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ABSTRACT

Reasoning over knowledge graphs (KGs) is a challenging task that requires a deep
understanding of the complex relationships between entities and the underlying
logic of their relations. Current approaches rely on learning geometries to embed
entities in vector space for logical query operations, but they suffer from subpar
performance on complex queries and dataset-specific representations. In this paper,
we propose a novel decoupled approach, Language-guided Abstract Reasoning
over Knowledge graphs (LARK), that formulates complex KG reasoning as a
combination of contextual KG search and logical query reasoning, to leverage
the strengths of graph extraction algorithms and large language models (LLM),
respectively. Our experiments demonstrate that the proposed approach outperforms
state-of-the-art KG reasoning methods on standard benchmark datasets across
several logical query constructs, with significant performance gain for queries of
higher complexity. Furthermore, we show that the performance of our approach
improves proportionally to the increase in size of the underlying LLM, enabling
the integration of the latest advancements in LLMs for logical reasoning over KGs.
Our work presents a new direction for addressing the challenges of complex KG
reasoning and paves the way for future research in this area.

1 INTRODUCTION

Knowledge graphs (KGs) encode knowledge in a flexible triplet schema where two entity nodes
are connected by relational edges. However, several real-world KGs, such as Freebase (Bollacker
et al., 2008), Yago (Suchanek et al., 2007), and NELL (Carlson et al., 2010), are often large-scale,
noisy, and incomplete. Thus, reasoning over such KGs is a fundamental and challenging problem
in AI research. The over-arching goal of logical reasoning is to develop answering mechanisms
for first-order logic (FOL) queries over KGs using the operators of existential quantification (∃),
conjunction (∧), disjunction (∨), and negation (¬). Current research on this topic primarily focuses
on the creation of diverse latent space geometries, such as vectors (Hamilton et al., 2018), boxes
(Ren et al., 2020), hyperboloids (Choudhary et al., 2021b), and probabilistic distributions (Ren
and Leskovec, 2020), in order to effectively capture the semantic position and logical coverage of
knowledge graph entities. Despite their success, these approaches are limited in their performance
due to the following. (i) Complex queries: They rely on constrained formulations of FOL queries
that lose information on complex queries that require chain reasoning (Choudhary et al., 2021a) and
involve multiple relationships between entities in the KG, (ii) Generalizability: optimization for a
particular KG may not generalize to other KGs which limits the applicability of these approaches
in real-world scenarios where KGs can vary widely in terms of their structure and content, and (iii)
Scalability: intensive training times that limit the scalability of these approaches to larger KGs and
incorporation of new data into existing KGs. To address these limitations, we aim to leverage the
reasoning abilities of large language models (LLMs) in a novel framework, shown in Figure 1, called
Language-guided Abstract Reasoning over Knowledge graphs (LARK).

In LARK, we utilize the logical queries to search for relevant subgraph contexts over knowledge
graphs and perform chain reasoning over these contexts using logically-decomposed LLM prompts.
To achieve this, we first abstract out the logical information from both the input query and the KG.
Given the invariant nature of logic1, this enables our method to focus on the logical formulation,

1logical queries follow the same set of rules and procedures irrespective of the KG context.
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(a) Input logical query. (b) Query prompt. (c) Decomposed prompt. (d) LLM answers.

Figure 1: Example of LARK’s query chain decomposition and logically-ordered LLM answering for
effective performance. LLMs are more adept at answering simple queries, and hence, we decompose
the multi-operation complex logical query (a,b) into elementary queries with single operation (c) and
then use a sequential LLM-based answering method to output the final answer (d).

avoid model hallucination2, and generalize over different knowledge graphs. From this abstract KG,
we extract relevant subgraphs using the entities and relations present in the logical query. These
subgraphs serve as context prompts for input to LLMs. In the next phase, we need to effectively
handle complex reasoning queries. From previous works (Zhou et al., 2023; Khot et al., 2023), we
realize that LLMs are significantly less effective on complex prompts, when compared to a sequence
of simpler prompts. Thus to simplify the query, we exploit their logical nature and deterministically
decompose the multi-operation query into logically-ordered elementary queries, each containing a
single operation (depicted in the transition from Figure 1b to 1c). Each of these decomposed logical
queries is then converted to a prompt and processed through the LLM to generate the final set of
answers (shown in Figure 1d). The logical queries are handled sequentially, and if query y depends
on query x, then x is scheduled before y. Operations are scheduled in a logically-ordered manner to
enable batching different logical queries together, and answers are stored in caches for easy access.

