

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MODEL-AGNOSTIC TEXT CONDENSATION WITH COHERENCE AWARENESS

Anonymous authors

Paper under double-blind review

ABSTRACT

Data condensation has emerged as a promising technique for improving training efficiency. However, it remains challenging to produce a small synthetic text set that retains its utility for use with language models. Existing approaches are typically model-specific and often focus only on generating readable text, which limits their applicability to text understanding tasks (e.g., classification). In this work, we propose a model-agnostic text condensation framework with coherence awareness. Our method synthesizes a compact set of representative texts by modeling in the semantic embedding space while enforcing coherence constraints when converting them back into the input space. This model-agnostic design allows the condensed data to be used for training or adapting a wide range of models without retraining the condensation pipeline. Experiments on diverse language understanding and reasoning benchmarks show that our method outperforms state-of-the-art text condensation techniques. Our work highlights the importance of preserving textual coherence in dataset condensation and opens new avenues for efficient and reusable data preparation across models.

1 INTRODUCTION

The rapid advancements in language models have been significantly driven by the availability of large-scale text datasets. Although larger datasets often yield better performance, there is increasing recognition that smaller but higher-quality data can be more effective (Gunasekar et al., 2023). This motivates the study of data condensation (or distillation), which has been extensively explored in the image domain but remains only a few for text. Recent efforts Li & Li (2021); Xie et al. (2024); Tao et al. (2024); Nguyen et al. (2025); Maekawa et al. (2025a) have attempted to adapt image-based condensation techniques to textual data, addressing challenges such as discreteness of input, variable sequence lengths, and readability. Since textual data can be used for training, fine-tuning, and in-context learning across diverse (large) language models, we propose to study the Model-agnostic Text Condensation (MaTC) problem.

MaTC essentially requires generating *in-distribution* condensed samples, since it is agnostic to downstream models and the textual information aggregated from training samples cannot be propagated through gradients (Maekawa et al., 2025b). Given a certain number of generated samples, it must satisfy the following fundamental properties:

- (1) Representativeness. Condensed text should reflect the global distribution of the original dataset.
- (2) Diversity. Condensed text should ensure coverage of different modes and prevents redundancy.
- (3) Coherence. Each condensed sample remains logically consistent and semantically complete.

Representativeness and diversity have been recognized in existing data condensation works. Gu et al. (2024) defined representativeness as the cosine similarity between original and condensed samples in the embedding space, and diversity as maximizing the pairwise distances among synthetic samples. In contrast, Chan-Santiago et al. (2025) advocated improving diversity by clustering within each image class and using the cluster centers as anchors to regularize the denoising process in diffusion models. While these definitions and insights were proposed for images, we extend them to the text domain. To improve the downstream usability of condensed text, we introduce coherence, shown as Fig. 1, which goes beyond simple readability Tao et al. (2024). While readability ensures that a

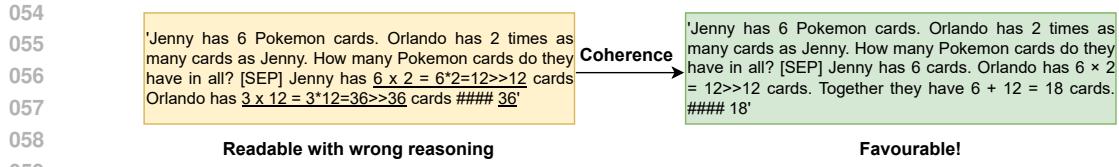


Figure 1: Example of condensed text sample on GSM8K. The left box shows the inverted readable sample with incorrect reasoning underlined, and the right box shows the coherence-refined version.

text is grammatically correct and easy to follow, coherence additionally requires logical consistency, structural integrity, and the preservation of semantic relations. This stricter property is particularly crucial for reasoning tasks, where solving a problem depends not only on fluent text but also on the correctness of intermediate steps, the ordering of information, and the use of special tokens (e.g., [SEP]).

We respond the three key properties of text condensation by proposing a new framework. Representativeness and diversity are achieved by optimizing informative particles in a semantic embedding space, ensuring that the condensed set preserves the global distribution of the original data and spreads across different high-density regions. And coherence is enforced in the invert-and-refinement stage, where derived particles are inverted into discrete text and refined with API assistance to ensure logically consistent and structurally sound samples. We name this entire framework as PInR and validate its efficacy on both understanding and reasoning tasks.

Our main contributions can be summarized as follows:

- We are the first to propose text coherence as a key property for model-agnostic text condensation, extending beyond the conventional requirement of human readability, which is particularly critical for reasoning tasks. Together with representativeness and diversity—two properties emphasized in recent work on image condensation—we identify these three as essential and unify them with a distribution approximation angle.
- We propose a new framework that optimizes condensed data by first searching for informative particles in the embedding space, analytically encouraging representativeness and diversity. These particles are then inverted into discrete text, followed by an API-assisted refinement optimization that generate coherent text samples for downstream use.
- We evaluate our method on both understanding and reasoning tasks, where it consistently outperforms state-of-the-art baselines. We further discuss the potential extensions of our framework to privacy-sensitive data and highlight current limitations, laying the groundwork for future research in this direction.

2 RELATED WORK

Our review centers on advances in text condensation, with occasional references to image-based works closely related to our method.

2.1 CORESET SELECTION

Coreset selection aims to identify a subset of data that achieves performance comparable to the full dataset, and is also referred to as data pruning (Mirzasoleiman et al., 2020). In the text domain, sample selection occurs either during language model pre-training (Wenzek et al., 2020; Azeemi et al., 2023) or during the fine-tuning phase (Nguyen & He, 2025). Most pre-training stage approaches rely on heuristic strategies (Marion et al., 2023), which are not strictly sample-wise but instead operate through sentence-level filtering (Xue et al., 2021). In contrast, research on text condensation for fine-tuning transformer-based language models often leverages downstream models to estimate sample importance, either by measuring downstream performance (Attendu & Corbeil, 2023) or by exploiting strong LLMs as evaluators (Chen et al., 2023). Additional criteria have also been introduced, such as fairness considerations (Zayed et al., 2023) and systematic modeling of inter-sample relationships (Maharana et al., 2023).

108
109
2.2 DATASET CONDENSATION

110 The key idea of most previous work on dataset condensation is to train models on synthetic data
 111 that can mimic the behavior of training on real data. Sucholutsky & Schonlau (2021) presented an
 112 early example of this approach by distilling soft labels. Li & Li (2021) generated human-unreadable
 113 numerical data, where the variables are treated as parameters, enabling gradient-descent-based op-
 114 timization. Maekawa et al. (2025a) further proposed distilling attention labels for fine-tuning trans-
 115 formers, and subsequently train a language model to generate informative samples (Maekawa et al.,
 116 2025b). Beyond these methods, which are not agnostic to downstream tasks, recent work on data
 117 synthesis (Tao et al., 2024; Cai et al., 2025) can also be viewed within this direction, often with an
 118 additional emphasis on privacy concerns (Xie et al., 2024; Yue et al., 2022).

119
120 3 PRELIMINARIES
121

122 **Problem statement.** Consider a large-scale dataset with the training set $\mathcal{T}_o = \{x_i\}^N$, where each
 123 sample is a textual sequence¹, collectively prepared for downstream use, e.g., fine-tuning. The
 124 problem of model-agnostic text condensation is to synthesize a dataset $\mathcal{T}_s = \{\tilde{x}_j\}^M$ with $M \ll N$
 125 such that \mathcal{T}_s preserves the essential information of \mathcal{T}_o without relying on downstream models.
 126 Formally, for any downstream model θ , we would expect $eval(\theta(\mathcal{T}_o)) \sim eval(\theta(\mathcal{T}_s))$, where $\theta(\mathcal{T}_o)$
 127 and $\theta(\mathcal{T}_s)$ are models trained on or conditional upon \mathcal{T}_o and \mathcal{T}_s respectively, and $eval(\cdot)$ denotes the
 128 evaluation criterion of interest.

