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ABSTRACT

Large reasoning models (LRMs) have shown strong performance in complex math-
ematical reasoning when optimized via reinforcement learning (RL). However,
conventional outcome-only reward provides sparse feedback, leading to inefficient
optimization. In this work, we investigate whether generative process reward mod-
els (GenPRMs) can accelerate RL training of LRMs by improving the utilization of
reasoning trajectories. We first analyze critical limitations in existing GenPRMs, in-
cluding their heavy reliance on reasoning ability during correctness judgment, and
suppression of exploration as well as vulnerability to reward hacking during reward
assignment. To address these limitations, we first propose a novel intrinsic-signal-
driven evaluation mechanism, which judges reasoning steps using semantic cues
from the solution, thus mitigating extensive dependence on GenPRM. Furthermore,
we (i) adopt thought-level rewarding granularity to alleviate over-dense step
rewards, and (ii) design a difficulty-aware reward formulation that dynamically
balances exploration and exploitation and keeping the optimization target of key
tokens to mitigate reward hacking. We integrate these innovations into the process
reward-based GRPO, resulting in the proposed TP-GRPO algorithm. Experiments
on LRMs with 1.5B and 7B parameters show that TP-GRPO achieves higher im-
provements while using significantly fewer training samples, and more analyses
further confirm the effectiveness of our proposed process evaluation mechanism.

1 INTRODUCTION

Reinforcement learning with verifiable rewards (RLVR) has recently achieved notable success in
enhancing the reasoning capabilities of large reasoning models (LLMs), represented by DeepSeek
R1 (Guo et al., 2025) and Kimi k1.5 (Team et al., 2025b). These approaches leverage efficient,
rule-based outcome rewards (Shao et al., 2024; Yue et al., 2025; Xu et al., 2025) to extend the RL
paradigm to complex reasoning tasks. However, existing RLVR methods typically focus solely on
sparse answer correctness and overlook the rich semantic signals in intermediate reasoning trajectories.
Motivated by the Metacognitive theories (Schraw & Moshman, 1995), outstanding students not only
verify answers but also review and refine reasoning process, selectively reinforcing correct paradigms
and correcting erroneous steps. This motivates researchers to explore employing process rewards
for better exploitation, thereby improving the training efficiency of LRM.

Process reward models (PRMs) are designed to evaluate the quality of reasoning processes. Early
discriminative PRMs (Lightman et al., 2023; Wang et al., 2023b; Zhang et al., 2025; Zheng et al., 2024)
partly address the sparsity of outcome rewards but commonly suffer from unstable and subjective step
segmentation, poor generalization, and high annotation costs (Guo et al., 2025). Generative PRMs
(GenPRMs) have emerged as a more flexible alternative, using strong LRMs to assess reasoning
traces via thinking (Khalifa et al., 2025; Feng et al., 2025; She et al., 2025; Liu et al., 2025; Chen et al.,
2025). While promising, we find that naively applying GenPRMs to reward shaping can introduce
critical pitfalls that substantially impact training stability and mislead optimization direction.
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Figure 1: Illustration of the three target issues across two stages of the prior GenPRM workflow.

We divide the workflow of GenPRM into two stages: judging the correctness of each step; and
then, assigning rewards for each step based on the evaluation results. Through empirical analysis,
we identify critical challenges in both two stages. A clearer explanation of these issues can be
found in Figure 1. In the judgment stage, existing GenPRMs primarily judge per-step correctness
by re-deriving or simulating reasoning (Feng et al., 2025). Although improving generalization, it
implicitly assumes that the reasoning capability of PRM exceeds that of actor LRM. This assumption
not only raises the capacity requirements for GenPRM, but also undermines the evaluation reliability
when confronted with hard tasks. Moreover, using reasoning to validate reasoning processes may also
introduce potential bias, which becomes more pronounced in self-evolution settings where the LRM
evaluates its own outputs (He et al., 2025). In the reward assignment stage, the common method of
assigning static rewards (+1/-1) for dense steps risks suppressing exploration and triggering reward
hacking. Penalizing mistakes during exploring challenging tasks may discourage beneficial trial-and-
error behaviors. Besides, dense step rewards can dominate advantage estimation (Experimental results
in Figure 5 verifies this issue), incentivizing the model to optimize for process profits maximization
rather than final correctness, a trap known as reward hacking (Liu et al., 2024).

In response to these challenges, we first propose three guiding principles for GenPRM design:
(P1) Decouple evaluation from reasoning to reduce high dependency on the reasoning ability of
GenPRM; (P2) Reward in an appropriate granularity to mitigate the bias introduced by dense
reward signals; and (P3) Balance exploration and exploitation to ensure that process rewards do
not hinder exploratory reasoning. Guided by these principles, we introduce our GenPRM framework.
First, in the evaluation stage, we propose an Intrinsic-Signal-Driven Evaluation mechanism. This
strategy leverages semantic and logical signals inherent in the solution to judge step correctness.
This design shifts the heavy reliance from the reasoning ability to PRM’s semantic understanding
and matching capacities, which constitute fundamental abilities of LLMs. Second, in the reward
assignment stage, we design a Thought-Level Difficulty-Aware Adaptive Reward mechanism.
Instead of rewarding each step, we merge consecutive correct or incorrect steps into coherent reasoning
segments, which we refer to as “thought”. Assigning rewards at the thought level effectively mitigates
the issue of dense step rewards. Furthermore, the reward strength is dynamically adjusted according
to the LRM’s current reasoning capability: for difficult tasks, the mechanism automatically reduces
the suppression for failed exploration; for easy tasks, more prominent process rewards are used to
reinforce correct thoughts and penalize incorrect ones. In addition, our reward design keeps the
optimization target of key tokens when introducing process reward, thereby effectively alleviating
the issue of reward hacking. Finally, we integrate these mechanisms into the process reward-based
GRPO (Shao et al., 2024) and propose our TP-GRPO algorithm.