The proposed approach effectively integrates logical reasoning over knowledge graphs with the
capabilities of LLMs, and to the best of our knowledge, is the first of its kind. Unlike previous
approaches that rely on constrained formulations of first-order logic (FOL) queries, our approach
utilizes logically-decomposed LLM prompts to enable chain reasoning over subgraphs retrieved from
knowledge graphs, allowing us to efficiently leverage the reasoning ability of LLMs. Our KG search
model is inspired by retrieval-augmented techniques (Chen et al., 2022) but realizes the deterministic
nature of knowledge graphs to simplify the retrieval of relevant subgraphs. Moreover, compared
to other prompting methods (Wei et al., 2022; Zhou et al., 2023; Khot et al., 2023), our chain
decomposition technique enhances the reasoning capabilities in knowledge graphs by leveraging the
underlying chain of logical operations in complex queries, and by utilizing preceding answers amidst
successive queries in a logically-ordered manner. To summarize, the primary contributions of this
paper are as follows:

1. We propose, Language-guided Abstract Reasoning over Knowledge graphs (LARK), a novel
model that utilizes the reasoning abilities of large language models to efficiently answer FOL
queries over knowledge graphs.

2. Our model uses entities and relations in queries to find pertinent subgraph contexts within abstract
knowledge graphs, and then, performs chain reasoning over these contexts using LLM prompts of
decomposed logical queries.

3. Our experiments on logical reasoning across standard KG datasets demonstrate that LARK
outperforms the previous state-of-the-art approaches by 35%− 84% MRR on 14 FOL query types
based on the operations of projection (p), intersection (∧), union (∨), and negation (¬).

4. We establish the advantages of chain decomposition by showing that LARK performs 20%− 33%
better on decomposed logical queries when compared to complex queries on the task of logical
reasoning. Additionally, our analysis of LLMs shows the significant contribution of increasing
scale and better design of underlying LLMs to the performance of LARK.

2the model ignores semantic common-sense knowledge and infers only from the KG entities for answers.

2



Under review as a conference paper at ICLR 2024

2 RELATED WORK

Our work is at the intersection of two topics, namely, logical reasoning over knowledge graphs and
reasoning prompt techniques in LLMs.

Logical Reasoning over KGs: Initial approaches in this area (Bordes et al., 2013; Nickel et al., 2011;
Das et al., 2017; Hamilton et al., 2018) focused on capturing the semantic information of entities
and the relational operations involved in the projection between them. However, further research
in the area revealed a need for new geometries to encode the spatial and hierarchical information
present in the knowledge graphs. To tackle this issue, models such as Query2Box (Ren et al., 2020),
HypE (Choudhary et al., 2021b), PERM (Choudhary et al., 2021a), and BetaE (Ren and Leskovec,
2020) encoded the entities and relations as boxes, hyperboloids, Gaussian distributions, and beta
distributions, respectively. Additionally, approaches such as CQD (Arakelyan et al., 2021) have
focused on improving the performance of complex reasoning tasks through the answer composition
of simple intermediate queries. In another line of research, HamQA (Dong et al., 2023) and QA-GNN
(Yasunaga et al., 2021) have developed question-answering techniques that use knowledge graph
neighborhoods to enhance the overall performance. We notice that previous approaches in this area
have focused on enhancing KG representations for logical reasoning. Contrary to these existing
methods, our work provides a systematic framework that leverages the reasoning ability of LLMs
and tailors them toward the problem of logical reasoning over knowledge graphs.

Reasoning prompts in LLMs: Recent studies have shown that LLMs can learn various NLP tasks
with just context prompts (Brown et al., 2020). Furthermore, LLMs have been successfully applied
to multi-step reasoning tasks by providing intermediate reasoning steps, also known as Chain-of-
Thought (Wei et al., 2022; Chowdhery et al., 2022), needed to arrive at an answer. Alternatively,
certain studies have composed multiple LLMs or LLMs with symbolic functions to perform multi-step
reasoning (Jung et al., 2022; Creswell et al., 2023), with a pre-defined decomposition structure. More
recent studies such as least-to-most (Zhou et al., 2023), successive (Dua et al., 2022) and decomposed
(Khot et al., 2023) prompting strategies divide a complex prompt into sub-prompts and answer them
sequentially for effective performance. While this line of work is close to our approach, they do not
utilize previous answers to inform successive queries. LARK is unique due to its ability to utilize
logical structure in the chain decomposition mechanism, augmentation of retrieved knowledge graph
neighborhood, and multi-phase answering structure that incorporates preceding LLM answers amidst
successive queries.

