
Zero-shot Image Editing with Reference Imitation

Xi Chen1 Yutong Feng2 Mengting Chen2 Yiyang Wang1 Shilong Zhang1
Yu Liu2 Yujun Shen3 Hengshuang Zhao1∗

1The University of Hong Kong 2Alibaba Group 3Ant Group

Source Source Source

reference reference reference

Source Source

reference
reference

Result

Result

Result

Result

Result

Figure 1: Diverse editing results produced by MimicBrush, where users only need to specify the
to-edit regions in the source image (i.e., white masks) and provide an in-the-wild reference image
illustrating how the regions are expected after editing. Our model automatically captures the semantic
correspondence between them, and accomplishes the editing with a feedforward network execution.

Abstract
Image editing serves as a practical yet challenging task considering the diverse
demands from users, where one of the hardest parts is to precisely describe how
the edited image should look like. In this work, we present a new form of editing,
termed imitative editing, to help users exercise their creativity more conveniently.
Concretely, to edit an image region of interest, users are free to directly draw
inspiration from some in-the-wild references (e.g., some relative pictures come
across online), without having to cope with the fit between the reference and the
source. Such a design requires the system to automatically figure out what to
expect from the reference to perform the editing. For this purpose, we propose a
generative training framework, dubbed MimicBrush, which randomly selects two
frames from a video clip, masks some regions of one frame, and learns to recover the
masked regions using the information from the other frame. That way, our model,
developed from a diffusion prior, is able to capture the semantic correspondence
between separate images in a self-supervised manner. We experimentally show the
effectiveness of our method under various test cases as well as its superiority over
existing alternatives. We also construct a benchmark to facilitate further research.
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Figure 2: Conceptual comparisons for different pipelines. To edit a local region, besides taking
the source image and source mask (indicates the to-edit region), inpainting models use text prompts
to guide the generation. Image composition methods take a reference image along with a mask/box
to crop out the specific reference region. Differently, our pipeline simply takes a reference image, the
reference regions are automatically discovered by the model itself.

1 Introduction
Image editing enables various applications for creating novel content, e.g., adding new object(s),
modifying attributes, or translating image styles. Recently, powered by the large-scale pre-trained
text-to-image diffusion models [33, 30, 36], the range of capacity for editing models [18, 3, 7, 2, 43,
15, 26, 12] also expands significantly.

The advanced editing methods could satisfy a large variety of user requirements for modifying either
a full image [2, 18] or its local regions [43, 26, 15, 7, 18, 3]. However, it is still challenging for
existing editing models to fit the requirements of complicated practical scenarios. For instance, as
shown in Fig. 1, it is required to modify the sole of a shoe by referring to another one, or to paste a
specified pattern to a given mug. Such kind of editing is important for real applications like product
design, character creation, and special effects, etc.

For this kind of local editing, existing works take the source image with a binary mask as input.
As shown in Fig. 2 (a), inpainting [43, 52] methods re-generate the masked region following text
instructions. However, it is not feasible to describe the desired outcomes only with texts. For example,
in Fig. 1, the design of shoes or the colors of hair is hard to describe accurately in text. Composition
methods [7, 38, 37, 53] take a reference image as input, along with a mask/box representing the
reference area, as shown in Fig. 2 (b). They could insert an “individual object” from the reference
image into the source image but struggle to deal with local components (like shoe soles and human
hair) or local patterns (like logos and texture). These methods require to carefully extract the reference
area from the image. Nevertheless, local components are inherently intertwined with the context
and are hard to understand when isolated from the whole object. Besides, their [7, 38, 53] training
process requires the mask pairs to indicate the same object in different states (e.g., two video frames).
Object-level mask pairs are feasible to obtain, but it is difficult to get the part-level pairs at scale.

To deal with the aforementioned requirements, we propose a novel pipeline of editing, termed
imitative editing. As illustrated in Fig. 2 (c), given a source image with a masked area for editing,
it requires only the reference image without masks. Then, imitative editing targets to fill in the
masked area by automatically finding and imitating the corresponding part in the reference image.
Such a pipeline formulates more convenient interactions, without strictly separating the reference
components from the whole image. Besides, it reaches a harmonious blending referring to the relation
between the reference region and its surroundings (e.g., the sole and vape of the shoe).

