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Abstract

This paper presents a novel approach to deter unauthorized deepfakes and enable
user tracking in generative models, even when the user has full access to the model
parameters, by integrating key-based model authentication with watermarking tech-
niques. Our method involves providing users with model parameters accompanied
by a unique, user-specific key. During inference, the model is conditioned upon
the key along with the standard input. A valid key results in the expected out-
put, while an invalid key triggers a degraded output, thereby enforcing key-based
model authentication. For user tracking, the model embeds the user’s unique key
as a watermark within the generated content, facilitating the identification of the
user’s ID. We demonstrate the effectiveness of our approach on two types of mod-
els—audio codecs and vocoders—utilizing the SilentCipher watermarking method.
Additionally, we assess the robustness of the embedded watermarks against various
distortions, validating their reliability in various scenarios.

1 Introduction

The potential misuse of deep learning-based generative models has garnered significant attention in
recent years due to the substantial advancements in generative AI, which have produced outputs nearly
indistinguishable from real data (1; 2; 3; 4; 5; 6). Such generated content, commonly referred to as
deepfakes, can be exploited for malicious purposes. Consequently, there has been significant research
aimed at detecting deepfakes, with most approaches relying on identifying discrepancies between the
statistical distributions of generated samples and that of real data (7; 8; 9). However, as generative
models continue to improve, these discrepancies diminish, rendering traditional detection methods
less effective. This necessitates an active approach to track generated content, with watermarking
emerging as a widely adopted solution (10; 11; 12; 13).

In cases where generative models are provided as a service, such as through a cloud-based platforms,
the service provider can embed watermarks containing user-specific metadata into the generated
output, facilitating the tracking and detection of deepfakes. However, when users have complete
access to the model parameters, it becomes easier to circumvent the embedding of the user-id into
the generated output via the watermarking process, posing a significant challenge to ensuring the
integrity and traceability of generated content.

To address this issue, we propose a key-based authentication method designed to prevent users from
bypassing the watermarking process. In our approach, the generative model produces a degraded
output if an invalid key is provided, while a valid key results in the implicit embedding of the user’s
unique ID as a watermark in the generated output. We demonstrate the generalizability of our
method on two classes of models, audio codecs and vocoders, utilizing SilentCipher (12), a deep
learning-based watermarking technique. Specifically, we employ the Encodec model (14) for audio
codecs and the HiFi-GAN model(15) for vocoders. Although audio codecs and vocoders are not
strictly generative models, our motivation for enabling key-authentication for them stems from the
growing trend of generative AI models that operate in latent spaces and use latent decoders to convert
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Figure 1: Model Training & Inference Flow

the latent representations to the data domain outputs (2; 3; 4; 5). Demo samples for our proposed
method can be found at 1

2 Related Works

Previous works have focused on ensuring generative AI models produce signature watermarks that
enable the identification of the model used to generate a sample (16; 17; 18). However, to the best of
our knowledge, this is the first work to propose a key-based authentication mechanism in a white-box
scenario, where users have access to both the model parameters and inference script, enabling the
tracking of individual users.

Typical deepfake detection methods have primarily relied on passive approaches, such as training
classifiers to distinguish between the distributions of generated and real samples (7; 8; 9). These
approaches, however, face limitations due to diminishing differences between real and generated
samples and the limited information that can be extracted from the classifiers. To address this, active
methods like watermarking have been employed, increasing the capacity of the embedded message
without being constrained by the indistinguishability of real and generated samples (10; 11; 12).
While earlier watermarking techniques suffered from perceptible noises, recent advancements have
enabled watermarks that remain imperceptible and are robust against various distortions (12). These
advancements allow user-tracking in cloud-based scenarios, where the generative models’ watermark
user-specific signatures in the generated outputs. However, when models are available locally, users
can bypass post-hoc watermarking process, making it difficult to track malicious activity.

Our method addresses this challenge by combining key-based authentication with in-model water-
marking, making it more difficult to bypass the watermarking techniques even in local environments.

3 Proposed Method

To address the ease of bypassing post-hoc watermarking when users have access to model parameters,
we propose an in-model watermarking technique. Unlike existing methods that embed a constant
key, our approach enables user-specific watermarks by conditioning the model on the user’s unique
key. To prevent misuse, the model is trained to distinguish between real and fake keys, generating
degraded output if a fake key is detected. An overview of our method is shown in Figure 1.

First, we uniformly sample a set of valid keys V from the set of all possible keys A. During training,
a key K is sampled from either V or V \ A with equal probability. The key, K ∈ ZT

2 , where
Z ∈ {0, 1}, is projected to learnable embeddings, L ∈ RT×M where T is the key size and M is the
embedding dimensions, and fed to the key encoder KE . The output of KE , along with the input
condition C is fed to the trainable generator G to get W ′.

Valid key losses As illustrated in Figure 1, during training we feed the generated waveform to the
frozen pretrained message decoder MD to get K ′. To ensure that the respective models learn to embed
the key as a watermark, we apply the cross entropy loss between K and K ′ if the key is sampled
from V as per the equation 1. For the gradients to propagate to G, MD must be differentiable.

