
Under review as a conference paper at ICLR 2022

PARETO FRONTIER APPROXIMATION NETWORK
(PA-NET) APPLIED TO MULTI-OBJECTIVE TSP

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-objective optimization is used in various areas of robotics like control, plan-
ning etc. Their solutions are dependent on multiple objective functions, which can
be conflicting in nature. In such cases, the optimality is defined in terms of Pareto
optimality. A set of these Pareto Optimal solutions in the objective space form
a Pareto front (or frontier). Each solution has its own trade off. For instance,
the travelling salesman problem (TSP) is used in robotics for task/resource allo-
cation. Often this allocation is influenced by multiple objective functions and is
solved using Multi-objective travelling salesman problem (MOTSP). In this work,
we present PA-Net, a network that generates good approximations of the Pareto
front for the multi-objective optimization problems. Our training framework is
applicable to other multi-objective optimization problems; however, in this work,
we focus on solving MOTSP. Firstly, MOTSP is converted into a constrained op-
timization problem. We then train our network to solve this constrained problem
using the Lagrangian relaxation and policy gradient. With PA-Net we are able to
generate good quality Pareto fronts with fast inference times. Finally, we present
the application of PA-Net to find optimal visiting order in coverage planning.

1 INTRODUCTION

Travelling Salesman Problem (TSP) is a popular sequencing problem. TSP aims at finding a se-
quence or a tour of visiting each node in a given graph and finally returning to the starting node such
that the overall cost is minimized. TSP and its variants are widely used in robotics for applications
like path planning for UAVs (Xu & Che, 2019), multi-robot path planning (Yu et al., 2002), task
allocation for robotic manipulators (Zacharia & Aspragathos, 2005), coverage planning (Bormann
et al., 2018) etc.

We intend to use multi-objective travelling salesman problem (MOTSP) for application of coverage
planning. Algorithms for coverage planning generates trajectories for robots that can cover a given
area (Bormann et al., 2018). Area coverage is used in robotic applications like cleaning robots,
surveillance etc. Grid based TSP planners (Bormann et al., 2018), segment a given map into multiple
cells, and generate a coverage pattern for each cell.The optimal visiting order for these cells is
generated by solving TSP that minimizes the length of the tour. Now imagine a scenario where a
robot has to visit these cells and the order is dependent on multiple objectives such as tour length,
priority order of the cells etc. So MOTSP would be a more appropriate choice in such a scenario.
There is a wide variety of algorithms ranging from exact methods to evolution based methods to
solve MOTSP (Lust & Teghem, 2010). Evolutionary algorithms like non-dominated sorting genetic
algorithm-II (NSGA-II) (Beirigo & dos Santos, 2016) and multi-objective evolutionary algorithm
(MOEA/D) (Peng et al., 2009) are a popular choice of methods to tackle MOTSP and other multi
objective optimization problems. Many algorithms also use evolutionary algorithms coupled with
local search heuristics (Jaszkiewicz, 2002; Ke et al., 2014; Cai et al., 2014). In practice, these
evolutionary based methods suffer in performance and computation time with an increase in the scale
of the problem (Zhang et al., 2016). We intend to address these issues using Deep Reinforcement
Learning (DRL).

Contribution: In this work, we present Pareto frontier approximation network (PA-Net) that gen-
erates an approximation of a set of Pareto optimal tours for MOTSP. We use PA-Net to generate
MOTSP tours for coverage planning. Our main contributions are: (1) The drawback of existing ap-
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proaches (Li et al., 2020) is costly training of separate networks for different preferences in objective
space. Our method avoids this costly training through the use of a single network, while providing
generalizability over different preferences in objective space. (2) PA-Net can generate solutions
for large number of preferences, which contributes to a dense approximation of Pareto front. Our
network has competitive results on various metrics evaluating the quality of Pareto front and faster
inference times. (3) Our design can be easily extended to generate a set of Pareto optimal solutions
for other multi-objective reinforcement learning and Multi-Objective Optimization (MOO) tasks.

Related Work: Sequencing problems are a subset of Combinatorial Optimization (CO) where the
decision variables are discrete. Most CO problems are NP-Hard, as a result state-of-the-art algo-
rithms rely on handcrafted heuristics for making decisions that are otherwise too expensive to com-
pute or mathematically not well-defined. Recently, researchers are addressing these issues using
deep learning and machine learning (ML) (Bengio et al., 2020; Vesselinova et al., 2020; Mazyavk-
ina et al., 2020). Many recent works have been dedicated to solving TSP and other sequencing
problems using deep networks. Google Brain’s Pointer Network (Ptr-Net) (Vinyals et al., 2015)
learns the conditional probability of an output sequence of elements that are discrete tokens corre-
sponding to positions in an input sequence. They used Ptr-Net to solve Euclidean TSP (and other CO
problems) in an end to end fashion, where the solutions from classical methods are used as baselines
for training. Similarly, TSP was solved using 2D graph conv-nets followed by beam search (Joshi
et al., 2019). RL was used to solve various combinatorial optimization problems in (Bello et al.,
2016). Their network uses an RNN based encoder and a Ptr-Net. They trained their network using
policy gradient. Similar methodology was adopted in (Deudon et al., 2018). They used transformers
as the encoder. Kool et al. (2018) proposed an attention based network which used a baseline based
on greedy rollouts. Their network outperformed other deep-learning based solvers. While these
methods generated competitive results, however, they still lag in performance in comparison to TSP
solvers like OR-Tools and Concorde.