We validate our approach on the DeepSeek-R1-Distill-Qwen model family (Guo et al., 2025). On
AIME 2024 (Maxwell-Jia, 2024), our 1.5B model trained on only 700 problems achieves a +4.32%
improvement, which rises to +5.98% when trained on 1,800 problems; the 7B model trained on
1,070 problems improves by +6.67%. While modest in absolute scale, these gains are consistent and
achieved in fewer training steps, supporting our hypothesis that reasonable GenPRM can improve
training efficiency beyond outcome-only rewards. Our main contributions are summarized as follows:

* An in-depth analysis of design pitfalls in GenPRM-based process evaluation, identifying three
fundamental challenges and proposing three actionable principles for GenPRM design;

* Three innovations over challenges for existing GenPRM workflow are introduced:
intrinsic-signal-driven evaluation, and thought-level, ability-adaptive reward schemes, further
integrated with GRPO to form a new RL algorithm, termed TP-GRPO;
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* Empirical evidence and detailed analysis show that TP-GRPO results in better efficiency and
accuracy, underscoring the broader importance of well-designed GenPRM.

2  PRELIMINARY

2.1 PROBLEM FORMULATION

Given a mathematical problem z, the LRM 7y produces a long-form, chain-of-thought output o, also
termed Long CoT, which is formalized as the ordered pair comprising a think and an answer (Guo
et al., 2025). The think encapsulates the full reasoning trajectory, typically spanning multiple rounds
of hypothesis formation, exploratory derivation, error correction, and reflection. The answer A
is usually a concise summary based on the preceding think, generally retaining only the principal
reasoning pathways that substantiate the final result. Assuming consistency between answer and
think, we argue that improving reasoning quality primarily hinges on refining the think. Consequently,
our process-level evaluation targets the think component rather than the answer. For brevity, unless
otherwise specified, we will abuse the term solution to denote think.

2.2 RL FOUNDATION: PROCESS SUPERVISION GRPO

Our method builds on process supervision GRPO, first introduced in DeepSeekMath (Shao et al.,
2024). Its optimization objective is identical to that of outcome supervision GRPO:
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The per-token advantage is then defined as the cumulative sum of standardized process rewards at
and after the token position:
Ag = Y i) 3)
index(j)>t

where index(j) denotes the token position in the i-th sequence at which the j-th process reward is
assigned. This construction refines the advantage estimate using fine-grained, token-level signals.

3 OUR METHOD: TWO-STAGE THOUGHT-LEVEL GENPRM AND TP-GRPO

In this section, we first introduce a novel GenPRM mechanism, which primarily leverages intrinsic
signals from the reasoning trajectories for judgment, and adaptively computes rewards to balance
exploration and exploitation while mitigating the issue of reward hacking §(3.1). To assess its
effectiveness, we integrate the designed GenPRM into the training loop of LRM to propose a new RL
algorithm TP-GRPO §(3.2).

3.1 INTRINSIC SIGNAL-DRIVEN THOUGHT-LEVEL GENERATIVE PROCESS EVALUATION

Before evaluation, we segment the think into steps with appropriate semantic granularity. We compare
two strategies: heuristic splitting based on “\n\n” and segmentation via prompting LRM. Finally,
we adopt the method of prompting the LRM for good segmentation effectiveness. The applied prompt
is presented in Appendix F.
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Figure 2: Overview of our proposed GenPRM (a) as well as the illustration of optimization bias
caused by dense process rewards (b). We design distinct evaluation and reward mechanisms for
correct and incorrect solutions; the overview here illustrates only the pipeline for correct solutions.

Building on this decomposition, we propose our GenPRM framework, which can be broadly divided
into two stages: correctness evaluation and reward assignment. In Stage I, we design a prompt
pipeline to judge per-step correctness. Our method leverages semantic and logical signals contained
in the solution, thereby reducing the dependency on strong reasoning capacity of GenPRM. In Stage II,
we introduce a thought-level, difficulty-aware adaptive process reward formulation. This mechanism
dynamically balances exploration and exploitation and mitigates reward hacking by keeping the
optimization target of key tokens. The overview of our proposed GenPRM is given in Figure 2a. A
more detailed illustration is presented by Figure 7 in Appendix F.

3.1.1 STAGE I: INTRINSIC-SIGNAL-DRIVEN STEP-LEVEL PROCESS EVALUATION

In this subsection, we initiate our exploration of employing a generative paradigm to judge the
correctness of reasoning steps. Our process evaluation mechanism is designed around the core
principle: Decoupling Evaluation from Reasoning Capacity.

