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ABSTRACT

Data condensation has emerged as a promising technique for improving training
efficiency. However, it remains challenging to produce a small synthetic text set
that retains its utility for use with language models. Existing approaches are typi-
cally model-specific and often focus only on generating readable text, which limits
their applicability to text understanding tasks (e.g., classification). In this work,
we propose a model-agnostic text condensation framework with coherence aware-
ness. Our method synthesizes a compact set of representative texts by modeling in
the semantic embedding space while enforcing coherence constraints when con-
verting them back into the input space. This model-agnostic design allows the
condensed data to be used for training or adapting a wide range of models with-
out retraining the condensation pipeline. Experiments on diverse language un-
derstanding and reasoning benchmarks show that our method outperforms state-
of-the-art text condensation techniques. Our work highlights the importance of
preserving textual coherence in dataset condensation and opens new avenues for
efficient and reusable data preparation across models.

1 INTRODUCTION

The rapid advancements in language models have been significantly driven by the availability of
large-scale text datasets. Although larger datasets often yield better performance, there is increasing
recognition that smaller but higher-quality data can be more effective (Gunasekar et al., 2023). This
motivates the study of data condensation (or distillation), which has been extensively explored in the
image domain but remains only a few for text. Recent efforts Li & Li (2021); Xie et al. (2024); Tao
et al. (2024); Nguyen et al. (2025); Maekawa et al. (2025a) have attempted to adapt image-based
condensation techniques to textual data, addressing challenges such as discreteness of input, variable
sequence lengths, and readability. Since textual data can be used for training, fine-tuning, and in-
context learning across diverse (large) language models, we propose to study the Model-agnostic
Text Condensation (MaTC) problem.

MaTC essentially requires generating in-distribution condensed samples, since it is agnostic to
downstream models and the textual information aggregated from training samples cannot be propa-
gated through gradients (Maekawa et al., 2025b). Given a certain number of generated samples, it
must satisfy the following fundamental properties:

(1) Representativeness. Condensed text should reflect the global distribution of the original dataset.

(2) Diversity. Condensed text should ensure coverage of different modes and prevents redundancy.

(3) Coherence. Each condensed sample remains logically consistent and semantically complete.

Representativeness and diversity have been recognized in existing data condensation works. Gu et al.
(2024) defined representativeness as the cosine similarity between original and condensed samples in
the embedding space, and diversity as maximizing the pairwise distances among synthetic samples.
In contrast, Chan-Santiago et al. (2025) advocated improving diversity by clustering within each
image class and using the cluster centers as anchors to regularize the denoising process in diffusion
models. While these definitions and insights were proposed for images, we extend them to the text
domain. To improve the downstream usability of condensed text, we introduce coherence, shown
as Fig. 1, which goes beyond simple readability Tao et al. (2024). While readability ensures that a
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'Jenny has 6 Pokemon cards. Orlando has 2 times as
many cards as Jenny. How many Pokemon cards do they
have in all? [SEP] Jenny has 6 x 2 = 6*2=12>>12 cards
Orlando has 3 x 12 = 3*12=36>>36 cards #### 36'

'Jenny has 6 Pokemon cards. Orlando has 2 times as
many cards as Jenny. How many Pokemon cards do they
have in all? [SEP] Jenny has 6 cards. Orlando has 6 × 2
= 12>>12 cards. Together they have 6 + 12 = 18 cards.
#### 18'

Coherence

Readable with wrong reasoning Favourable!

Figure 1: Example of condensed text sample on GSM8K. The left box shows the inverted readable
sample with incorrect reasoning underlined, and the right box shows the coherence-refined version.

text is grammatically correct and easy to follow, coherence additionally requires logical consistency,
structural integrity, and the preservation of semantic relations. This stricter property is particularly
crucial for reasoning tasks, where solving a problem depends not only on fluent text but also on the
correctness of intermediate steps, the ordering of information, and the use of special tokens (e.g.,
[SEP]).

We respond the three key properties of text condensation by proposing a new framework. Repre-
sentativeness and diversity are achieved by optimizing informative particles in a semantic embed-
ding space, ensuring that the condensed set preserves the global distribution of the original data
and spreads across different high-density regions. And coherence is enforced in the invert-and-
refinement stage, where derived particles are inverted into discrete text and refined with API assis-
tance to ensure logically consistent and structurally sound samples. We name this entire framework
as PInR and validate its efficacy on both understanding and reasoning tasks.

Our main contributions can be summarized as follows:

•We are the first to propose text coherence as a key property for model-agnostic text condensation,
extending beyond the conventional requirement of human readability, which is particularly critical
for reasoning tasks. Together with representativeness and diversity—two properties emphasized in
recent work on image condensation—we identify these three as essential and unify them with a
distribution approximation angle.

• We propose a new framework that optimizes condensed data by first searching for informative
particles in the embedding space, analytically encouraging representativeness and diversity. These
particles are then inverted into discrete text, followed by an API-assisted refinement optimization
that generate coherent text samples for downstream use.

•We evaluate our method on both understanding and reasoning tasks, where it consistently outper-
forms state-of-the-art baselines. We further discuss the potential extensions of our framework to
privacy-sensitive data and highlight current limitations, laying the groundwork for future research
in this direction.

2 RELATED WORK

Our review centers on advances in text condensation, with occasional references to image-based
works closely related to our method.