3 METHODOLOGY

In this section, we will describe the problem setup of logical reasoning over knowledge graphs, and
describe the various components of our model.

3.1 PROBLEM FORMULATION

In this work, we tackle the problem of logical reasoning over knowledge graphs (KGs) G : E×R that
store entities (E) and relations (R). Without loss of generality, KGs can also be organized as a set of
triplets ⟨e1, r, e2⟩ ⊆ G, where each relation r ∈ R is a Boolean function r : E×E → {True, False}
that indicates whether the relation r exists between the pair of entities (e1, e2) ∈ E. We consider
four fundamental first-order logical (FOL) operations: projection (p), intersection (∧), union (∨), and
negation (¬) to query the KG. These operations are defined as follows:

qp[Qp] ≜?Vp : {v1, v2, ..., vk} ⊆ E ∃ a1 (1)

q∧[Q∧] ≜?V∧ : {v1, v2, ..., vk} ⊆ E ∃ a1 ∧ a2 ∧ ... ∧ ai (2)

q∨[Q∨] ≜?V∨ : {v1, v2, ..., vk} ⊆ E ∃ a1 ∨ a2 ∨ ... ∨ ai (3)

q¬[Q¬] ≜?V¬ : {v1, v2, ..., vk} ⊆ E ∃ ¬a1 (4)
where Qp, Q¬ = (e1, r1); Q∧, Q∨ = {(e1, r1), (e2, r2), ..., (ei, ri)}; and ai = ri(ei, vi)

where qp, q∧, q∨, and q¬ are projection, intersection, union, and negation queries, respectively; and
Vp, V∧, V∨ and V¬ are the corresponding results of those queries (Arakelyan et al., 2021; Choudhary
et al., 2021a). ai is a Boolean indicator which will be 1 if ei is connected to vi by relation ri, 0
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otherwise. The goal of logical reasoning is to formulate the operations such that for a given query qτ
of query type τ with inputs Qτ , we are able to efficiently retrieve Vτ from entity set E, e.g., for a
projection query qp[(Nobel Prize, winners)], we want to retrieve Vp = {Nobel Prize winners} ⊆ E.

In conventional methods for logical reasoning, the query operations were typically expressed through
a geometric function. For example, the intersection of queries was represented as an intersection of
box representations in Query2Box (Ren et al., 2020). However, in our proposed approach, LARK,
we leverage the advanced reasoning capabilities of Language Models (LLMs) and prioritize efficient
decomposition of logical chains within the query to enhance performance. This novel strategy seeks
to overcome the limitations of traditional methods by harnessing the power of LLMs in reasoning
over KGs.

3.2 NEIGHBORHOOD RETRIEVAL AND LOGICAL CHAIN DECOMPOSITION

The foundation of LARK’s reasoning capability is built on large language models. Nevertheless,
the limited input length of LLMs restricts their ability to process the entirety of a knowledge graph.
Furthermore, while the set of entities and relations within a knowledge graph is unique, the reasoning
behind logical operations remains universal. Therefore, we specifically tailor the LLM prompts to
account for the above distinctive characteristics of logical reasoning over knowledge graphs. To
address this need, we adopt a two-step process:

1. Query Abstraction: In order to make the process of logical reasoning over knowledge graphs
more generalizable to different datasets, we propose to replace all the entities and relations in the
knowledge graph and queries with a unique ID. This approach offers three significant advantages.
Firstly, it reduces the number of tokens in the query, leading to improved LLM efficiency. Secondly,
it allows us to solely utilize the reasoning ability of the language model, without relying on any
external common sense knowledge of the underlying LLM. By avoiding the use of common sense
knowledge, our approach mitigates the potential for model hallucination (which may lead to the
generation of answers that are not supported by the KG). Finally, it removes any KG-specific
information, thereby ensuring that the process remains generalizable to different datasets. While
this may intuitively seem to result in a loss of information, our empirical findings, presented in
Section 4.4, indicate that the impact on the overall performance is negligible.