This principle is proposed to solve the 1st Pitfall of existing GenPRM paradigm: The quality of
current process evaluation mechanisms is fundamentally constrained by the reasoning capabilities
of the GenPRM. This requires the GenPRM to identify logical errors within the solution through
deliberate thinking, thereby implicitly assuming that GenPRM’s reasoning proficiency is at least
on par with the actor LRM. However, as task complexity increases and the actor LRM’s reasoning
capability continues to advance, the demand on the GenPRM escalates accordingly, which poses a
serious challenge to the long-term effectiveness of the GenPRM as an evaluator.

To solve this challenge, we suggest decoupling evaluation from reasoning by breaking down the
evaluation task into sub-tasks completed by other foundational capabilities of LLMs.

By examining Long CoT, we observe intrinsic semantic cues indicative of the LRM’s reasoning state,
such as self-reflective statements. These reflections directly indicate errors and their potential causes,
thereby providing instructive signals for process evaluation. Building on the design principle and
these findings, we design two distinct protocols for correct and incorrect solutions:

¢ Correct Solutions (Identify Effective Steps): For traces with correct final answers, we pinpoint
ineffective steps via three steps: 1) Reflection Localization: Using semantic comprehension,
GenPRM identifies reasoning steps where the LRM realizes its mistakes through self-reflection
(e.g., “wait, I made a mistake”). 2) Error Source Tracking: During reflection, the LRM typically
analyzes the causes of the reflected mistake. Based on the analysis, GenPRM traces back error
source and delineates a candidate error interval. 3) Interval Verification: GenPRM applies
heuristic rules (e.g., “steps dependent on conclusions from incorrect previous steps are deemed
erroneous”) to judge each step within the error interval, guided by the reflected error cause.

* Incorrect Solutions (Avoid Over-Penalization): For incorrect solutions, we first propose a
conservative hypothesis: all steps in the answer are erroneous. Under this hypothesis, think steps
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semantically matching the erroneous answer are labeled incorrect, while unmatched steps are
viewed as uncertain. This design realizes a trade-off: relying solely on the outcome rewards
would incur over penalization for underthinking behaviors in the think part, but achieving perfect
step-level judgments demands exceptionally high evaluation capability for GenPRM. We propose
an easy process evaluation requiring only the capacity of semantic alignment for GenPRM.

This evaluation framework is grounded in the following theoretical and practical motivations:

« For correct solutions, we leverage reflection signals to trace erroneous steps, based on the self-
contained assumption: if the final answer is correct, any erroneous reasoning step must be
accompanied by an effective reflection that identifies and corrects the error (either by direct fix or
switching reasoning strategies). Otherwise, the error would propagate and mislead the final answer.
Under this assumption, errors and reflections must occur in pairs in correct solutions, enabling a
reflection-first attribution strategy that is both theoretically valid and practically reliable.

¢ We further emphasize decoupling evaluation from reasoning. For correct solutions, we perform
evaluation using intrinsic reflection cues combined with GenPRM’s semantic understanding
capability; for incorrect solutions, we conduct coarse-grained evaluation based solely on semantic
matching. This design substantially reduces reliance on GenPRM’s reasoning capabilities. There
are two core motivations: (1) Semantic understanding and matching are more fundamental and
stable abilities of LLMs, leading to more robust evaluation results; (2) requiring GenPRM to
conduct process evaluation via thinking of inconsistencies between its own reasoning chain and
the Long CoT implicitly presupposes stronger and heterogeneous reasoning capabilities. If such
capabilities are not satisfied, the evaluation process is likely to introduce systematic bias. By
decoupling evaluation from reasoning, we effectively mitigate such risks.

3.1.2 STAGE II: THOUGHT-LEVEL ABILITY-ADAPTIVE PROCESS REWARDING MECHANISM

Specific reward values are required after per-step correctness evaluation.
S1: Thought-level Reward Unit through Step Merging

The 2nd Pitfall: Through analyzing the step-level process evaluation results, we observe that think is
often decomposed into a large number of steps. If process rewards are assigned at the step level, the
advantage would be dominated by these process rewards, which could in turn mislead the optimization
to incorrect directions. Figure 2b illustrates this effect: although the 4th step is correct, the five
subsequent incorrect steps result in a negative cumulative return. Consequently, this correct step is
erroneously penalized during training, highlighting the misleading nature of dense process rewards.

To address the aforementioned issue, we revisit the granularity of reward assignment and propose a
thought-level process reward mechanism. Consecutive steps with the same correctness are merged
into a single logical unit—termed a thought. For correct solutions, this entails merging consecutive
correct/incorrect steps into a correct/incorrect thought; for incorrect solutions, consecutive matching
or non-matching steps are merged analogously. The process reward is then assigned at the thought
level rather than the step level. This design is easy to implement and effectively reduces the density
of process rewards. Importantly, we do not blindly filter the reward signals; instead, we retain
the minimal set of rewards necessary to correctly guide LRM optimization while maximizing the
reduction of redundant rewards. A more intuitive comparison is presented in Figure 2b.

S2: Difficulty-Aware Adaptive Process Reward Mechanism

We further design two distinct process reward mechanisms based on the solution correctness. We
argue that designing effective process rewards for LRMs requires addressing two major Pitfalls:

* Static correctness-based process rewards can unintentionally suppress exploration. Although
penalties for incorrect attempts lower the probability of unproductive trials, they may also restrict
LRM’s exploratory capabilities. Process rewards provide more localized learning signals that bias
LRM toward exploiting known high-return reasoning paths. However, this also increases the risk
of falling into local optima and diminishes further exploration.