Finding Pareto optimal solutions has been studied in deep learning literature for various multi-
objective tasks. In supervised learning tasks, many works focussed on multi-objective classification
tasks (Sener & Koltun, 2018; Lin et al., 2019; Mahapatra & Rajan, 2020; Ruchte & Grabocka, 2021;
Navon et al., 2021). Similarly, many multi-objective RL methods have been to solve multi-objective
MDPs (Roijers et al., 2013; Parisi et al., 2014). Some works in RL train many single policy net-
works to approximate Pareto front (Vamplew et al., 2017; Li et al., 2020). While others have trained
a single network to generate a set of Pareto optimal solutions (Yang et al., 2019; Parisi et al., 2016).

There are various methodologies to tackle MOO problems. In ϵ-constrained methods optimize one
of the objectives at a time while using the other objectives as constraints (Mavrotas, 2009; Chinchu-
luun & Pardalos, 2007). One of the most common ways is to use preference vectors (or weights).
Some methods use the weighting vectors to scalarize the objective function and Pareto front can be
obtained by solving the optimization for multiple preference vectors (Coello et al., 2009; Boyd et al.,
2004). On the other hand, some methods (including ours) use these weighting vectors in constraints
(Das & Dennis, 1998).

Li et al. (2020) solved MOTSP by training multiple single policy networks. They converted the
MOO problem into a single objective using linear scalarization with the help of preference vectors.
They train K different networks, each with different preference vector, to approximate the Pareto
front. Their network, called DRL-MOA, generated competitive results in comparison to classical
methods. However, the downside of their method is that it is redundant to train multiple networks
and requires a lot of resources. Furthermore, solutions on concave regions of Pareto fronts cannot
be uncovered using the linear scalarization technique, as proved in (Boyd et al., 2004). In our work,
we train a single network that can predict solutions for any preference vector. This enables us to
produce a much denser Pareto front. Instead of using linear scalarization, our network learns to
solve a constrained optimization problem where the constraints are dependent on the preference
vectors.

In this work, we present PA-Net, a framework of deep network trained using policy gradient that
can approximate Pareto front for MOO problems. Our choice of using RL is motivated by success
of Deep CO methods and the fact that it’s hard to generate training data for complex problems like
MOTSP. We use PA-Net to find a set of Pareto optimal tours for MOTSP. An augmented version of
the network presented in (Deudon et al., 2018) is adopted for PA-Net to solve MOTSP. The novelty
of our algorithm is that we pose the problem of finding a set of Pareto optimal solutions as a con-
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strained optimization problem, rather than using linear scalarization. We use preference vectors as
constraints, which indicates the desired location of the solution in objective space. Finally, we train
our network using the reward constrained policy optimization (Tessler et al., 2018), a constrained
RL method. Our network performs better than other methods in computation time and generates
competitive results in terms of quality of the Pareto front.

2 BACKGROUND

Here we review the definition of Pareto optimality, with a brief primer on solving TSP using DRL.

2.1 PROBLEM SETUP

A MOO is defined as:
minx F⃗ (x) = (f1(x), f2(x), ...fm(x)) (1)

where F⃗ (x) is a vector of m-objective functions and x ∈ X is the decision variable in Rn. In such
problems, often different objectives are conflicting in nature, i.e. no single solution can simultane-
ously optimize all the objectives. Instead, a set of Pareto optimal solutions provide the best solutions
with different trade-offs between various objectives. Pareto optimality is defined as follows:

• Dominance: A solution xa is said to dominate xb (xa ≺ xb) if and only if fi(xa) ≤ fi(x
b),

∀i ∈ {1, ...m} and fj(x
a) < fj(x

b) such that ∃j ∈ {1, ...m} .
• Pareto Optimality: A solution x∗ is said to be Pareto optimal if there does not exist any

solution x
′

such that x
′ ≺ x∗. A set of all such points form a Pareto frontier denoted by Υ.

The Euclidean TSP is defined over a graph of n cities, where each city has coordinates a ∈ R2. A
TSP tour π provides a sequence of visiting cities exactly once and then returning to the starting city.
MOTSP is a MOO problem that aims to find a set of Pareto optimal TSP tours Π (Π ⊂ Zn) on a
complete graph s, while optimizing for m objectives. Each city in s can have p a set of features.
In case of bi-objective TSP, the input graph s is a sequence of n nodes in a four dimensional space
s = {a1i , a2i }i=1:n, where ami ∈ R2 for each m ∈ {1, 2} (Li et al., 2020). The goal is to find a tour
π ∈ Π that visits each city once and can simultaneously optimize the objectives for m ∈ {1, 2}:

fm(π|s) =
∥∥am

π(n) − am
π(1)

∥∥
2
+

n−1∑
i=1

∥∥am
π(i) − am

π(i+1)

∥∥
2

(2)

2.2 TSP USING DRL

An attention based network to solve TSP was proposed by Deudon et al. (2018). We will refer to
this network as TSP-Net. We use a modified version of TSP-Net for our network. TSP-Net uses
an actor-critic network which is trained using REINFORCE (Williams, 1992). The input to the net-
work is a graph s. Each city coordinates is embedded into a higher dimension. These embedded
representations are then passed on to a Multi-Headed attention encoder that generates an encoded
representation of the complete graph. Both actor and critic networks share the same encoder ar-
chitecture. The decoder network of the actor uses a Pointer-Network (Ptr-Net) to generate the TSP
tours. The tour is sequentially constructed, where at each step an appropriate city is selected based
on the current state and the previous actions by the Ptr-Net. The actor network θ, is trained to min-
imize the total tour length given by equation 2. The network is trained on a batch of TSP problem
instances of size B. The training objective for the actor is given by:

D(θ) = Es∼S [Eπ∼pθ(.|S)[Q(π|S)]] (3)

Here, S is the distribution from which training graphs are drawn and pθ(π|S) is the probability of
a tour generated by the Ptr-Network. The decoder of the critic with parameters ϕ, is a feed forward
network that predicts the baseline for the objective function.