2. Neighborhood Retrieval: In order to effectively answer logical queries, it is not necessary for the
LLM to have access to the entire knowledge graph. Instead, the relevant neighborhoods containing
the answers can be identified. Previous approaches (Guu et al., 2020; Chen et al., 2022) have
focused on semantic retrieval for web documents. However, we note that logical queries are
deterministic in nature, and thus we perform a k-level depth-first traversal3 over the entities and
relations present in the query. Let E1

τ and R1
τ denote the set of entities and relations in query

Qτ for a query type τ , respectively. Then, the k-level neighborhood of query qτ is defined by
Nk(qτ [Qτ ]) as:

N1(qτ [Qτ ]) =
{
(h, r, t) :

(
h ∈ E1

τ

)
,
(
r ∈ R1

τ

)
,
(
t ∈ E1

τ

)}
(5)

Ek
τ = {h, t : (h, r, t) ∈ Nk−1(qτ [Qτ ]}, Rk

τ = {r : (h, r, t) ∈ Nk−1(qτ [Qτ ]} (6)
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{
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(
h ∈ Ek

τ

)
,
(
r ∈ Rk

τ

)
,
(
t ∈ Ek

τ

)}
(7)

We have taken steps to make our approach more generalizable and efficient by abstracting the query
and limiting input context for LLMs. However, the complexity of a query still remains a concern.
The complexity of a query type τ , denoted by O(qτ ), is determined by the number of entities and
relations it involves, i.e., O(qτ ) ∝ |Eτ |+ |Rτ |. In other words, the size of the query in terms of its
constituent elements is a key factor in determining its computational complexity. This observation is
particularly relevant in the context of LLMs, as previous studies have shown that their performance
tends to decrease as the complexity of the queries they handle increases (Khot et al., 2023). To
address this, we propose a logical query chain decomposition mechanism in LARK which reduces
a complex multi-operation query to multiple single-operation queries. Due to the exhaustive set of
operations, we apply the following strategy for decomposing the various query types:

• Reduce a k-level projection query to k one-level projection queries, e.g., a 3p query with one entity
and three relations e1

r1−→ r2−→ r3−→ A is decomposed to e1
r1−→ A1, A1

r2−→ A2, A2
r3−→ A.

3where k is determined by the query type, e.g., for 3-level projection (3p) queries, k = 3.
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• Reduce a k-intersection query to k projection queries and an intersection query, e.g., a 3i query
with intersection of two projection queries (e1

r1−→) ∧ (e2
r2−→) ∧ (e3

r3−→) = A is decomposed
to e1

r1−→ A1, e2
r2−→ A2, e3

r3−→ A2, A1 ∧ A2 ∧ A3 = A. Similarly, reduce a k-union query to k
projection queries and a union query.

The complete decomposition of the exhaustive set of query types used in previous work (Ren and
Leskovec, 2020) and our empirical studies can be found in Appendix A.

Figure 2: An overview of the LARK model. The model takes the logical query and infers the query
type from it. The query abstraction function maps the entities and relations to abstract IDs, and the
neighborhood retrieval mechanism collects the relevant subgraphs from the overall knowledge graph.
The chains of the abstracted complex query are then logically decomposed to simpler single-operation
queries. The retrieved neighborhood and decomposed queries are further converted into LLM prompts
using a template and then processed in the LLM to get the final set of answers for evaluation.

3.3 CHAIN REASONING PROMPTS

In the previous section, we outlined our approach to limit the neighborhood and decompose complex
queries into chains of simple queries. Leveraging these, we can now use the reasoning capability
of LLMs to obtain the final set of answers for the query, as shown in Figure 2. To achieve this, we
employ a prompt template that converts the neighborhood into a context prompt and the decomposed
queries into question prompts. It is worth noting that certain queries in the decomposition depend on
the responses of preceding queries, such as intersection relying on the preceding projection queries.
Additionally, unlike previous prompting methods such as chain-of-thought (Wei et al., 2022) and
decomposition (Khot et al., 2023) prompting, the answers need to be integrated at a certain position
in the prompt. To address this issue, we maintain a placeholder in dependent queries and a temporary
cache of preceding answers that can replace the placeholders in real-time. This also has the added
benefit of maintaining the parallelizability of queries, as we can run batches of decomposed queries
in phases instead of sequentially running each decomposed query. The specific prompt templates of
the complex and decomposed logical queries for different query types are provided in Appendix B.