To achieve imitative editing, we design a framework called MimicBrush, with dual diffusion U-
Nets to tackle the source and reference images. More specifically, we train it in a self-supervised
manner, where we take two frames from a video to simulate the source and reference images. As
the video frames contain both semantic correspondence and visual variations, MimicBrush learns
to discover the reference region automatically and repaint it into the source image with a natural
combination to its surroundings. In MimicBrush, we send the masked source image into an imitative
U-Net and the reference image into a reference U-Net, respectively. Then the attention keys and
values of the reference U-Net are injected into the imitative U-Net, which assists in completing
the masked regions. As demonstrated in Fig. 1, MimicBrush overcomes the variations between
the source and reference images in different poses, lightings, and even categories. The generated
region highly preserves the details of the visual concepts in the reference image, and harmoniously
interacts with the backgrounds. For a more comprehensive evaluation of the proposed method, we
also construct a high-quality benchmark of imitative editing. The benchmark includes two main tasks,
i.e., part composition and texture transfer. Each task covers several sub-tracks inspired by practical
applications, e.g., fashion and product design.
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Figure 3: The training process of MimicBrush. First, we randomly sample two frames from a video
sequence as the reference and source image. The source image are then masked and exerted with
data augmentation. Afterward, we feed the noisy image latent, mask, background latent, and depth
latent of the source image into the imitative U-Net. The reference image is also augmented and sent
to the reference U-Net. The dual U-Nets are trained to recover the masked area of source image. The
attention keys and values of reference U-Net are concatenated with the imitative U-Net to assist the
synthesis of the masked regions.

2 Related Work

Image inpainting. Traditional image inpainting methods [21, 22, 51, 50] only leverage the
background information to complete the masked regions. Powered by the text-to-image diffusion
models, recent works [43, 30, 2, 15, 26] leverage text prompts to guide the generation of content
of the editing regions. These works fully leverage the flexibility of prompts to generate diversified
content. A potential limitation is that only using text prompts could not fully express the user’s
intention for some specific demands.

Image customization. To generate the image for the given subject with high fidelity, customization
methods optimize a new “word” or use LoRAs to learn specific concepts. However, most of the
customization methods [34, 23, 24, 11, 1, 13] tackles the full object. Besides, they require 3-5
exemplar images and rely on subject-specific fine-tuning which last half an hour. Among them,
RealFill [41] and CLiC [35] could customize the local region in context. However, RealFill requires
3-5 images for the same scene, and the finetuned model could only complete local regions of the
trained scene. CLiC [35] could customize the local patterns to edit different objects, but it only
demonstrates inner-category generalizations and still requires subject-specific fine-tuning.

Image composition. This topic explores inserting a given object into a specific location of
the background with harmonious blending. The early works involved a long pipeline of image
segmentation, pasting, and harmonization [39, 9, 4, 14, 10, 5]. Diffusion-based methods propose end-
to-end solutions and support the pose variations of the reference object. Paint-by-example [47] and
ObjectStitch [37] use a CLIP image encoder to extract the representation of the object. AnyDoor [7]
uses DINOv2 [27] encoders and collects training samples from videos. Later works [53, 54, 28, 44]
add camera parameters or text prompts to increase the controllability. However, they mainly focus on
inserting the full-object. Part-level composition poses higher demands for modeling the interaction
between the editing region and the surrounding context.

3 Method

3.1 Overall Pipeline

The overall framework of MimicBrush is demonstrated in Fig. 3. To realize imitative editing, we
design an architecture with dual diffusion models and train it in a self-supervised manner.

Video data contains naturally consistent content, and also shows visual variations such as different
postures of the same dog. Thus, we randomly pick two frames from a video clip as the training
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samples of MimicBrush. One frame serves as the source image, where we mask out some of
its regions. Another frame serves as the reference image, assisting the model to recover of the
masked source image. Throughout this way, MimicBrush learns to locate the corresponding visual
information (e.g., the dog’s face), and repaint it into the masked area in the source image. To ensure
the repainted part is harmoniously blended into the source image, MimicBrush also learns to transfer
the visual content into the same posture, lighting, and perspective. It is noteworthy that such a training
process is built on raw video clips without text or tracking annotations, and can be easily scaled up
with abundant videos.