2.1 CORESET SELECTION

Coreset selection aims to identify a subset of data that achieves performance comparable to the full
dataset, and is also referred to as data pruning (Mirzasoleiman et al., 2020). In the text domain, sam-
ple selection occurs either during language model pre-training (Wenzek et al., 2020; Azeemi et al.,
2023) or during the fine-tuning phase (Nguyen & He, 2025). Most pre-training stage approaches
rely on heuristic strategies (Marion et al., 2023), which are not strictly sample-wise but instead op-
erate through sentence-level filtering (Xue et al., 2021). In contrast, research on text condensation
for fine-tuning transformer-based language models often leverages downstream models to estimate
sample importance, either by measuring downstream performance (Attendu & Corbeil, 2023) or by
exploiting strong LLMs as evaluators (Chen et al., 2023). Additional criteria have also been intro-
duced, such as fairness considerations (Zayed et al., 2023) and systematic modeling of inter-sample
relationships (Maharana et al., 2023).
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2.2 DATASET CONDENSATION

The key idea of most previous work on dataset condensation is to train models on synthetic data
that can mimic the behavior of training on real data. Sucholutsky & Schonlau (2021) presented an
early example of this approach by distilling soft labels. Li & Li (2021) generated human-unreadable
numerical data, where the variables are treated as parameters, enabling gradient-descent-based op-
timization. Maekawa et al. (2025a) further proposed distilling attention labels for fine-tuning trans-
formers, and subsequently train a language model to generate informative samples (Maekawa et al.,
2025b). Beyond these methods, which are not agnostic to downstream tasks, recent work on data
synthesis (Tao et al., 2024; Cai et al., 2025) can also be viewed within this direction, often with an
additional emphasis on privacy concerns (Xie et al., 2024; Yue et al., 2022).

3 PRELIMINARIES

Problem statement. Consider a large-scale dataset with the training set To = {xi}N , where each
sample is a textual sequence1, collectively prepared for downstream use, e.g., fine-tuning. The
problem of model-agnostic text condensation is to synthesize a dataset Ts = {x̃j}M with M ≪
N such that Ts preserves the essential information of To without relying on downstream models.
Formally, for any downstream model θ, we would expect eval(θ(To)) ∼ eval(θ(Ts)), where θ(To)
and θ(Ts) are models trained on or conditional upon To and Ts respectively, and eval(·) denotes the
evaluation criterion of interest.

Distribution approximation. Suppose each xi ∈ To is drawn i.i.d. from a distribution p. The
synthetic dataset Ts can be represented as an empirical measure q̂ = 1

M

∑M
j=1 δx̃j

where δx̃j
denotes

the Dirac measure centered at x̃j . The condensation objective is then to minimize a distributional
distance d(q̂, p), where d(·, ·) denotes a distance metric. The objective comes to a Wasserstein
approximation studied in image synthesis applications Lin et al. (2024) when d(·, ·) is chosen as the
Wasserstein distance.

4 METHODOLOGY

In response to the requirement that condensed samples should possess three fundamental proper-
ties, representativeness, diversity, and coherence, as discussed in Section 1, we propose a two-stage
method to address this task.

4.1 PARTICLES OPTIMIZATION WITH LANGUAGE MODEL EMBEDDING

As discussed in Section 3, the objective is to approximate the original text distribution p using a
simpler surrogate distribution q. This problem can be formulated within the framework of variational
inference, where the optimal approximation q∗ is obtained by minimizing the Kullback–Leibler
(KL) divergence from q to p, that is q∗ = argminq{KL(q||p) ≡ Eq[log q] − Eq[log p̄]}, with
p̄ denoting the unnormalized version of p. The normalization constant of p is omitted since it is
independent of q. Based on the Stein’s theory of Liu & Wang (2016), we consider an infinitesimal
map Tξ(x̃) = x̃ + ξϕ(x̃) which gradually pushes a randomly initial distribution q0 to q with the
steepest direction ϕ(x̃) through minimizing the KL functional. The the optimal direction can be
written in closed form,

ϕ∗(·) ∝ Ex̃∼q[k(x̃, ·)∇x̃ log p(x̃) +∇x̃k(x̃, ·)], (1)

where k(·, ·) is the scalar kernel in reproducing kernel Hilbert space. This approach however re-
mains intractable due to the difficulty of drawing samples in the discrete text domain. To ensure the
condensation process sufficiently informative, we instead consider their representations in a seman-
tic space through a language model embedding, i.e., e = ψ(x), with ẽ representing the embeddings
of x̃ accordingly. Now we randomly draw a set of particles {ẽj}Mj=1 and iteratively update each of

1We slightly abuse the notation xi as features for text classification tasks, which allows us to condense
class-wise samples similarly to how image samples are handled per class; for generation tasks such as Q&A,
xi can instead denote concatenated sequences.
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them until convergence, which we refer to as Stein-based particles. Concretely, at t+ 1-th iteration,
each particle in the embedding space can be updated by:

ẽt+1
j ← ẽtj +

ξ

M

M∑
h=1

[k(ẽth, ẽ
t
j)∇ẽth

log p(ẽth) +∇ẽth
k(ẽth, ẽ

t
j)], (2)

where p(ẽ) represents the target density evaluated at ẽ, indicating how the original samples partici-
pate the condensation in the embedding space.

We highlight that the two terms inside the summation in Eq. (2) naturally correspond to representa-
tiveness and diversity, respectively. The first term encourages particles to move toward high-density
regions of the target distribution p(e) weighted by kernel similarity, thereby guiding them to cover
the potential modes of original samples. The second term acts as a repulsive force which push
the M particles away from each other. For example, the gradient instanced with RBF kernel is
∇ẽhk(ẽh, ẽj) ∝ k(ẽh, ẽj)(ẽj − ẽh), which pushes ẽj away from ẽh when they are close.

Implementation. The target density through the embedding model ψ can be formally expressed as
p(e) =

∫
X p(x)δ(e−ψ(x))dx. In practice, we can approximate it empirically using the embeddings

ψ(xi) of all training samples xi ∈ To. The non-parametric method such as kernel density estimation
is simple but numerically unstable for high-dimensional embeddings. Gaussian mixture models pro-
vide an analytic score function ∇e log p(e), which can be also alternatively trained by score-based
models Hyvärinen & Dayan (2005); Sohl-Dickstein et al. (2015). The scalar kernel is chosen by a
RBF with the derived gradient form easy to compute. The particles {ẽj}Mj=1 can be initialized with
randomly sampled embeddings of the original samples when privacy is not concerned. Regarding
text condensation for classification tasks, Eq. (2) can be applied in a class-wise manner, seeking sub-
modes within each class, similar to the mode-guided data distillation Chan-Santiago et al. (2025).
For generation tasks with structure text within per sample, we concatenate all texts into a single
sequence separated by [SEP] tokens before obtaining their embeddings. Further details are left to
in Appendix A.1.