3 METHODOLOGY

This section provides our mathematical formulation for MOO. We use the formulation to train a
network that can generate a good approximation of the Pareto front for MOTSP.
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Figure 1: Visualization of surrogate optimization of equation 6 for 2-D cost (F⃗ (π)) along the preference
vector w⃗k. All the members in set Ck map to the line along the preference vector w⃗k in the objective space.
The optimum point F⃗ ∗(π) dominates all other members in Ck. The dominant point, i.e. F⃗ ∗ is unique in Ck,
although there can exist different solutions πk ∈ Sk that map to F⃗ ∗.

3.1 PROBLEM FORMULATION

We intend to generate a good quality approximation to Pareto front denoted by Υ̃, where Υ̃ ⊂ Υ.
The set Υ̃ should capture a range of possible dominant solutions in the objective space.

MOTSP is an extension of TSP to the MOO domain. Let the vector cost function for a MOTSP is
given by F⃗ (π) where F⃗ ∈ Rm and the tour π ∈ Π (Π ⊂ Zn). The optimization problem can be
written as:

minπ F⃗ (π) = (f1(π)...fm(π)) (4)

Where fi : π → fi(π) for fi(π) ∈ R. We further assume that all the cost functions are strictly
positive:

fi(π) > 0 ∀i ∈ {1...m} (5)

In order to find the Pareto front, we convert the MOO in equation 4 to a set of constrained optimiza-
tion problem. This is done by discretizing the objective space using a collection of unit preference
vectors W : {w⃗1...w⃗K}. These preference vectors are a set of rays emanating from origin that uni-
formly divide the objective space. Each element in w⃗k lies in the interval {0, 1} and also ||w⃗k||2 = 1.
The key idea is to solve a surrogate optimization problem along each preference vector in order to
generate a set of dominant solutions for equation 4. This surrogate optimization is expressed as a set
of K constrained optimization problems where the kth problem corresponding to w⃗k ∈ W is given
by:

minF⃗ (πk)
J(F⃗ (πk)) = ||F⃗ (πk)||2

s.t. F⃗ (πk) ∈ Ck

(6)

The constraint set is defined as Ck = {F⃗ (π) ∈ Ck : g(F⃗ (π), w⃗k) ≤ 0} and the corresponding
tour set is defined as Ak = {π ∈ Ak : g(F⃗ (π), w⃗k) ≤ 0} . Here, the dot product constraint
g(F⃗ (πk), w⃗k) is given by:

g(F⃗ (πk), w⃗k) = 1− w⃗k · F⃗ (πk)

J(πk)
(7)

We assume Ak is non-empty. As a consequence of this assumption, Ck is also non-empty.

The constraint set Ck represents a set of vector cost F⃗ (πk) associated with πk ∈ Ak that lie on
the unit preference vector w⃗k in objective space. The objective function in equation 6 minimizes
L2-norm which finds the points closer to origin. Below, we state a theorem that is the motivating
factor of our work:

Theorem 1. F⃗ ∗ ∈ Ck is the optimum solution of equation 6 if and only if it dominates all other
points in the set.
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Proof: Let F⃗ ” ∈ Ck minimize the equation 6 such that F⃗ ∗ ≺ F⃗ ”. This dominance relation implies
that f∗i ≤ f”

i ∀i ∈ {1, 2..m} and ∃j ∈ {1, 2..m} such that f∗j < f”
j . This dominance relation leads

to the following result:
||F⃗ ∗||2 < ||F⃗ ”||2 (8)

But this result is a contradiction because F⃗ ” minimizes equation 6. Hence, F⃗ ∗ ∈ Ck that dominates
all other points in the set is the optimum solution for problem equation 6. ■

The dominant point in the set, i.e. F⃗ ∗ ∈ Ck is also unique in the set. An intuitive proof for this can
be visualized using the case for Ck ⊂ R2 as shown in Fig. 1. Because of the dot product constraint,
all the possible members in the set lie on the unit vector w⃗k. It is clear from the image that the
point in the set Ck closest to origin dominates all other points and is in fact the optimum solution of
equation 6. Further, there can be multiple solutions in Ak that lead to the dominant objective value,
i.e. F⃗ ∗. Mathematically, the solution set Sk ⊂ Ak, where Sk = {π∗ ∈ Sk : F⃗ (π∗) = F⃗ ∗}, all
π∗k ∈ Sk will generate dominant objective values.

The essence of Theorem 1 is that it demonstrates the viability of approximating the Pareto front for
problem in equation 4 through the surrogate optimization problem in equation 6. Solving optimiza-
tion problem in equation 6 for large values of K can be computationally intractable. We address this
issue, through the generalization power of deep neural networks. PA-Net learns to approximately
solve equation 6 on a given input preference set and has an ability to generalize to other preferences
as well. Unlike linear scalarization methods, our formulation can also find concave Pareto frontier.
We demonstrate this with an example in Appendix.

3.2 TRAINING METHODOLOGY

The reward constrained policy optimization is an actor-critic algorithm (Tessler et al., 2018). It
uses a Lagrangian of the constrained problem as the objective function, where after each gradient
update step, the Lagrangian multipliers are updated based on the constraint violation. We use the
reward constrained policy optimization to train a network to solve the problem in equation 6 for all
k ∈ {1...K}.