* Poorly designed process rewards may introduce reward hacking—the model may discover ways
to improve the process rewards without genuinely improving its reasoning.
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To this end, we propose a difficulty-aware adaptive process reward mechanism with two complemen-
tary regimes, defined according to the correctness of solutions.

* For Correct Solutions: For a correct solution o;, each correct thought receives +r°, and each

incorrect thought receives —r°, where:
r®=a-accg, a>0.

Here, acc is the accuracy of the GG sampled solutions for the same problem. When accg = 0, ¢
vanishes, reducing to outcome supervision GRPO (Guo et al., 2025) and prioritizing exploration.
When accg = 1, r® = a, process rewards are strongest to reinforce correct steps and suppress
incorrect ones. The hyperparameter « further controls the global scale of the process rewards.
By scaling ¢ with accuracy, the model is free to explore facing harder questions while receiving
stronger process guidance once the task is easy, thus avoiding both premature suppression of
exploration and spurious optimization behaviors.

* For Incorrect Solutions: For an incorrect solution o;, penalties are applied only to thoughts
that lead to the erroneous answer, i.e., those in the think matched to the answer part. Given the
normalized outcome reward 7 in Eq. 4, the thought-level process reward r;° is defined as:

T

e {ff, if the ¢-th thought matches the incorrect answer,
e =

—7¢, otherwise.

Since the solution is incorrect and 7 < 0, unmatched thoughts, typically other exploratory
attempts that are not employed in the answer part, receive a non-negative reward. This prevents
penalizing uncertain reasoning steps, thereby mitigating the risk of over-penalization.

We further discuss how our method contributes to mitigating reward hacking in the following section.

3.2 TP-GRPO: GRPO BASED ON THOUGHT-LEVEL PROCESS REWARD

Finally, we employ the process evaluation results in process supervision GRPO (Shao et al., 2024)
and introduce a new algorithm, TP-GRPO. TP-GRPO jointly optimizes the LLM under the guidance
of both process and outcome rewards. For the outcome rewards, we begin by normalizing them
within each group as in outcome supervision GRPO (Guo et al., 2025):
,  r¢—mean({r9}5)) @
7y = .

CT T ()

The process rewards are configured as described in Sec 3.1.2, without applying the normalization
as in Eq. 2. We explain this design in Appendix C. Following Shao et al. (2024), the advantage of
each token o; ; is calculated as A; ; = th‘,"zl r;, as introduced in Eq 3, where |o;] is the number of
tokens in o;. Finally, we optimize the LRM following the optimization objective defined in Eq. 1:

To better understand the advantages of the process rewards design, we establish the following
theoretical properties from the perspective of advantage estimation in GRPO:

Proposition 1. For a correct solution o;, token o; + in correct thoughts have advantage A; + = 7¢;
while token o; ; in incorrect thoughts have advantage A; y = 7 — r°.

Remark: This proposition shows that tokens within correct thoughts retain the same advantage as
using outcome-only rewards, safeguarding against misguided shifts in the optimization objective
during RL training — which we posit as the primary cause of reward hacking. In contrast, tokens
within incorrect thoughts receive reduced advantages compared with using outcome-only rewards,
effectively weakening the optimization of flawed steps.

Propeosition 2. For an incorrect solution o;, token c; in matched thoughts have advantage A; y = 77,
while token c; in unmatched thoughts have advantage A; ; = 0.

Remark: This proposition demonstrates that tokens within matched thoughts retain the same advantage
values as under outcome-only rewards, thereby achieving the objective mentioned above: introducing
process rewards without altering the original training objective for these incorrect tokens during RL
training. In contrast, unmatched thoughts receive zero advantages, avoiding over-penalization since
their correctness remains uncertain.

The proofs of these two propositions are presented in Appendix B.
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4 EXPERIMENTS

In this section, we evaluate TP-GRPO on five datasets to investigate the following research questions:

* RQ1: How does TP-GRPO perform in enhancing the training efficiency of LRM? (§ 4.2)

* RQ2: Does intrinsic-signal-driven step-level process evaluation provide advantages over the
reasoning-based GenPRM paradigm? (§ 4.3.1 & § 4.3.3)

* RQ3: Does dense reward design introduce potential negative effects, and is the proposed step-
merge strategy really effective? (§ 4.3.1)

* RQ4: Is the proposed difficulty-aware reward mechanism effective in practice? (§ 4.3.1)

* RQS5: Are the process rewards designed for correct and incorrect solutions empirically rational?
(8§4.3.2)

Given computational limitations, we focus our experiments on smaller LRMs. To meet the format
requirement that explicitly includes both think and answer components, we select the DeepSeek-R1-
Distill-Qwen 1.5B and 7B for experiments. We leave broader studies across more scales and variants
to future work.

