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Abstract

A key ingredient for successfully applying deep reinforcement learning to challenging
tasks is the effective use of data at scale. Although originally deep RL algorithms
achieved this by storing past experiences collected from a synchronous actor in an
external replay memory (DQN; Mnih, 2013), follow-up works scaled training by collect-
ing data asynchronously through distributed actors (R2D2; Kapturowski et al., 2018),
and more recently by GPU-optimized parallelization (PQN; Gallici et al., 2024). We
argue that DQN, PQN, and R2D2 constitute the outer vertices of a graph, whose edges
correspond to the addition or removal of various training techniques, and whose interior
has thus far remained unexplored. We conduct a thorough empirical study to populate
this interior and develop an understanding of the relationship between the uncovered
methods. Our empirical analyses demonstrate that maximizing data reuse involves
addressing the deadly triad: Q-lambda rollouts for reducing the bias from bootstrap-
ping, the use of LayerNorm for stabilizing function approximation, and parallelized
data collection for mitigating off-policy divergence. Our code is publicly available at
https://github.com/roger-creus/data-reuse-deep-rl

1 Introduction

A number of works have built on the seminal DQN reinforcement learning agent (Mnih, 2013) to
achieve strong performance in complex benchmarks (Hessel et al., 2018), and to provide advances
in online representation learning (Castro et al., 2021), exploration (Osband et al., 2016), sample
efficiency (Schwarzer et al., 2023), and compute efficiency (Kapturowski et al., 2018). These
value-based algorithms leverage previously gathered (off-policy) training data for improved sample
efficiency, a distinct advantage over policy-gradient methods that require gathering new (on-policy)
data for each update (Sutton & Barto, 2018). Recent GPU-optimization techniques have enabled
new environment simulations achieving tens of thousands of steps per second (Matthews et al., 2024;
Weng et al., 2022), which can dramatically speed up training.

Despite their advantages, value-based methods face persistent learning challenges due to the “deadly
triad” of RL: the interplay between function approximation, bootstrapping, and off-policy learning
(van Hasselt et al., 2018). This triad induces severe learning instabilities, particularly when reusing
off-policy data, as it amplifies the bias-variance trade-offs inherent to temporal difference (TD)
learning. Consequently, value-based algorithms require careful tuning of hyper-parameters, such as
small batches, low replay ratios, and large buffers, to ensure stability, making it challenging to scale
with more compute (Obando-Ceron et al., 2024).

These issues are more apparent with parallelized data collection, as used by Apex (Horgan et al.,
2018), R2D2 (Kapturowski et al., 2018), and PQN (Gallici et al., 2024), which explore asynchronous
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and GPU-compiled training setups, necessitating a number of important design choices. For example,
R2D2 uses an LSTM (Hochreiter & Schmidhuber, 1997) and prioritized replay (Schaul, 2015), while
PQN discards target networks in favor of Layer Normalization (Lei Ba et al., 2016) and eliminates
the replay buffer altogether. The learning targets also vary: DQN uses single-step updates (Q(0)),
while R2D2 and PQN calculate multi-step updates over full rollouts. These differences illustrate
how progress in value-based algorithms span architecture, sampling regimes, and learning objectives.
Indeed, these improvements directly address the deadly triad by reducing the reliance on off-policy
data (Gallici et al., 2024; Schaul, 2015) or improving function approximation through techniques
such as layer normalization.

In this work, we take a data-centric view of the deadly triad in deep RL, systematically tracing
the evolution of a representative subset of value-based algorithms. Central to our contributions
is the introduction of the Data Replay Ratio (DRR), a novel metric that offers a more nuanced
understanding of data reuse in value-based methods. This metric forms the basis for optimizing
algorithmic efficiency and represents a key highlight of our work.

We conduct a systematic evaluation on subsets of the Arcade Learning Environment (ALE) (Bellemare
et al., 2013), exploring algorithmic design choices that interpolate between foundational and modern
value-based methods. A high-level summary of this investigation is provided in Figure 6. Our findings
outline several promising research directions for advancing scalable on-policy value-based methods
and dynamically adjusting the data reuse properties to improve stability and efficiency during training.
A more detailed discussion is provided in Appendix F.

2 Data Reuse in Value-Based RL

We introduce the Data Replay Ratio (DRR), a novel metric for analyzing the learning dynamics of
value-based algorithms. Unlike the Replay Ratio (RR) commonly used in prior studies (Fedus et al.,
2020; D’Oro et al., 2022), the DRR provides a more comprehensive framework for optimizing both
sample and compute efficiency.

_ nurp_grad_steps’ DRR — RR - batch_size. )
train_frequency num_envs

num_grad_steps controls how many batches to sample from the buffer while train_frequency controls
how many environment steps are taken between batch samples.

The DRR enables the exploration of alternative scaling strategies, such as increasing batch sizes
or parallelizing environment rollouts, rather than solely adjusting the number of gradient steps per
experience sample. We note that increasing the number of parallel environments has a similar
impact on learning dynamics as decreasing the train_frequency, particularly in terms of the data
generated per unit of computation. However, increasing parallel environments better aligns with recent
advancements in compute-scalable value-based algorithms, as it allows for the efficient generation
and consumption of data through massively vectorized environment simulations. Unlike simply
reducing the replay ratio, which primarily controls the amount of data reused between updates,
increasing parallel environments directly influences the diversity and coverage of data in the replay
buffer, thereby affecting the stability and efficiency of learning. The DRR represents the ratio of data
used for learning to the new data collected per step.

To address critical gaps in understanding data reuse in value-based algorithms, we pose two central
research questions:

RQ1: What strategies can improve data reuse in high data replay ratio settings, where DQON typically
becomes unstable?