Algorithm 1: Training of PA-Net

input : [θ, ϕ, ηA, ηC ], [W,α, λmin, λmax] ←− Initialization of network weights, set of preference vectors and corresponding
parameters.

output: Trained network parameters of PA-Net θ∗, ϕ∗.

for i ←− 1, 2...N do
Ω : {s1 .... sB} ← Sample a Batch of TSP Graphs of size B from distribution S.

for k ←− 1, 2...K do
for j ←− 1, 2...B do

πj
k ←− Actor network Generates TSP Tour for each sj and w⃗k .

bϕ(w⃗k, s
j) ←− Critic Network predicts the baseline

Lk(π
j
k|s

j) ←− Calculate the larangian using equation 11.

Actor Update: θ ←− θ − ηA · ∇θDAC(θ)

Critic Update: ϕ ←− ϕ− ηC · { 2
B

∑K
k=1

∑B
j=1(bϕ(w⃗k, s

j)− (Lk(π
j
k|s

j))}

for k ←− 1, 2...K do
λk ←− Update the lagrangian multipliers using equation 15

We intend to train a single network that generates a set of dominant tours T : {π1, ..., πK}. Hence,
the problem in equation 6 for each πk ∈ T can be written in the parametric format as:

minθ J(πk(θ)) = ||F⃗ (πk(θ))||2
s.t. gk(F⃗ (πk(θ), w⃗k)) ≤ 0

(9)

Here, θ is the parameters of the actor network. The Lagrangian dual problem for equation 9 is:

Lk(θ, λk) = maxλk≥0 minθ J(πk(θ)) + λk · gk(F⃗ (πk(θ))) (10)

5



Under review as a conference paper at ICLR 2022

Here, λk is the kth Lagrangian multiplier corresponding to the preference vector w⃗k. PA-Net uses
modified TSP-Net in order to generate a dominant set of tours T . We augment TSP-Net network
by adding an input of a set of preference vectors W of size K. Each w⃗k ∈ W is encoded in higher
dimensions using a feed-forward network. These additional layers learn features corresponding to
different preferences. This encoding is then combined with the encoded representation of the graph
and then passed on to the decoder. With this architecture, the network can be trained for various
preferences. Complete details regarding the architecture is presented in Appendix. We use the
Lagrangian in equation 10 as the reward for the network. The reward for each tour generated by the
actor corresponding to each preference for a given graph can be written as:

Lk(π
j
k, w⃗k|sj) = J(πk(θ)|sj) + λk · gk(F⃗ (πk(θ))|sj). (11)

Based on this reward, the training objective for the actor can be written in our case as:

DAC(θ) = Es∼S [Ew⃗k∼W [Eπ∼pθ(.|s)[Lk(π, w⃗k|s)]]]. (12)

The critic network provides predictions bϕ(w⃗k, s
j) on the reward given in equation 11. The critic

network is trained on the mean squared error between its predictions and rewards of the actor, which
is given by:

DCR(ϕ) =
1

B

K∑
k=1

B∑
j=1

(bϕ(w⃗k, s
j)− (Lk(π

j
k|s

j))2 (13)

The gradient for the training of the actor network is approximated using REINFORCE (Williams,
1992):

∇θDAC(θ) ≈
1

B

K∑
k=1

B∑
j=1

[(Lk(π
j
k|s

j)− bϕ(w⃗k, s
j)) · ∇θlog(pθ(π

j
k|s

j))]. (14)

The description of the training of PA-Net is given in Algorithm 1. We start with initialization
of weights and learning rates for the network and the set of preference vectors, along with other
hyperparameters that are the ascent rate of the Lagrangian multipliers α and [λmin, λmax] the limits
for the multipliers. The network is trained for N iterations. At each iteration, a set of graphs Ω of
size B are generated. For each sj ∈ Ω corresponding to every preference vector, w⃗k ∈ W a tour πj

k.
Based on generated tours, the objective for actor and critic are calculated. Then parameters of the
network are updated using gradient descent. At the end of each iteration, the Lagrangian multiplier
corresponding to each preference vector are updated in an ascent step using:

λi+1
k = Γλ(λ

i
k + α ·

B∑
j=1

gk(F (πj
k(θ), w⃗k))) (15)

Here Γλ(·) ensures that the multipliers remains within the limits, i.e. [λmin, λmax] and α is prespec-
ified ascent rate. Although the network is trained on a fixed set of preferences W , it however can
generalize to a larger set of preferences. A detailed discussion on preference selection mechanism
and study on effect on network performance due to some key hyperparameters is presented in the
Appendix.

There are a few caveats in solving equation 6 with our approach. The guarantees provided in Theo-
rem 1 may not hold because the reward constrained policy optimization guarantees convergence of
equation 9 to a saddle point (θ∗(λ∗), λ∗) which may not lead to the global optimum of equation 6.
Further, a strong duality would have to be established between equation 9 and its dual form in equa-
tion 10. However, in practice our approach is able to generate competitive results as presented next.

4 EXPERIMENTS

In this section, we present experiments to evaluate the efficacy of PA-Net and use case of two objec-
tive MOTSP for coverage planning. The performance of PA-Net and other algorithms is compared
on MOTSP instances with {2, 3 and 5} objectives, respectively. The performance of PA-Net is
compared with deep learning based method DRL-MOA (Li et al., 2020), evolution based strategies:
NSGA-II and MOEA/D (Peng et al., 2009) and OR-Tools solver (using linear scalarization) that
primarily uses local search methods and meta-heuristics.