4.2 INVERT-AND-REFINE (INR)

Although operating in the embedding space enables the particles to converge towards informative
regions, the optimized embeddings ẽ cannot be transferred across different language models until
they are converted into their corresponding texts x̃. Moreover, to enhance the validity of x̃, we
introduce C as a constraint that guarantees its coherence. Given that embedding models tend to
produce similar representations for semantically related inputs, we have the following lexicographic
optimization problem,

x̃j = argmin
x
d(ψ(x), ẽj) s.t. x ∈ C, ∀j ∈ {1, . . . ,M} (3)

where coherence serves as a must-satisfy condition. Note that cohenrence can be replaced with a
weaker condition such as readability Nguyen et al. (2025) if the downstream tasks are not highly
sensitive to it (e.g., sentiment analysis). In contrast, for most structure texts tasks, breaking co-
herence would severely harm a model’s reasoning capability when the condensed data are used for
training or conditioning. From the view of optimization, searching for a variable-length sequence
x̃ from a large vocabulary to “match” a given ẽ remains challenging, especially in the absence of a
task-specific coherence critic.

We find out that the above problem can be alternatively decomposed into learning two modules: a
decoder that inverts embeddings (particles) into text, and a refiner that enhances the coherence of
the generated text. This Invert-and-Refine (InR) can be expressed in a probabilistic form:

p(x̃|ẽ) =
∑
x̃0

p(x̃0|ẽ)p(x̃|x̃0, ẽ). (4)

The decoder denoted by ω(·) is trained on To using an encoder-decoder transformer architecture
with the embedding model ψ(·) serving as the frozen encoder. We follow the implementation of
vec2text Morris et al. (2023) for ω(·), which is instantiated as a recursive conditional generation
model (See more details in Appendix A.1). With this approach, the resulting x̃0 may lack semantic
meaningfulness as the updated ẽ through Eq. (2) is new to ω(·). Fig. x shows a example. The refiner
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module adopts a strategic approach that explores the possible variations through a callable API,
e.g., GPT-3.5. Specifically, we generate L variations within a small neighborhood of x̃0 by using
a prompt (e.g., “rephrase the given text to be logical with minimal changes”). These variations,
denoted as x̃′ are then considered coherent. Among them, we select the sample whose embedding
is closest to ẽ. By defining d(·, ·) as the negative cosine similarity, the output x̃ can be written as
x̃ = argmaxl∈{1,...,L} cos(ẽ, ψ(x̃

l)). In practice, we can perform a multi-step refinement process,
then Eq. (4) generalizes to p(x̃T |ẽ) =

∑
x̃0

∑
x̃1
...

∑
x̃T−1

p(x̃0|ẽ)
∏T−1

t=0 p(x̃t+1|x̃t, ẽ). In this
formulation, since we marginalize over intermediate generation x̃t at each step, we may retain the
top-K closest variations as seeds for producing the next set of candidate variations.

Encoder

Particles
Optimization

Decoder

API

Constrain

Figure 2: Overview of the PInR framework,
where the encoder is the only fixed module.

We refer to the full method as PInR, and Fig. 2
illustrates its overall structure. Given an em-
bedding model ψ(·), PInR trains a score func-
tion to guide particle optimization in the em-
bedding space and a decoder ω(·) that inverts
the embeddings to text. The optimized parti-
cles are then fed to the trained decoder which
produce the initial text sequences. Each opti-
mized embedding ẽ serves as a constraint to en-
sure that API-assisted refinement remains infor-
mative and does not deviate from the ‘anchors’
that best approximate the original data distribu-
tion. A more detailed algorithm is provided in
Appendix A.2.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Datasets. We evaluate our PInR on four benchmark datasets: AG-News (Gulli & Sekine, 2005),
SST-2 (Wang et al., 2019), GSM8K (Cobbe et al., 2021), and Quora-QuAD (Toughdata, 2023). AG-
News and SST-2 are adopted for text understanding tasks, applied in a class-conditional generation
manner. Two reasoning-related datasets are employed to validate the necessity of incorporating text
coherence into the condensation process: GSM8K for mathematical calculation, and Quora-QuAD
for reading comprehension.

Baselines. We consider three state-of-the-art methods for model agnostic text condensation.
(1) DaLLME (Tao et al., 2024): clustering in the embedding space and inverting cluster centers
back to the input space. The number of clusters is set equal to the number of condensed samples.
(2) MGD3 (Chan-Santiago et al., 2025): clustering to identify modes in the embedding space, which
serve as a regularizer (often within each class) to enhance diversity. This method is adapted from
image distillation. (3) Aug-PE (Xie et al., 2024): synthesizing condensed samples that approximate
the target distribution by leveraging API outputs. Infinite privacy budget is applied for a fair compar-
ison in settings without privacy constraints. Moreover, we consider selecting a subset of the original
samples uniformly at random, with their number equal to that of the condensed set. We denote
this method as Random, which serves as a reference and has been validated as a strong baseline in
coreset selection (Nguyen & He, 2025).

Models. Given an embedding model, the decoders in our method are trained following the procedure
of Morris et al. (2023). When optimizing particles, we use nonparametric models to optimize score
function, which already yields good performance. For API-based refinement, to avoid concerns that
API capabilities may give our method an advantage, we use the same API version as the baseline
methods whenever applicable, ensuring a fair comparison.