129 **Distribution approximation.** Suppose each $x_i \in \mathcal{T}_o$ is drawn i.i.d. from a distribution p . The
 130 synthetic dataset \mathcal{T}_s can be represented as an empirical measure $\hat{q} = \frac{1}{M} \sum_{j=1}^M \delta_{\tilde{x}_j}$ where $\delta_{\tilde{x}_j}$ denotes
 131 the Dirac measure centered at \tilde{x}_j . The condensation objective is then to minimize a distributional
 132 distance $d(\hat{q}, p)$, where $d(\cdot, \cdot)$ denotes a distance metric. The objective comes to a Wasserstein
 133 approximation studied in image synthesis applications Lin et al. (2024) when $d(\cdot, \cdot)$ is chosen as the
 134 Wasserstein distance.

135
136 4 METHODOLOGY
137

138 In response to the requirement that condensed samples should possess three fundamental proper-
 139 ties, representativeness, diversity, and coherence, as discussed in Section 1, we propose a two-stage
 140 method to address this task.

141
142 4.1 PARTICLES OPTIMIZATION WITH LANGUAGE MODEL EMBEDDING
143

144 As discussed in Section 3, the objective is to approximate the original text distribution p using a
 145 simpler surrogate distribution q . This problem can be formulated within the framework of variational
 146 inference, where the optimal approximation q^* is obtained by minimizing the Kullback–Leibler
 147 (KL) divergence from q to p , that is $q^* = \arg \min_q \{KL(q||p) = \mathbb{E}_q[\log q] - \mathbb{E}_q[\log \bar{p}]\}$, with
 148 \bar{p} denoting the unnormalized version of p . The normalization constant of p is omitted since it is
 149 independent of q . Based on the Stein’s theory of Liu & Wang (2016), we consider an infinitesimal
 150 map $T_\xi(\tilde{x}) = \tilde{x} + \xi\phi(\tilde{x})$ which gradually pushes a randomly initial distribution q_0 to q with the
 151 steepest direction $\phi(\tilde{x})$ through minimizing the KL functional. The the optimal direction can be
 152 written in closed form,

$$\phi^*(\cdot) \propto \mathbb{E}_{\tilde{x} \sim q}[k(\tilde{x}, \cdot) \nabla_{\tilde{x}} \log p(\tilde{x}) + \nabla_{\tilde{x}} k(\tilde{x}, \cdot)], \quad (1)$$

153 where $k(\cdot, \cdot)$ is the scalar kernel in reproducing kernel Hilbert space. This approach however re-
 154 mains intractable due to the difficulty of drawing samples in the discrete text domain. To ensure the
 155 condensation process sufficiently informative, we instead consider their representations in a semantic
 156 space through a language model embedding, i.e., $e = \psi(x)$, with \tilde{e} representing the embeddings
 157 of \tilde{x} accordingly. Now we randomly draw a set of particles $\{\tilde{e}_j\}_{j=1}^M$ and iteratively update each of

158
159
160 ¹We slightly abuse the notation x_i as features for text classification tasks, which allows us to condense
 161 class-wise samples similarly to how image samples are handled per class; for generation tasks such as Q&A,
 x_i can instead denote concatenated sequences.

them until convergence, which we refer to as Stein-based particles. Concretely, at $t + 1$ -th iteration, each particle in the embedding space can be updated by:

$$\tilde{e}_j^{t+1} \leftarrow \tilde{e}_j^t + \frac{\xi}{M} \sum_{h=1}^M [k(\tilde{e}_h^t, \tilde{e}_j^t) \nabla_{\tilde{e}_h^t} \log p(\tilde{e}_h^t) + \nabla_{\tilde{e}_h^t} k(\tilde{e}_h^t, \tilde{e}_j^t)], \quad (2)$$

where $p(\tilde{e})$ represents the target density evaluated at \tilde{e} , indicating how the original samples participate the condensation in the embedding space.

We highlight that the two terms inside the summation in Eq. (2) naturally correspond to *representativeness* and *diversity*, respectively. The first term encourages particles to move toward high-density regions of the target distribution $p(e)$ weighted by kernel similarity, thereby guiding them to cover the potential modes of original samples. The second term acts as a repulsive force which push the M particles away from each other. For example, the gradient instanced with RBF kernel is $\nabla_{\tilde{e}_h} k(\tilde{e}_h, \tilde{e}_j) \propto k(\tilde{e}_h, \tilde{e}_j) (\tilde{e}_j - \tilde{e}_h)$, which pushes \tilde{e}_j away from \tilde{e}_h when they are close.

Implementation. The target density through the embedding model ψ can be formally expressed as $p(e) = \int_{\mathcal{X}} p(x) \delta(e - \psi(x)) dx$. In practice, we can approximate it empirically using the embeddings $\psi(x_i)$ of all training samples $x_i \in \mathcal{T}_o$. The non-parametric method such as kernel density estimation is simple but numerically unstable for high-dimensional embeddings. Gaussian mixture models provide an analytic score function $\nabla_e \log p(e)$, which can be also alternatively trained by score-based models Hyvärinen & Dayan (2005); Sohl-Dickstein et al. (2015). The scalar kernel is chosen by a RBF with the derived gradient form easy to compute. The particles $\{\tilde{e}_j\}_{j=1}^M$ can be initialized with randomly sampled embeddings of the original samples when privacy is not concerned. Regarding text condensation for classification tasks, Eq. (2) can be applied in a class-wise manner, seeking sub-modes within each class, similar to the mode-guided data distillation Chan-Santiago et al. (2025). For generation tasks with structure text within per sample, we concatenate all texts into a single sequence separated by [SEP] tokens before obtaining their embeddings. Further details are left to in Appendix A.1.

4.2 INVERT-AND-REFINE (INR)

Although operating in the embedding space enables the particles to converge towards informative regions, the optimized embeddings \tilde{e} cannot be transferred across different language models until they are converted into their corresponding texts \tilde{x} . Moreover, to enhance the validity of \tilde{x} , we introduce \mathcal{C} as a constraint that guarantees its coherence. Given that embedding models tend to produce similar representations for semantically related inputs, we have the following lexicographic optimization problem,

$$\tilde{x}_j = \arg \min_x d(\psi(x), \tilde{e}_j) \quad s.t. \quad x \in \mathcal{C}, \quad \forall j \in \{1, \dots, M\} \quad (3)$$

where coherence serves as a must-satisfy condition. Note that cohenrence can be replaced with a weaker condition such as readability Nguyen et al. (2025) if the downstream tasks are not highly sensitive to it (e.g., sentiment analysis). In contrast, for most structure texts tasks, breaking coherence would severely harm a model’s reasoning capability when the condensed data are used for training or conditioning. From the view of optimization, searching for a variable-length sequence \tilde{x} from a large vocabulary to “match” a given \tilde{e} remains challenging, especially in the absence of a task-specific coherence critic.

We find out that the above problem can be alternatively decomposed into learning two modules: a decoder that inverts embeddings (particles) into text, and a refiner that enhances the coherence of the generated text. This Invert-and-Refine (InR) can be expressed in a probabilistic form:

$$p(\tilde{x}|\tilde{e}) = \sum_{\tilde{x}_0} p(\tilde{x}_0|\tilde{e}) p(\tilde{x}|\tilde{x}_0, \tilde{e}). \quad (4)$$

The decoder denoted by $\omega(\cdot)$ is trained on \mathcal{T}_o using an encoder-decoder transformer architecture with the embedding model $\psi(\cdot)$ serving as the frozen encoder. We follow the implementation of vec2text Morris et al. (2023) for $\omega(\cdot)$, which is instantiated as a recursive conditional generation model (See more details in Appendix A.1). With this approach, the resulting \tilde{x}_0 may lack semantic meaningfulness as the updated \tilde{e} through Eq. (2) is new to $\omega(\cdot)$. Fig. x shows a example. The refiner

module adopts a strategic approach that explores the possible variations through a callable API, e.g., GPT-3.5. Specifically, we generate L variations within a small neighborhood of \tilde{x}_0 by using a prompt (e.g., ‘‘rephrase the given text to be logical with minimal changes’’). These variations, denoted as \tilde{x}' are then considered coherent. Among them, we select the sample whose embedding is closest to \tilde{e} . By defining $d(\cdot, \cdot)$ as the negative cosine similarity, the output \tilde{x} can be written as $\tilde{x} = \arg \max_{l \in \{1, \dots, L\}} \cos(\tilde{e}, \psi(\tilde{x}^l))$. In practice, we can perform a multi-step refinement process, then Eq. (4) generalizes to $p(\tilde{x}_T | \tilde{e}) = \sum_{\tilde{x}_0} \sum_{\tilde{x}_1} \dots \sum_{\tilde{x}_{T-1}} p(\tilde{x}_0 | \tilde{e}) \prod_{t=0}^{T-1} p(\tilde{x}_{t+1} | \tilde{x}_t, \tilde{e})$. In this formulation, since we marginalize over intermediate generation \tilde{x}_t at each step, we may retain the top- K closest variations as seeds for producing the next set of candidate variations.