Experimental Details: All the above-mentioned algorithms are evaluated on a set of 25 randomly
generated MOTSP instances. Each MOTSP instance is a graph s of size n×t, where, n the number of
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Figure 2: Visualization of the dominant solutions for different problem instances. It can be seen that
our network (PA-2 and PA-3) generates significantly better objective values

cities and each city is represented by t dimensional features. These features are drawn uniformly at
random from [0, 1]. Here, t = 4 for {2, 3}-objective TSP and t = 6 for 5-objective TSP. Two forms
of objective functions are used, one with reward of L1-norm and the other one with L2-norm. For
2-objective instances, we use L2-norm for both objective. In the case of {3, 5}-objective instances,
we use L2-norm for f1 and L1-norm for the remaining. The objective with L2-norm is generated
using equation 2. Similarly, the objective for L1-norm for b∗ ∈ R is:

fi(π|s) =
∥∥b∗π(n) − b∗π(1)

∥∥
1
+

n−1∑
j=1

∥∥b∗π(ij) − b∗π(j+1)

∥∥
1

(16)

The results of PA-Net are compared with other methods on the basis of average run time and the
average hypervolume (HV) of the solutions obtained across 25 instances. HV is a hybrid metric used
to evaluate Pareto fronts (Bérubé et al., 2009; Audet et al., 2020). It represents the volume covered
by the non-dominated set of solutions with respect to the a reference point.A higher HV represents
a better quality of the Pareto front, both in terms of optimality and coverage of the objective space.
We use Monte-carlo sampling to calculate HV, where, HV is given by the percentage of points
dominated by the solution set out of randomly sampled points in a fixed volume in the objective
space. A fixed reference point is used to compare all the algorithms. It is calculated as the product
of number of cities and unity vector, for example, reference point for 200-city bi-objective TSP is
[200.0, 200.0]⊤.

For bi-objective TSP 100 solutions are evaluated for each case. In {3,5}-objective MOTSP 91 and 40
solutions are reported. Further, we also report 500 solutions for PA-Net in {3,5}-objective MOTSP
to demonstrate its generalization ability. It should be noted that the preferences used in linear scalar-
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ization are sampled from [0,1] and satisfy convexity constraints. In PA-Net the preferences used are
unit vectors that uniformly segment the objective space.

The trained model of bi-objective TSP for DRL-MOA (Li et al., 2020) is used. For NSGA-II and
MOEA/D, we use a MATLAB based software platform, PlatEMO (Tian et al., 2017). The ex-
periments for PA-Net and DRL-MOA are carried out on NVIDIA V100 Volta GPU. Whereas, for
NSGA-II, MOEA/D and OR tools experiments are carried out on dual-core Intel i5 processor.

Training Details:For all three instances of MOTSP problems we train separate networks i.e. PA-2,
PA-3 and PA-5 for {2, 3, 5}-objective TSP respectively. All PA-Nets are trained on 120 city MOTSP
instances. The preferences for PA-Net are randomly sampled (more details in Appendix).

Table 1: Training Details

2-Obj 3-Obj 5-Obj
PA-2 DRL-MOA PA-3 DRL-MOA PA-5 DRL-MOA

Batch size 60 200 60 200 60 200
Epochs 1 5 1 5 1 5

Input Graph size 120× 4 40× 4 120× 4 40× 4 120× 6 40× 6
Steps (per epoch) 20000 2000 25000 2000 20000 2000

Training time (hrs) ∼ 14 ∼ 100× 0.70 ∼ 23 ∼ 91× 0.70 ∼ 18 ∼ 40× 1

The details of training of PA-Net and DRL-MOA are given in Table-1. The times are reported based
on training from NVIDIA V100 Volta GPU. Note that in case of DRL-MOA, average training time
for each preference network is ∼ 1hr (for {2,3,5} objective). So 100 networks are trained with the
total training time ∼ 70hrs.

Discussion: The results of quantitative comparison for 2-objective MOTSP is given in Table-2.
Similarly, the results for {3, 5}-objective is summarized Table-3. Visualization for various MOTSP
instances is given in Fig-2 (a)-(c). It is clear that OR tools achieves the best performance in terms of
HV. However, it has longer runtimes as compared to other methods. On the other hand, evolutionary
methods significantly underperform as the scale of the problem increases. This is likely because
these algorithms are unable to explore the solution space well for larger problems. Running these
algorithms for more iterations could potentially improve their performance in terms of HV, but this
comes with an additional computational cost. Both PA-Net and DRL-MOA achieve competitive
results in terms of HV. Our network achieves better performance as compared to DRL-MOA in 2
objective problem. PA-Net generates the complete Pareto front much faster as compared to other
methods. Further, we have significantly lowered the training times as compared to DRL-MOA, see
Table. 1. Another notable point is that for each problem set, PA-Net can infer solution from a single
network, whereas DRL-MOA has to train and rely on multiple networks. For the {3,5}-objective
case, while our network is much faster than DRL-MOA, our network lags behind in HV when using
lower number of preferences. This issue can certainly be addressed with prolonged training and
better tuning of the network and use of local search heuristics to refine solutions.