3.4 IMPLEMENTATION DETAILS

We implemented LARK in Pytorch (Paszke et al., 2019) on eight Nvidia A100 GPUs with 40 GB
VRAM. In the case of LLMs, we chose the Llama2 model (Touvron et al., 2023) due to its public
availability in the Huggingface library (Wolf et al., 2020) . For efficient inference over the large-scale
models, we relied on the mixed-precision version of LLMs and the Deepspeed library (Rasley et al.,
2020) with Zero stage 3 optimization. The algorithm of our model is provided in Appendix D
and implementation code for all our experiments with exact configuration files and datasets for
reproducibility are publicly available4. In our experiments, the highest complexity of a query required
a 3-hop neighborhood around the entities and relations. Hence, we set the depth limit to 3 (i.e.,
k = 3). Additionally, to further make our process completely compatible with different datasets, we
added a limit of n tokens on the input which is dependent on the LLM model (for Llama2, n=4096).
In practice, this implies that we stop the depth-first traversal when the context becomes longer than n.

4https://anonymous.4open.science/r/LLM-KG-Reasoning-65D1
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4 EXPERIMENTAL RESULTS

This sections describes our experiments that aim to answer the following research questions (RQs):

RQ1. Does LARK outperform the state-of-the-art baselines on the task of logical reasoning over
standard knowledge graph benchmarks?

RQ2. How does our combination of chain decomposition query and logically-ordered answer
mechanism perform in comparison with the standard prompting techniques?

RQ3. How does the scale and design of LARK’s underlying LLM model affect its performance?
RQ4. How would our model perform with support for increased token size?
RQ5. Does query abstraction affect the reasoning performance of our model?

4.1 DATASETS AND BASELINES

We select the following standard benchmark datasets to investigate the performance of our model
against state-of-the-art models on the task of logical reasoning over knowledge graphs:

• FB15k (Bollacker et al., 2008) is based on Freebase, a large collaborative knowledge graph project
that was created by Google. FB15k contains about 15,000 entities, 1,345 relations, and 592,213
triplets (statements that assert a fact about an entity).

• FB15k-237 (Toutanova et al., 2015) is a subset of FB15k, containing 14,541 entities, 237 relations,
and 310,116 triplets. The relations in FB15k-237 are a subset of the relations in FB15k, and was
created to address some of the limitations of FB15k, such as the presence of many irrelevant or
ambiguous relations, and to provide a more challenging benchmark for knowledge graph completion
models.

• NELL995 (Carlson et al., 2010) was created using the Never-Ending Language Learning (NELL)
system, which is a machine learning system that automatically extracts knowledge from the web by
reading text and inferring new facts. NELL995 contains 9,959 entities, 200 relations, and 114,934
triplets. The relations in NELL995 cover a wide range of domains, including geography, sports,
and politics.

Our criteria for selecting the above datasets was their ubiquity in previous works on this research
problem. Further details on their token size is provided in Appendix E. For the baselines, we chose
the following methods:

• GQE (Hamilton et al., 2018) encodes a query as a single vector and represents entities and relations
in a low-dimensional space. It uses translation and deep set operators, which are modeled as
projection and intersection operators, respectively.

• Query2Box (Q2B) (Ren et al., 2020) uses a box embedding model which is a generalization of the
traditional vector embedding model and can capture richer semantics.

• BetaE (Ren and Leskovec, 2020) uses a novel beta distribution to model the uncertainty in the
representation of entities and relations. BetaE can capture both the point estimate and the uncertainty
of the embeddings, which leads to more accurate predictions in knowledge graph completion tasks.

• HQE (Choudhary et al., 2021b) uses the hyperbolic query embedding mechanism to model the
complex queries in knowledge graph completion tasks.

• HypE (Choudhary et al., 2021b) uses the hyperboloid model to represent entities and relations in a
knowledge graph that simultaneously captures their semantic, spatial, and hierarchical features.

• CQD (Arakelyan et al., 2021) decomposes complex queries into simpler sub-queries and applies a
query-specific attention mechanism to the sub-queries.

4.2 RQ1. EFFICACY ON LOGICAL REASONING

To study the efficacy of our model on the task of logical reasoning, we compare it against the previous
baselines on the following standard logical query constructs:

1. Multi-hop Projection traverses multiple relations from a head entity in a knowledge graph to
answer complex queries by projecting the query onto the target entities. In our experiments, we
consider 1p, 2p, and 3p queries that denote 1-relation, 2-relation, and 3-relation hop from the head
entity, respectively.
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2. Geometric Operations apply the operations of intersection (∧) and union (∨) to answer the
query. Our experiments use 2i and 3i queries that represent the intersection over 2 and 3 entities,
respectively. Also, we study 2u queries that perform union over 2 entities.

3. Compound Operations integrate multiple operations such as intersection, union, and projection
to handle complex queries over a knowledge graph.