4.1 EXPERIMENTAL SETTINGS

Baselines We primarily compare TP-GRPO with the reproduction of GRPO using only outcome
rewards, aiming to demonstrate the advantage of our proposed process rewards in terms of both
performance and efficiency. In addition, we seek to validate the effectiveness of our approach
relative to the existing GenPRM methods. To this end, we include two GenPRM-based baselines:
(i) an LLM-as-a-judge variant based on Qwen3-32B that evaluates step correctness using prompts
derived from Zhao et al. (2025), and (ii)) GenPRM-32B model that is pretrained on process evaluation
datasets (Zhao et al., 2025). The prompt used for LLM-as-a-judge is provided in Table 16 at the
end of the Appendix. Besides, we also include results from several open-source baselines trained on
DeepSeek-R1-Distill-Qwen models as reference and also compare efficiency with them.

Training Data and Evaluation Benchmark We conduct all experiments on DeepScaler-40K (Luo
et al., 2025). We follow prior work and evaluate on 5 widely-used math benchmarks: AIME
24 (Maxwell-Jia, 2024), AIME 25 (math ai, 2025), AMC 23 (Li et al., 2024a), MATH-500 (Hendrycks
etal., 2021), and Olympiad (He et al., 2024). For experiments with DeepSeek-R1-Distill-1.5B, we
perform 16 independent Pass@1 evaluations and report the average (Avg@ 16) as final results. Due
to the higher inference cost of DeepSeek-R1-Distill-7B and limited sizes of AIME 24, AIME 25, and
AMC 23, we report Avg@5 on these subsets and Pass@1 on MATH-500 and Olympiad. Besides,
we aim to further investigate improvements in training efficiency. To ensure a fair comparison, we

. . .. . A _ Improvement 5
design a new metric Effic. to measure the training efficiency: Effic. = Friraining solutions 10°. Here,

“Improvement” denotes the reasoning performance gain, and “#solutions” is the total number of
solutions used for training. Obviously, a higher Effic. indicates that the algorithm can achieve greater
performance with fewer samples, thereby reflecting higher training efficiency.

Hyperparameters All training experiments are conducted using the TRL framework (von Werra
et al., 2020) and vLLM backend. We use prompt batch size=5, a fixed learning rate=1e — 6, and
sample 8 rollouts per prompt. For on-policy GRPO, we save checkpoints every 50 training steps
and perform evaluations accordingly. Owing to the efficiency constraints of GenPRM, we train the
framework in an off-policy setting. Each iteration consists of: (i) collect rollouts using the latest
model sufficient for 50 training steps, (ii) parallel evaluation deploying multiple GenPRMs, and (iii)
performing multi-step training once evaluation is complete. More details about off-policy pipeline are
presented in Appendix G. Further details of the parameter settings are relegated to the Appendix E.

4.2 MAIN RESULTS

Tables 1 and 2 report the main results with DeepSeek-R1-Distill-Qwen-1.5B and 7B as backbone
models, respectively.

* Absolute Performance Improvements. On the 1.5B model, TP-GRPO achieves an average
improvement of +2.04, with substantial gains on AIME 24 (+4.32) and AIME 25 (+3.13). For
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Table 1: Main results on DeepSeek-R1-Distill-Qwen-1.5B. TP-GRPO achieves higher accuracy than
the on-policy outcome-based GRPO baseline while requiring 5x fewer solutions. “K” means x 1000.

AIME 24 AIME25 AMC23 MATH-500 Olympiad

Model Avg@16  Avg@Il6 Avg@l6 Avg@l6  Avg@le | AVE #Solution | Effic.
Base Model | 2880 22.50 62.90 82.80 4330 | 48.06 - \
Outcome Reward-based RLVR methods
AutoThink (Stage 1) 28.13 19.58 60.39 79.74 40.44 45.66  450.6K -0.53
Open-RS1 30.42 20.83 63.78 83.01 4391 48.39 57.6K 0.53
Still-3-1.5B-Previous 32.50 23.33 66.94 84.19 45.96 50.58 256K 0.57
AdaptThink 33.75 24.38 69.35 84.18 45.04 51.34 614.4K 0.98
AReaL-1.5B-Preview(Stage 1) 30.83 23.75 66.64 84.33 4551 5021 1638.4K | 0.13
DeepScaler-1.5B-Preview 43.10 29.38 73.60 87.80 50.00 56.78  >3584K | <0.49
GRPO Replication (850 steps) | 3271 24.58 64.53 82.70 43.67 49.64 34K | 4.65
Process Reward-based methods

GRPO with LLM-as-a-judge (118 steps) 30.41 24.58 63.32 82.61 43.35 48.85 4.7K 16.8
GRPO with GenPRM-32B (262 steps) 31.45 23.12 63.00 83.30 43.40 48.86 10.4K 7.63
TP-GRPO (140 steps) | 3312 25.63 64.01 83.81 4391 50.10 5.6K | 36.43

Table 2: Main results on DeepSeek-R1-Distill-Qwen-7B. TP-GRPO achieves higher accuracy than
the on-policy outcome-based GRPO baseline while requiring 1 x fewer solutions. “K” means x 1000.