MimicBrush leverages a dual branch of U-Nets, i.e., imitative and reference U-Net, taking the source
and reference images as input, respectively. The two U-Nets share their keys and values in the
attention layers, and are tamed to complete the masked source image by seeking the indications
from the reference image. We also exert data augmentation on both images to increase the variation
between source and reference image. At the same time, a depth map is extracted from the unmasked
source image and then added to the imitative U-Net as an optional condition. In this way, during
inference, users could decide whether to enable the depth map of source image to preserve the shape
of the objects in the original source image.

3.2 Model Structure

Our framework majorly consists of an imitative U-Net, a reference U-Net, and a depth model. In this
section, we elaborate on the detailed designs of these components.

Imitative U-Net. The imitative U-Net is initialized with a stable diffusion-1.5 [33] inpainting model.
It takes a tensor with 13 channels as the input. The image latent (4 channels) takes charge of the
diffusion procedure from an initial noise to the output latent code step by step. We also concatenate
a binary mask (1 channel) to indicate the generation regions and a background latent (4 channels)
of the masked source image. In addition, we project the depth map into a 4-channel depth latent to
provide shape information. The original U-Net also takes the CLIP [31] text embedding as input
via cross-attention. In this work, we replace it with the CLIP image embedding extract from the
reference image. Following previous works [7, 49], we add a trainable projection layer after the
image embedding. We do not include this part in Fig. 3 for the simplicity of illustration. During
training, all the parameters of the imitative U-Net and the CLIP projection layer are optimizable.

Reference U-Net. Recently, a bunch of works [56, 17, 46, 6, 58, 45] prove the effectiveness of
leveraging an additional U-Net to extract the fine-grained features from the reference image. For this
part, we do not claim novelty and apply a similar design termed reference U-Net. It is initialized
from a standard stable diffusion-1.5 [33]. It takes the 4-channel latent of the reference image to
extract multi-level features. Following [46], we inject the reference features into the imitative U-Net
in the middle and upper stages by concatenating its keys and values with the imitative U-Net as the
following equation. In this way, the imitative U-Net could leverage the content from the reference
image to complete the masked regions of the source image.

Attention = softmax(
Qi · cat(Ki,Kr)

T

√
dk

) · cat(Vi, Vr) (1)

Depth model. We leverage Depth Anything [48] to predict the depth maps of the unmasked source
image as a shape control, which enables MimicBrush to conduct texture transfer. We freeze the depth
model and add a trainable projector, which projects the predicted depth map (3-channel) to the depth
latent (4-channel). During training, we set a probability of 0.5 to drop the input of the depth model as
all-zero maps. Thus, the users could take the shape control as an optional choice during inference.

3.3 Training Strategy

To fully unleash the cross-image imitation ability of MimicBrush, we further propose some strategies
to mine more suitable training samples. Considering that our goal is to conduct robust imitative
editing even cross categories, the philosophy of collecting training data could be summarized as
twofold: First, we should guarantee that the correspondence relation exists between the source and
reference images. Second, we expect large variations between the source image and the reference
image, which is essential for the robustness of finding the visual correspondence.
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Figure 4: Sample illustration for our benchmark. It covers the task of part composition (first row)
and texture transfer (second row). Each task includes a Inter-ID and inner-ID track. The annotated
data and evaluation metrics for each track are illustrated beside the exemplar images.

Data selection. During training, we sample two frames from the same video. Following [8], we
use SSIM [42] as an indicator of the similarity between video frames. We discard the frame pairs
with too-big or too-small similarities to guarantee that the selected image pair contains both semantic
correspondence and visual variations.

Data augmentation. To increase the variation between the source image and the reference image, we
exert strong data augmentations. Besides applying the aggressive color jitter, rotation, resizing, and
flipping, we also implement random projection transformation to simulate the stronger deformation.

Masking strategy. A simple baseline is to divide the source image into N ×N grid and randomly
mask each grid. However, we find this purely random masking tends to cause a large portion of easy
cases. For example, as the background (e.g., the grassland, the sky) occupies large areas with repeated
content/textures, learning to complete these regions does not require the model to seek guidance from
the reference image. To find more discriminative regions, we apply SIFT [25] matching between the
source and reference images and get a series of matching points. Although the matching results are
not perfect, they are sufficient to assist us in constructing better training samples. Specifically, we
increase the masking possibility of the grids with matched feature points.

Considering that collecting high-quality images is much easier than videos, we also construct pseudo
frames by applying augmentations on the static images and leveraging the object segmentation results
for masking the source image. The segmentation masks also improve the robustness of MimicBrush
to support masks in more arbitrary shapes.