4. Negation Operations negate the query by finding entities that do not satisfy the given logic. In
our experiments, we examine 2in, 3in, inp, and pin queries that negate 2i, 3i, ip, and pi queries,
respectively. We also analyze pni (an additional variant of the pi query), where the negation is over
both entities in the intersection. It should be noted that BetaE is the only method in the existing
literature that supports negation, and hence, we only compare against it in our experiments.

We present the results of our experimental study, which compares the Mean Reciprocal Rank (MRR)
score of the retrieved candidate entities using different query constructions. MRR is calculated as the
average of the reciprocal ranks of the candidate entities 5. In order to ensure a fair comparison, We
selected these query constructions which were used in most of the previous works in this domain
(Ren and Leskovec, 2020). An illustration of these query types is provided in Appendix A for better
understanding. Our experiments show that LARK outperforms previous state-of-the-art baselines
by 35%− 84% on an average across different query types, as reported in Table 1. We observe that
the performance improvement is higher for simpler queries, where 1p > 2p > 3p and 2i > 3i. This
suggests that LLMs are better at capturing breadth across relations but may not be as effective at
capturing depth over multiple relations. Moreover, our evaluation also encompasses testing against
challenging negation queries, for which BetaE (Ren and Leskovec, 2020) remains to be the only
existing approach. Even in this complex scenario, our findings, as illustrated in Table 2, indicate
that LARK significantly outperforms the baselines by 140%. This affirms the superior reasoning
capabilities of our model in tackling complex query scenarios. Another point of note is that certain
baselines such as CQD are able to outperform LARK in the FB15k dataset for certain query types
such as 1p, 3i, and ip. The reason for this is that FB15k suffers from a data leakage from training to
validation and testing sets (Toutanova et al., 2015). This unfairly benefits the training-based baselines
over the inference-only LARK model.
Table 1: Performance comparison between LARK and the baseline in terms of their efficacy of
logical reasoning using MRR scores. The rows present various models and the columns correspond to
different query structures of multi-hop projections, geometric operations, and compound operations.
The best results for each query type in every dataset is highlighted in bold font.

Dataset Models 1p 2p 3p 2i 3i ip pi 2u up
FB15k GQE 54.6 15.3 10.8 39.7 51.4 27.6 19.1 22.1 11.6

Q2B 68.0 21.0 14.2 55.1 66.5 39.4 26.1 35.1 16.7
BetaE 65.1 25.7 24.7 55.8 66.5 43.9 28.1 40.1 25.2
HQE 54.3 33.9 23.3 38.4 50.6 12.5 24.9 35.0 25.9
HypE 67.3 43.9 33.0 49.5 61.7 18.9 34.7 47.0 37.4
CQD 79.4 39.6 27.0 74.0 78.2 70.0 43.3 48.4 17.5
LARK(complex) 73.6 46.5 32.0 66.9 61.8 24.8 47.2 47.7 37.5
LARK(ours) 73.6 49.3 35.1 67.8 62.6 29.3 54.5 51.9 37.7

FB15k-237 GQE 35.0 7.2 5.3 23.3 34.6 16.5 10.7 8.2 5.7
Q2B 40.6 9.4 6.8 29.5 42.3 21.2 12.6 11.3 7.6
BetaE 39.0 10.9 10.0 28.8 42.5 22.4 12.6 12.4 9.7
HQE 37.6 20.9 16.9 25.3 35.2 17.3 8.2 15.6 17.9
HypE 49.0 34.3 23.7 33.9 44 18.6 30.5 41.0 26.0
CQD 44.5 11.3 8.1 32.0 42.7 25.3 15.3 13.4 4.8
LARK(complex) 70.0 34.0 21.5 43.4 42.2 18.7 38.4 49.2 25.1
LARK(ours) 70.0 36.9 24.5 44.3 43.1 23.2 45.6 56.6 25.4

NELL995 GQE 32.8 11.9 9.6 27.5 35.2 18.4 14.4 8.5 8.8
Q2B 42.2 14.0 11.2 33.3 44.5 22.4 16.8 11.3 10.3
BetaE 53.0 13.0 11.4 37.6 47.5 24.1 14.3 12.2 8.5
HQE 35.5 20.9 18.9 23.2 36.3 8.8 13.7 21.3 15.5
HypE 46.0 30.6 27.9 33.6 48.6 31.8 13.5 20.7 26.4
CQD 50.7 18.4 13.8 39.8 49.0 29.0 22.0 16.3 9.9
LARK(complex) 83.2 39.8 27.6 49.3 48.0 18.7 19.6 8.3 36.8
LARK(ours) 83.2 42.3 31.0 49.9 48.7 23.1 23.0 20.1 37.2

5More metrics such as HITS@K=1,3,10 are reported in Appendix C.
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Table 2: Performance comparison between LARK and the baseline for negation query types using
MRR scores. The best results for each query type in every dataset is highlighted in bold font. Our
model’s performance is significantly higher on most negation queries. However, the performance is
limited in 3in and pni queries due to their high number of tokens (shown in Appendix E).