We refer to the full method as PInR, and Fig. 2 illustrates its overall structure. Given an embedding model $\psi(\cdot)$, PInR trains a score function to guide particle optimization in the embedding space and a decoder $\omega(\cdot)$ that inverts the embeddings to text. The optimized particles are then fed to the trained decoder which produce the initial text sequences. Each optimized embedding \tilde{e} serves as a constraint to ensure that API-assisted refinement remains informative and does not deviate from the ‘‘anchors’’ that best approximate the original data distribution. A more detailed algorithm is provided in Appendix A.2.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Datasets. We evaluate our PInR on four benchmark datasets: AG-News (Gulli & Sekine, 2005), SST-2 (Wang et al., 2019), GSM8K (Cobbe et al., 2021), and Quora-QuAD (Toughdata, 2023). AG-News and SST-2 are adopted for text understanding tasks, applied in a class-conditional generation manner. Two reasoning-related datasets are employed to validate the necessity of incorporating text coherence into the condensation process: GSM8K for mathematical calculation, and Quora-QuAD for reading comprehension.

Baselines. We consider three state-of-the-art methods for model agnostic text condensation. (1) DaLLME (Tao et al., 2024): clustering in the embedding space and inverting cluster centers back to the input space. The number of clusters is set equal to the number of condensed samples. (2) MGD³ (Chan-Santiago et al., 2025): clustering to identify modes in the embedding space, which serve as a regularizer (often within each class) to enhance diversity. This method is adapted from image distillation. (3) Aug-PE (Xie et al., 2024): synthesizing condensed samples that approximate the target distribution by leveraging API outputs. Infinite privacy budget is applied for a fair comparison in settings without privacy constraints. Moreover, we consider selecting a subset of the original samples uniformly at random, with their number equal to that of the condensed set. We denote this method as Random, which serves as a reference and has been validated as a strong baseline in coreset selection (Nguyen & He, 2025).

Models. Given an embedding model, the decoders in our method are trained following the procedure of Morris et al. (2023). When optimizing particles, we use nonparametric models to optimize score function, which already yields good performance. For API-based refinement, to avoid concerns that API capabilities may give our method an advantage, we use the same API version as the baseline methods whenever applicable, ensuring a fair comparison.

Metrics. For understanding tasks, we fine-tune widely used downstream models including TextRNN (Hu et al., 2020), DistilBERT (Sanh et al., 2019), and T5-base (Raffel et al., 2020) with condensed text samples, and report classification accuracy as the evaluation metric. Regarding reasoning-related tasks, we use Llama-3.1-8B-Instruct (Grattafiori et al., 2024), Phi-3.5-Mini-Instruct (Abdin et al., 2024), and Gemma-2-9B-IT (Team et al., 2024) as downstream models, fine-tuned on the condensed data conditional upon them, or instructed with them as in-context. In addition, we use a GPT-3.5 API (OpenAI, 2023) to refine the generated text samples.

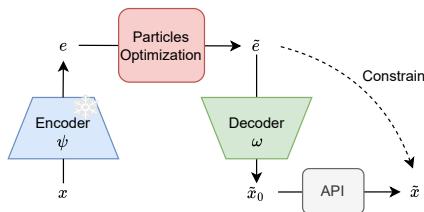


Figure 2: Overview of the PInR framework, where the encoder is the only fixed module.

Table 1: Evaluation on the AG-News Dataset (%)

Downstream Model	Full	Random	DaLLME	MGD ³	Aug-PE	PInR
TextRNN	92.10	<u>74.10</u>	67.91	72.72	68.30	78.96
DistilBERT	94.50	<u>78.60</u>	<u>86.22</u>	84.83	80.63	87.04
T5-Base	95.40	76.30	<u>86.86</u>	84.64	80.51	87.32

Table 2: Evaluation on the SST-2 Dataset (%)

Downstream Model	Full	Random	DaLLME	MGD ³	Aug-PE	PInR
TextRNN	83.72	60.32	61.24	60.09	66.06	63.19
DistilBERT	91.06	74.43	73.62	75.80	78.33	79.70
T5-Base	94.15	76.61	70.30	80.16	83.26	85.21

tion, we quantify the similarity between the original and condensed data following the measurements used in Xie et al. (2024).

Throughout all tasks, the best performance is marked in bold, while the second-best is underlined. Except for Random which we report its average results following the convention of recent work (Nguyen & He, 2025), there is no evaluation variance in understanding tasks. In contrast, for reasoning-related datasets we report average results with standard deviations, with performance values multiplied by 100 for clearer presentation. Additional experimental details are provided in Appendix B.2.

5.2 MAIN RESULTS

5.2.1 EVALUATION WITH DOWNSTREAM TASKS

Table 3: Evaluation on the GSM8K Dataset

Downstream Model	Zero-shot	Type	Random	DaLLME	MGD ³	Aug-PE	PInR
Llama-3.1-8B-Instruct	73.92 \pm 1.21	FT	76.95 \pm 1.16	75.74 \pm 1.18	74.07 \pm 1.21	75.13 \pm 1.19	77.26 \pm 1.15
		ICL	77.55 \pm 1.15	74.45 \pm 1.20	74.22 \pm 1.20	70.35 \pm 1.26	75.58 \pm 1.18
Phi-3.5-Mini-Instruct	59.97 \pm 1.35	FT	60.88 \pm 1.34	60.42 \pm 1.35	60.42 \pm 1.35	60.80 \pm 1.34	61.56 \pm 1.34
		ICL	79.91 \pm 1.10	72.25 \pm 1.23	72.71 \pm 1.23	66.56 \pm 1.30	78.24 \pm 1.13
Gemma-2-9B-IT	73.77 \pm 1.21	FT	74.00 \pm 1.21	74.07 \pm 1.21	73.84 \pm 1.21	74.00 \pm 1.21	74.07 \pm 1.21
		ICL	82.78 \pm 1.04	76.72 \pm 1.16	76.57 \pm 1.17	69.82 \pm 1.26	79.61 \pm 1.11

We generate 120 and 80 samples for the AG-News and SST-2 datasets, respectively, which correspond to approximately 0.1% of the full training sets, and evaluate accuracy on the original test sets. The details of downstream training configuration are provided in Appendix B.1 to facilitate reproduction of our reported results, and Tables 1 and 2 summarize the corresponding results. On both AG-News and SST-2, we can see that PInR consistently outperforms existing condensation methods across most downstream models. For AG-News, PInR achieves the best accuracy on all three backbones, surpassing Random and clustering-based baselines (DaLME, MGD³) by a clear margin. Similarly, on SST-2, PInR yields the strongest performance on transformer-based models, and performing slightly worse than Aug-PE on TextRNN. Although the best performance of condensation methods falls short of full-data training, the results confirm that PInR retains much of the original dataset’s utility while substantially reducing data size.