Metrics. For understanding tasks, we fine-tune widely used downstream models including Tex-
tRNN (Hu et al., 2020), DistilBERT (Sanh et al., 2019), and T5-base (Raffel et al., 2020) with
condensed text samples, and report classification accuracy as the evaluation metric. Regard-
ing reasoning-related tasks, we use Llama-3.1-8B-Instruct (Grattafiori et al., 2024), Phi-3.5-Mini-
Instruct (Abdin et al., 2024), and Gemma-2-9B-IT (Team et al., 2024) as downstream models, fine-
tuned on the condensed data conditional upon them, or instructed with them as in-context. In addi-
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Table 1: Evaluation on the AG-News Dataset (%)

Downstream Model Full Random DaLLME MGD3 Aug-PE PInR

TextRNN 92.10 74.10 67.91 72.72 68.30 78.96
DistilBERT 94.50 78.60 86.22 84.83 80.63 87.04

T5-Base 95.40 76.30 86.86 84.64 80.51 87.32

Table 2: Evaluation on the SST-2 Dataset (%)

Downstream Model Full Random DaLLME MGD3 Aug-PE PInR

TextRNN 83.72 60.32 61.24 60.09 66.06 63.19
DistilBERT 91.06 74.43 73.62 75.80 78.33 79.70

T5-Base 94.15 76.61 70.30 80.16 83.26 85.21

tion, we quantify the similarity between the original and condensed data following the measurements
used in Xie et al. (2024).

Throughout all tasks, the best performance is marked in bold, while the second-best is under-
lined. Except for Random which we report its average results following the convention of recent
work (Nguyen & He, 2025), there is no evaluation variance in understanding tasks. In contrast,
for reasoning-related datasets we report average results with standard deviations, with performance
values multiplied by 100 for clearer presentation. Additional experimental details are provided in
Appendix B.2.

5.2 MAIN RESULTS

5.2.1 EVALUATION WITH DOWNSTREAM TASKS

Table 3: Evaluation on the GSM8K Dataset

Downstream Model Zero-shot Type Random DaLLME MGD3 Aug-PE PInR

Llama-3.1-8B-Instruct 73.92±1.21
FT 76.95±1.16 75.74±1.18 74.07±1.21 75.13±1.19 77.26±1.15

ICL 77.55±1.15 74.45±1.20 74.22±1.20 70.35±1.26 75.58±1.18

Phi-3.5-Mini-Instruct 59.97±1.35
FT 60.88±1.34 60.42±1.35 60.42±1.35 60.80±1.34 61.56±1.34

ICL 79.91±1.10 72.25±1.23 72.71±1.23 66.56±1.30 78.24±1.13

Gemma-2-9B-IT 73.77±1.21
FT 74.00±1.21 74.07±1.21 73.84±1.21 74.00±1.21 74.07±1.21

ICL 82.78±1.04 76.72±1.16 76.57±1.17 69.82±1.26 79.61±1.11

We generate 120 and 80 samples for the AG-News and SST-2 datasets, respectively, which corre-
spond to approximately 0.1% of the full training sets, and evaluate accuracy on the original test
sets. The details of downstream training configuration are provided in Appendix B.1 to facilitate
reproduction of our reported results, and Tables 1 and 2 summarize the corresponding results. On
both AG-News and SST-2, we can see that PInR consistently outperforms existing condensation
methods across most downstream models. For AG-News, PInR achieves the best accuracy on all
three backbones, surpassing Random and clustering-based baselines (DaLLME, MGD3) by a clear
margin. Similarly, on SST-2, PInR yields the strongest performance on transformer-based models,
and performing slightly worse than Aug-PE on TextRNN. Although the best performance of con-
densation methods falls short of full-data training, the results confirm that PInR retains much of the
original dataset’s utility while substantially reducing data size.

On reasoning tasks, to support both fine-tuning (FT) and in-context learning (ICL), we generate 500
samples both on the GSM8K and Quora-QuAD dataset. Regarding ICL, we evaluate under a 3-shot
configuration. The evaluation metrics for GSM8K is Exact Match and for Quora-QuAD is Rouge1
(more experimental results in terms of different evaluation metrics are reported in Appendix B). The
shaded results in Tables 3 and 4 correspond to tuning Gemma-2-9B-IT with only a small number
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Table 4: Evaluation on Quora-QuAD Dataset

Downstream Model Zero-shot Type Random DaLLME MGD3 Aug-PE PInR

Llama-3.1-8B-Instruct 15.44±0.01
FT 15.40±0.00 15.68±0.01 15.32±0.01 15.40±0.00 15.73±0.01

ICL 15.64±0.19 13.79±0.03 13.63±0.17 15.40±0.15 17.15±0.09

Phi-3.5-Mini-Instruct 11.97±0.01
FT 12.01±0.01 11.96±0.00 12.05±0.01 11.99±0.01 12.09±0.06

ICL 12.25±0.25 13.18±1.22 13.13±1.09 13.11±1.13 13.28±1.13

Gemma-2-9B-IT 5.73±0.01
FT 5.82±0.01 5.71±0.00 5.71±0.01 5.63±0.01 5.75±0.01

ICL 11.04±0.11 11.40±0.00 11.48±0.01 11.51±0.08 11.64±0.04

of samples, a challenging setting where improvements for all methods are limited. On GSM8K
(Table 3), PInR consistently achieves competitive or superior performance compared with existing
condensation methods across multiple downstream models and training paradigms. For Llama-3.1-
8B-Instruct, PInR attains 77.26% (FT) and 75.58% (ICL), both ranking among the best results and
slightly improving upon strong baselines such as Random. Note that Random dominates the ICL
performance on GSM8K with our method yields the second place. This is because Random is more
faithful to original data regarding true mathematical problems. However, our method obtains the
best performance on Quora-QuAD dataset in most cases, owing to its inherent linguistic character-
istics. The Quora-QuAD dataset spans diverse topics and domains, where a few random samples are
insufficient to provide meaningful guidance.