RQ2: What are the deadly triad considerations that make it difficult to effectively use a high data
replay ratio?
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2.1 RQI1: Data Reuse in High Data Replay Ratio Settings

In the original DQN setup, num_grad_steps = 1, train_frequency = 4, batch_size = 32 and
num_envs = 1, yielding RR = 0.25 and DRR = 0.25 X 3—12 = 8. However, increasing
num_grad_steps to 2 and reducing train_frequency to 1 (resulting in RR = 2 and DRR = 64)
has been shown to destabilize learning entirely (D’Oro et al., 2022; Sokar et al., 2023). Through-
out the paper, we refer to these unstable conditions as High Data Replay Ratio (HDRR) settings.
With the DRR, we extend this analysis by incor-
porating batch size and the number of parallel
environments into the discussion, allowing for a
deeper understanding of how these factors inter-
play with stability. We hypothesize that DQN’s
vulnerability to HDRR is tied to its reliance on
small batch sizes (susceptible to priming and
overfitting) and limited buffer diversity caused
by using a single environment instance. Thus,
claims about HDRR universally destabilizing §
DQN are context-dependent and linked to this o0 o s s 0B T
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To overcome these limitations, we introduce al- Figure 1: Prior work links high RR to poor perfor-
gorithmic modifications guided by the DRR, in-  mance. We argue this claim is not universal, as RR
cluding larger batch sizes, more environments, gyerlooks key data-centric factors in value-based
and improved data regimes that enhance reuse  Jearning. By adjusting vectorized environments
without compromising stability. As shown in  anq batch sizes to control the DRR, we replicate
Figure 1, DRR-informed design enables stable  faijyre and success cases at RR=1 using DQN. Our
and high performance configurations even at RR findings suggest high DRR is the primary cause of

values previously considered unstable. More-  collapse, and that DRR can reveal configurations
over, we find that DRR, rather than RR alone, yielding superior performance.

more accurately describes the performance col-
lapse observed in high-reuse settings.

2.2 RQ2: Addressing the Challenges of the Deadly Triad

For RQ2, we focus on mitigating challenges posed by the deadly triad (i.e. bootstrapping from
off-policy data with neural network function approximators).

First, we explore less biased TD objectives. While Q(0) (Mnih, 2013) remains a widely used method,
we hypothesize that its bias can exacerbate poor data reuse, reducing both performance and sample
efficiency. To address this, we adopt A-returns (Peng & Williams, 1994), which incorporates multi-
step returns with reduced bias and provide a flexible interpolation of Q(0) and Monte Carlo returns
(Sutton & Barto, 2018). We modify the replay buffer to store fixed-length rollouts, allowing the
computation of Q()\) targets from sequences rather than individual transitions (Figure 21).

Secondly, we test Q() in both low and HDRR settings combined with single and parallel environ-
ments to mitigate off-policy divergence.

Finally, we explore improved non-linear approximation by means of parameter normalization and
re-considering the use of target networks in deep value-based algorithms.

3 Empirical analyses

Guided by the challenges of the deadly triad and toward maximizing data reuse, we explore three
orthogonal axes: (1) the data sampling regime, investigating how parallel data collection impacts the
presence of off-policy data in the replay buffer; (2) the use of rollout TD methods, such as Q()), to
address bootstrapping bias; and (3) improvements to function approximation through normalization
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Figure 2: IQM scores for Q(0) (top row) and Q()\) (bottom row).; ALE/8 (left) reports IQM of
human-normalized scores over 8 Atari games (100M frames). ViZDoom tasks, Deadly Corridor,
Defend the Center, Deathmatch, report IQM episode returns over 10M frames.

and the removal of target networks. These axes yield algorithmic variants that interpolate between
DQN, R2D2, and PQN: (1) Vec-DQN, which augments DQN with parallel environments (Figure
7); (2) DQN-Rollout, which integrates Q(A) TD estimates into single-environment DQN; (3) Vec-
DQN-Rollout as the combination of (1) and (2); and (4) Stable DQN and Stable Vec-DQN-Rollout,
incorporating layer normalization and removing target networks. Table 4 provides a complete
overview of all algorithmic variants used in our experiments throughout the paper.

3.1 Experimental setup

We conduct our experiments using eight representative games from the Arcade Learning Environment
(ALE) benchmark (Bellemare et al., 2013), together with 3 partially-observable tasks from the
VizDoom suite (Kempka et al., 2016). Environment details are provided in Appendix C. In addition
to reporting accumulated returns during training, our analyses also include the mean, median and
interquantile mean (IQM) of the human-normalized scores (HNS) with 95% stratified bootsrap
confidence intervals (Agarwal et al., 2021) obtained with 3 independent runs for each experiment
configuration. Although it is beyond the scope of our work, we provide a preliminary investigation of
data reuse for continuous-action algorithms in Appendix J, as our investigation traces the evolution
of value-based algorithms from PQN, which naturally connects to discrete-control algorithms.

3.2 Results

We start by investigating the effect of parallel data collection, focusing on the transition from DQN
to Vec-DQN in Figure 6 (right), where the DRR provides a framework for analyzing data reuse
properties. As noted in Section 2, DQN typically performs well with a DRR of 8 but experiences
learning collapse under HDRR conditions. We investigate whether parallelized data collection can
address this issue by designing a training configuration that replicates DQN’s data reuse by using
parallel environments and larger training batches (see Figure 7). Specifically, we evaluate whether
this data regime can mitigate the learning collapse observed in HDRR-DQN. The resulting methods,
Vec-DQN, HDRR-DQN, and HDRR-Vec-DQN are illustrated in Figure 20.

In Figure 2, we compare the performance of DQN, HDRR-DQN, Vec-DQN, and HDRR-Vec-DQN.
Results indicate that with the simple Q(0) objective, configurations utilizing a single environment
instance and small learning batches yield higher aggregated performance.
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However, increasing the DRR generally results in diminished performance, with the non-vectorized
versions collapsing entirely. Interestingly, vectorized (i.e. parallel) algorithms, which use larger
learning batches to mimic the DRR of their equivalent single-environment versions, exhibit greater
robustness under HDRR regimes, avoiding complete performance collapse.

These findings suggest that small learning batches induce better optimization, although at the cost of
increased sensibility to priming and overfitting. This observation aligns well with the findings by
(Obando Ceron et al., 2024). Conversely, larger batches mitigate overfitting by averaging gradients
over more diverse data but are more prone to becoming stuck in local minima in the non-stationary
optimization process of deep RL.

Next, we explore the use of rollouts to reduce biased updates by using A-returns. The results shown
in Figure 2 suggest that rollout TD methods are more compatible with vectorized environments
and larger batch sizes. Importantly, while vectorized algorithms remain more robust under HDRR
regimes, the non-vectorized variants also avoid the complete collapse observed when using Q(0).
These results suggest that less biased TD objectives, such as A-returns, have the potential to stabilize
the learning dynamics of value-based algorithms and mitigate the risks of collapse under high data
reuse settings. The full set of learning curves is presented in Figures 14a and 14b. In Appendix D, we
provide a detailed analysis of the learning dynamics induced during training. Our findings reveal
notable correlations between several recently proposed learning metrics in deep RL and the HNS.
Finally, the work in (Gallici et al., 2024) provided theoretical arguments for the use of LayerNorm
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Figure 3: Mean human-normalized scores for , online bootstrapping, and online
bootstrapping with LayerNorm. LayerNorm with Q(0) performs best, showing that improved
function approximation can remove the need for target networks. We refer to this variant as Stable
DQN (see Fig. 6). For Q(\), results vary by environment; e.g., in DemonAttack, bootstrapping
without LayerNorm or targets performs best. This suggests that in some cases, less biased TD
methods like Q)(\) enable safe bootstrapping from the online network.