Dataset Models 2in 3in inp pin pni
FB15k BetaE 14.3 14.7 11.5 6.5 12.4

LARK(complex) 16.5 6.2 32.5 22.8 10.5
LARK(ours) 17.5 7.0 34.7 26.7 11.1

FB15k-237 BetaE 5.1 7.9 7.4 3.6 3.4
LARK(complex) 6.1 3.4 21.6 12.8 2.9
LARK(ours) 7.0 4.1 23.9 16.8 3.5

NELL995 BetaE 5.1 7.8 10.0 3.1 3.5
LARK(complex) 8.9 5.3 23.0 10.4 6.3
LARK(ours) 10.4 6.6 25.4 13.6 7.6

4.3 RQ2. ADVANTAGES OF CHAIN DECOMPOSITION

The aim of this experiment is to investigate the advantages of using chain decomposed queries over
standard complex queries. We employ the same experimental setup described in Section 4.2. Our
results, in Tables 1 and 2, demonstrate that utilizing chain decomposition contributes to a significant
improvement of 20% − 33% in our model’s performance. This improvement is a clear indication
of the LLMs’ ability to capture a broad range of relations and effectively utilize this capability
for enhancing the performance on complex queries. This study highlights the potential of using
chain decomposition to overcome the limitations of complex queries and improve the efficiency of
logical reasoning tasks. This finding is a significant contribution to the field of natural language
processing and has implications for various other applications such as question-answering systems
and knowledge graph completion. Overall, our results suggest that chain-decomposed queries could
be a promising approach for improving the performance of LLMs on complex logical reasoning tasks.

4.4 RQ3. ANALYSIS OF LLM SCALE

This experiment analyzes the impact of the size of the underlying LLMs and query abstraction on the
overall LARK model performance. To examine the effect of LLM size, we compared two variants of
the Llama2 model which have 7 billion and 13 billion parameters. Our evaluation results, presented
in Table 3, show that the performance of the LARK model improves by 123% from Llama2-7B
to Llama2-13B. This indicates that increasing the number of LLM parameters can enhance the
performance of LARK model.
Table 3: MRR scores of LARK on FB15k-237 dataset with underlying LLMs of different sizes. The
best results for each query type is highlighted in bold font.

LLM # Params 1p 2p 3p 2i 3i ip pi 2u up 2in 3in inp pin pni
Llama2 7B 73.1 33.2 20.6 10.6 25.2 25.9 17.2 20.8 24.3 4 1.8 14.2 7.4 1.9

13B 73.6 49.3 35.1 67.8 62.6 29.3 54.5 51.9 37.7 7.0 4.1 23.9 16.8 3.5

4.5 RQ4. STUDY ON INCREASED TOKEN LIMIT OF LLMS

From the dataset details provided in Appendix E, we observe that the token size of different query
types shows considerable fluctuation from 58 to over 100, 000. Unfortunately, the token limit of
LLama2, considered as the base in our experiments, is 4096. This limit is insufficient to demonstrate
the full potential performance of LARK on our tasks. To address this limitation, we consider the
availability of models with higher token limits, such as GPT-3.5 (OpenAI, 2023). However, we
acknowledge that these models are expensive to run and thus, we could not conduct a thorough
analysis on the entire dataset. Nevertheless, to gain insight into LARK’s potential with increased
token size, we randomly sampled 1000 queries per query type from each dataset with token length
over 4096 and less than 4096 and compared our model on these queries with GPT-3.5 and Llama2
as the base. The evaluation results, which are displayed in Table 4, demonstrate that transitioning
from Llama2 to GPT-3.5 can lead to a significant performance improvement of 29%-40% for the
LARK model which suggests that increasing the token limit of LLMs may have significant potential
of further performance enhancement.

8



Under review as a conference paper at ICLR 2024

Table 4: MRR scores of LARK with Llama2 and GPT LLMs as the underlying base models. The
best results for each query type in every dataset is highlighted in bold font.