1https://interspeech2024.github.io/model_auth/
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L1 = −
N∑
i=1

T∑
j=1

Kij log(K
′
ij) (1)

To ensure that the fine-tuned model does not have degradation due to the watermarking loss, we
introduce a perceptual loss when K ∈ V . The perceptual loss is defined as the MSE loss between the
watermarked output Wt of the frozen pre-trained model Gt and W ′. We get Wt by providing C to
Gt and feeding the output of Gt, along with K, to the pre-trained message encoder ME . Please refer
to the Figure 1 for the notations. Our initial experiments suggested that the perceptual loss does not
succeed in removing the perceptual distortions. To further improve upon it, we introduce the MSE
loss between the log normalized magnitude spectrogram of Wt and W ′ as per equation 2.

L2 = ||Wt −W ′||2 + || log(|STFT(W )|)− log(|STFT(W ′)|)||2 (2)

Invalid key losses When the sampled key, K /∈ V , we minimize the negative MSE between W ′

and Wt. For stability, we introduce a curriculum learning method wherein the invalid loss is restricted
to a lower bound, B, which is increased as per the details mentioned in Section 4.

L3 = ReLU(B − ||Wt −W ′||2) (3)

Key Verification Loss To make it easier for the model to distinguish the valid and invalid keys, we
feed the output of KE to a two-layer fully connected neural network with ReLU activation which is
trained with cross-entropy loss L4 to output zero if K /∈ V and one if K ∈ V .

Total Loss During training we combine the losses as given in equation 4, where λ1, λ2 and λ3

∈ R, I(K ∈ V ) is an indicator function that equals 1 if K ∈ V and 0 if K /∈ V and I(K /∈ V ) is an
indicator function that equals 0 if K ∈ V and 1 if K /∈ V .

L = (λ1L1 + λ2L2)× I(K ∈ V ) + λ3L3 × I(K /∈ V ) + λ4L4 (4)
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Figure 2: SDR across valid keys. The keys are sorted ascendingly based on their mean SDR on 200
samples

4 Experiments

We apply our key-based authentication method to two models: HiFi-GAN (15), trained at 22.05 kHz,
and Encodec 32 kHz (14). The input condition, C, for HiFi-GAN model is MEL spectrogram, while
for Encodec’s decoder, it is latent codes. KE is composed of five alternating convolution and ReLU
layers. The output of KE is added to the output of the second layer of Gt for both HiFi-GAN and
Encodec. We train the message encoder ME and message decoder MD based upon SilentCipher
(12), a deep learning based watermarking technique. Separate SilentCipher models are trained for a
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Table 1: Base Silent Cipher Model Objective Scores. We compare the baselines using objective
test scores by simulating various attacks. SDR: SDR between watermarked and original signal, eq:
random equalization, gaus: additive Gaussian noise of 40dB, quant: 16-bit floating-point Quantization,
time_jit: time-jittering, resamp: random resampling from 6.4kHz to 16kHz and orig: No attacks.

mp3 ogg
Models Dataset SDR eq gaus 64k 128k 256k 64k 128k 256k quant resamp time_jit orig

SC VCTK 31.03 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
HiFi-GAN+SC VCTK 30.26 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

SC MTG 32.39 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00
Encodec+SC MTG 30.78 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 2: Objective Test Results. SDR Valid: SDR (in dB) of the generated sample when conditioned
on a valid key, SDR Invalid: SDR (in dB) of the generated sample when conditioned on an invalid
key. For other notations, refer to Table 2 captions

mp3 ogg
Models SDR Valid SDR Invalid eq gaus 64k 128k 256k 64k 128k 256k quant resamp time_jit orig

HiFi-GAN 25.95 1.28 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Encodec 23.20 3.72 0.91 0.94 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.88 0.97 0.97

Table 3: Subjective Scores with 95% confidence intervals

Encodec MOS HiFi-GAN MOS

Real 4.06 ± 0.22 Real 4.31 ± 0.20
Watermarked 3.92 ± 0.22 Watermarked 4.35 ± 0.16

Valid 3.76 ± 0.22 Valid 3.17 ± 0.19
Invalid 1.11 ± 0.07 Invalid 1.50 ± 0.13

sampling rate of 22.05kHz and 32kHz. Unless otherwise stated, the models use a 16-bit key with 655
valid keys randomly selected from the possible 2ˆ16 keys. Evaluations are conducted on six-second
samples. For invalid loss, we employ curriculum training where the lower bound of the invalid loss is
gradually decreased. We double B after every 5000 iterations, starting from 0.005.

Datasets For training the HiFi-GAN model we use the VCTK dataset (19) compromising of 44
hours of speech data. For the Encodec model we use the MTG-Jamendo dataset (20) which contains
55k full music audio tracks. The train, validation and testing set are split in the ratio 0.8:0.1:0.1. We
process the data for HiFi-GAN by extracting the MEL spectrogram of the waveform with the size of
the fourier transform being 1024, window length being 1024, hop size being 256 and nuumber of
mels being 80. For Encodec, we process the waveform and extract the latent codes using Encodec’s
encoder.