(Lei Ba et al., 2016) to compensate for the instabilities caused by bootstrapping from the online
network, thus removing the need for target networks, even when using off-policy data; in their
empirical evaluations, however, the authors focused on on-policy settings. We evaluated its impact in
off-policy methods in Figure 3, and find that LayerNorm is a viable alternative to target networks,
consistent with the findings of (Gallici et al., 2024; Lyle et al., 2024). Our results show significant
performance gains in favor of layer normalization compared to the original DQN algorithm, which
uses target networks. Notably, DQN with Q(0) experiences a complete collapse in performance when
the network is not normalized and target networks are absent (blue lines in Figure 3). The use of Q(\)
returns to estimate the TD targets seems to avoid this collapse (green lines in Figure 3).
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This result can be interpreted through the lens of the deadly triad, where improvements in function
approximation gained from learned layer normalization result in safer bootstrapping from off-policy
data, especially when utilizing highly-biased bootstrapped estimates from Q(0).

4 Closing the triangle

As shown in Figure 6, the parallel version of DQN-Rollout (Vec-DQN-Rollout) is just one step away
from PQN (Gallici et al., 2024) and R2D2 (Kapturowski et al., 2018). Building on this connection,
we study how these improvements impact parallel data collection, reuse, and overall efficiency. R2D2
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Figure 4: Asynchronous R2D2 training vs. wall-clock time (40M frames). 128-actor variants
achieve the highest throughput (10k—14k SPS) but suffer from lower DRR and returns, as learners
can’t keep up with incoming data. 8-actor variants are slower but more sample-efficient; pairing 8
actors with small batches (e.g., 8) yields the best returns under a fixed step budget.

(Kapturowski et al., 2018) was established as the state-of-the-art algorithm in the ALE at the time of
its introduction and serves as the basis of the current state-of-the-art algorithms in the ALE such as
MEME (Kapturowski et al., 2022) and Agent57 (Badia et al., 2020). In our work, R2D2 emerges as
Vec-DQN-Rollout augmented with an LSTM, a prioritized sampling scheme, and distributed training.
We provide an implementation of R2D2 that faithfully reproduces the core components of the original
method: (i) a recurrent Q-network, (ii) a prioritized replay buffer, and (iii) distributed computation.'
Further implementation details are available in Appendix H.

In asynchronous training, especially
with prioritized replay, DRR isn’t an- A=00
alytically tractable. Thus, in R2D2,
we empirically track how often each
buffer sample is reused during training
to estimate DRR, and evaluate perfor-
mance as a function of this estimate
(Figure 4).
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generalizes across all value-based methods we tested. The challenge is to maintain learning quality
even as DRR increases.

We also evaluate PQN under varying data reuse. PQN trains only on-policy batches from parallel
environments, discarding data after a set number of updates, akin to PPO (Schulman et al., 2017).
Here, DRR is exactly equal to the number of training epochs per batch.

As with R2D2, PQN exhibits a DRR trade-off: too few epochs hurt sample efficiency; too many
cause collapse. This bell-shaped pattern is prominent in games like Qbert (A = 0.65).

Biased TD targets amplify HDRR failures. PQN avoids full collapse due to large batches, but
performance still drops at high DRR. Lower X (e.g., 0.0 or 0.1) leads to greater degradation under
HDRR. More balanced targets (A = 0.65 or 0.95) are safer. Monte Carlo returns (A = 1.0) cause the
sharpest decline, implying that both TD bias and variance shape the DRR-performance trade-off.

HDRR sensitivity is environment-specific. In BattleZone, performance decays almost monotonically
with DRR, while in Amidar and Qbert the drop is milder, suggesting environment-dependent learning
dynamics warrant deeper study.

Finally, we benchmark PQN and R2D2 on Atari-10, a reliable proxy for the full ALE suite (Aitchison
et al., 2023; Gallici et al., 2024). See Appendix I for detailed results.

5 Conclusion

In this work, we revisited advancements in value-based deep RL algorithms since the introduction
of the canonical DQN algorithm, focusing on the data reuse properties that distinguish this class of
algorithms. Considering the issues of the deadly triad, we proposed modifications to value-based
algorithms by redefining the data regime and introducing the Data Replay Ratio (DRR) as a more
precise measure of sample efficiency compared to the commonly used Replay Ratio (RR). Unlike the
RR, the DRR quantifies the usage of each individual data point during training.

Using the DRR, we proposed a data sampling regime that mimics the characteristics of the original
DQN implementation but incorporates larger training batches and parallel environments. Our goal
was to alleviate the issues of the deadly triad by achieving more stable bootstrapping from off-policy
data. We defined two RQs to drive our empirical study and be able to tackle the deadly triad from a
data-centric perspective, concretely by studying larger training batches, parallel data collection, less
biased TD methods and normalized networks.

Our results indicate that while larger batches trade off the performance benefits associated with the
higher variance of smaller batches (Obando Ceron et al., 2024), they offer increased robustness to
overfitting. Furthermore, less biased TD methods, such as Q()) in place of Q(0), generally improve
data reuse and task performance. Finally, our empirical evidence supports the use of normalized
networks as a viable alternative to target networks, even in off-policy training scenarios, aligning
with the theoretical findings of (Gallici et al., 2024).

Crucially, our study facilitates a clearer mapping of modern developments in value-based algorithms
and their interconnections. To this end, we release an open-source implementation of the R2D2
algorithm?, which emerged naturally in our framework as Vec-DQN-Rollout with the addition of
an LSTM network, prioritized sampling, and asynchronous computation. We benchmarked R2D2
alongside PQN, a recent, simple, yet effective on-policy value-based algorithm, on multiple subsets
of the ALE including the Atari-10 (Aitchison et al., 2023).