In general, MimicBrush does not rely on the heavy annotations of the training data. It fully benefits
from the consistency and variation of video data, and also leverages image data to expand the diversity,
which makes the training pipeline more scalable.

3.4 Evaluation Benchmark

Imitative editing is a novel task, we construct our own benchmark to systematically evaluate the
performance. As shown in Fig. 4, we divide the applications into two tasks: part composition and
texture transfer, and we set the inter-ID and inner-ID track for each task.

Part composition estimates the functions of discovering the semantic correspondence between the
source and reference image and compositing the local parts. The inter-ID track aims to composite the
local parts from different instances or even different categories. We collect data from the following
topics: fashion, animal, product, and scenario. For each topic, we manually collect 30 samples from
Pexels [29] thus 120 samples in total, where each sample contain the source and reference image pair.
We manually draw the source mask to define the composition requirement. As the generated results
do not have ground truth, we annotate the reference regions and write text prompts for the expected
result. Thus, we could follow DreamBooth [34] to calculate the DINO [27] and CLIP [31] image
similarities between the generated region and the annotated reference region. In addition, we also
report the CLIP text similarity between the edited image and the text prompts.
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Source + Mask Reference Firefly w/ Prompt PbE w/ Box AnyDoor w/ Mask Ours
Figure 5: Qualitative comparisons. Noticing that other methods require additional inputs.
Firefly [32] takes the detailed prompts descriptions. Besides, we mark the specific reference regions
with boxes and masks for Paint-by-Example [47] and AnyDoor [7]. Even though, MimicBrush still
demonstrates prominent advantages for both fidelity and harmony.

We also set an inner-ID track, where we collect 30 image pairs from DreamBooth[34], manually
mask the discriminative regions of the source image, and use reference images to complete them. The
reference would be an image containing the same instance in different scenarios. Thus, the unmasked
source image could serve as the ground truth to compute SSIM [42], PSNR [16], and LPIPS [57].

Texture transfer requires strictly maintaining the shape of the source objects and only transferring
the texture/pattern of the reference image. For this task, we enable the depth map as an additional
condition. Different from the part composition that seeks the semantic correspondence, in this
task we mask the full objects thus the model could only discover correspondence between the
textures (reference) and the shape (source). We also formulate inter-ID and inner-ID tracks. The
former involves 30 samples with large deformations from Pexels [29], like transferring the leopard
texture on a cap in Fig. 4. The latter contains an additional 30 examples from the DreamBooth [34]
dataset. We follow the same data formats and evaluation metrics as part composition.

4 Experiments

4.1 Implementation Details
Hyperparameters. In this work, all experiments are conducted with the resolution of 512 × 512.
For the images with different aspect ratios, we first pad the images as a square and then resize them
to 512 × 512. During training, we use the Adam [19] optimizer and set the learning rate as 1e-5.
Experiments are conducted with a total batch size of 64 on 8× A100 GPUs. For the masking strategy
of the source image, we randomly choose the grid number N ×N from 3 to 10. We set 75% chances
to drop the grid with SIFT-matched features and set 50% chances for other regions. We add the
reference U-Net as classifier-free guidance and drop it during training with the probability of 10%.
During inference, the guidance scale is 5 as default.

Training data. We collect 100 k high-resolution videos from open-sourced websites like Pexels [29].
To further expand the diversity of training samples, we use the SAM [20] dataset that contains 10
million images and 1 billion object masks. We construct pseudo frames by applying strong data
augmentations on the static images from SAM and leverage the object segmentation results for
masking the source image. During training, the sampling portions of the video and SAM data are
70% versus 30% as default.
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Table 1: Quantitative comparisons for part composition on our constructed benchmark. The
left part of the table reports the evaluation results on the inner-ID track. The right part estimates
the inter-ID track. MimicBrush demonstrates superior performance for each track with the most
simplified interaction form. “I” or “T” denotes the image or text similarity.

inner-ID inter-ID
SSIM (↑) PSNR (↑) LPIPS (↓) DINO-I (↑) CLIP-I (↑) CLIP-T (↑)

PbE [47] w/o Box 0.51 15.17 0.49 41.44 81.00 29.45
PbE [47] w/ Box 0.51 16.09 0.48 42.70 81.10 29.30
AnyDoor [7] w/o Mask 0.42 12.73 0.56 43.41 78.56 28.45
AnyDoor [7] w/ Mask 0.44 14.09 0.50 61.30 86.08 29.39
MimicBrush 0.70 17.54 0.28 56.48 84.30 30.08

Table 2: User study results. We let annotators rank the results of different methods from the best to
the worst from three aspects: fidelity, harmony, and quality. We report both the number of the best
picks and the average rank for a comprehensive comparison.