FB15k
LLM 1p 2p 3p 2i 3i ip pi 2u up 2in 3in inp pin pni
Llama2-7B 23.4 21.5 22.6 3.4 3 26.1 18.4 14.8 3.9 9.5 4.7 21.7 26.4 5.8
Llama2-13B 23.8 22.8 24.2 3.5 3 23.3 30.8 30.7 3.9 12.4 6.6 28.4 51.4 7.7
GPT-3.5 36.1 34.6 36.8 17.0 14.4 35.4 46.7 39.3 19.5 18.8 10.0 43.1 56.7 11.6

FB15k-237
LLM 1p 2p 3p 2i 3i ip pi 2u up 2in 3in inp pin pni
Llama2-7B 23.1 27.4 31.5 5 4.1 26.6 20.9 15.3 5.6 26.6 8.8 33.7 31 21.1
Llama2-13B 23.5 29.2 33.8 5 4.1 23.7 35 31.7 5.6 34.7 12.3 44 60.4 28
GPT-3.5 35.7 44.2 51.2 24.8 20.2 36.0 53.1 40.6 28.1 52.5 18.7 66.8 66.6 42.4

NELL995
LLM 1p 2p 3p 2i 3i ip pi 2u up 2in 3in inp pin pni
Llama2-7B 28 24.4 27.6 3.7 3.2 24 8.4 14.5 5.7 14 7.7 23.1 21.3 13.4
Llama2-13B 28.4 26 29.5 3.7 3.2 21.5 14.1 25.4 5.7 18.3 10.8 30.1 30.2 17.7
GPT-3.5 43.1 39.4 44.8 18.3 15.5 32.6 21.4 38.5 28.3 27.7 16.4 45.7 45.9 26.8

4.6 RQ5. EFFECTS OF QUERY ABSTRACTION

Figure 3: Effects of Query Abstraction.

Regarding the analysis of query abstraction, we consid-
ered a variant of LARK called LARK (semantic), which
retains semantic information in KG entities and relations.
As shown in Figure 3, we observe that semantic infor-
mation provides a minor performance enhancement of
0.01% for simple projection queries. However, in more
complex queries, it results in a performance degradation
of 0.7%− 1.4%. The primary cause of this degradation
is that the inclusion of semantic information exceeds the
LLMs’ token limit, leading to a loss of neighborhood information. Hence, we assert that query
abstraction is not only a valuable technique for mitigating model hallucination and achieving gen-
eralization across different KG datasets but can also enhance performance by reducing token size.

5 CONCLUDING DISCUSSION

In this paper, we presented LARK, the first approach to integrate logical reasoning over knowledge
graphs with the capabilities of LLMs. Our approach utilizes logically-decomposed LLM prompts to
enable chain reasoning over subgraphs retrieved from knowledge graphs, allowing us to efficiently
leverage the reasoning ability of LLMs. Through our experiments on logical reasoning across
standard KG datasets, we demonstrated that LARK outperforms previous state-of-the-art approaches
by a significant margin on 14 different FOL query types. Finally, our work also showed that the
performance of LARK improves with increasing scale and better design of the underlying LLMs. We
demonstrated that LLMs that can handle larger input token lengths can lead to significant performance
improvements. Overall, our approach presents a promising direction for integrating LLMs with
logical reasoning over knowledge graphs.

The proposed approach of using Large Language Models (LLMs) for complex logical reasoning
over Knowledge Graphs (KGs) is expected to pave a new way for improved reasoning over large,
noisy, and incomplete real-world KGs. This can potentially have a significant impact on various
applications such as natural language understanding, question answering systems, and intelligent
information retrieval systems, etc. For example, in healthcare, KGs can be used to represent patient
data, medical knowledge, and clinical research, and logical reasoning over these KGs can enable
better diagnosis, treatment, and drug discovery. However, there are also ethical considerations to
be taken into account. As with most AI-based technology, there is a potential risk of inducing bias
into the model, which can lead to unfair decisions and actions. Bias can be introduced in the KGs
themselves, as they are often created semi-automatically from biased sources, and can be amplified
by the logical reasoning process. Moreover, the large amount of data used to train LLMs can also
introduce bias, as it may reflect societal prejudices and stereotypes. Therefore, it is essential to
carefully monitor and evaluate the KGs and LLMs used in this approach to ensure fairness and avoid
discrimination. The performance of this method is also dependent on the quality and completeness of
the KGs used, and the limited token size of current LLMs. But, we also observe that the current trend
of increasing LLM token limits will soon resolve some of these limitations.
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