As advances in the software and hardware used to train deep networks continue to progress, RL
researchers are empowered to tackle problems of increasing complexity with ever-growing models.
Our investigation has highlighted that, even in these modern and large-scale settings, the canonical
deadly triad continues to prove a central challenge to overcome. In order to develop robust and
reliable agents, it is crucial that we develop a deep understanding of the challenges and trade offs that

2https://github.com/roger-creus/data-reuse-deep-rl
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accompany training under these settings. Our work, which takes a data-centric perspective, is a step
towards developing this understanding.

A Supplementary Diagrams

This section presents additional diagrams referenced throughout the main paper. These visualizations
are intended to support and clarify key concepts and experimental setups discussed in the study.
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RR=1:
DRR = % =8
(a) DQN (b) Vec-DQN

Figure 7: Illustration of the Data Replay Ratio induced by different data sampling configura-
tions. Gray squares represent environment observations, where Vec- denotes vectorized (parallel)
environments contributing observations to a shared buffer. Red squares represent learning batches.

B Background

Our work builds on the evolution from DQN (Mnih, 2013) to more compute- and sample-efficient
value-based algorithms. This progression addresses key challenges in deep RL: improving data reuse,
stabilizing learning, and mitigating the deadly triad: the instability arising from the combination of
bootstrapping, off-policy learning, and function approximation (Sutton & Barto, 2018).
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B.1 Bootstrapping Bias and Multi-Step Returns

Bootstrapping updates value estimates using prior estimates, introducing bias that can destabilize
training. DQN (Mnih, 2013) uses one-step TD targets Q(0), while modern methods like R2D2
(Kapturowski et al., 2018) and Rainbow (Hessel et al., 2018) adopt n-step returns to balance bias and
variance.

Q(A) (Peng & Williams, 1994; 1996) has shown promise even in regimes previously considered
unstable (Kozuno et al., 2021), but its off-policy use is challenging due to stale updates. Mitigation
strategies include importance-weighted corrections (Retrace (Munos et al., 2016)) and periodic
recomputation of targets (Daley & Amato, 2019). Recently, PQN (Gallici et al., 2024) introduced a
lightweight alternative using A-returns on parallel on-policy rollouts, bypassing replay buffers. We
extend these approaches by analyzing multi-step TD methods across varying data reuse regimes.

B.2 Off-Policy Learning and Data Reuse

Off-policy learning is a central challenge in deep RL, as it enables better sample efficiency but also
induces instability due to distributional shift (Sutton & Barto, 2018; van Hasselt et al., 2018). DQN
leverages an experience replay buffer, which allows the agent to reuse past experiences for training
(Mnih, 2013). Several extensions on the replay buffer, such as prioritized experience replay (Schaul,
2015) and distributed replay schemes (Horgan et al., 2018; Kapturowski et al., 2018), have improved
DQN’s learning efficiency by biasing sampling toward informative transitions. However, maximizing
data reuse introduces new challenges. While increased data reuse improves efficiency in supervised
learning, excessive reuse in RL often leads to training collapse (Kumar et al., 2020; D’Oro et al.,
2022; Sokar et al., 2023).

B.3 Neural Network Function Approximation

The third challenge of the deadly triad arises from the use of deep neural networks as non-linear
function approximators in value-based RL. Unlike learning with linear models, function approxi-
mation errors are often unstructured, rendering deep RL particularly susceptible to overestimation
bias, representation collapse, and catastrophic forgetting (Baird et al., 1995; Tsitsiklis & Van Roy,
1996; Sutton & Barto, 2018; van Hasselt et al., 2018). DQN partially mitigates these issues with
target networks, which stabilize bootstrapping updates by maintaining a slowly updated copy of the
Q-network, and recent works have explored alternative stabilizers (Bhatt et al., 2019).

Plasticity loss and primacy bias in deep RL networks have been a barrier to improving algorithms
(Nikishin et al., 2022). Proposed solutions include periodic network resets (Nikishin et al., 2022;
Sokar et al., 2023), weight pruning (Obando-Ceron et al., 2024a), and auxiliary penalties to prevent
feature rank collapse (Kumar et al., 2020).

Layer normalization (Lei Ba et al., 2016) has been shown to improve training stability by addressing
distributional drift in network activations (Lyle et al., 2024). PQN (Gallici et al., 2024) eliminates
target networks entirely in favor of LayerNorm and achieves competitive performance without the
need for a replay buffer.

A more comprehensive discussion of our work in relation to existing research can be found in
Appendix E.

C Evaluation Details

In this paper, we use subsets of the Arcade Learning Environment (ALE) (Bellemare et al., 2013) for
our experiments. For evaluating the research questions, we use 8 representative games from ALE.
To benchmark the most promising algorithmic variations identified in this study, alongside modern
baselines such as PQN (Gallici et al., 2024) and R2D2 (Kapturowski et al., 2018), we use the Atari-10
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subset (Aitchison et al., 2023). This subset comprises 10 games chosen for their strong correlation
with evaluation results on the full set of 57 ALE games.

* Eight representative ALE games: Breakout, Spacelnvaders, Asterix, Pong, Qbert, DemonAttack,
Seaquest, MsPacman

* Atari-10: Amidar, Bowling, Frostbite, KungFuMaster, RiverRaid, BattleZone, DoubleDunk,
NameThisGame, Phoenix, Qbert

All experiments were conducted on a single-GPU setup using an NVIDIA RTX 8000, 12 CPU
workers, and 50GB of RAM. DQN experiments required approximately 10 hours to complete 40
million environment steps in the ALE using single-environment settings. In contrast, vectorized
DQN variants and PQN reduced training time to approximately 2 hours under the same compute
configuration.

D Learning Dynamics

We investigate the learning dynamics of the different value-based algorithms evaluated in Figures 2
and 2 by measuring several recently proposed learning metrics to uncover their relationships with the
downstream task performance. These metrics include the emergence of dead neurons, computed as
dormant neurons with 7 = 0 (Sokar et al., 2023; Nikishin et al., 2022), policy churn (Schaul et al.,
2022), and representation rank (Kumar et al., 2020). The results are shown in Figure 19 and indicate
that while there are some interesting correlations between learning metrics from different recent
works, none result in a significantly strong relationship with HNS. Notable relations include:

Correlation betwen learning metrics and HNS

DRR 027 D012 013 031 -0l4-

023 0083 -0.035-

Dead Neurons (MLP) 031 0083 [EURDX

HNSC 014 0035 -0.075

Dead Neurons

Number of Environments =
N

Figure 8: Correlation matrix with statistics aggregated over the 8 ALE environments used throughout
the paper. This analysis captures linear relationships between widely used learning metrics, providing
insights into the learning dynamics of deep RL algorithms.

