangement of
P according to σ̂ in the first dimension. Given that the decoder outputs multiple results from various
stages (i.e., P0, P1, ..., PK in Section 3.4), the segmentation loss is calculated individually for each
output and then summed up as the total segmentation loss.

4Note that N is usually larger than the number of neurons.
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B.2 FEATURE LOSS Lfeature

To enhance the differentiation among neurons in image features F ∈ RC×D×H×W , we utilize a
contrastive loss (Wang et al., 2021; Chen et al., 2022) to supervise these features. Initially, we
compute the summed features T ∈ RN×C for each neuron,

Ti,: =
∑

d≤D,h≤H,w≤W

MGT
i,d,h,wF:,d,h,w (13)

The features T ∈ RN×C is then normalized along the channel dimension to obtain T̂ ∈ RN×C .
Subsequently, the feature loss is computed as follows,

Lfeature = −λfeature

∑
d≤D,h≤H,w≤W

log

∑
i M

GT
i,d,h,w exp(T̂i,: · F:,d,h,w/τ)∑
i exp(T̂i,: · F:,d,h,w/τ)

, (14)

where λfeature = 0.1 represents the loss weight, and τ = 0.3 denotes the temperature. Notably,
the calculation excludes the padded empty mask. By incorporating this loss, similar features are en-
couraged for voxels of the same neuron, while different features are promoted for those belonging to
different neurons. This facilitates the decoder in effectively discerning between individual neurons.

B.3 AFFINITY LOSS Laffinity

The predicted affinities A ∈ (0, 1)3×D×H×W were trained using binary cross-entropy loss with the
ground truth AGT ∈ {0, 1}3×D×H×W . Note that AGT is obtained from the segmentation ground-
truth masks (i.e., MGT in Appendix B.1), which follows previous work (Lin et al., 2021; Huang
et al., 2022b). The affinity loss is

Laffinity = λaffinity · LBCE(A,AGT), (15)

where the loss weight λaffinity = 1. Additionally, We adopt label smoothing technique (Szegedy
et al., 2016) with ϵ = 10−5 to prevent overfitting.

C MORE DETAILS ON BLOCK ASSEMBLY

C.1 FULL PIPELINE COMPARISON

In Figure 8, we present a comparison between the complete pipeline of the previous method and
that of our method. Previous methods involved predicting affinities on individual blocks, which are
then assembled for watershed and agglomeration. In contrast, our method directly predicts the seg-
mentation results on the blocks. However, assembling different blocks together poses a challenge
due to the lack of natural correspondence in neuron id across blocks, unlike affinities. To address
this problem, we utilize the agglomeration function to merge neurons that are separated by block
boundaries. Note that we opt to reuse the agglomeration function just for implementation simplic-
ity. Given that our task is less complex than what agglomeration typically handles (as shown in
Figure 8(a)), there might be more efficient approaches to block assembly that could be explored.
We show quantitatively in Table 6 the changes in metrics before and after agglomeration (i.e., block
assembly). Agglomeration significantly reduced split errors, due to neurons from different blocks
being assembled, but also introduced merge errors to some extent.

Table 6: Results before and after agglomeration.
Agglomeration VOIsplit VOImerge VOI Arand

Before 3.606 0.181 3.786 0.874
After 0.681 0.267 0.947 0.089

C.2 OVERLAP PREDICTION AND BORDER EFFECTS

A key difference between our method and previous methods is the significant reliance of the lat-
ter on affinities. This reliance has resulted in a common practice of predicting with overlap, such
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3D U-Net
Watershed Agglomerate

AgglomerateQuery-based
Model

(a) Previous

(b) Ours

Sliding-
Window

Figure 8: Full pipeline comparison of two neuron segmentation paradigms. (a) Previous methods
utilize a sliding-window technique for inference, which generates affinities on individual cropped
blocks and then assembles them together for watershed and agglomeration algorithms. (b) The
proposed query-based model directly predicts the segmentation results. The results of the distinct
blocks are merged by reusing the agglomerate function. Best viewed in digital with zoom-in.

as employing a sliding window with a stride equal to half of the input size, to mitigate the impact
of affinities’ border effects (as depicted in Figure 9). In contrast, this strategy does not apply to
our method, as we directly predict the segmentation results without relying on affinities. Table 7
provides a quantitative analysis of the effect of this strategy (i.e., overlap prediction) on previous
methods. On one hand, the absence of this strategy led to varying decreases in accuracy for previ-
ous methods, indicating their reliance on overlap prediction. On the other hand, even without the
strategy, the previous methods were still suboptimal in efficiency due to the latency of watershed
and agglomeration. This observation suggests that the efficiency improvements in our method are
attributed to various factors.