AIME 24 AIME 25 AMC23 MATH-500 Olympiad

Model Avg@5  Avg@5  Avg@5  Pass@l pass@] | AvE #Solution | Effic.
Base Model 54.00 36.67 81.20 92.00 55.11 63.80 - ‘ -
Outcome Reward-based RLVR methods
AutoThink (Stage 1) 52.67 32.67 77.59 90.00 54.07 61.40  450.6K -0.53
ReasonFlux-F1 54.67 34.00 80.00 91.60 55.26 63.11 60K -1.15
AdaptThink 52.67 38.00 82.17 90.80 56.89 64.11 307.2K 0.10
AReal.-boba-RL-7B 60.00 44.67 86.02 93.60 60.89 69.04 2048K 0.37
Skywork-OR1-7B 69.33 51.33 87.71 93.40 61.33 72.62 >5406.7K | <0.26
GRPO Replication (400 steps) ‘ 58.67 38.00 81.20 92.40 56.44 ‘ 65.34 16K 9.6
Process Reward-based methods
TP-GRPO (214 steps) ‘ 60.67 43.33 83.13 92.00 57.04 ‘ 67.23 8.56K 40.07

7B model, the gain rises to +3.43, including +6.67 on AIME 24 and +6.66 on AIME 25. These
consistent improvements over backbones validate the effectiveness of our process reward design.

* Learning Efficiency over On-Policy GRPO. TP-GRPO also outperforms the on-policy GRPO
baseline that relies solely on outcome rewards. On the 1.5B model, TP-GRPO surpasses on-policy
GRPO trained with 34K solutions (850 steps) using no more than 5.6K solutions (140 steps).
Similarly, on the 7B model, TP-GRPO outperforms a 16K-solution (400-step) on-policy GRPO
run with only 8.56K solutions (214 steps). This highlights a notable improvement in learning
efficiency enabled by the proposed process reward mechanism.

e Comparison with Other GenPRM Methods. On the 1.5B LRM, we compare our method with
two other GenPRMs. Although they achieve slight improvements over the base model, their
performance remains far below TP-GRPO. This indicates that process rewards in these methods
were not effectively leveraged, likely due to those pitfalls we discuss in the Method section,
further highlighting the necessity of designing an appropriate process reward mechanism.

* Comparison of Efficiency with Other Methods. Against other well-performing approaches (e.g.,
DeepScaler-1.5B-Preview and Skywork-OR1-7B), TP-GRPO demonstrates faster performance
gains with substantially fewer training samples, despite these models achieving higher final
accuracy through much larger budgets. While such comparisons are inherently imperfect due to
the non-linear convergence patterns of LM training, our results still show that TP-GRPO matches
or exceeds competitive baselines with significantly less data.

e Training Dynamics. Figure 3 further illustrates the Avg@16 curves on AIME 24 for 1.5B
experiments. Here, “off-policy GRPO” denotes off-policy GRPO variant without process rewards.
All baselines are evaluated every 50 training steps. For TP-GRPO, we focus on the impact of
process rewards; therefore, only solutions with non-zero process rewards are retained. As a result,
the actual number of training steps per iteration is fewer than 50. Despite this, TP-GRPO’s curve
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is noticeably steeper, indicating higher training efficiency. This provides strong evidence that
process rewards enhance the exploitation of reasoning trajectories for LRM training.
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4.3  ANALYSIS

We also conduct more detailed analyses below. Due to page limitations, more analyses are included
in Appendix H.

4.3.1 ABLATION STUDY FOR PROPOSED STRATEGIES

We conduct ablation studies to assess the contribution of our proposed three strategies. For the
intrinsic-signal-driven evaluation method, we replace it with direct judgment via LLM-as-a-judge.
Detailed prompts are presented in Appendix. For the step-merge strategy, we omit merging and
assign rewards directly at the step level. For the ability-adaptive process reward mechanism, we fix
reward values to +1 for correct or uncertain steps and -1 for incorrect steps. Table 3 shows that all
three strategies yield clear improvements, confirming the necessity of addressing their respective
target issues. Notably, the step-merge strategy yields the largest improvement, despite its remarkably
simple implementation. To investigate this reason, we analyze token-level advantage values: (i)
the variance across tokens within the same rollout, higher variance implies divergent optimization
targets, leading to instability; and (ii) the mutual information between token advantages and the
correctness of the corresponding step/thought (simplified as token correctness), correct tokens should
have higher advantages. Figure 4 and 5 show that step-level rewards cause large variance and low
mutual information. These outcomes arise as dense reward assignment enables consecutive
incorrect steps to exert substantial negative impacts, which in turn distort, and even flip, the
magnitude and sign of advantages in prior steps, thereby misleading the original optimization
direction. By merging consecutive steps with the same correctness and assigning rewards at the
thought level, this issue is effectively mitigated.

4.3.2 ABLATION STUDY FOR REWARDS

We design two distinct reward mechanisms for correct and incorrect solutions. To better understand
their individual contributions, we conduct ablation studies under two settings: one using only process
rewards from correct solutions, and the other using those only from incorrect solutions. Results are
presented in Table 4. We observe an interesting phenomenon: for AIME 24, using only correct-
solution rewards yields better performance, whereas on AIME 25, the opposite holds. This contrast
exactly offers a compelling illustration of the distinct functions underlying the two reward schemes.
Relying exclusively on rewards from correct solutions fails to mitigate the over-penalization for valid
attempts in incorrect solutions, thereby constraining the model’s exploratory capacity and ultimately
yielding weak performance on the more challenging task AIME 25. In contrast, focusing exclusively
on rewards from incorrect answers precludes the targeted reinforcement of useful patterns within
correct solutions, leading to fewer gains on both AIME 24 and AIME 25 relative to the full TP-GRPO
framework. In general, these results show that the proposed process reward mechanism supports
effective learning from both correct and incorrect reasoning paths.
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Table 3: Ablation study on improvement strategies.  Table 4: Ablation study on process rewards.