FidelityBest FidelityRank HamonyBest HamonyRank QualityBest QualityRank

PbE [47] w/ Box 10.8% 2.64 29.2% 2.57 15.8% 2.59
AnyDoor [7] w/o Mask 2.8% 2.46 3.0% 2.35 4.2% 2.45
AnyDoor [7] w/ Mask 30.6% 2.77 22.6% 2.72 29.4% 2.71
MimicBrush 55.8% 2.11 45.2% 2.34 50.6% 2.23

4.2 Comparisons with Other Works

In this section, we compare MimicBrush with other methods that could realize similar functions.
Noticing that imitative editing is a novel task, no existing methods could perfectly align our input
formats. Thus, we allow additional inputs for other methods. For example, we give additional masks
or boxes for AnyDoor [7] and Paint-by-Example [47] to indicate the reference regions. We also pick
the state-of-the-art inpainting tool Firefly [32] and feed it with detailed text descriptions.

Qualitative comparison. We visualize the qualitative results in Fig. 5. Although Firefly [32]
accurately follows the instructions and generates high-quality results, it is hard for the text prompt
to capture the details of the desired outputs, especially for logos or patterns like tattoos. Paint-
by-example [47] requires a cropped reference image in which the reference regions are centered.
However, even if we provide this kind of input, as this model only uses a single token to represent the
reference, it cannot guarantee the fidelity between the generated region and the reference region

We carefully annotate the masks of the reference region and fed them to AnyDoor [7]. It demonstrates
stronger abilities for identity preservation but fails to synthesize harmonious blending. We analyze
that there are two main reasons: first, some local parts could not be well understood when cropped
out of the context. Second, most of the training samples of AnyDoor [7] are full objects. It requires
paired mask annotation for the same instance in different video frames for training. The paired masks
are feasible to collect for full objects but hardly feasible for local parts. However, MimicBrush gets
around this problem by leveraging the model to learn the correspondence itself in the full context
instead of using the paired masks. In this way, MimicBrush shows significant superiorities compared
with previous methods for completing arbitrary parts with a full reference image.

Quantitative comparison. We also report the results on our constructed benchmark for part
composition in Tab. 1. For the inner-ID track with ground truth, MimicBrush shows the dominant
performance even though we give additional conditions for other works. For inter-ID imitation, it
is more challenging to discover the correspondent reference region. MimicBrush could still get
competitive performance compared with AnyDoor [7]. We should note that the reference mask
is given to AnyDoor. Therefore, it could forcedly locate the reference regions thus taking some
advantages for the evaluation. However, as demonstrated in Fig. 5, it struggles to generate harmonious
blending and preserve the fine details.

User study. Considering the metrics could not fully reflect human preferences to some extent, we also
organized a user study. We let 10 annotators rank the generation results of different models on our
benchmark (introduced in Sec. 3.4). We evaluate each sample from three aspects: fidelity, harmony,
and quality. Fidelity considers the ability to preserve the identity of the reference region. Harmony
estimates whether the generated regions could naturally blend with the background. Quality regards
whether the generated regions contain fine details in good quality. Those three aspects are evaluated
independently. Results are listed in Tab. 2, MimicBrush earns significantly more preferences.
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Figure 6: Ablation study for reference feature extractors. CLIP and DINOv2 encoders could also
achieve imitative editing but lag behind the U-Net in preserving the fine details.

Table 3: Ablation study for different reference feature extractors. U-Net demonstrates consistent
advantages across different evaluation tracks and metrics compared with CLIP and DINOv2.