5.2.2 EVALUATION WITH SIMILARITY QUANTIFICATION

We employ eight similarity metrics including Fréchet Inception Distance (FID) (Heusel et al., 2017),
KL, TV and Wassersteain divergences (Chung et al., 1989), MAUVE score (Pillutla et al., 2021),
and Precision, Recall, F1 score (Kynkäänniemi et al., 2019) to evaluate the quality of condensed text
across four datasets, and the results are summarized in Table 5. Random often yields strong results,
as it can be regarded as an unbiased estimator of the data distribution. Our method consistently ranks
among the top approaches, and even in the few cases where it does not achieve a top-two position, its
performance remains competitive, with scores closely matching the second-best method. Compared
with our approach, the relatively weaker performance of Aug-PE can be attributed to its reliance
on distribution matching based on distance metrics. While effective in certain settings, this strategy
is highly sensitive to initialization and strongly depends on the diversity of variants contributed by
prompt engineering. In contrast, our method directly optimizes within the neighborhood of the
inverted text, thereby maintaining robustness without requiring extensive manual design or reliance
on diverse prompt variants. This design choice allows our approach to achieve stable performance
across datasets with different linguistic and structural characteristics.

5.3 UNDERSTANDING THE PERFORMANCE OF PINR

RQ1: Stein-based particles versus clustering centroids. When the original data in the embedding
space exhibits a clear cluster structure, clustering methods can often achieve satisfactory results, as
they theoretically approximate the data distribution under certain assumptions (Canas & Rosasco,
2012). Fig. 3a shows visualizations of particles derived from GSM8K using both Stein-based parti-
cles and clustering centroids, where both sets of particles are spread across the data space. However,
when only a small number of particles are available, clustering centroids fail to match the quality of
Stein-based particles. We take particles on the AG-News for an example. As illustrated in Fig. 3b,
centroids are neither representative nor diverse. We attribute this to cluster collapse, caused by the
lack of an explicit term to push the centroids apart. Fig. 3c provides a closer look at the locally
grouped Stein-based particles but revealed that this area is dominated by cluster centroid which
eventually confirms the consistent performance of Stein-based particles.

RQ2: The necessity of coherence. To verify whether coherence improves both understanding and
reasoning tasks (We use ICL as a representative setting, as it is more sensitive to data quality.), we
remove the refinement process and apply our method to four datasets. Fig. 4 shows the performance
changes, from which we have the following observations. (i) Text understanding tasks also bene-
fit from coherence, especially on the SST-2 dataset. (ii) Coherence is more critical for reasoning
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Table 5: Evaluation with similarity metrics on four benchmarks. Abbreviations: Wass. (Wasser-
stein), MAU. (MAUVE score), Prec. (Precision), Rec. (Recall).

Dataset Methods FID (↓) KL (↓) TV (↓) Wass. (↓) MAU. (↑) Prec. (↑) Rec. (↑) F1 (↑)

Ag-News

Random 0.7606 0.0411 0.0951 0.0187 0.9943 1.0000 0.9432 0.9708
DaLLME 0.9454 0.1285 0.1922 0.0179 0.9541 0.4333 0.0357 0.0661

MGD3 0.8580 0.1203 0.1881 0.0256 0.9510 0.5333 0.0683 0.1211
Aug-PE 0.9091 1.1767 0.3703 0.0487 0.6280 0.7500 0.0700 0.1281

PInR 0.7135 0.0717 0.1426 0.0114 0.9836 0.7083 0.2521 0.3718

SST-2

Random 0.6640 0.0169 0.0755 0.0097 0.9988 1.0000 0.8851 0.9391
DaLLME 0.8744 1.6857 0.4875 0.1118 0.4502 0.2250 0.0935 0.1321

MGD3 0.7627 0.4694 0.3569 0.0735 0.6959 0.1500 0.1542 0.1521
Aug-PE 0.8728 6.4459 0.6679 0.1497 0.1597 0.3625 0.0867 0.1400

PInR 0.7665 0.6519 0.4438 0.0952 0.4691 0.2375 0.1339 0.1712

GSM8K

Random 0.0655 0.0530 0.1079 0.0016 0.9907 1.0000 0.8363 0.9108
DaLLME 0.0889 0.0665 0.1324 0.0013 0.9857 0.9300 0.8170 0.8699

MGD3 0.0945 0.1939 0.1836 0.0019 0.9589 0.7900 0.7216 0.7542
Aug-PE 0.2871 1.9482 0.5844 0.0158 0.2147 0.1700 0.7333 0.2760

PInR 0.0948 0.0433 0.1145 0.0013 0.9933 0.9560 0.8793 0.9160

Quora-QuAD

Random 0.1736 0.1434 0.1319 0.0019 0.9829 1.0000 0.9141 0.9551
DaLLME 0.1152 0.0141 0.0648 0.0014 0.9991 0.7980 0.9451 0.8653

MGD3 0.2045 0.1287 0.2084 0.0019 0.9498 0.3460 0.7955 0.4822
Aug-PE 0.8884 9.1747 0.8404 0.0302 0.0249 0.1940 0.1046 0.1359

PInR 0.1882 0.0448 0.1091 0.0011 0.9928 0.8480 0.8993 0.8729
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Figure 3: Particles visualization in the embedding space (zoomed in for better visualization).

tasks, the performance drop is significant across different model architectures. This agrees with our
expectation as coherence directly affects sample usability in reasoning tasks.

RQ3: Reliance on API. Our method PInR and the baseline Aug-PE both employ third-party APIs
to assist in generating condensed text. To evaluate the impact of this reliance, we compare them
in terms of performance versus API cost. Fig. 5 presents the results, showing that across all tasks,
PInR achieves better performance while incurring lower API costs. We attribute this advantage
to the warm start provided by inverted text samples: rather than relying on the API to randomly
guess plausible data samples, our method inverts informative particles from the embedding space,
leveraging the model’s generalization on the data manifold.