» Higher DRR generally leads to worse performance, increased policy churn, a decrease in the rank
of the representations (which causes a loss of the network’s expressivity) (Kumar et al., 2020), and
more dead neurons, especially in the penultimate fully-connected layer of the networks.

 Using a higher number of environments (i.e., also implying larger batch sizes) drastically reduces
the number of dead neurons in the representations, at the cost of a slight increase in dead neurons
in the convolutional layers. This allows the network to learn higher-rank representations. Notably,
larger batches increase policy churn, which can help with exploration but also makes updates more
unstable, as the greedy policy varies more abruptly.

* Feature rank does not seem to have a significant relation with HNS, though it is strongly (negatively)
correlated with the presence of dead neurons in the representations. The appearance of dead neurons
significantly diminishes the rank of the representations.
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Figure 9: Learning dynamics during training for the algorithms evaluated in the RQs.

* Policy churn is correlated with several other metrics, as larger batches induce more churn, but
also more dead neurons. However, the aggregate of all results indicates that there is no strong
relationship between churn and HNS.

* Interestingly, dead neurons in the convolutional layers occur less frequently than in the penultimate
fully-connected layer, but when they do appear, they have a more severe impact on task performance.
This underscores the importance of improving the expressivity of convolutional architectures in
online deep RL and empirically justifies the widespread adoption of the residual architecture, such
as the Impala CNN (Clark et al., 2024; Castro et al., 2018), in recent literature. This architecture has
shown significant performance gains across benchmarks in deep RL, despite the lack of rigorous
studies explaining why.

We present the learning dynamics during training in Figure 9, which provide several insightful
observations:

* HDRR leads to an increase in the number of dead neurons during training. Additionally, it results
in a collapse of the representation rank, particularly when using Q(0) for optimization. In contrast,
Q(\) proves to be a more robust objective, helping to prevent this feature rank collapse.

* HDRR also causes a significant increase in the norm of the representations, especially in the early
stages of training, which negatively impacts performance. Notably, this effect is mitigated when
using larger training batches.

» Larger training batches tend to increase policy churn, resulting in more abrupt changes in the
greedy policy. This not only affects the actions chosen during training but also influences the
bootstrapping targets, thereby impacting the stability of the TD targets. This could explain the
observed performance loss compared to smaller batches.

E Discussion

The Deadly Triad in deep RL

The concept of the deadly triad, comprising function approximation, bootstrapping, and off-policy
learning, has long been recognized as a potential source of instability in reinforcement learning
algorithms (Sutton & Barto, 2018). This combination, when not managed carefully, can lead to
divergence in value estimates and erratic learning behavior even with linear function approximators
(Tsitsiklis & Van Roy, 1996; Baird et al., 1995).

Function approximation, particularly with complex architectures like deep neural networks, inherently
introduces approximation errors. When bootstrapping is applied to these approximations, any errors
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are compounded across iterations, exacerbating divergence issues (Zhang et al., 2021; Van Hasselt
et al., 2018). Off-policy learning further complicates this picture because the data distribution under
which the agent learns may differ substantially from that induced by its current policy (Kozuno et al.,
2021). This divergence between data and policy has been a key focus in reinforcement learning
research, motivating the development of techniques aimed at stabilizing learning while leveraging the
benefits of off-policy data (Munos et al., 2016; D’Oro et al., 2022).

Deep reinforcement learning algorithms, such as Deep Q-Network (DQN) (Mnih, 2013) and its
various extensions, have made significant progress in addressing the deadly triad. These algorithms
incorporate mechanisms like experience replay (Li et al., 2021), target networks (Zhang et al., 2021),
and carefully tuned update rules that help mitigate the instability typically induced by the triad
(Schwarzer et al., 2023).

Despite these advances, the deadly triad remains a critical area of investigation in reinforcement
learning research (Van Hasselt et al., 2018; Nauman et al., 2024a; Hussing et al., 2024). The interplay
between theoretical insights and empirical evaluations continues to drive progress toward more robust
and reliable algorithms (Gallici et al., 2024). Recently, (Gallici et al., 2024) propose PQN, a purely
on-policy value-based algorithm that explicitly deals with the cornerstone challenges of the deadly
triad and achieves great performance empirically. PQN includes LayerNorm layers (Lei Ba et al.,
2016) to stabilize function approximation, multi-step A-returns to reduce the bootstrapping bias, and
computes gradient updates only with on-policy data.

Parallel Reinforcement Learning

Parallel reinforcement learning (RL) has played a central role in scaling up learning processes by
enabling faster data collection and more efficient policy updates. In these settings, multiple agents
(actors) interact with environment replicas concurrently, with their experiences aggregated, either
synchronously or asynchronously, to update a central learner. This decoupling improves sample
efficiency, reduces temporal correlations, and accelerates convergence.

Parallel policy gradient algorithms often employ the actor-learner architecture. Asynchronous
Advantage Actor-Critic (A3C) (Mnih et al., 2016) was a seminal work in this direction, showing that
multiple asynchronous actor threads, each interacting with its own environment instance, can reduce
sample correlation and improve exploration without requiring experience replay. A synchronous
variant, A2C (Sutton & Barto, 2018), collects trajectories from parallel environments and performs
batched updates to stabilize learning.

Later, asynchronous PPO variants combined PPO’s clipped surrogate objective with parallel experi-
ence generation. IMPALA (Importance Weighted Actor-Learner Architecture) (Espeholt et al., 2018)
scaled this further by decoupling acting and learning entirely: many CPU-based actors generate
trajectories and send them to a GPU-based learner. To address the off-policy nature of the resulting
data, IMPALA applies a V-trace correction to ensure stable learning.

These approaches share several key ideas:

* Parallel data collection: Multiple actors generate diverse trajectories in parallel, reducing variance
in policy gradient estimates.

* Actor-Learner architecture: A central learner aggregates and applies gradient updates based on
batches from distributed workers.

* On-policy vs. off-policy trade-offs: While A3C and A2C are fundamentally on-policy, IMPALA
handles off-policy corrections arising from asynchronous updates.