Part Composition Texture Transfer
SSIM (↑) PSNR (↑) LPIPS (↓) DINO-I (↑) CLIP-I (↑) CLIP-T (↑) SSIM (↑) PSNR (↑) LPIPS (↓) DINO-I (↑) CLIP-I (↑) CLIP-T (↑)

CLIP Encoder 0.66 16.78 0.31 45.03 82.3 30.05 0.75 16.78 0.31 37.86 78.30 31.39
DINOv2 Encoder 0.67 16.50 0.32 48.34 82.40 29.84 0.74 17.27 0.27 46.34 78.00 30.61
Ours (U-Net) 0.70 17.54 0.28 56.48 84.30 30.08 0.75 17.73 0.26 49.83 79.44 30.75

Table 4: Ablation study for training strategies. In the first block, we verify the importance of
training data and augmentation. In the second block, we explore different strategies for masking the
source image. The performance of our full pipeline is given at the bottom.

Part Composition Texture Transfer
SSIM (↑) PSNR (↑) LPIPS (↓) DINO-I (↑) CLIP-I (↑) CLIP-T (↑) SSIM (↑) PSNR (↑) LPIPS (↓) DINO-I (↑) CLIP-I (↑) CLIP-T (↑)

◦ Image Data Only 0.67 14.95 0.33 39.68 79.90 29.12 0.70 15.10 0.31 41.30 77.80 30.72
◦ Weak Aug. 0.68 16.98 0.30 50.55 83.20 29.81 0.74 18.13 0.26 50.92 80.0 31.23
◦ Single Box0.50 0.66 15.97 0.32 47.41 82.10 28.97 0.72 16.24 0.31 48.52 78.10 29.30
◦ Mask Gid0.25 0.68 17.10 0.30 49.17 82.94 29.80 0.74 17.35 0.27 50.09 79.50 31.05
◦ Mask Gid0.50 0.68 16.97 0.30 50.09 82.56 29.84 0.73 17.25 0.27 48.58 81.00 30.35
◦ Mask Gid0.75 0.67 16.61 0.30 49.94 83.00 29.75 0.73 16.69 0.28 52.46 81.75 30.02
• MimicBrush 0.70 17.54 0.28 56.48 84.30 30.08 0.75 17.73 0.26 49.83 79.44 31.75

4.3 Ablation Studies

In this section, we conduct extensive ablations to verify the effectiveness of different components.
Referece feature extractor. MimicBrush leverages a dual U-Net structure to model extractor the
features from the source and reference image respectively. Some previous works [40, 55] prove
that the pre-trained diffusion models contain strong prior to capture semantic correspondence. We
explore whether an asymmetric structure could still learn the semantic correspondence under our
self-supervised training pipeline. We replace the reference U-Net with the CLIP/DINOv2 image
encoder and inject the 16× 16 patch tokens within the cross-attention layers. Visual comparisons
are provided in Fig. 6, CLIP and DINOv2 also successfully locate the reference region, but U-Net
illustrates clear superiorities for preserving the fine details. We also conduct quantitative results in
Tab. 3, where we conclude that CLIP and DINOv2 also reach competitive performance. However, as
U-Net gives multi-level representations with higher resolutions, and the feature space is naturally
aligned with the initiative U-Net, it gives better results when serving as a reference feature extractor.

Training strategies. In Tab. 4, We first verify the effectiveness of the “video-based” training pipeline.
When using the statistics images only, the performance for each task drops significantly. It shows
that object deformation or variation in videos is vital for realizing imitative editing. Afterward, we
remove the strong color jitter, resizing, and projection transformation. We observe a clear degradation
in part composition, specifically for the inter-ID track. It verifies the importance of augmentation for
robust semantic correspondence matching.

In the second block, we explore the different masking strategies for the source image and report
the performance using a single box and different gid ratios. As introduced in Sec. 3.3, these purely
random masking strategies could cause a large number of low-quality training samples. In contrast,
we leverage SIFT matching to enhance the masking and reach better performances (bottom row).
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Source + Mask Reference Result Source + Mask Reference Result

Figure 7: Diverse applications supported by MimicBrush. Our methods could be applied
conveniently for product design, accessories wearing, editing the scene images, and refining the
flawed generation results of other methods. MimicBrush is able to edit multiple regions in one pass.

4.4 Qualitative Analysis

In this section, we give more visual examples and discuss the potential applications. As demonstrated
in Fig. 7, MimicBrush could deal with images from various topics and domains. The first row
illustrates the application for product design. The second row shows some examples of jewelry-
wearing. It should be noticed that the segmentation masks for the necklace are hard to extract,
but MimicBrush gets rid of the segmentation step and directly transfers the necklace from the
reference image to the source image. In the third row, we show that MimicBrush could also deal
with backgrounds also nature effects, proving its strong generalization ability.