6 DISCUSSION

6.1 PRIVACY STUDY

One advantage of condensed data generation over coreset selection is that the original data remain
private, and no raw samples need to be shared. However, this remains as a conceptual property and
often lacks theoretical justification in practice. Therefore, we empirically assess potential leakage
by first retrieving the most similar neighboring text and then computing bigram and unigram over-
laps (Martin et al., 1998). Their scores are 0.4476 and 0.5935, respectively, with random selection
yielding 1 for both as a reference. This indicates that condensed data shares partial tokens with the
original data, which is expected since Stein-based particles tend to converge toward high-density
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Figure 4: Performance change w/o refinement
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Figure 5: Performance versus API cost.

regions and thus unavoidably lie close to real samples. A possible workaround is to manually con-
strain Stein-based particles to stay away from original samples, though this comes at the risk of
sacrificing model performance.

When the original training set involves sensitive membership information, the condensation algo-
rithm must satisfy differential privacy (DP) (Dong et al., 2022). This requirement serves as ad-
ditional layer of privacy given that MaTC inherently mitigates risks of text content leakage. Our
method of this version can be equipped with DP, while the direct apply may not be efficient, because
we need to handle decoder training and score function (See Step 3 and 5 of the algorithm in Ap-
pendix A.2). Suppose the decoder is pre-trained. In that case, the lack of coherence in the inverted
text may be compensated by invoking multiple rounds of API calls, reducing our method to Aug-PE
in the extreme case.

6.2 LIMITATION

The sequence length of text data in our experiments cannot be very long. This design choice follows
the observation of Morris et al. (2023) that training text decoders on long sequences is difficult.
With less meaningful inverted long text, the proposed method may become unstable as refinement
has to significantly revise text to align with particles rather than to guide generation toward the real
data distribution. In addition, coherence is the key property we identify as essential for extending
condensation to broader tasks. However, reframing highly complex structures, such as multi-turn
dialogue (Li et al., 2017), remains difficult. For instance, when special tokens like [SEP] are not
recovered, it requires advanced API to complete refinement.

7 CONCLUSION

Beyond understanding tasks, this work takes a step forward in generating condensed text samples
tailored for reasoning-realated tasks. To the best of our knowledge, it is the first to explicitly identify
three key properties that condensed text are expected to satisfy. Building on this insight, we proposed
a two-stage method PInR that integrates informative Particle generation in embedding space with an
Invert-and-Refinement (InR) procedure. By explicitly considering all three properties, our proposed
method PInR generalizes effectively across both understanding and generation tasks. Extensive ex-
periments on benchmark datasets demonstrate that our method consistently outperforms existing
baselines, narrowing the gap between condensed and full-data training while retaining strong gen-
eralization to diverse downstream models. These findings highlight the importance of coherence-
aware condensation and provide evidence that principled design of condensed samples can substan-
tially benefit reasoning-oriented applications. We also discussed potential limitations, including the
adaptability to long sequence or complex structured corpus, and outlined practical workarounds. We
hope that this work lays the foundation for future research on condensation methods that are not only
efficient but also faithful to the structural and semantic properties of natural language data.
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Abdelrahman Zayed, Prasanna Parthasarathi, Gonçalo Mordido, Hamid Palangi, Samira Shabanian,
and Sarath Chandar. Deep learning on a healthy data diet: Finding important examples for fair-
ness. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 14593–
14601, 2023.

12

https://huggingface.co/datasets/toughdata/quora-question-answer-dataset
https://huggingface.co/datasets/toughdata/quora-question-answer-dataset
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://aclanthology.org/2020.lrec-1.494/
https://openreview.net/forum?id=LWD7upg1ob


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A MORE DETAILS ABOUT PINR

A.1 IMPLEMENTATION

For reasoning related datasets such as GSM8K and Quora-QuAD, we put a special token [SEP]
as a separation of questions and answers. The inverted text is thus expected to recover the token so
that it can be clearly treated as a natural textual sample for downstream evaluation. This is not the
only choice, for example, one can add another token between contexts and questions. In this sense,
if these tokens are not recovered, the APIs used in refinement is supposed to revise them.

Decoder training follows the vec2text model (Morris et al., 2023) which uses reconstruction loss
with a recursive corrector. Note that this corrector mainly aims to align the sequences, which is
different from our refinement process. At r-th iteration, it is written as

p(xr|e) =
∑
xr−1

p(xr−1|e)p(xr|xr−1, e), (5)

where the second factor is parameterized as a conditional generator.

There are additional techniques that have been proposed to boost the quality of text condensation.
For example, task-specific prompts can be applied to each sample before converting it into embed-
dings (Tao et al., 2024). We use the same prompt across different methods. Recent work has also
considered sample difficulty (Azeemi et al., 2023) as a factor in condensation. However, this strategy
is not strictly task-agnostic, and we leave this line of exploration to future work.

A.2 ALGORITHM

Algorithm 1 PInR

Require: Embedding model ψ, decoder ω, original training set To, seed number K, a callable API
1: Initialize ψ and ω
2: Obtain embeddings ei through ei = ψ(xi) for each xi in To
3: Train score function ∇e log p(e) with all ei
4: Obtain particles {ẽ}M with each updated by Eq. (2)
5: Train decoder ω with {(xi, ei)}N pairs following (Morris et al., 2023)
6: for j = 1, . . . ,M do
7: Get x̃j0 = ω(ẽj)
8: S0 ← {x̃j0}
9: for t = 0, . . . , T do

10: Generate L variants {a0, a1, ..., aL−1} for any a ∈ St by calling API
11: if t! = T then
12: St+1 is updated by the top-K closest variants to ẽj
13: else
14: Pick the most closest variant as x̃j
15: end if
16: end for
17: end for
18: return Condensed samples {x̃j}M