Training All our methods were fine-tuned using the Adam optimizer with a learning rate of 1e-4
for a total of 25k iterations for HiFi-GAN and 80k iterations for Encodec. The audio duration during
training is fixed to 10 seconds. Although we don’t introduce any distortions in the watermarked
output during the training of the models, we evaluate our models on various distortions like Gaussian
noise, random equalization of frequency bands and audio compression algorithms. We iterate over
the bit-rates 64, 128 and 256 kbps across two compression methods, MP3 and OGG.

5 Results

Objective Results We evaluate the accuracy of the decoded watermarks when the model is con-
ditioned on valid keys, following distortion of the encoded signal. The applied distortions include
additive Gaussian noise at 40 dB (gaus), random band-limited equalization of 15 dB at 35 Hz, 200 Hz,
1000 Hz, and 4000 Hz (eq), 16-bit floating point quantization (quant), random resampling between
40% and 100% of the original sampling rate (resamp), time-jittering (time_jit), and MP3/OGG
compression at 64, 128, and 256 kbps. Since there are no established baselines, we compare our
method to post-hoc watermarking techniques. Table 1 summarizes the objective results of applying
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Figure 3: SDR across invalid keys. The keys are sorted descendingly based on their mean SDR on
200 samples

the SilentCipher (SC) watermarking technique to both real and reconstructed samples generated
by pretrained models on the VCTK and MTG datasets. The results demonstrate the robustness of
the SilentCipher model in withstanding various distortions, consistently achieving an average SDR
exceeding 30 dB. For the VCTK dataset, we use SilentCipher trained at a sampling rate of 22.05
kHz, while for the MTG dataset, the model trained at a sampling rate of 32 kHz is utilized. Table
2 presents the objective results for HiFi-GAN and Encodec model after fine-tuning for key-based
authentication and watermarking. Signal-to-distortions ratios (SDRs) are computed between W ′ and
Wt, where SDR_valid represents conditioning on valid keys and SDR_invalid represents conditioning
on invalid keys. As shown in Table 2, SDR_valid is significantly higher than SDR_invalid, indicating
the model’s ability to distinguish between valid and invalid keys while largely preserving watermarks
despite distortions.

Subjective Results We also conducted a subjective mean opinion score (MOS) test to assess the
perceptual quality of the waveforms generated with valid and invalid keys. Sixteen audio engineers
rated the audio on a scale of 1-5, 1 being completely unnatural and 5 representing completely
natural samples. The results are presented in Table 3. For the Encodec model, "Real" refers to
unaltered samples from the MTG dataset and "Watermarked" refers to samples watermarked using the
SilentCipher-32kHz model. Similarly, for the HiFi-GAN model, "Real" and "Watermarked" represent
unaltered and watermarked samples of the VCTK dataset using SilentCipher-22.05kHz. "Valid" and
"Invalid" refer to the generated samples conditioned upon valid and invalid keys, respectively. The
subjective results align with the objective metrics, demonstrating the model’s ability to generative
high-quliaty or degraded samples based on key validity.

Probing the HiFi-GAN model We evaluated HiFi-GAN on 200 samples across all keys and plotted
the minimum, average, and maximum SDR for valid and invalid keys as shown in Figure 2 and Figure
3, respectively. Approximately 12% of the valid keys achieved an average SDR below 25dB and
around 1% of the invalid keys achieve an average SDR above 20dB. As the SDR for a specific key
across the samples does not vary much, shown by the small gap between the maximum and minimum
SDR for each key, it is easy to verify if a key works well by evaluating the SDR on a few samples
and discarding them if their SDR’s lie beyond a certain threshold.

6 Conclusions

We present a novel approach for authenticating generative AI models in white-box scenarios, where
users have full access to model parameters. The effectiveness of the proposed method is demonstrated
through comprehensive objective and subjective evaluations on the HiFi-GAN and Encodec models.
Future work will focus on minimizing perceptible distortions in the generated outputs for valid cases
and expanding both the number of valid keys and the total key size.
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A Appendix

A.1 White-box attack on the authentication enabled HiFi-GAN model

We conducted a white-box attack on the HiFi-GAN model to remove the embedded watermark by
adding a small Gaussian noise to the output of each layer of the model, refer to Figure 4. We vary the
standard deviation of the added Gaussian noise and plot the accuracy of the watermark as a function
of SDR of the generated samples. Although high-energy Gaussian noise degraded the accuracy of
the embedded watermark to zero, this occured alongsize significant degradation in the SDR of the
generated sample. For low-energy noise, the embedded watermark is detectable with a high accuracy.
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Figure 4: Distortions Using Gaussian Noise. The numbers on corresponding to each data point denote
the standard deviation of the added gaussian noise.

A.2 Scalability of the authentication enabled HiFi-GAN model

We explored the HiFi-GAN model’s scalability by plotting SDR_valid and SDR_invalid as a function
of the total number of keys while keeping the number of valid keys fixed at 655 (Figure 5). The
results indicate that SDR_valid and SDR_invalid remain distinct as the total key size increases.
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