The last row illustrates a practical application that we could leverage MimicBrush as a post-processing
to refine the generation results of other works. In the left example, we improve the fidelity for the
image generated by AnyDoor [7]. In the right example, we mark multiple to-edit regions in the
source image generated by Cones-2 [24] and provide a concatenated reference image containing both
objects. We observe that MimicBrush could refine all the to-edit regions in a single pass.

5 Conclusion

We present a novel form of image editing with simple interactions, called imitative editing. In our
setting, users are only required to mark the editing region on the source image and provide a reference
image that contains the desired visual elements. MimicBrush automatically finds the corresponding
reference region to complete the source image. To achieve imitative editing, we take full advantage
of the consistency and variation of videos and design a self-supervised training pipeline that uses
one frame to complete the masked regions of another frame. MimicBrush demonstrates impressive
performances for various editing tasks and supports a wide range of applications. To facilitate future
explorations, we construct a benchmark to comprehensively evaluate imitative editing. This work is
expected to bring new inspiration for the community to explore more advanced techniques for image
generation and editing.

9



Limitations & potential impacts. MimicBrush demonstrates robust performance. However, it
could fail to locate the reference region when the region is too small or multiple candidates exist in
the reference image. In this case, users should crop the reference image to zoom in on the desired
regions. MimicBrush could deal with a wide range of images, thus making it possible to produce
some content with negative impacts. Therefore, we would add censors to filter out the harmful content
when we release the code and demo.

Acknowledgement. This work is supported by the National Natural Science Founda-
tion of China (No.62201484), HKU Startup Fund, and HKU Seed Fund for Basic Re-
search.
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Appendix

In the Appendix, we begin by providing further descriptions of our constructed benchmark in
Appendix A, along with the proposed metrics. Subsequently, we delve into the details of each step
of the user study in Appendix B. Following that, we offer additional analysis and discussion on the
training strategies in Appendix C. Finally, in Appendix D, we include more visual demonstrations
and qualitative analysis for various applications.

A Benchmark Details

In this section, we provide detailed descriptions of our constructed benchmark and the proposed
metrics. We include examples of part composition and texture transfer, and we visualize the annotation
for each track in Fig. A1. For the inter-ID tracks, we present a source image, source mask, reference
image, reference mask, and a text prompt to specify the expected results. The reference mask and
text prompts are used solely for evaluation, where we calculate DINO and CLIP image similarities,
as well as CLIP text similarity. Specifically, to compute the DINO and CLIP image similarities, we
first remove the background of both the reference image and the generated results using the reference
masks and source masks. Then, we calculate a minimum bounding box for the two masks, cropping
both the generated and reference regions accordingly. The DINO and CLIP similarities are calculated
between these two cropped regions with clean backgrounds.

For inner-ID tracks, since the source image can be considered as the ground truth, we omit annotating
prompts for CLIP test scores. Instead, we compute the SSIM, PSNR, and LPIPS metrics. Similar to
the cropping operation used before calculating the DINO and CLIP image similarities, we also utilize
the masks to obtain the bounding box around the generated region. This box is then employed to crop
the corresponding regions from both the generated result and the source image for computing the
SSIM, PSNR, and LPIPS. Although the reference masks are not utilized for model input or metric
computation, we still annotate the masks for each sample. This enables evaluation for other methods
like Paint-by-Example [47] and AnyDoor [7].
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Source Image Source Mask Ref. Image Ref. Mask Text Prompt Generated Result

Source Image Source Mask Ref. Image Ref. Mask Generated Result
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Figure A1: Visual demonstrations for the samples in our constructed benchmark. We provide one
example for each track to illustrate the detailed data formats.
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Source Reference Image Data Weak Aug. Naïve Masking Ours

Figure A2: Qualitative ablations for different training strategies. We present the results for various
training strategies, including training with only image data, applying weak augmentations, and
utilizing naive masking strategies. For comparison, we also provide the generation results of our
full-version model.

B User Study Details

As outlined in the main paper, we conducted a user study involving 10 annotators to assess the
generation results of various methods. We devised a user interface that presents the source image,
source mask, reference image, and reference mask on the left side to clarify the expected editing
outcomes. On the right side, the user interface displays the four results predicted by four different
methods, each marked with an index. Annotators were tasked with answering four single-choice
questions regarding the best, second-best, third-best, and fourth-best results index. To enhance the
reliability of the user study results, we implemented several measures:

First, we provided comprehensive documentation and rating examples for each task. Annotators were
initially tasked with rating a small subset of data. Once their annotations passed our examination,
they continued with the remaining samples.