Table 2: Quantitative comparison of Pareto front for 2-Objective MOTSP

40-City 200-City 500-City 1000-City
Algo. HV

(%)
Time

(s)
HV
(%)

Time
(s)

HV
(%)

Time
(s)

HV
(%)

Time
(s)

NSGA-II (20K) 67.3 5.64 45.4 8.04 38.4 14.7 33.8 27.1
NSGA-II (80K) 72.5 21.7 53.9 30.8 46.36 58.7 41.48 107.3
MOEA/D (20K) 66.7 9.357 47.5 12.7 40.4 20.7 35.7 33.5
MOEA/D (80K) 70.7 34.65 55.98 48.2 48.8 79.53 43.89 130.75

DRL-MOA 73.6 5.87 80.63 29.3 84.5 72.9 85.9 145.5
PA-2 (ours) 75.4 1.59 83.2 6.03 86.92 15.14 88.45 30.38

OR-tools (LS) 78.14 2.16 86.5 86.8 91.07 732 93.39 3730
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Table 3: Quantitative comparison of the Pareto front, for 3,5-Objective MOTSP

200-City 500-City
Problem Algo. HV (%) Time

(s)
HV
(%)

Time
(s)

3-obj

NSGA-II (80K) 44.24 35.3 36.15 78.6
DRL-MOA 86.3 26.6 89.8 66.3

PA-3 (K = 91) 84.72 5.2 88.05 12.6
PA-3 (K = 500) 85.41 29.27 88.51 70.8
OR Tools (LS) 89.71 77.8 93.4 672.9

5-obj

NSGA-II (80K) 21.6 55.2 16.6 133.2
MOEA/D (80K) 30.1 103.54 22.8 180.4

DRL-MOA 64.6 12.1 69.3 30.1
PA-5 (K = 40) 62.3 2.6 67,4 6.35

PA-5 (K = 500) 67.3 29.9 71.8 72.6
OR Tools (LS) 69.8 34.5 76.32 299.2

Application for Coverage Planning: We test our network for coverage planning. We assume a
scenario where the robot has to visit all the cells while ensuring the maximum adherence to a pre-
computed priority order. Such a scenario is representative of real-world applications. For instance,
a cleaning robot has to clean a large area where different regions have varied priorities based on the
number of people visiting those areas. So the goal is to visit all the cells while minimizing the total
distance travelled and maximizing the adherence to pre-computed priority order. This task can be
cast as a 2-objective MOTSP instance. For this experiment, we use a different graph than the one
used in the previous experiment. Each cell in the graph has four features {a, b, 0}. Here, a ∈ R2 is
the Euclidean coordinates of the and b ∈ R+ is the priority. Note that a lower value of b corresponds
to greater priority. So for this task we synthetically generate TSP instances of size 200 and 500 cells
respectively. We compute tours from PA-2 and other algorithms. Comparative results for different
algorithms for the coverage planning task are listed in Table-4. The plots for the Pareto front for this
experiment are shown in Fig-2(d). An intuitive visualization of tours generated in this experiment
can be found in Appendix and here.

Table 4: Quantitative comparison of the Pareto front for coverage planning.

200-City 500-City
Algo. HV (%) HV (%)

NSGA-II (80K) 52.9 39.9
MOEA/D (80K) 60.4 43.2

DRL-MOA 88.8 82
PA-2 (ours) 89.6 84.34

5 CONCLUSIONS

We presented PA-Net, a network that approximates the Pareto frontier for the multi-objective TSP.
Our results indicate a superior performance in terms of optimality of the solutions. This is achieved
by segmenting the objective space using a set of unit vectors which represent trade-offs among var-
ious objectives. We then use these preference vectors to convert the unconstrained optimization
problem into a set of constrained optimization problems. Then the network is trained using policy
gradient to generate solutions for these constrained problems. While PA-Net is trained on a fixed
number of preference vectors, it generalizes well to other unseen preferences as well. The effective-
ness of our method is highlighted by the competitive results in terms of quality of solutions, faster
inference and training times. Although we focus on multi-objective TSP in this work, our training
framework can be applied to other MOO problems. We also demonstrated a use case of PA-net for
a simple coverage planning application. The future direction is extending the work to multi-robot
system that can also account for the uncertainty in the environment.
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APPENDIX

CONVERGENCE TO CONCAVE PARETO FRONTS

The backbone of PA-Net is as follows: to generate a Pareto front for the Multi Objective Optimiza-
tion (MOO) problem in equation 4, we solve a set of K constrained surrogate optimization problem
given by equation 6. In order to show that our framework can work for MOO problems with con-
cave frontier, we have generated solutions for a MOO problem with concave Pareto front by solving
equation 6 for K preferences. The MOO problem we solve is taken from Lin et al. (2019) and is
given by:

minx F⃗ (x) = [f1(x), f2(x)]
⊤, (17)

where,
f1(x) = 1− exp(−Σd

i=1(xi −
1√
d
)2),

f2(x) = 1− exp(−Σd
i=1(xi +

1√
d
)2).

(18)

Here x = [x1, x2]
⊤ ∈ R2+ and d = 2. The surrogate optimization in this case with preference w⃗k

is given by:
minF⃗ (xk) J(F⃗ (xk)) = ||F⃗ (xk)||2

s.t. 1− w⃗k · F⃗ (xk)

J(F⃗ (xk))
≤ 0

(19)

We solve the above problem in Matlab for K = 20. The preference is generated by w⃗k =
[cos(ϕk), sin(ϕk)]

⊤, where ϕk ∈ {0, 90}.

We also solve the MOO problem with a simple linear scalarization of objective. In this case, the
preference is given by αk = [α1, α2]

⊤ ∈ R2+ such that α1 + α2 = 1. We use K = 100 prefrences
in this case. The kthobjective function for linear scalarization is:

minF⃗ (xk) R(F⃗ (xk)) = α1 · f1(xk) + α2 · f2(xk) (20)

The results are shown in the image below. It can be clearly seen that our method is able to produce
the concave Pareto front. On the other hand, linear scalarization is unable to find solutions on the
concave part of the Pareto front(Boyd et al., 2004) and converges to one solution for all preferences.
This example demonstrates that our method can certainly be extended to MOO with concave Pareto
fronts.