Volume Image Ground Truth
Pred. Affinity 

w/ Overlap
Pred. Segmentation

w/ Overlap
Pred. Affinity 
w/o Overlap

Pred. Segmentation
w/o Overlap

Figure 9: Illustration of the border effects. The predictions of PEA with and without overlap were
compared. As highlighted by the red arrows, without overlap, the predicted affinities were notably
misaligned at the block borders, leading to poor segmentation results.

D MORE DETAILS ON DATASETS

For AC3/AC4 dataset, following previous work (Huang et al., 2022b; Luo et al., 2024; Arganda-
Carreras et al., 2015), we utilized the top 80 sections of AC4 as the training set, the subsequent 20
sections as the validation set, and the top 100 sections of AC3 as the test set for the benchmark. Each
voxel in AC3/AC4 represents a physical resolution of 29× 6× 6 nm3. The ZEBRAFINCH dataset
contains 33 densely labeled volumes of zebra finch brain, 29 of which have shape of 150×150×150,
and the other 4 of which are 128×256×256. The physical resolution of each voxel is 20×9×9 nm3.
We selected 30 of the volumes as the training set and the remaining 3 as the test set. The three test
volumes are as follows, which covers both sizes:
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Table 7: Comparison between methods with and without overlap. ✓ denotes using sliding-window
with overlap, which is the default setting of previous methods. Inference times were tested with an
NVIDIA 3090 GPU and 64 Intel Xeon Gold CPUs, which represent the time (in seconds) required
to process the full test set (AC3).

Metrics Inference Time

Overlap VOIsplit VOImerge VOI Arand Model Watershed Agg. Total

ResUNet ✓ 1.037 0.258 1.295 0.154 81.2 30.8 35.8 147.8
ResUNet 1.075 0.324 1.399 0.178 17.6 38.4 38.2 94.2

PEA ✓ 0.852 0.232 1.084 0.094 60.2 37.1 25.4 122.7
PEA 1.085 0.583 1.668 0.218 11.2 42.7 27.5 81.4

AGQ (ours) 0.677 0.290 0.967 0.095 27.6 N/A 6.1 33.7

• Volume-1: id gt z3734-3884 y4315-4465 x2209-2359, shape 150× 150× 150;

• Volume-2: id gt z255-383 y1407-1663 x1535-1791, shape 128× 256× 256;

• Volume-3: id gt z2868-3018 y5744-5894 x5157-5307, shape 150× 150× 150.

E MORE DETAILS ON METRICS

E.1 VARIATION OF INFORMATION (VOI)

The VOI calculates the conditional entropy between the predicted segmentation SPred and
the ground-truth segmentation SGT. Specifically, H(SPred|SGT) reflects the amount of over-
segmentation (VOIsplit), i.e., predicting one neuron as multiple segments, while H(SGT|SPred)
reflects the amount of under-segmentation (VOImerge), i.e., predicting multiple neurons as a single
segment. The overall metric VOI is the sum of them,

VOI = VOIsplit +VOImerge

= H(SPred|SGT) +H(SGT|SPred) (16)

E.2 ADAPTED RAND ERROR (ARAND)

The Arand is calculated as:

Arand = 1−
2
∑

i,j p
2
i,j∑

k s
2
k +

∑
k t

2
k

, (17)

where pi,j denotes the probability that a voxel is labeled as i in the predicted segmentation SPred

and j in the ground-truth segmentation SGT, sk is the probability that a voxel is labeled as k in
SPred, while tk is the probability that a voxel is labeled as k in SGT. Voxels with id 0 in the SGT

are ignored in the calculation. In other words, Arand is one minus the harmonic average of precision
and recall.

F MORE IMPLEMENTATION DETAILS

The learning rate followed the cosine schedule with a base learning rate of 0.0001. The total batch
size is 8 (i.e., one volume image block per GPU). For AC3/AC4 dataset, each block had dimensions
of 17× 257× 257. For ZEBRAFINCH dataset, each block had dimensions of 76× 150× 150. Our
code was built on the pytorch connectomics (Lin et al., 2021) codebase.

In the 3D U-Net backbone, we adopted 32, 64, 96, 128, 160 channels for its different stages. More-
over, Group Normalization (Wu & He, 2018) and ELU (Clevert et al., 2015) were utilized, follow-
ing the preset configurations of pytorch connectomics. In the 3D neuron decoder, we used
64 channels for all hidden layers. The self-attention block consisted of 8 multi-heads, 64 chan-
nels, Layer Normalization, and GELU activation function (Vaswani et al., 2017). Additionally, we
incorporated coordinate convolution (Liu et al., 2018) to enrich the image features.
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Regarding the background, during training, we predict it from the image features using two convo-
lutional layers, supervised by the same dice loss and cross-entropy loss as Equation (12). During
inference, we excluded these convolutional layers to eliminate the background prediction. This
practice aligns with previous methods that do not predict the background since our observations
indicated that predicting the background typically causes a decline in metrics. Moreover, during
inference, neurons with a volume smaller than 40 voxels in the prediction are also excluded to filter
out potential noises.