Second, to prevent annotators from distinguishing the results of different methods based on additional
information, we standardized the image size of each result and shuffled the order of the four results
randomly for each sample. We recorded the shuffled indexes to maintain consistency.

Third, as human evaluation was required from three different aspects (fidelity, harmony, quality),
these aspects were evaluated as three separate annotation tasks to ensure independence and accuracy.

C Training Strategy Analysis

In this section, we provide additional analysis and qualitative ablation results for the training strategies.
We follow the experimental settings introduced in Tab. 4 of the main paper. As depicted in Fig. A2,
when only utilizing statistical images for training, the first two rows indicate that the model is still
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capable of learning semantic correspondence. However, it struggles to adapt to pose and lighting
variations, resulting in rigid blending. This underscores the importance of incorporating visual
variations from video data for our method to conduct robust and generalized imitative editing.
We also showcase generation results using weak data augmentation and a naive masking strategy
(i.e., masking the random grid with 50% probability). Both approaches exhibit clear performance
degradation compared to our full version of MimicBrush, which employs strong data augmentation
and a matching-guided masking strategy.

D More Visualization Results

This section presents a comprehensive array of examples highlighting the exceptional capabilities of
our methodology in diverse contexts.

Fig. A3 showcases results from inner-ID reconstruction where a specified region on the initial image
is repainted using another image of the same instance as a reference. These outcomes illustrate our
method’s precision in accurately identifying the target region and retaining intricate details with high
fidelity.

In Fig. A4, further examples of part composition are provided. The first row demonstrates a seamless
editing process, which facilitates the combination of multiple visual elements in a cohesive manner.
The next two rows exhibit variations across assorted topics and domains, showcasing our method’s
robust adaptability.

In Fig. A5, we present instances of texture transfer applications. Here, we utilize the depth map
to maintain the original structure of the source image while artfully transferring texture from the
reference image. This technique facilitates a myriad of imaginative designs, allowing creators to
infuse elements with new aesthetic qualities while respecting the underlying form. Such versatility
not only provides a tool for artists to expand their creative palette but also offers practical solutions
for industries requiring rapid visualization of texture variations without altering the product’s shape.
Consequently, our method stands as a testament to the convergence of creativity and technical
innovation, opening new avenues for design exploration.
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Source + Mask Reference Result Source + Mask Reference Result

Figure A3: Demonstrations for inner-ID reconstruction. In this scenario, we repaint a masked
local area of the source image using a reference from the same instance. For the final two rows, we
implement shape control utilizing the depth map for enhanced precision.

Source + Mask Reference Result Source + Mask Reference Result

Source

Reference

Source Source

Reference Reference

Figure A4: Demonstrations for part composition. The first row illustrates a case of continuous
editing, allowing for a step-by-step composition of multiple visual elements. The subsequent rows
provide examples across various themes such as animals, fashion, and product design.
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Figure A5: Demonstrations for texture transfer. When applying the shape control, MimicBrush
could strictly follow the original shape and transfers the novel texture from the reference images.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract outlines the overall content and our contributions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: we include the discussion in the section of conclusion.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used
by reviewers as grounds for rejection, a worse outcome might be that reviewers
discover limitations that aren’t acknowledged in the paper. The authors should use
their best judgment and recognize that individual actions in favor of transparency play
an important role in developing norms that preserve the integrity of the community.
Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: We do not have theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the
main experimental results of the paper to the extent that it affects the main claims and/or
conclusions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We give sufficient details and hyper-parameters for reproduction.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?
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Answer: [No]
Justification: According to the regulations of the company, we would release the code and
benchmark after internal check.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand
the results?
Answer: [Yes]
Justification: We report the implementation details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The papers on our topic do not provide an error bar, instead we run the
experiments multiple times to report the average scores.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars,

confidence intervals, or statistical significance tests, at least for the experiments that
support the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed to
reproduce the experiments?

Answer: [Yes]

Justification: We provide implementation details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, we follow the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special

consideration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss it in the section of the conclusion.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our methods are not so risky, and we would add censor when we release the
demo.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, we checked the license.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not have assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Do not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Do not apply.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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