Value-based methods have also benefitted significantly from parallelization. Distributed DQN
variants such as APEX (Distributed Prioritized Experience Replay) (Horgan et al., 2018) and R2D2
(Recurrent Experience Replay in Distributed RL) (Kapturowski et al., 2018) use many actors to
generate experience stored in a centralized replay buffer. The learner samples from this buffer, often
with prioritization, to update the Q-network.
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Recently, methods such as PQN (Parallel Q-Networks) (Gallici et al., 2024) and its variants have
demonstrated that it is possible to achieve strong performance using purely on-policy data collection,
even in value-based settings. In PQN, multiple actors each generate trajectories in parallel across
distinct environment instances. These rollouts are then aggregated into a single large batch of on-
policy experience, which is used to perform multiple gradient updates, similar to the minibatch and
multi-epoch optimization procedure in PPO. After completing several epochs of training on this
batch, the data is discarded, and a new set of rollouts is collected, with no persistent replay buffer or
experience reuse.

Despite the lack of off-policy data reuse, PQN still achieves strong sample efficiency and competitive
performance. This finding is central to the motivation behind our work: we investigate what
fundamental factors enable such efficiency in the absence of replay and explore whether value-based
algorithms like PQN can be extended to support more effective data reuse. In particular, we seek
mechanisms that allow more gradient steps per data point without suffering from the empirical
collapse typically observed in off-policy value-based methods when data is overused.

Learning Dynamics Under High Data Reuse

A number of studies have identified several factors that impede effective data reuse in deep rein-
forcement learning. For example, the phenomenon of dying neurons, in which a large fraction of
ReLU-activated neurons become inactive over time, has been reported as a significant barrier to
sustained learning (Sokar et al., 2023). Concurrently, representation collapse, often measured by a
decrease in the rank or diversity of internal features, further restricts a network’s ability to capture
new information and thus hinders data reuse (Lyle et al., 2024; Kumar et al., 2020). These issues limit
the network’s effective capacity by reducing the richness of the learned representations, ultimately
leading to poorer generalization on novel data.

In addition to neuron inactivation and representational bottlenecks, loss of plasticity has emerged as a
central challenge, where a network’s ability to adapt to new data distributions gradually deteriorates
(Nikishin et al., 2022). Research has shown that beyond the well-known problem of catastrophic
forgetting, deep RL agents may also struggle to update their parameters effectively when overexposed
to a fixed data distribution. Interventions such as plasticity injection (Nikishin et al., 2022; D’Oro
et al., 2022) have been proposed to maintain plasticity by periodically reinitializing or perturbing
less active units. These approaches indicate that a more dynamic strategy is needed to preserve the
network’s learning capability, which motivates our investigation into alternative metrics like the Data
Replay Ratio (DRR) to capture the true impact of data reuse on learning dynamics.

What matters for maximizing data reuse

Our main contribution is the introduction of the Data Replay Ratio (DRR), a metric that offers a more
faithful characterization of the effective data utilization in deep reinforcement learning experiments.
We demonstrate that DRR captures important aspects of learning dynamics that are overlooked by
the more commonly used Replay Ratio (RR). In particular, we present empirical scenarios in which
different configurations, despite having identical RR values, lead to significantly different learning
behaviors, which are accurately distinguished by their DRR values (see Figure 1).

Crucially, by modifying data-centric settings such as the number of parallel environments, batch size,
and replay buffer capacity, we can induce variations in DRR while keeping RR constant. This allows
us to isolate the effects of data reuse from other confounding factors. We observe that increasing the
number of parallel environments and using larger batch sizes tends to mitigate the harmful effects of
overfitting and priming in high-DRR regimes.

Additionally, DRR provides an accurate characterization of data reuse even in asynchronous settings,
where the interaction between the actor and learner processes does not follow a fixed learning
schedule. Instead, the rate at which data is generated and consumed varies dynamically, making
traditional metrics less reliable. Our experiments with R2D2 in Figure 4 reveal key factors that
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influence DRR fluctuations in highly asynchronous and parallelized environments, providing insights
into how data reuse evolves under such conditions.

Progress in value-based deep reinforcement learning

Recent advancements in value-based deep reinforcement learning RL have introduced a variety of
new algorithms aimed at training agents to achieve superior performance in complex benchmarks.
Many of these approaches address different orthogonal challenges in existing methods, leading to
improvements in sample efficiency, stability, and generalization.

BBF (Schwarzer et al., 2023) enhances learning efficiency by incorporating dynamic schedules
for key hyperparameters, such as the discount factor and n-step return, alongside self-predictive
representations. These innovations enable BBF to achieve state-of-the-art sample efficiency, as
demonstrated in the Atari1l00k benchmark. Similarly, BRO (Nauman et al., 2024b) improves sample
efficiency in continuous control tasks by selectively scaling the critic’s architecture in an actor-
critic framework and applying layer normalization to the critic. Additionally, BRO incorporates
mechanisms for optimistic exploration to enhance learning stability.

Further architectural innovations have been introduced by Simba (Lee et al., 2024), which leverages
dynamic observation normalization, residual connections, and layer normalization to facilitate more
efficient parameter scaling. Beyond architectural improvements, recent works such as ReDo (Obando-
Ceron et al., 2024b) focus on fundamental learning dynamics in value-based RL. ReDo specifically
addresses the issue of dormant neurons by identifying and pruning them throughout training, resulting
in sparser models that benefit from a simplicity bias, leading to improved generalization and sample
efficiency.

The evolution of value-based RL methods can also be seen in the lineage from DQN (Mnih, 2013)
to Rainbow (Hessel et al., 2018), and subsequently to Agent57 (Badia et al., 2020) and MEME
(Kapturowski et al., 2022). These later approaches leverage learned meta-controllers to dynamically
select policies for data collection. MEME further improves sample efficiency by integrating trust
regions and multi-step returns with Q(\), while also eliminating the need for a target network.
However, both Agent57 and MEME are computationally expensive and currently lack accessible
open-source implementations, limiting their practical adoption.

F Future Work

Our study reveals several promising research directions to tackle the learning challenges identified:

Interconnections of normalization, bootstrapping instability, and temporal difference (TD) bias:
Our findings suggest that while target networks can be replaced with layer normalization when using
Q(0), removing them in favor of Q(\) provides stability without performance loss. This aligns with
the empirical insights of (Kapturowski et al., 2022), where MEME optimizes a soft Q(\) objective
without target networks, relying on bootstrapping from the online network.

Advancing on-policy value-based algorithms: Develop methods that combine the compute effi-
ciency of parallel algorithms without large replay buffers (like PQN) while efficiently leveraging the
theoretical off-policy learning properties of value-based algorithms.