On reasoning tasks, to support both fine-tuning (FT) and in-context learning (ICL), we generate 500 samples both on the GSM8K and Quora-QuAD dataset. Regarding ICL, we evaluate under a 3-shot configuration. The evaluation metrics for GSM8K is Exact Match and for Quora-QuAD is Rouge1 (more experimental results in terms of different evaluation metrics are reported in Appendix B). The shaded results in Tables 3 and 4 correspond to tuning Gemma-2-9B-IT with only a small number

324
325
326 Table 4: Evaluation on Quora-QuAD Dataset
327
328
329
330
331
332

326 Downstream Model	327 Zero-shot	328 Type	329 Random	330 DaLLME	331 MGD³	332 Aug-PE	333 PInR	
328 Llama-3.1-8B-Instruct	329 15.44 ± 0.01	330 FT	331 15.40 ± 0.00	332 15.68 ± 0.01	333 15.32 ± 0.01	334 15.40 ± 0.00	335 15.73 ± 0.01	
		336 ICL	337 15.64 ± 0.19	338 13.79 ± 0.03	339 13.63 ± 0.17	340 15.40 ± 0.15	341 17.15 ± 0.09	
330 Phi-3.5-Mini-Instruct	331 11.97 ± 0.01	332 FT	333 12.01 ± 0.01	334 11.96 ± 0.00	335 12.05 ± 0.01	336 11.99 ± 0.01	337 12.09 ± 0.06	
		338 ICL	339 12.25 ± 0.25	340 13.18 ± 1.22	341 13.13 ± 1.09	342 13.11 ± 1.13	343 13.28 ± 1.13	
344 Gemma-2-9B-IT		345 FT	346 5.82 ± 0.01	347 5.71 ± 0.00	348 5.71 ± 0.01	349 5.63 ± 0.01	350 5.75 ± 0.01	
351		352 ICL	353 11.04 ± 0.11	354 11.40 ± 0.00	355 11.48 ± 0.01	356 11.51 ± 0.08	357 11.64 ± 0.04	

334
335 of samples, a challenging setting where improvements for all methods are limited. On GSM8K
336 (Table 3), PInR consistently achieves competitive or superior performance compared with existing
337 condensation methods across multiple downstream models and training paradigms. For Llama-3.1-
338 8B-Instruct, PInR attains 77.26% (FT) and 75.58% (ICL), both ranking among the best results and
339 slightly improving upon strong baselines such as Random. Note that Random dominates the ICL
340 performance on GSM8K with our method yields the second place. This is because Random is more
341 faithful to original data regarding true mathematical problems. However, our method obtains the
342 best performance on Quora-QuAD dataset in most cases, owing to its inherent linguistic character-
343 istics. The Quora-QuAD dataset spans diverse topics and domains, where a few random samples are
344 insufficient to provide meaningful guidance.

345 5.2.2 EVALUATION WITH SIMILARITY QUANTIFICATION

346 We employ eight similarity metrics including Fréchet Inception Distance (FID) (Heusel et al., 2017),
347 KL, TV and Wasserstein divergences (Chung et al., 1989), MAUVE score (Pillutla et al., 2021),
348 and Precision, Recall, F1 score (Kynkänniemi et al., 2019) to evaluate the quality of condensed text
349 across four datasets, and the results are summarized in Table 5. Random often yields strong results,
350 as it can be regarded as an unbiased estimator of the data distribution. Our method consistently ranks
351 among the top approaches, and even in the few cases where it does not achieve a top-two position, its
352 performance remains competitive, with scores closely matching the second-best method. Compared
353 with our approach, the relatively weaker performance of Aug-PE can be attributed to its reliance
354 on distribution matching based on distance metrics. While effective in certain settings, this strategy
355 is highly sensitive to initialization and strongly depends on the diversity of variants contributed by
356 prompt engineering. In contrast, our method directly optimizes within the neighborhood of the
357 inverted text, thereby maintaining robustness without requiring extensive manual design or reliance
358 on diverse prompt variants. This design choice allows our approach to achieve stable performance
359 across datasets with different linguistic and structural characteristics.

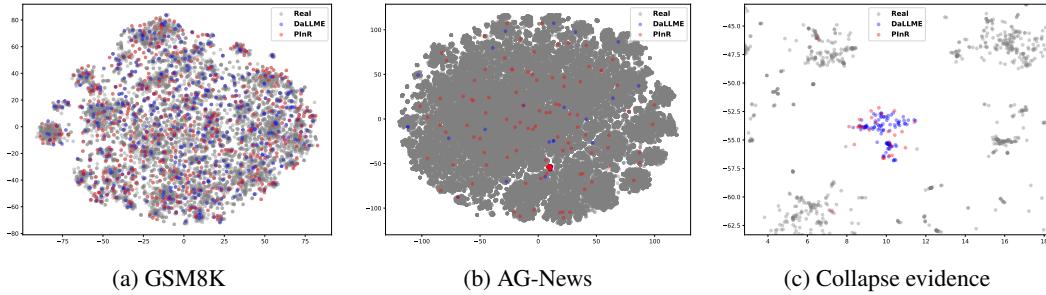
360 5.3 UNDERSTANDING THE PERFORMANCE OF PINR

361 *RQ1: Stein-based particles versus clustering centroids.* When the original data in the embedding
362 space exhibits a clear cluster structure, clustering methods can often achieve satisfactory results, as
363 they theoretically approximate the data distribution under certain assumptions (Canas & Rosasco,
364 2012). Fig. 3a shows visualizations of particles derived from GSM8K using both Stein-based parti-
365 cles and clustering centroids, where both sets of particles are spread across the data space. However,
366 when only a small number of particles are available, clustering centroids fail to match the quality of
367 Stein-based particles. We take particles on the AG-News for an example. As illustrated in Fig. 3b,
368 centroids are neither representative nor diverse. We attribute this to cluster collapse, caused by the
369 lack of an explicit term to push the centroids apart. Fig. 3c provides a closer look at the locally
370 grouped Stein-based particles but revealed that this area is dominated by cluster centroid which
371 eventually confirms the consistent performance of Stein-based particles.

372 *RQ2: The necessity of coherence.* To verify whether coherence improves both understanding and
373 reasoning tasks (We use ICL as a representative setting, as it is more sensitive to data quality.), we
374 remove the refinement process and apply our method to four datasets. Fig. 4 shows the performance
375 changes, from which we have the following observations. (i) Text understanding tasks also bene-
376 fit from coherence, especially on the SST-2 dataset. (ii) Coherence is more critical for reasoning

378
379
380
381 Table 5: Evaluation with similarity metrics on four benchmarks. Abbreviations: Wass. (Wasser-
382 stein), MAU. (MAUVE score), Prec. (Precision), Rec. (Recall).
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Dataset	Methods	FID (\downarrow)	KL (\downarrow)	TV (\downarrow)	Wass. (\downarrow)	MAU. (\uparrow)	Prec. (\uparrow)	Rec. (\uparrow)	F1 (\uparrow)
Ag-News	Random	0.7606	0.0411	0.0951	0.0187	0.9943	1.0000	0.9432	0.9708
	DaLLME	0.9454	0.1285	0.1922	<u>0.0179</u>	0.9541	0.4333	0.0357	0.0661
	MGD ³	0.8580	0.1203	0.1881	<u>0.0256</u>	0.9510	0.5333	0.0683	0.1211
	Aug-PE	0.9091	1.1767	0.3703	0.0487	0.6280	0.7500	0.0700	0.1281
	PInR	0.7135	<u>0.0717</u>	0.1426	0.0114	0.9836	<u>0.7083</u>	0.2521	<u>0.3718</u>
SST-2	Random	0.6640	0.0169	0.0755	0.0097	0.9988	1.0000	0.8851	0.9391
	DaLLME	0.8744	1.6857	0.4875	0.1118	0.4502	0.2250	0.0935	0.1321
	MGD ³	0.7627	0.4694	0.3569	<u>0.0735</u>	0.6959	0.1500	0.1542	0.1521
	Aug-PE	0.8728	6.4459	0.6679	0.1497	0.1597	<u>0.3625</u>	0.0867	0.1400
	PInR	0.7665	0.6519	0.4438	0.0952	0.4691	0.2375	0.1339	<u>0.1712</u>
GSM8K	Random	0.0655	<u>0.0530</u>	0.1079	0.0016	0.9907	1.0000	<u>0.8363</u>	<u>0.9108</u>
	DaLLME	0.0889	<u>0.0665</u>	0.1324	0.0013	0.9857	0.9300	0.8170	0.8699
	MGD ³	0.0945	0.1939	0.1836	0.0019	0.9589	0.7900	0.7216	0.7542
	Aug-PE	0.2871	1.9482	0.5844	0.0158	0.2147	0.1700	0.7333	0.2760
	PInR	0.0948	0.0433	<u>0.1145</u>	0.0013	0.9933	0.9560	0.8793	0.9160
Quora-QuAD	Random	0.1736	0.1434	0.1319	0.0019	0.9829	1.0000	<u>0.9141</u>	0.9551
	DaLLME	0.1152	0.0141	0.0648	<u>0.0014</u>	0.9991	0.7980	0.9451	0.8653
	MGD ³	0.2045	0.1287	0.2084	0.0019	0.9498	0.3460	0.7955	0.4822
	Aug-PE	0.8884	9.1747	0.8404	0.0302	0.0249	0.1940	0.1046	0.1359
	PInR	0.1882	<u>0.0448</u>	<u>0.1091</u>	0.0011	<u>0.9928</u>	0.8480	0.8993	<u>0.8729</u>