Figure 3: The above plot depicts the convergence of our method to Concave Pareto Front. Here red
points are the results generated by our algorithm, green points are the solution from linear scalariza-
tion method and blue points represent the set of possible solutions in the objective space.
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NETWORK ARCHITECTURE

PA-Net uses a modified architecture of TSP-Net Deudon et al. (2018). TSP-Net aims at finding
tours with minimal path length. On the other hand, PA-Net finds a set of Pareto optimal tours that
are dependent on multiple criterias. The architecture of the for both PA-Net and TSP-Net is shown
in Fig-4.

TSP-Net: The input to the network is a batch of N -city TSP graphs Ω : {s1....sB}. Each city,
abi ∈ Rp in the input graph, is encoded to a higher dimension embedding dbi ∈ Rd using a multi-
headed attention encoder (Vaswani et al., 2017; Deudon et al., 2018). So each graph sb ∈ Ω can be
represented as Db : {db1...dbN}. This encoded graph sequence is then converted into a unified graph
representation F b

ac:
F b
ac = Wp(θ) ·Db (21)

Here, θ are the parameters of the actor network and Wp is a matrix that projects the encoded graph
sequence to a unified representation. This unified graph representation is then used by pointer net-
work to generate TSP tours for the complete batch Ω. The details of the pointing mechanism to
generate a tour can be found in (Vinyals et al., 2015; Deudon et al., 2018). The gradient at training
time is computed using REINFORCE. The critic network uses the same attention based encoder
to generate a unified graph representation (F b

cr), which is then used by a feedforward network to
predict the baseline for training.

PA-Net: For PA-Net, the input is a batch of TSP tours Ω and a set of preference vectors W :
{w⃗1...w⃗K}. Like before, each city is encoded to a higher dimension embedding dbi . Each w⃗k is
encoded using a feed forward network to obtain a higher dimension embedding hk ∈ Rd. Now,
the encoding of each city is combined with the kth preference encoding to generate augmented
embedding for the cities dbi,k:

dbi,k = dbi + hk (22)

From Eq-equation 22 augmented embeddings for all the cities in a graph are Db
k : {db1,k...dbN,k}.

The unified graph representation F b
k,ac, for Gb and kth preference, is obtained using Eq-equation 21.

Finally, a set of K tours for each Gb is generated by the pointer network. The gradient at training
time is computed using Eq-equation 14. The critic uses the same encoder architecture to generate an
augmented unified graph representation (F b

k,cr), which is used by the feed-forward network (FFN)
to predict the baseline.

Actor

Critic

Reward

bϕFFNEncoder

Encoder

TSP-Net

PA-Net

F b
k,ac

F b
k,cr

Ω TSP ToursPtr-Net

FFN

FFN

W

W

Ω : Input Graphs
W : Input Preferences
bϕ : Baseline

Fk,ac, Fk,cr : Unified graph Representation
FFN : Feed Forward Network
Ptr-Net : Pointer Network

Figure 4: PA-Net uses an augmented version of TSP-Net. The input to the network is a set of TSP
graphs Ω and a set of preference vectors W . The output is K TSP tours for each graph in Ω
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PREFERENCE SELECTION

One of the key features of PA-Net is its ability to generate solutions for different preferences in the
objective space. This is achieved by simultaneously training the network on a set of preferences
W . Since each w⃗k ∈ W is a unit vector, it must satisfy ||w⃗k||2 = 1. For training of 2-objective
network, these preferences can be generated by sampling unit vectors from the unit circle for angles
in {0◦, 90◦}. For objectives more than two, selecting preferences is not so straight forward. In this
case, the preference w⃗k ∈ Rp is generated using:

w⃗k =
1√

(a1k)
2 + ...(apk)

2
· (a1k.....a

p
k)
⊤, (23)

where aik is sampled from {0, 1} ∀i ∈ {1...p}. So using Eq-equation 23 preference vectors for
higher dimension optimization are generated. The network is trained on a fixed set of preferences.
Towards the end of the training, we resample the set of preference vectors after every fixed number
of iterations. This step improves the generalizability of the network.

PA-NET VS TSP-NET + LS

The base network used in PA-Net is TSP-Net. Here, we evaluate the effect of using linear scalrization
in TSP-Net and compare it with PA-Net. For this, we train 40 separate networks of TSP-Net for
different preferences. Just like PA-Net, each network of TSP-Net+LS is trained on a graph of size
120 × 4 with batch size 60 and total training iterations of 20000. We then compare Pareto fronts
generated by TSP-Net+LS and PA-Net. It should be noted that preferences used for PA-Net are unit
vectors. So for inference on PA-Net, normalized preferences of TSP-Net+LS is used. The results
are reported in Table 5. It is clear that PA-Net significantly outperforms TSP-Net+LS both in terms
of HV and training times. Prolonged training of TSP-Net+LS may improve its performance, but that
would lead to greater training times.

Table 5: Hypervolume comparison for PA-Net and TSP-Net+LS

Cities Network type No. of Parameters
HV (%) HV (%)

40 74.8 53.6
200 82.7 47.12
500 86.8 47.5

10000 88.2 147.7
Training time (hrs) ∼ 14 ∼ 39

ABLATION STUDIES

In order to understand the contribution of different parts of PA-Net a few ablation studies were
performed on 2− objective MOTSP instances. Description for various studies performed are as
follows:

• Ablation 1: For this study, PA-Net is trained without the feed forward network of preference
encoder.

• Ablation 2: In this study, PA-Net is trained with only a single deep layer of the preference
encoder. In the baseline network, we use 4 deep layers,

• Ablation 3: For this study, PA-Net is trained without the transformer based encoder. A
single 1-D convolution layer is used to encode the input graph.