Batch size and DRR scheduling in value-based deep RL: Gain a deeper understanding of how batch
size and DRR affect performance. Explore how dynamically adjusting batch size, and consequently
DRR, during training can balance the increased variance and exploration benefits of smaller batches
with the stability, robustness, and improved sample reuse efficiency offered by larger batches. This
opens the door to adaptive scheduling strategies that optimize data reuse and performance throughout
learning.

Open-source implementations of state-of-the-art algorithms: Provide open-source implementa-
tions of competitive algorithms like MEME and Agent57. In this work, we release an open-source
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implementation of R2D23, featuring a recurrent Q network with an LSTM module, a prioritized
replay buffer, and high-throughput asynchronous training. Since MEME and Agent57 are built on the
R2D2 infrastructure, our implementation serves as a foundation for further open-source development
of these algorithms. Additionally, it enables the analysis of DRR properties in asynchronous settings,
facilitating a better understanding of these algorithms.

Improving convolutional architectures: Address the emergence of dormant neurons in convolutional
layers, which our results show that significantly influence the task performance of value-based
algorithms. This may explain the empirical success of adopting the ImpalaCNN residual architecture
in deep RL (Castro et al., 2018; Clark et al., 2024). Further investigation is needed to understand the
performance gains offered by different convolutional architectures such as squeeze-and-excitation
networks (Hu et al., 2018), which have been utilized in algorithms like MEME.

G Limitations

The Data Replay Ratio (DRR) offers a more informative measure of data reuse in deep value-based
algorithms than the traditional Replay Ratio (RR), capturing performance degradation more accurately
in high-reuse regimes. However, fully characterizing data-centric scaling laws requires considering
additional factors beyond DRR.

Notably, different configurations can yield the same DRR, for instance, by proportionally scaling
num_envs and batch_size, yet result in distinct learning dynamics and performance. Larger batch
sizes, in particular, influence stability, variance, and exploration in ways not captured by DRR alone
(Obando Ceron et al., 2024). Moreover, evaluation depends on the experimental budget: fixing
the number of environment steps means larger batch settings require fewer gradient updates, while
fixing the number of updates leads to larger batches consuming more total data, and both affect
comparability.

In this work, we propose DRR as a practical metric to guide data-centric scaling in value-based RL.
While helpful, DRR should be interpreted alongside other design factors when generalizing across
diverse training regimes.

H R2D2 Open Source Implementation

R2D2 (Kapturowski et al., 2018) trains a recurrent Q-function using an LSTM network to extract
representations that capture historical information. To train with off-policy data, R2D2 introduces a
burn-in strategy to recover from stale LSTM states in the replay buffer. Additionally, R2D2 operates
in a distributed setting, similar to using parallel environments but with the added complexity of
asynchronous communication.

The state-of-the-art performance of R2D2 reported by (Kapturowski et al., 2018) required 1e10
environment steps and 2M gradient updates, taking few days to complete the training program
thanks to the extensive compute resources used. Note that a single-environment implementation of
DQN (Mnih, 2013) can achieve better performance than R2D2 given a fixed budget of environment
interaction steps (e.g. 200M frames) but it can take up to 4 full days of training (Castro et al., 2018).
The latter illustrates the trade-off between sample-efficiency and wall-clock time in the asynchronous
settings mentioned in the paper.

Similar to the original R2D2 implementation, we use batches of 64 rollouts during training, containing
rollouts of length 80, along with a burn-in period of 40 steps. (Kapturowski et al., 2018) reported an
approximate speed of 65k simulation steps per second for data collection and 5 learning steps per
second. In contrast, our best-performing R2D2 configuration achieves around 5k steps per second for
data collection and 7 learning steps per second, likely resulting in a significantly higher DRR than the
original implementation.

3https://github.com/roger-creus/data-reuse-deep-rl
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A significant difference between our implementation of R2D2 compared to the original one in
(Kapturowski et al., 2018) (other than the available computational resources used during training) is
the multi-step TD method used for computing target returns. In our work, we used A-returns due to
consistency reasons as that is the same objective we use for all other discovered rollout algorithms
(e.g. DQN-Rollout, Vec-DQN-Rollout, PQN). (Kapturowski et al., 2018) used n-step returns instead
(Sutton & Barto, 2018).

Table 1: Hyperparameters for R2D2.

Parameter Value
num_envs 32
buffer_size 1,000,000
batch_size 64
rollout_length 80
start_e 1
end_e 0.01
exploration_fraction 0.1
learning_rate 2.5e-4
learning_starts 80,000
A 0.65
gamma 0.99
tau 1.0
target_network_frequency (learner steps) 500
burn_in_lstm_length 40
per_eta 0.9
per_alpha 0.9
per_beta 0.6

I Benchmark

We evaluate the best-performing R2D2 configuration in Figure 4 and PQN on both the 8 repre-
sentative ALE games used throughout the paper and the Atari-10 suite (Aitchison et al., 2023),
training for the standard 200M environment steps (see Appendix C for details). We also include the
DQN-NoTarget+LN variant, referred to as Stable DQN in Figure 6, which demonstrated superior
performance among the Q(0)-based methods (see Figure 3). This evaluation, summarized in Table 2,
provides valuable context for comparing the performance of various value-based baselines. Addi-
tionally, we provide the benchmark results in the Atari-10 in Table 3. In the 8 representative ALE

Table 2: Scores on the 8 representative ALE games (200M frames)

Environment PQN DQN-NoTarget+LN R2D2
Asterix 331,062 226,677 9,000
Breakout 518,46 393,62 422,89
DemonAttack 171,992 976,311 50,912
MsPacman 4,480 2,609 2,734
Pong 20.86 20.74 20.55
Qbert 22,900 18,683 14,841
Seaquest 54,489 10,803 20,770
Spacelnvaders 30,427 2,522 11,341
DRR 2 8 ~4
Training Time (hours) 2.69 26.34 20.07

games, PQN outperforms the other algorithms in 6 out of the 8 environments and is approximately
nine times faster to train. These results position the newly proposed PQN algorithm as a highly
competitive and efficient baseline for advancing value-based deep RL. For R2D2, the differences
between our results and those reported by (Kapturowski et al., 2018) can be attributed to variations in
the training budget (200M vs. 1e10M frames) and the number of computational resources used (32
vs. 256 CPU actors). The results on the Atari-10 benchmark (Aitchison et al., 2023) are presented
in Table 3. Notably, our R2D2 implementation achieves the highest performance in 3 games of the
Atari-10 despite differences in compute availability, while PQN and DQN-NoTarget+LN achieve the
best results in 5 and 2 games, respectively.
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Table 3: Atari-10 scores (200M frames)