409
410
411
412 Figure 3: Particles visualization in the embedding space (zoomed in for better visualization).
413
414

415 tasks, the performance drop is significant across different model architectures. This agrees with our
416 expectation as coherence directly affects sample usability in reasoning tasks.
417

418 *RQ3: Reliance on API.* Our method PInR and the baseline Aug-PE both employ third-party APIs
419 to assist in generating condensed text. To evaluate the impact of this reliance, we compare them
420 in terms of performance versus API cost. Fig. 5 presents the results, showing that across all tasks,
421 PInR achieves better performance while incurring lower API costs. We attribute this advantage
422 to the warm start provided by inverted text samples: rather than relying on the API to randomly
423 guess plausible data samples, our method inverts informative particles from the embedding space,
424 leveraging the model’s generalization on the data manifold.

6 DISCUSSION

6.1 PRIVACY STUDY

425 One advantage of condensed data generation over coresnet selection is that the original data remain
426 private, and no raw samples need to be shared. However, this remains as a conceptual property and
427 often lacks theoretical justification in practice. Therefore, we empirically assess potential leakage
428 by first retrieving the most similar neighboring text and then computing bigram and unigram over-
429 laps (Martin et al., 1998). Their scores are 0.4476 and 0.5935, respectively, with random selection
430 yielding 1 for both as a reference. This indicates that condensed data shares partial tokens with the
431 original data, which is expected since Stein-based particles tend to converge toward high-density

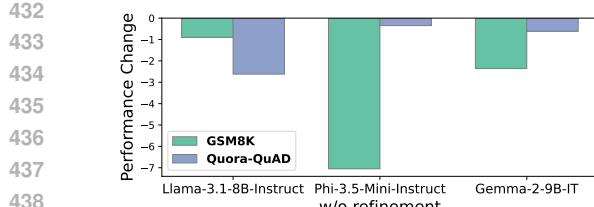


Figure 4: Performance change w/o refinement

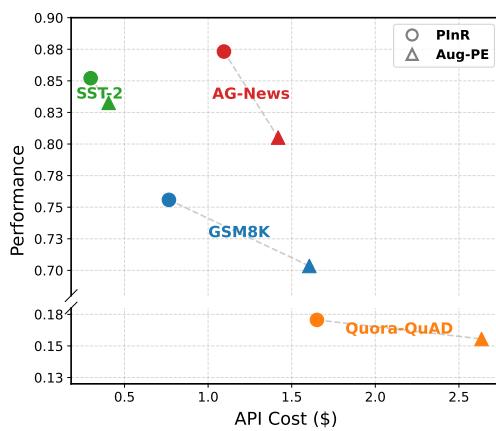


Figure 5: Performance versus API cost.

regions and thus unavoidably lie close to real samples. A possible workaround is to manually constrain Stein-based particles to stay away from original samples, though this comes at the risk of sacrificing model performance.

When the original training set involves sensitive membership information, the condensation algorithm must satisfy differential privacy (DP) (Dong et al., 2022). This requirement serves as additional layer of privacy given that MaTC inherently mitigates risks of text content leakage. Our method of this version can be equipped with DP, while the direct apply may not be efficient, because we need to handle decoder training and score function (See Step 3 and 5 of the algorithm in Appendix A.2). Suppose the decoder is pre-trained. In that case, the lack of coherence in the inverted text may be compensated by invoking multiple rounds of API calls, reducing our method to Aug-PE in the extreme case.

6.2 LIMITATION

The sequence length of text data in our experiments cannot be very long. This design choice follows the observation of Morris et al. (2023) that training text decoders on long sequences is difficult. With less meaningful inverted long text, the proposed method may become unstable as refinement has to significantly revise text to align with particles rather than to guide generation toward the real data distribution. In addition, coherence is the key property we identify as essential for extending condensation to broader tasks. However, reframing highly complex structures, such as multi-turn dialogue (Li et al., 2017), remains difficult. For instance, when special tokens like [SEP] are not recovered, it requires advanced API to complete refinement.

7 CONCLUSION

Beyond understanding tasks, this work takes a step forward in generating condensed text samples tailored for reasoning-realated tasks. To the best of our knowledge, it is the first to explicitly identify three key properties that condensed text are expected to satisfy. Building on this insight, we proposed a two-stage method PInR that integrates informative Particle generation in embedding space with an Invert-and-Refinement (InR) procedure. By explicitly considering all three properties, our proposed method PInR generalizes effectively across both understanding and generation tasks. Extensive experiments on benchmark datasets demonstrate that our method consistently outperforms existing baselines, narrowing the gap between condensed and full-data training while retaining strong generalization to diverse downstream models. These findings highlight the importance of coherence-aware condensation and provide evidence that principled design of condensed samples can substantially benefit reasoning-oriented applications. We also discussed potential limitations, including the adaptability to long sequence or complex structured corpus, and outlined practical workarounds. We hope that this work lays the foundation for future research on condensation methods that are not only efficient but also faithful to the structural and semantic properties of natural language data.

486 REFERENCES
487

488 Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
489 Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical re-
490 port: A highly capable language model locally on your phone, 2024. URL <https://arxiv.org/abs/2404.14219>, 2:6, 2024.

491

492 Jean-Michel Attendu and Jean-Philippe Corbeil. Nlu on data diets: Dynamic data subset selection
493 for nlp classification tasks. *arXiv preprint arXiv:2306.03208*, 2023.

494

495 Abdul Hameed Azeemi, Ihsan Qazi, and Agha Ali Raza. Data pruning for efficient model pruning
496 in neural machine translation. In *Findings of the Association for Computational Linguistics: EMNLP 2023*, pp. 236–246, 2023.

497

498 Xunxin Cai, Chengrui Wang, Qingqing Long, Yuanchun Zhou, and Meng Xiao. Knowledge hi-
499 erarchy guided biological-medical dataset distillation for domain llm training. *arXiv preprint arXiv:2501.15108*, 2025.

500

501

502 Guillermo Canas and Lorenzo Rosasco. Learning probability measures with respect to optimal
503 transport metrics. *Advances in neural information processing systems*, 25, 2012.

504

505 Jeffrey A Chan-Santiago, Praveen Tirupattur, Gaurav Kumar Nayak, Gaowen Liu, and Mubarak
506 Shah. Mgd³: Mode-guided dataset distillation using diffusion models. *arXiv preprint arXiv:2505.18963*, 2025.

507

508 Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa Gunaratna, Vikas Yadav, Zheng Tang, Vijay
509 Srinivasan, Tianyi Zhou, Heng Huang, et al. Alpagasus: Training a better alpaca with fewer data.
510 *arXiv preprint arXiv:2307.08701*, 2023.

511

512 JK Chung, PL Kannappan, Che Tat Ng, and PK Sahoo. Measures of distance between probability
513 distributions. *Journal of mathematical analysis and applications*, 138(1):280–292, 1989.