A.3 CONVERGENCE ANALYSIS

As shown in Fig. 2, our PInR framework is a two-stage method that trains a decoder and a score
function while optimizing text in the neighborhood of fixed points. The Stein-based particles con-
verge with theoretical guarantees as shown in (Liu & Wang, 2016), while the inversion model is
applied based on its generalization ability, since Stein-based particles do not necessarily lie within
the convex hull of the original samples. However, as mentioned earlier, if the inversion model is
not sufficiently strong, we can resort to API-based refinement, which iteratively revises the text.
By computing similarity with anchored particles and leveraging the theoretical results in (Lin et al.,
2024), we show that our method overall converges.
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Table 6: Training configurations on the AG-News dataset

Downstream Model DaLLME MGD3 Aug-PE PInR

TextRNN

MAX TOKENS = 6000000
BATCH SIZE = 8

EMBEDDING DIM = 100
DROPOUT = 0.5

NUM EPOCHS = 20
LR = [5e-3]

HIDDEN DIM=100
N LAYERS=2

BIDIRECTIONAL=True
MAX LEN = 128

USE PRETRAINED = True

MAX TOKENS = 6000000
BATCH SIZE =2

EMBEDDING DIM = 100
DROPOUT = 0.5

NUM EPOCHS = 20
LR = [5e-3]

HIDDEN DIM=100
N LAYERS=2

BIDIRECTIONAL=True
MAX LEN = 128

USE PRETRAINED = True

MAX TOKENS = 6000000
BATCH SIZE = 8

EMBEDDING DIM = 100
DROPOUT = 0.5

NUM EPOCHS = 20
LR = [5e-3]

HIDDEN DIM=100
N LAYERS=2

BIDIRECTIONAL=True
MAX LEN = 128

USE PRETRAINED = True

MAX TOKENS = 6000000
BATCH SIZE = 32

EMBEDDING DIM = 100
DROPOUT = 0.5

NUM EPOCHS = 20
LR = [5e-3]

HIDDEN DIM=100
N LAYERS=2

BIDIRECTIONAL=True
MAX LEN = 128

USE PRETRAINED = True

DistilBERT

BATCH SIZE = 8
MAX LENGTH = 128
NUM EPOCHS = 20

LR = 5e-5

BATCH SIZE = 8
NUM EPOCHS = 20
MAX LENGTH=128

LR = 5e-4

BATCH SIZE = 8
MAX LENGTH = 128
NUM EPOCHS = 20

LR = 5e-5

BATCH SIZE = 8
MAX LENGTH = 128
NUM EPOCHS = 20

LR = 5e-5

T5-base

BATCH SIZE = 8
NUM EPOCHS = 20
MAX LENGTH=128

LR = 5e-4

BATCH SIZE = 8
NUM EPOCHS = 20
MAX LENGTH=128

LR = 5e-5

BATCH SIZE = 8
NUM EPOCHS = 20
MAX LENGTH=128

LR =5e-4

BATCH SIZE = 8
NUM EPOCHS = 20
MAX LENGTH=128

LR = 5e-4

Table 7: Training configurations on the SST-2 dataset

Downstream Model DaLLME MGD3 Aug-PE PInR

TextRNN

MAX TOKENS = 6000000
BATCH SIZE =2

EMBEDDING DIM = 100
DROPOUT = 0.5

NUM EPOCHS = 20
LR = [5e-4]

HIDDEN DIM=100
N LAYERS=2

BIDIRECTIONAL=True
MAX LEN = 128

USE PRETRAINED = True

MAX TOKENS = 6000000
BATCH SIZE =1

EMBEDDING DIM = 100
DROPOUT = 0.5

NUM EPOCHS = 20
LR = [2e-3]

HIDDEN DIM=100
N LAYERS=2

BIDIRECTIONAL=True
MAX LEN = 128

USE PRETRAINED = True

MAX TOKENS = 6000000
BATCH SIZE = 4

EMBEDDING DIM = 100
DROPOUT = 0.5

NUM EPOCHS = 20
LR = [1e-3]

HIDDEN DIM=100
N LAYERS=2

BIDIRECTIONAL=True
MAX LEN = 128

USE PRETRAINED = True

MAX TOKENS = 6000000
BATCH SIZE =2

EMBEDDING DIM = 100
DROPOUT = 0.5

NUM EPOCHS = 20
LR = [5e-4]

HIDDEN DIM=100
N LAYERS=2

BIDIRECTIONAL=True
MAX LEN = 128

USE PRETRAINED = True

DistilBERT

BATCH SIZE = 1
NUM EPOCHS = 20
MAX LENGTH=128

LR = 1e-5

BATCH SIZE = 8
NUM EPOCHS = 20
MAX LENGTH=128

LR = 5e-5

BATCH SIZE = 8
NUM EPOCHS = 20
MAX LENGTH=128

LR = 2e-5

BATCH SIZE = 1
NUM EPOCHS = 20
MAX LENGTH=128

LR = 1e-5

T5-base

BATCH SIZE = 1
NUM EPOCHS = 20
MAX LENGTH=128

LR = 5e-4

BATCH SIZE = 2
NUM EPOCHS = 20
MAX LENGTH=128

LR = 5e-4

BATCH SIZE = 8
NUM EPOCHS = 20
MAX LENGTH=128

LR = 5e-4

BATCH SIZE = 1
NUM EPOCHS = 20
MAX LENGTH=128

LR = 1e-5

B MORE DETAILS ABOUT EXPERIMENTS

B.1 EXPERIMENTAL SETUP

The choice of embedding model ψ(·). Recent works which involve embedding space typically
use sentence transformer or language model embeddings. As “text-embedding-ada-002” has been
identified powerful in (Tao et al., 2024; Xie et al., 2024), we use it throughout our experiments
without further exhaustively testing other alternatives. For all datasets, we generate 3 variants, i.e.
L = 3 and set the seed number K as 1.

Here we give the prompts we used for refinement.