G LIMITATIONS AND FAILURE CASES

The representative failure cases are depicted in Figure 10. Region A showcases some redundant
predictions (highlighted by the red arrows), which could be caused by multiple queries attempting
to predict the same neuron simultaneously. The error observed in region B might result from a
breakdown in block assembly, where parts of the same neuron in adjacent blocks were not merged
correctly, leading to two disjointed segments. The error denoted by the red arrow in region C could
be attributed to the ambiguity of the data, where an organelle was erroneously identified as a single
neuron. To tackle these issues, potential avenues for future work could involve: (1) increasing
query variability, for example, by introducing more training data or auxiliary tasks, (2) developing a
dedicated block assembly algorithm for our method, and (3) collecting purposeful data for training
or fine-tuning.

Volume Image Ground Truth Prediction
A A A

A

B B B

C C C

B C A B C A B C

Figure 10: Several representative failure cases. The first row shows a 2D slice. The second row
presents its corresponding zoomed-in regions. The errors are highlighted with the red arrows. Best
viewed in digital.

H MORE ANALYSIS

We conducted a quantitative analysis of the segmentation results evolution in the decoder, as shown
in Figure 11. Starting from coarse segmentation results, errors are gradually rectified in the 3D
neuron decoder. This trend aligns with the findings in Section 4.5 and underscores the importance
of our multi-stage decoder design. Additionally, this highlights an advantage of our method over
previous methods: our method enables error correction through multiple stages, whereas previous
methods were confined to merging results together (from watershed-generated fragments to the final
results).
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Figure 11: Benchmark of the segmentation results at different stages in the 3D Neuron Decoder.
The vertical axis shows the average metrics of all blocks.

I MORE ABLATION STUDY

I.1 GENERATION OF AFFINITY-GUIDED QUERIES

Table 8 compares two methods for generating the affinity-guided queries, i.e., using different al-
gorithms to derive Mcoarse from the predicted affinities. The watershed algorithm showed limited
enhancement in segmentation results when utilized with the predicted affinities, possibly due to its
fragmented generation of Mcoarse, which offers limited support to the 3D neuron decoder. In con-
trast, the proposed method of thresholding the affinities and extracting the connected components
led to the creation of suitable coarse masks, significantly improving the accuracy.

Table 8: Comparison of affinity-guided query generation methods.
Block Full

VOI Arand VOIsplit VOImerge VOI Arand

Watershed 0.706 0.087 1.122 0.581 1.703 0.173
Connected components 0.538 0.065 0.781 0.397 1.177 0.141

I.2 EFFECT OF LOSS FUNCTIONS

We compared the effects of different loss functions within the proposed framework and reported
the results in Table 9. The absence of feature loss notably deteriorated the segmentation results,
as the image features’ inability to capture neuronal specificity posed challenges for the decoder’s
learning process. The exclusion of affinity loss resulted in poor model performance, given that the
unsupervised affinity branch could potentially misguide the decoder. These results underscore the
importance of these loss functions in achieving accurate segmentation results.

Table 9: Effect of loss functions. Feat. and Aff. denote feature loss and affinity loss, respectively.
Block Full

Feat. Aff. VOI Arand VOIsplit VOImerge VOI Arand

✓ 0.737 0.090 1.175 0.708 1.883 0.238
✓ 0.748 0.088 3.601 0.778 4.379 0.867
✓ ✓ 0.538 0.065 0.781 0.397 1.177 0.141

I.3 NUMBER OF STAGES

We explored in Table 10 whether increasing the decoder’s stages would enhance the segmentation
accuracy. The analysis indicated that more decoder stages did not substantially improve accuracy;
instead, it reached a saturation point. This observation suggests that additional stages may exceed
the model’s capacity beyond the constraints of the available training data.
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Table 10: Number of stages. #stages denotes the number of stages.
Block Full

#Stages VOI Arand VOIsplit VOImerge VOI Arand

2 0.538 0.065 0.781 0.397 1.177 0.141
4 0.569 0.067 0.858 0.367 1.225 0.138

J VISUALIZATION COMPARISON OF AXON

Figure 12 illustrates a comparison of the reconstruction results for an axon. Our method demon-
strated superior reconstruction quality when compared with previous methods. As indicated by the
red arrows, the previous method lost certain details, potentially attributed to the common encase-
ment of axons in myelin sheaths and it is more difficult to predict affinities for myelin sheaths.
Our method excels in reconstructing the axon, suggesting its efficacy in addressing this particular
challenge.

Ground Truth ResUNet SuperHuman PEA AGQ (Ours)

Figure 12: Visualization comparison of axon reconstructed by different methods. Red arrows indi-
cate errors. Best viewed in digital with zoom-in.
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