514

515 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
516 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
517 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

518

519 Tian Dong, Bo Zhao, and Lingjuan Lyu. Privacy for free: How does dataset condensation help
520 privacy? In *International Conference on Machine Learning*, pp. 5378–5396. PMLR, 2022.

521

522 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
523 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
524 of models. *arXiv preprint arXiv:2407.21783*, 2024.

525

526 Jianyang Gu, Saeed Vahidian, Vyacheslav Kungurtsev, Haonan Wang, Wei Jiang, Yang You, and
527 Yiran Chen. Efficient dataset distillation via minimax diffusion. In *Proceedings of the IEEE/CVF
528 Conference on Computer Vision and Pattern Recognition*, pp. 15793–15803, 2024.

529

530 Antonio Gulli and Satoru Sekine. Ag’s corpus of news articles. Di.unipi.it AG
531 Corpus, 2005. URL http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html. Last accessed 18 May 2024.

532

533 Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
534 Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, et al. Textbooks are
535 all you need. *arXiv preprint arXiv:2306.11644*, 2023.

536

537 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
538 Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in
539 neural information processing systems*, 30, 2017.

540

541 Haojin Hu, Mengfan Liao, Chao Zhang, and Yanmei Jing. Text classification based recurrent neural
542 network. In *2020 IEEE 5th Information Technology and Mechatronics Engineering Conference
543 (ITOEC)*, pp. 652–655. IEEE, 2020.

540 Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score match-
 541 ing. *Journal of Machine Learning Research*, 6(4), 2005.

542

543 Tuomas Kynkänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
 544 precision and recall metric for assessing generative models. *Advances in neural information*
 545 *processing systems*, 32, 2019.

546

547 Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Ziqiang Cao, and Shuzi Niu. Dailydialog: A manually
 548 labelled multi-turn dialogue dataset. *arXiv preprint arXiv:1710.03957*, 2017.

549

550 Yongqi Li and Wenjie Li. Data distillation for text classification. *arXiv preprint arXiv:2104.08448*,
 551 2021.

552

553 Zinan Lin, Sivakanth Gopi, Janardhan Kulkarni, Harsha Nori, and Sergey Yekhanin. Differen-
 554 tially private synthetic data via foundation model apis 1: Images. In *The Twelfth International*
 555 *Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenRe-
 556 view.net, 2024. URL <https://openreview.net/forum?id=YEhQs8POIo>.

557

558 Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose bayesian inference
 559 algorithm. *Advances in neural information processing systems*, 29, 2016.

560

561 Aru Maekawa, Naoki Kobayashi, Kotaro Funakoshi, and Manabu Okumura. Dataset distillation
 562 with attention labels for fine-tuning bert. *Journal of Natural Language Processing*, 32(1):283–
 563 299, 2025a.

564

565 Aru Maekawa, Satoshi Kosugi, Kotaro Funakoshi, and Manabu Okumura. Dilm: Distilling dataset
 566 into language model for text-level dataset distillation. *Journal of Natural Language Processing*,
 567 32(1):252–282, 2025b.

568

569 Adyasha Maharana, Prateek Yadav, and Mohit Bansal. D2 pruning: Message passing for balancing
 570 diversity and difficulty in data pruning. *arXiv preprint arXiv:2310.07931*, 2023.

571

572 Max Marion, Ahmet Üstün, Luiza Pozzobon, Alex Wang, Marzieh Fadaee, and Sara Hooker.
 573 When less is more: Investigating data pruning for pretraining llms at scale. *arXiv preprint*
 574 *arXiv:2309.04564*, 2023.

575

576 Sven Martin, Jörg Liermann, and Hermann Ney. Algorithms for bigram and trigram word clustering.
 577 *Speech communication*, 24(1):19–37, 1998.

578

579 Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of
 580 machine learning models. In *International Conference on Machine Learning*, pp. 6950–6960.
 581 PMLR, 2020.

582

583 John Morris, Volodymyr Kuleshov, Vitaly Shmatikov, and Alexander Rush. Text embeddings reveal
 584 (almost) as much as text. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of*
 585 *the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 12448–12460,
 586 Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
 587 emnlp-main.765. URL <https://aclanthology.org/2023.emnlp-main.765/>.

588

589 Dang Nguyen, Zeman Li, Mohammadhossein Bateni, Vahab Mirrokni, Meisam Razaviyayn, and
 590 Baharan Mirzasoleiman. Synthetic text generation for training large language models via gradient
 591 matching. *arXiv preprint arXiv:2502.17607*, 2025.

592

593 Nguyen Binh Nguyen and Yang He. Swift cross-dataset pruning: Enhancing fine-tuning efficiency
 594 in natural language understanding. In *Proceedings of the 31st International Conference on Com-
 595 putational Linguistics, COLING 2025, Abu Dhabi, UAE, January 19-24, 2025*, pp. 726–739.
 596 Association for Computational Linguistics, 2025.

597

598 Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck, Yejin Choi,
 599 and Zaid Harchaoui. Mauve: Measuring the gap between neural text and human text using diver-
 600 gence frontiers. *Advances in Neural Information Processing Systems*, 34:4816–4828, 2021.

594 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 595 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 596 transformer. *Journal of machine learning research*, 21(140):1–67, 2020.

597

598 Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
 599 bert: smaller, faster, cheaper and lighter. *arXiv preprint arXiv:1910.01108*, 2019.

600

601 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 602 learning using nonequilibrium thermodynamics. In *International conference on machine learning*, pp. 2256–2265. pmlr, 2015.

603

604 Ilia Sucholutsky and Matthias Schonlau. Soft-label dataset distillation and text dataset distillation.
 605 In *2021 International Joint Conference on Neural Networks (IJCNN)*, pp. 1–8. IEEE, 2021.

606

607 Yefan Tao, Luyang Kong, Andrey Kan, and Laurent Callot. Textual dataset distillation via language
 608 model embedding. In *Findings of the Association for Computational Linguistics: EMNLP 2024*,
 609 pp. 12557–12569, 2024.

610

611 Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupatiraju,
 612 Léonard Hussonot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma
 613 2: Improving open language models at a practical size. *arXiv preprint arXiv:2408.00118*, 2024.

614

615 Toughdata. Quora question answer dataset. HuggingFace Dataset, 2023. URL <https://huggingface.co/datasets/toughdata/quora-question-answer-dataset>.

616

617 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
 618 GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
 619 *7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
 620 May 6-9, 2019*. OpenReview.net, 2019. URL <https://openreview.net/forum?id=rJ4km2R5t7>.

621

622 Guillaume Wenzek, Marie-Anne Lachaux, Alexis Conneau, Vishrav Chaudhary, Francisco Guzmán,
 623 Armand Joulin, and Edouard Grave. Ccnet: Extracting high quality monolingual datasets from
 624 web crawl data. In *Proceedings of The 12th Language Resources and Evaluation Conference,
 625 LREC 2020, Marseille, France, May 11-16, 2020*, pp. 4003–4012. European Language Resources
 626 Association, 2020. URL <https://aclanthology.org/2020.lrec-1.494/>.

627

628 Chulin Xie, Zinan Lin, Arturs Backurs, Sivakanth Gopi, Da Yu, Huseyin A. Inan, Harsha Nori,
 629 Haotian Jiang, Huihuai Zhang, Yin Tat Lee, Bo Li, and Sergey Yekhanin. Differentially private
 630 synthetic data via foundation model apis 2: Text. In *Forty-first International Conference on
 631 Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024*. OpenReview.net, 2024. URL
 632 <https://openreview.net/forum?id=LWD7upg1ob>.

633

634 Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
 635 Barua, and Colin Raffel. mt5: A massively multilingual pre-trained text-to-text transformer.
 636 In *Proceedings of the 2021 Conference of the North American Chapter of the Association for
 637 Computational Linguistics: Human Language Technologies, NAACL-HLT 2021, Online, June
 638 6-11, 2021*, pp. 483–498. Association for Computational Linguistics, 2021.

639

640 Xiang Yue, Huseyin A Inan, Xuechen Li, Girish Kumar, Julia McAnallen, Hoda Shajari, Huan Sun,
 641 David Levitan, and Robert Sim. Synthetic text generation with differential privacy: A simple and
 642 practical recipe. *arXiv preprint arXiv:2210.14348*, 2022.