‘Stage I is the intrinsic-signal-driven evaluation. ‘S1”  ‘CS reward” means ‘reward for Correct
is step merge strategy, ‘S2’ refers to difficulty-aware ~ Solutions’, while ‘IS’ means ‘Incorrect
adaptive reward formulation. Solutions’.

Model AIME 24 AIME25 AMC?23 Model AIME 24 AIME 25

TP-GRPO 33.12 25.63 64.01 Base Model 28.80 22.50

- w/o Stage I 31.04 23.54 63.93 TP-GRPO 33.12 25.63

- w/o Stage I1/S1 31.66 22.29 62.19 _w/o CS Reward 30.00 25.00

4.3.3 DIFFERENT LRMS FOR PROCESS EVALUATOR

To evaluate the dependency of our framework on the reason- 51.64

ing capabilities of the PRM, we further conduct an analysis  s:s \
study. We first conduct experiments using different LLMs as =
the generative PRM, and then we implement GenPRM using the

LLM-as-a-Judge paradigm with these LLMs. We select Qwen3-  sos
32B, Qwen3-4B and Gemma-3-12B Team et al. (2025a), whose

50.22

Avg.

50.0

reasoning abilities on GPQA Diamond (Rein et al., 2024) are 49,59

65.6%, 55.9%, and 40.9%, respectively'!. We applied these s

three GenPRMs to both TP-GRPO and LLM-as-a-Judge, with 190 —— TP-GRPO

results shown in Table 5 and Figure 6. Each entry is sepa- HM-as-a-udge Qs
rated by "/", with the left value for TP-GRPO and the right Quen3-328 Quens 48 Gemma3-128-1

for LLM-as-a-Judge. The results indicate that despite substan-

tial differences in reasoning ability, all GenPRMs consistently ~Figure 6: Performance trend when
improve LRM performance through TP-GRPO. Although per- using different LLMs as evaluators.
formance slightly decreases as the evaluator’s reasoning ability The x-axis shows different evalua-
declines, the drop is minimal. In contrast, LLM-as-a-Judge con- tors, whose reasoning ability gradu-
sistently underperforms TP-GRPO, with a pronounced decline. ally decreases from left to right.
Results based on Gemma-3-12B-it are notably worse than those

based on Qwen3-32B and even below the base model. This suggests that existing generative process
evaluation methods heavily rely on external GenPRM, especially on reasoning ability. Moreover,
TP-GRPO consistently delivers stable improvements across different LLM scales (Qwen3-32B vs.
Qwen3-4B) and families (Qwen3 vs. Gemma), further validating the effectiveness and robustness of
our proposed process evaluation mechanism.

Table 5: Robustness Analysis with Different LLMs as GenPRM:s.

Model | AIME 24 AIME 25 AMC 23 MATH-500 Avg. Step
Base Model 28.80 22.50 62.90 82.80 49.25 -
TP-GRPO / LLM-as-a-Judge

- Qwen3-32B 33.12/30.41 25.63/24.58 64.01/63.28 83.81/82.61 51.64/50.22 140/118
- Qwen3-4B 33.33/29.79 24.58/23.54 63.78/63.10 83.62/81.94 51.33/49.59 155/122
- Gemma-3-12b-it 32.71/30.20 23.33/2250 64.76/61.25 83.73/81.28 51.13/48.75 125/226

5 CONCLUSION

This work revisits the design of GenPRM and proposes two fundamental challenges: an over-reliance
on reasoning capabilities and a suppression of exploratory behavior. To address these, we distilled a
set of guiding principles for reward model design, leading to a robust evaluation mechanism driven
by intrinsic signals and a thought-level difficulty-aware adaptive reward formulation that dynamically
balances exploration and exploitation. Integrating these components with process supervision GRPO,
our proposed TP-GRPO algorithm achieves substantial performance gains over an outcome-only
RLVR baseline, even under fewer training steps. Our results demonstrate the efficacy of process
reward modeling for improving optimization efficiency for LRMs. Beyond the empirical findings,
this study raises broader questions about how to design reward signals that encourage both accurate
and diverse reasoning processes. We hope our work serves as a foundation for developing more
effective and generalizable GenPRM paradigms.

"Data from: https://www.datalearner.com/ai-models

10


https://www.datalearner.com/ai-models

Published as a conference paper at ICLR 2026

6 ACKNOWLEDGMENTS

The research in this article is supported by the National Science Foundation of China (U22B2059,
62276083), Key Research and Development Program of Heilongjiang Province (2022ZX01A28) and
the 5G Application Innovation Joint Research Institute’s Project (A003).

7 ETHICS STATEMENT

This work does not involve human subjects, personal or sensitive data, or experiments that could raise
ethical concerns. No new datasets containing private information were collected or released. The
methods, analyses, and applications presented do not have foreseeable negative societal impacts, nor
do they pose risks to privacy, security, or fairness. We have no conflicts of interest, sponsorship-related
influence, or legal compliance issues to disclose. All research activities adhered to standard academic
integrity practices, and no ethics committee approval was required for this study.