All of these networks are compared on the basis of HV and the total time taken to generate the
Pareto front for 2− objective MOTSP where 100 preference vectors are used at inference time. The
comparative results for different ablation studies are summarized in Tab. 6. Further, the number
of trainable network parameters for each network are given in Table 7. The network trained for
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Table 6: Quantitative comparison of Pareto front for 2-Objective MOTSP

40-City 200-City 500-City 1000-City Training
time
(hrs)

Algo. HV
(%)

Time
(s)

HV
(%)

Time
(s)

HV
(%)

Time
(s)

HV
(%)

Time
(s)

PA-2 (baseline) 75.7 1.66 83 6.66 86.7 16.5 88.3 34.4 ∼ 14
Ablation 1 39.1 1.48 25.6 5.5 25.0 14.5 24.6 29.8 ∼ 13
Ablation 2 75.4 1.53 82.6 5.7 86.3 14.3 87.8 29.6 ∼ 13
Ablation 3 75.74 1.29 82.8 5.5 86.6 14.15 88.3 28.9 ∼ 12

Table 7: Number of trainable parameters for each network in Ablation studies

Network type No. of Parameters
Ablation 1 1454337
Ablation 2 1465617
Ablation 3 464129

PA-2 (baseline) 1554459

Ablation 1 has the worst performance. This indicates that encoder to learn representation of pref-
erences plays a critical role in the performance of PA-Net. Interestingly enough, it seems like the
choice of encoder for both preferences and the input TSP graph does not have much impact on the
performance. This indicates that a relatively faster network can be obtained by using a relatively
simpler choice of encoder. Although, the network in Ablation 3 has significantly lower number of
trainable parameters, yet its training time is not significantly lower. This is primarily due to the fact
that during the training, K ×B TSP tours are generated in all the networks. This serves as the com-
putation bottleneck for the network during the training. Hence, that’s why no significant difference
in training times are observed.
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HYPERPARAMETER TUNING

In order to obtain the best performing network, we trained networks with different values of some
key hyperparameters. These hyperparameters are:

• Number of preference vectors (K).
• Maximum value of lagrangian multipliers (λmax)
• Ascent rate of the lagrangian multiplier (α)

Table 8: Comparison of HV for different hyperparameter values for 2-objective MOSTP

40-City 200-City 500-City 1000-City
Parameter Value HV (%) HV (%) HV (%) HV (%)

K
20 (baseline) 75.7 83 86.7 88.3

10 73.5 82.2 85.4 85.4
5 74.8 78.1 81.1 82.3

λmax

20 (baseline) 75.7 83 86.7 88.3
10 75.6 82.6 86.3 88.0
5 75.9 81.9 85.4 87.3

α
2.5× 10−5 (baseline) 75.7 83 86.7 88.3

2.5× 10−3 73.5 82 85.8 87.4
1.25× 10−5 76.1 83 86.6 88.1
5.0× 10−5 75.8 82.5 86.4 87.9
2.5× 10−8 75 81.7 85.5 87.0

These networks trained on different values of the above-mentioned hyperparameters are compared
on the basis of obtained HV for 2-objective MOTSP where 100 preference vectors were used at the
inference time. These results are presented in Tab. 8. The following conclusions can be made:

• Higher values of K leads to better results. Intuitively, it makes sense because a higher
number of preference vectors during training can help network learn better and generalize
better. However, large K leads to longer training time. For example, training time of
network with K = 20 is ∼ 14hrs and for K = 5 its ∼ 6hrs.

• While varying λmax mixed results were observed. For the most part, parameters in the
baseline network gave a better performance,

• For ascent rate (α) it was observed that for most of the instances, extremely high values or
extremly low values lead to sub-par performance.

17



Under review as a conference paper at ICLR 2022

ADDITIONAL EXPERIMENTAL RESULTS

Euclidean 3-objective MOTSP: PA-Net was evaluated on another 3-objective Euclidean MOTSP
problem. In this case, all three objectives are L2-norms. The generated Pareto fronts for 200 and
500 City MOTSP are shown in Fig-5(a)-(b). It can be clearly seen that PA-Net is able to generate a
good approximation Pareto frontier. The 3-D Pareto Front can be visualized at: https://sites.
google.com/view/pareto-approximate-net/home.

Euclidean 2-objective MOTSP: Results of 2-objective MOTSP (see Sec-4) for 200 and 1000 cities
is shown in Fig-5(c)-(d)

(a) 500 City MOTSP with 3 Euclidean objec-
tive

(b) 200 City MOTSP with 3 Eucledian objec-
tive
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Figure 5: Visualization of the dominant solutions for 3 and 2 objective MOTSP. It can be seen that
our network (PA-2 and PA-3) generates significantly better objective values
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Application for Coverage Planning: This experiment represents a setup where a robot has to visit
multiple locations in a building floor like a mall, airport etc (see Sec-4). The sequence of visiting
these locations is dependent on the path length and adherence to a pre-computed priority. The
visualization of three tours generated by PA-Net for this scenario is shown in Fig-6(b)-(d). The
square section in the middle of the environment is given the highest priorities, and the rest of the
depots are assigned priorities randomly. In each plot of the tour shown in Fig-6, the first 100 depots
visited are marked in red. It can be seen that Tour C visits the middle section first and has the least
priority violation. On the other hand, emphasis in Tour A is to minimize the total tour length.
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(b) Tour A
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(c) Tour B
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Figure 6: Visualization of different tours generated for the task of coverage planning. It can be seen
that Tour A has the least tour length, which comes at a cost of high priority violation. Tour C has
the smallest priority violation. Tour B is an intermediate tour between the other two tours.
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