643

644 Abdelrahman Zayed, Prasanna Parthasarathi, Gonçalo Mordido, Hamid Palangi, Samira Shabanian,
 645 and Sarath Chandar. Deep learning on a healthy data diet: Finding important examples for fair-
 646 ness. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pp. 14593–
 647 14601, 2023.

648 A MORE DETAILS ABOUT PInR
649650 A.1 IMPLEMENTATION
651

652 For reasoning related datasets such as GSM8K and Quora-QuAD, we put a special token [SEP]
653 as a separation of questions and answers. The inverted text is thus expected to recover the token so
654 that it can be clearly treated as a natural textual sample for downstream evaluation. This is not the
655 only choice, for example, one can add another token between contexts and questions. In this sense,
656 if these tokens are not recovered, the APIs used in refinement is supposed to revise them.

657 Decoder training follows the vec2text model (Morris et al., 2023) which uses reconstruction loss
658 with a recursive corrector. Note that this corrector mainly aims to align the sequences, which is
659 different from our refinement process. At r -th iteration, it is written as

$$660 \quad p(x_r|e) = \sum_{x_{r-1}} p(x_{r-1}|e)p(x_r|x_{r-1}, e), \quad (5)$$

663 where the second factor is parameterized as a conditional generator.
664

665 There are additional techniques that have been proposed to boost the quality of text condensation.
666 For example, task-specific prompts can be applied to each sample before converting it into embed-
667 dings (Tao et al., 2024). We use the same prompt across different methods. Recent work has also
668 considered sample difficulty (Azeemi et al., 2023) as a factor in condensation. However, this strategy
669 is not strictly task-agnostic, and we leave this line of exploration to future work.

670 A.2 ALGORITHM
671672 **Algorithm 1** PInR

674 **Require:** Embedding model ψ , decoder ω , original training set \mathcal{T}_o , seed number K , a callable API
675 1: Initialize ψ and ω
676 2: Obtain embeddings e_i through $e_i = \psi(x_i)$ for each x_i in \mathcal{T}_o
677 3: Train score function $\nabla_e \log p(e)$ with all e_i
678 4: Obtain particles $\{\tilde{e}\}^M$ with each updated by Eq. (2)
679 5: Train decoder ω with $\{(x_i, e_i)\}^N$ pairs following (Morris et al., 2023)
680 6: **for** $j = 1, \dots, M$ **do**
681 7: Get $\tilde{x}_{j0} = \omega(\tilde{e}_j)$
682 8: $S_0 \leftarrow \{\tilde{x}_{j0}\}$
683 9: **for** $t = 0, \dots, T$ **do**
684 10: Generate L variants $\{a^0, a^1, \dots, a^{L-1}\}$ for any $a \in S_t$ by calling API
685 11: **if** $t! = T$ **then**
686 12: S_{t+1} is updated by the top- K closest variants to \tilde{e}_j
687 13: **else**
688 14: Pick the most closest variant as \tilde{x}_j
689 15: **end if**
690 16: **end for**
691 17: **end for**
692 18: **return** Condensed samples $\{\tilde{x}_j\}^M$

693 A.3 CONVERGENCE ANALYSIS
694

695 As shown in Fig. 2, our PInR framework is a two-stage method that trains a decoder and a score
696 function while optimizing text in the neighborhood of fixed points. The Stein-based particles con-
697 verge with theoretical guarantees as shown in (Liu & Wang, 2016), while the inversion model is
698 applied based on its generalization ability, since Stein-based particles do not necessarily lie within
699 the convex hull of the original samples. However, as mentioned earlier, if the inversion model is
700 not sufficiently strong, we can resort to API-based refinement, which iteratively revises the text.
701 By computing similarity with anchored particles and leveraging the theoretical results in (Lin et al.,
2024), we show that our method overall converges.

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
Table 6: Training configurations on the AG-News dataset

Downstream Model	DaLLME	MGD ³	Aug-PE	PInR
TextRNN	MAX_TOKENS = 6000000 BATCH_SIZE = 8 EMBEDDING_DIM = 100 DROPOUT = 0.5 NUM_EPOCHS = 20 LR = [5e-3] HIDDEN_DIM=100 N_LAYERS=2 BIDIRECTIONAL=True MAX_LEN = 128 USE_PRETRAINED = True	MAX_TOKENS = 6000000 BATCH_SIZE =2 EMBEDDING_DIM = 100 DROPOUT = 0.5 NUM_EPOCHS = 20 LR = [5e-3] HIDDEN_DIM=100 N_LAYERS=2 BIDIRECTIONAL=True MAX_LEN = 128 USE_PRETRAINED = True	MAX_TOKENS = 6000000 BATCH_SIZE = 8 EMBEDDING_DIM = 100 DROPOUT = 0.5 NUM_EPOCHS = 20 LR = [5e-3] HIDDEN_DIM=100 N_LAYERS=2 BIDIRECTIONAL=True MAX_LEN = 128 USE_PRETRAINED = True	MAX_TOKENS = 6000000 BATCH_SIZE = 32 EMBEDDING_DIM = 100 DROPOUT = 0.5 NUM_EPOCHS = 20 LR = [5e-3] HIDDEN_DIM=100 N_LAYERS=2 BIDIRECTIONAL=True MAX_LEN = 128 USE_PRETRAINED = True
	BATCH_SIZE = 8 MAX_LENGTH = 128 NUM_EPOCHS = 20 LR = 5e-5	NUM_EPOCHS = 20 MAX_LENGTH=128 LR = 5e-4	MAX_LENGTH = 128 NUM_EPOCHS = 20 LR = 5e-5	MAX_LENGTH = 128 NUM_EPOCHS = 20 LR = 5e-5
	BATCH_SIZE = 8 NUM_EPOCHS = 20 MAX_LENGTH=128 LR = 5e-4	NUM_EPOCHS = 20 MAX_LENGTH=128 LR = 5e-5	NUM_EPOCHS = 20 MAX_LENGTH=128 LR = 5e-4	NUM_EPOCHS = 20 MAX_LENGTH=128 LR = 5e-4

720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
Table 7: Training configurations on the SST-2 dataset

Downstream Model	DaLLME	MGD ³	Aug-PE	PInR
TextRNN	MAX_TOKENS = 6000000 BATCH_SIZE =2 EMBEDDING_DIM = 100 DROPOUT = 0.5 NUM_EPOCHS = 20 LR = [5e-4] HIDDEN_DIM=100 N_LAYERS=2 BIDIRECTIONAL=True MAX_LEN = 128 USE_PRETRAINED = True	MAX_TOKENS = 6000000 BATCH_SIZE =1 EMBEDDING_DIM = 100 DROPOUT = 0.5 NUM_EPOCHS = 20 LR = [2e-3] HIDDEN_DIM=100 N_LAYERS=2 BIDIRECTIONAL=True MAX_LEN = 128 USE_PRETRAINED = True	MAX_TOKENS = 6000000 BATCH_SIZE = 4 EMBEDDING_DIM = 100 DROPOUT = 0.5 NUM_EPOCHS = 20 LR = [1e-3] HIDDEN_DIM=100 N_LAYERS=2 BIDIRECTIONAL=True MAX_LEN = 128 USE_PRETRAINED = True	MAX_TOKENS = 6000000 BATCH_SIZE =2 EMBEDDING_DIM = 100 DROPOUT = 0.5 NUM_EPOCHS = 20 LR = [5e-4] HIDDEN_DIM=100 N_LAYERS=2 BIDIRECTIONAL=True MAX_LEN = 128 USE_PRETRAINED = True
	BATCH_SIZE = 1 NUM_EPOCHS = 20 MAX_LENGTH=128 LR = 1e-5	NUM_EPOCHS = 20 MAX_LENGTH=128 LR = 5e-5	MAX_LENGTH=128 LR = 2e-5	NUM_EPOCHS = 20 MAX_LENGTH=128 LR = 1e-5
	BATCH_SIZE = 1 NUM_EPOCHS = 20 MAX_LENGTH=128 LR = 5e-4	NUM_EPOCHS = 20 MAX_LENGTH=128 LR = 5e-4	MAX_LENGTH=128 LR = 5e-4	NUM_EPOCHS = 20 MAX_LENGTH=128 LR = 1e-5

740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
B MORE DETAILS ABOUT EXPERIMENTS740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
B.1 EXPERIMENTAL SETUP

The choice of embedding model $\psi(\cdot)$. Recent works which involve embedding space typically use sentence transformer or language model embeddings. As “text-embedding-ada-002” has been identified powerful in (Tao et al., 2024; Xie et al., 2024), we use it throughout our experiments without further exhaustively testing other alternatives. For all datasets, we generate 3 variants, i.e. $L = 3$ and set the seed number K as 1.