Environment PQN R2D2 DQN-NoTarget+LN
Amidar 1,409 1,614 1,063
BattleZone 58,140 68,000 29,340
Bowling 60.86 49.75 41.81
DoubleDunk -8.48 3.00 -19.39
Frostbite 4,058 4,650 7,712
KungFuMaster 19,114 26,200 26,880
NameThisGame 18,784 2,540 11,877
Phoenix 71,933 4,116 22,629
Qbert 22,900 18,683 14,841
Riverraid 24,985 7,830 16,618
DRR 4 4 8
Training Time (hours) 2.69 24.07 26.34

J Extended Evaluation in Continuous Control Tasks

For this study, our choice of DQN, PQN, and R2D?2 is directly motivated by the recent introduction
of PQN, a value-based algorithm designed to be sample-efficient and stable while entirely avoiding
the use of a replay buffer, thus disallowing data reuse. Interestingly, despite PQN being theoretically
off-policy, there is no strong justification for completely discarding the replay buffer. This observation
naturally motivates our exploration: can we improve over PQN by explicitly reintroducing and
controlling data reuse?

To assess the generality of our claims beyond discrete-action environments, we conducted additional
experiments in continuous control domains using SAC (Haarnoja et al., 2018), TD3 (Fujimoto et al.,
2018), and DDPG (Lillicrap et al., 2015) across the standard benchmarks of Hopper, Walker2d,
and Humanoid, averaging the results over 3 independent runs. These experiments serve two main
purposes:

* Validate whether the core phenomenon observed in our main analysis, namely that high data reuse
(HDRR) degrades learning performance, extends to continuous control settings.

* Test the explanatory power of DRR versus RR in these domains, and whether the learning collapse
under HDRR is similarly observed and mitigated by appropriate data regimes (e.g., larger batch
sizes, more parallel environments).

Interestingly, TD3 exhibits a strong capacity for data reuse, benefitting from training configurations
that lead to higher DRR values. However, interpreting the learning dynamics remains challenging. For
instance, in the Humanoid environment, high DRR (HDRR) settings with vectorized environments and
large training batches perform similarly to low DRR settings with small training batches. Conversely,
the vectorized version with small batches performs as poorly as the non-vectorized version with larger
batches. Despite these variations, the configuration with the highest DRR generally yields the best
performance for TD3 across these environments. This observation motivates further investigation into
the effects of delayed updates and double clipping mechanisms in TD3, which may help maximize
data reuse.

For SAC and DDPG, the results are inconclusive and highly dependent on the specific environment.
As mentioned earlier, the main focus of our paper is to trace the algorithmic decisions that led
to the development of modern algorithms like PQN, which deploy deep value-based methods in
purely on-policy settings, achieving strong performance across various baselines. In doing so, we
specifically targeted discrete control problems. However, the findings presented in this section also
provide valuable insights that can inspire future research on purely on-policy and highly regularized
algorithms for continuous control tasks.
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Figure 10: DRR vs. performance in TD3 across the Hopper, Walker2d, and Humanoid environments.

Episode Return

il
8

Hopper-v4

Humanoid-v4

Walker2d-v4

Episode Return

1750

1500

1250

1000

Episode Return

1000 4

800 -

600 -

400 4

200

Steps x10°

steps x10°

x10°

(RR, DRR)
(1, 256)
— (4,1029)

Variant
—— standard
-—- Vectorized

Figure 11: DRR vs. performance in DDPG across the Hopper, Walker2d, and Humanoid environ-
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Figure 12: DRR vs. performance in SAC across the Hopper, Walker2d, and Humanoid environments.

Figure 13: DRR vs. performance in continuous control tasks (Hopper, Walker2d, Humanoid) for
different algorithms: TD3, DDPG, and SAC.
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K Algorithmic Variants

Alg. Vee. Tgt LN TD  Replay DQL LSTM
DQN X 7/ X Qo v X X
Double DQN X v X Q(0) v v X
Rainbow X v X N-step v v X
PQN o X /0 QW X X X
R2D2 v v X N-step v v v
DQN-Rollout X v X Q) v X X
Stable-DQN-Rollout X X v Q) v X X
Vec-DQN v v X Q0) v X X
Stable-Vec-DQN v X v Q(0) v X X
Vec-DQN-Rollout v v X Q) v X X
Stable-Vec-DQN-Rollout v X v Q) v X X

Table 4: Component-wise configuration of the value-based algorithms studied in this work, covering
both architectural and algorithmic dimensions. Abbreviations: Vec. = Vectorized (multi-environment
training), Tgt = Target Network, LN = Layer Normalization, TD = Temporal Difference Target,
Replay = Replay Buffer, DQL = Double Q-Learning, LSTM = Long Short-Term Memory.

L. PQN Hyperparameters

We use the implementation of PQN provided in CleanRL* and the hyperparameters proposed by
(Gallici et al., 2024).

Table 5: Hyperparameters for PQN.

Parameter Value
learning_rate 2.5¢e-4
num_envs 128
num_steps 32
anneal_1lr True
gamma 0.99
num_minibatches 32
update_epochs 2
max_grad_norm 10.0
start_e 1
end_e 0.01
exploration_fraction 0.10
A 0.65

4nttps://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/pgn_atari_envpool.py
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Figure 19: Evaluation of Double DQN (DDQN) in Ataril0. While DDQN is designed to mitigate
the TD bootstrapping bias and potentially improve data reuse, our results for DDQN show similar
behavior to the DQN results in Figure 2. Specifically, small batch sizes remain highly sensitive to
HDRR settings, often resulting in complete collapse. This issue can be mitigated by using vectorized
environments and larger batch sizes. However, smaller batches can offer performance improvements
due to their high variance updates, which may facilitate better exploration within the parameter space.
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(c) Vec-DQN (d) HDRR-Vec-DQN

Figure 20: INlustration of the DRR across different data sampling configurations. Gray squares repre-
sent environment observations, where Vec- denotes multiple environments contributing observations
to a shared buffer. Red squares depict learning batches.

N Diagrams

(2) Q(0) (b) Q(N)

Figure 21: Different data sampling procedures when training with Q(0) vs Q(\).

O Broader Impact

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none which we feel must be specifically highlighted
here.
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