GSM8K:

You are a math tutor. Your job is to correct flawed reasoning in following math Q&A. Always output
the corrected Q&A in the following exact format. Do not add explanations or extra text. Format: Q:
*corrected question text* A: *corrected answer*. Input Q: {question} Input A: {answer}
Quora-QuAD:
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You are a helpful assistant that writes Q&A pairs in the style of Quora. Your job is to make sentences
fluent, grammatically correct, and logically coherent. Write questions and answers in the natural,
conversational, and explanatory style of Quora, where questions are natural, curious and clear, and
answers are clear, concise, conversational, thoughtful, detailed, and easy to understand. Return
only the corrected Q&A, nothing else. Format: Q: *corrected question text* A: *corrected answer*
Input Q: {question} Input A: {answer}
Ag-News:

You will be given a piece of News text, The text may be grammatically incorrect, awkward, incom-
plete, or unnatural. Your task is to polish and rewrite the text. Please polish the following text into
fluent, coherent English that reads like a professional {category} news report, completing unclear
expressions while preserving the original meaning. Input Text: {text}
SST-2:

You will be given a piece of sentence in movie review, The sentence may be incorrect, awkward,
incomplete, or unnatural. Your task is to polish and rewrite the it. Please polish the following
sentence into fluent, coherent English that reads like convey a {category} sentiment, rewrite the
unclear expressions while preserving the original words and meaning as much as possible. Input
Sentence: {sentence}
Additionally, following Tao et al. (2024), we applied task-specific prompts to the classification tasks
before converting the data into embeddings.

Ag-News:

Read the following news article and classify it into one of our categories: World, Sports, Business,
or Science/Technology. Provide a brief rationale for your classification.

SST-2:

Read the following sentences and classify it as either positive or negative sentiment. Provide a brief
rationale for your classification.

We also provide downstream model configurations in Tables 6 and 7 for reproducing the reported
results.

B.2 EXPERIMENTAL RESULTS

For Quora-QuAD dataset, we report the experimental results in terms of the other three metrics in
Table 8, 9 and 10.

We also test the possibility of using a pretrained model for the decoder. Here we preset an exam-
ple for GSM8K using a pretrained model installed from https://github.com/vec2text/
vec2text.

“Donny is a book reader and she has a book for the whole week. Donny is a book reader and she
has a book for the whole week. Donny is a book reader and she has a book for the whole week.
Donny is a book reader and she has a book for the whole week. The number of books he can get is:
2/5 = 5/5 = 2/5 = 2/5 = 2/5 = 2/5 = 2’, ’(10) If a rabbit has come out of the cage in 20 minutes, and
the rabbits have come out of the cage in 30 minutes, the rabbits will have come out of the cage in 20
minutes.”

One can see there are many repetitive sentences as well as non-logical reasoning paths. For advanced
APIs like ChatGPT-5, it is not hard to revise into coherent Q&A samples, while this will become
expensive if we do multi-step refinement to align with the optimized particles.
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Table 8: Evaluation on Quora-QuAD Dataset in terms of Rouge2

Downstream Model Zero-shot Type Random DaLLME MGD3 Aug-PE PInR

Llama-3.1-8B-Instruct 2.84±0.00
FT 2.92±0.00 2.94±0.00 2.85±0.00 2.92±0.00 2.98±0.02

ICL 2.87±0.10 2.46±0.05 2.52±0.01 2.82±0.03 3.02±0.03

Phi-3.5-Mini-Instruct 2.12±0.00
FT 2.15±0.00 2.07±0.00 2.10±0.00 2.15±0.00 2.15±0.04

ICL 2.26±0.10 2.55±0.04 2.51±0.04 2.41±0.01 2.55±0.06

Gemma-2-9B-IT 0.94±0.01
FT 0.96±0.00 0.89±0.00 0.92±0.00 0.90±0.00 0.94±0.01

ICL 1.77±0.06 1.82±0.01 1.83±0.04 1.88±0.00 1.87±0.08

Table 9: Evaluation on Quora-QuAD Dataset in terms of RougeL

Downstream Model Zero-shot Type Random DaLLME MGD3 Aug-PE PInR

Llama-3.1-8B-Instruct 10.35±0.00
FT 10.31±0.00 10.46±0.00 10.24±0.01 10.28±0.01 10.44±0.00

ICL 10.09±0.15 9.30±0.04 09.20±0.14 10.52±0.13 10.86±0.05

Phi-3.5-Mini-Instruct 7.92±0.01
FT 8.06±0.01 8.04±0.01 8.08±0.01 8.03±0.01 8.12±0.03

ICL 8.68±0.11 9.66±0.05 9.58±0.04 9.62±0.02 9.53±0.04

Gemma-2-9B-IT 4.26±0.01
FT 4.30±0.01 4.22±0.00 4.23±0.01 4.18±0.01 4.27±0.01

ICL 8.12±0.09 8.26±0.04 8.30±0.01 8.24±0.02 8.21±0.01

Table 10: Evaluation on Quora-QuAD Dataset in terms of RougeLsum

Downstream Model Zero-shot Type Random DaLLME MGD3 Aug-PE PInR

Llama-3.1-8B-Instruct 11.75±0.01
FT 11.74±0.00 12.00±0.00 11.62±0.01 11.71±0.01 11.93±0.03

ICL 11.86±0.23 10.89±0.04 10.72±0.25 11.81±0.18 12.69±0.07

Phi-3.5-Mini-Instruct 8.95±0.01
FT 9.05±0.01 9.05±0.01 9.10±0.01 9.05±0.01 9.14±0.03

ICL 9.66±0.15 10.94±0.06 10.82±0.00 10.74±0.00 10.79±0.05

Gemma-2-9B-IT 4.56±0.00
FT 4.61±0.00 4.54±0.01 4.55±0.00 4.49±0.00 4.58±0.01

ICL 8.81±0.08 8.98±0.08 9.04±0.00 8.94±0.03 8.95±0.01
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