740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
Here we give the prompts we used for refinement.

740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
GSM8K:

740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
You are a math tutor. Your job is to correct flawed reasoning in following math Q&A. Always output the corrected Q&A in the following exact format. Do not add explanations or extra text. Format: Q: *corrected question text* A: *corrected answer*. Input Q: {question} Input A: {answer}

740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
Quora-QuAD:

756 *You are a helpful assistant that writes Q&A pairs in the style of Quora. Your job is to make sentences*
 757 *fluent, grammatically correct, and logically coherent. Write questions and answers in the natural,*
 758 *conversational, and explanatory style of Quora, where questions are natural, curious and clear, and*
 759 *answers are clear, concise, conversational, thoughtful, detailed, and easy to understand. Return*
 760 *only the corrected Q&A, nothing else. Format: Q: *corrected question text* A: *corrected answer**
 761 *Input Q: {question} Input A: {answer}*

762 **Ag-News:**

763
 764 *You will be given a piece of News text, The text may be grammatically incorrect, awkward, incom-*
 765 *plete, or unnatural. Your task is to polish and rewrite the text. Please polish the following text into*
 766 *fluent, coherent English that reads like a professional {category} news report, completing unclear*
 767 *expressions while preserving the original meaning. Input Text: {text}*

768 **SST-2:**

769 *You will be given a piece of sentence in movie review, The sentence may be incorrect, awkward,*
 770 *incomplete, or unnatural. Your task is to polish and rewrite the it. Please polish the following*
 771 *sentence into fluent, coherent English that reads like convey a {category} sentiment, rewrite the*
 772 *unclear expressions while preserving the original words and meaning as much as possible. Input*
 773 *Sentence: {sentence}*

774 Additionally, following Tao et al. (2024), we applied task-specific prompts to the classification tasks
 775 before converting the data into embeddings.

776 **Ag-News:**

777 *Read the following news article and classify it into one of our categories: World, Sports, Business,*
 778 *or Science/Technology. Provide a brief rationale for your classification.*

779 **SST-2:**

780 *Read the following sentences and classify it as either positive or negative sentiment. Provide a brief*
 781 *rationale for your classification.*

782 We also provide downstream model configurations in Tables 6 and 7 for reproducing the reported
 783 results.

784 B.2 EXPERIMENTAL RESULTS

785 For Quora-QuAD dataset, we report the experimental results in terms of the other three metrics in
 786 Table 8, 9 and 10.

787 We also test the possibility of using a pretrained model for the decoder. Here we preset an exam-
 788 ple for GSM8K using a pretrained model installed from [https://github.com/vec2text/](https://github.com/vec2text/vec2text)
 789 vec2text.

790 “*Donny is a book reader and she has a book for the whole week. Donny is a book reader and she*
 791 *has a book for the whole week. Donny is a book reader and she has a book for the whole week.*
 792 *Donny is a book reader and she has a book for the whole week. The number of books he can get is:*
 793 *2/5 = 5/5 = 2/5 = 2/5 = 2/5 = 2’, ’(10) If a rabbit has come out of the cage in 20 minutes, and*
 794 *the rabbits have come out of the cage in 30 minutes, the rabbits will have come out of the cage in 20*
 795 *minutes.”*

796 One can see there are many repetitive sentences as well as non-logical reasoning paths. For advanced
 797 APIs like ChatGPT-5, it is not hard to revise into coherent Q&A samples, while this will become
 798 expensive if we do multi-step refinement to align with the optimized particles.

799

800

801

802

803

804

805

806

807

808

809

Table 8: Evaluation on Quora-QuAD Dataset in terms of Rouge2

Downstream Model	Zero-shot	Type	Random	DaLLME	MGD ³	Aug-PE	PInR
Llama-3.1-8B-Instruct	2.84 \pm 0.00	FT ICL	2.92 \pm 0.00 2.87 \pm 0.10	2.94 \pm 0.00 2.46 \pm 0.05	2.85 \pm 0.00 2.52 \pm 0.01	2.92 \pm 0.00 2.82 \pm 0.03	2.98\pm0.02 3.02\pm0.03
Phi-3.5-Mini-Instruct	2.12 \pm 0.00	FT ICL	2.15\pm0.00 2.26 \pm 0.10	2.07 \pm 0.00 2.55\pm0.04	2.10 \pm 0.00 2.51 \pm 0.04	2.15\pm0.00 2.41 \pm 0.01	2.15\pm0.04 2.55\pm0.06
Gemma-2-9B-IT	0.94 \pm 0.01	FT ICL	0.96\pm0.00 1.77 \pm 0.06	0.89 \pm 0.00 1.82 \pm 0.01	0.92 \pm 0.00 1.83 \pm 0.04	0.90 \pm 0.00 1.88\pm0.00	0.94 \pm 0.01 1.87 \pm 0.08

Table 9: Evaluation on Quora-QuAD Dataset in terms of RougeL

Downstream Model	Zero-shot	Type	Random	DaLLME	MGD ³	Aug-PE	PInR
Llama-3.1-8B-Instruct	10.35 \pm 0.00	FT ICL	10.31 \pm 0.00 10.09 \pm 0.15	10.46\pm0.00 9.30 \pm 0.04	10.24 \pm 0.01 09.20 \pm 0.14	10.28 \pm 0.01 10.52 \pm 0.13	10.44 \pm 0.00 10.86\pm0.05
Phi-3.5-Mini-Instruct	7.92 \pm 0.01	FT ICL	8.06 \pm 0.01 8.68 \pm 0.11	8.04 \pm 0.01 9.66\pm0.05	8.08 \pm 0.01 9.58 \pm 0.04	8.03 \pm 0.01 9.62 \pm 0.02	8.12\pm0.03 9.53 \pm 0.04
Gemma-2-9B-IT	4.26 \pm 0.01	FT ICL	4.30\pm0.01 8.12 \pm 0.09	4.22 \pm 0.00 8.26 \pm 0.04	4.23 \pm 0.01 8.30\pm0.01	4.18 \pm 0.01 8.24 \pm 0.02	4.27 \pm 0.01 8.21 \pm 0.01

Table 10: Evaluation on Quora-QuAD Dataset in terms of RougeLsum

Downstream Model	Zero-shot	Type	Random	DaLLME	MGD ³	Aug-PE	PInR
Llama-3.1-8B-Instruct	11.75 \pm 0.01	FT ICL	11.74 \pm 0.00 11.86 \pm 0.23	12.00\pm0.00 10.89 \pm 0.04	11.62 \pm 0.01 10.72 \pm 0.25	11.71 \pm 0.01 11.81 \pm 0.18	11.93 \pm 0.03 12.69\pm0.07
Phi-3.5-Mini-Instruct	8.95 \pm 0.01	FT ICL	9.05 \pm 0.01 9.66 \pm 0.15	9.05 \pm 0.01 10.94\pm0.06	9.10 \pm 0.01 10.82 \pm 0.00	9.05 \pm 0.01 10.74 \pm 0.00	9.14\pm0.03 10.79 \pm 0.05
Gemma-2-9B-IT	4.56 \pm 0.00	FT ICL	4.61\pm0.00 8.81 \pm 0.08	4.54 \pm 0.01 8.98 \pm 0.08	4.55 \pm 0.00 9.04\pm0.00	4.49 \pm 0.00 8.94 \pm 0.03	4.58 \pm 0.01 8.95 \pm 0.01