8 REPRODUCIBILITY STATEMENT

8.1 IMPLEMENTATION

Our implementation is based on TRL (von Werra et al., 2020), and the complete code is provided in
the Supplementary Materials. The training dataset used is the public DeepScaler-40K dataset, which
can be found in huggingface requires no preprocessing. For evaluation, we adopt publicly available
benchmark datasets, including AIME24, AIME25, AMC23, MATH-500, and OlympiadBench.

8.2 EXPLANATIONS FOR TWO PROPOSITIONS IN SECTION 3.2

Detailed proofs are provided in Appendix B.
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For this paper, LLMs were employed exclusively for textual polishing, without contributing to
conceptual ideation.
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B PROOF OF PROPOSITION

Proposition 1. For a correct solution o;, token o; ¢ in correct thoughts have advantage A; ; = 7¢;
while token o; ; in incorrect thoughts have advantage A; ; = 77 — r€.

Proof. The proof is straightforward. After merging steps of the same type, the original think can be
decomposed into an alternating sequence of correct and incorrect thoughts:

incorrect incorrect

think = thought{"™ o thought}) o - - - o thought"°I"**" o thought ™",
Accordingly, the thought-level reward sequence is:
[Tindex(l)a Tindex(2)» - - + 7rindex(n)] = [rcv _,r.C’ BERE) _ch 7@0]7

where index () denotes the index of the last token in the j-th thought. The last thought 2" receives
only the outcome reward 7°.

For tokens in a correct thought thought;»"”e“, the advantage value is computed as:

icr?(;‘gic(tjfl)<k§index(j) = Tindex(j) T Tindex(j+1) T *** T Tindex(n)- ©)
Given the alternating reward pattern, this simplifies to:
TE4 o () e A () 70 =70
————

(n—3)/2 terms (n—3)/2 terms

incorrect
)

Similarly, for tokens in the incorrect thought thought , the corresponding advantage is:

fr?(;gic(tjfl)<k§index(j) = Tindex(5) + Tindex(j+1) + -+ Tindex(n)
— rc_i_..._i'_rc _i_(_rc_..._rc)_’_r/\o

(n—741)/2—1 times (n—j+1)/2 times

(6)

— O _ pc
O

Proposition 2. For an incorrect solution o;, token c; in matched thoughts have advantage A; + = 73,
while token c; in unmatched thoughts have advantage A; ; = 0.

Proof. Following the same reasoning as in Proposition 1, for an incorrect think, we first merge steps
of the same type and decompose the sequence into alternating matched and unmatched thoughts

with respect to the answer. We assign a penalty to matched thoughts with reward pincorrect — 20 and
reward unmatched thoughts with —pmeorreet — 3o,
For a matched thought t;?“"‘c"ed, the advantage of its tokens is computed as:
hed
;E?ltecx(e}—l)<k§index(j) = Tindex(j) + Tindex(j+1) +---+ T'index(n)
:720+...+f0+(7720)+...+(7720)+7ﬁ0 (7)
————
(n—3)/2 terms (n—3)/2 terms
= 7°.
Similarly, for an unmatched thought t‘j‘.“mawhed, the advantage is:
?rigg)?l(cjhfdl)<k§index(j) = Tindex(4) + Tindex(j+1) +--+ Tindex(n)
= PO 4 ... 47° +(_720)_|_..._|_(_720)_|_f0 ®
————
(n—j+1)/2—1 terms (n—j+1)/2 terms
=0.
O

15



Published as a conference paper at ICLR 2026

C EXPLANATION FOR ADVANTAGE DESIGN

As stated in the paper, we adopt the process-supervised GRPO framework introduced in DeepSeek-
Math Shao et al. (2024), where the advantage estimator is computed using Eq. 2 and 3:
index(7)
Ai.ndex(j) _ T; — mean(R) A _ Ai.ndex(j) 9
T»L st d ( R) ) 7, Z TZ ( )

index(j)>t

Although this formulation differs from the classical form A = @) — V, the normalized term implicitly
serves the role of a baseline by subtracting the group mean reward and normalizing variance, making

A; + a variance-reduced relative return. Therefore, this relative return aligns with the conceptual
purpose of advantage, namely to measure the return of an action relative to the expected return.

Building on this formulation, TP-GRPO modifies the advantage estimator by only normalizing
outcome rewards:
Ti,0 — mean(r;,)

std(r; )

(10)

721',0 =
This design is motivated by three considerations:

* For correct solutions, we assign a reward of +7¢ to correct thoughts and —r° to incorrect thoughts.
This construction ensures that the cumulative return for correct thoughts becomes R = r,,
preserving the optimization target as in the outcome-reward-only setting (as stated in Proposition
1), thereby preventing optimization drift caused by introducing process rewards. Normalizing all
rewards would violate Proposition 1 and alter the optimization dynamics.

* Normalizing across all rewards, including process-level rewards, would modify the relative scale
between correct and incorrect outcome rewards, potentially weakening the role of outcome
rewards as the primary global optimization signal. Instead, we aim to retain the original effect of
outcome rewards while augmenting them with process-level guidance.

* Under the advantage computation defined in Eq. 3, the resulting advantage for correct thoughts
becomes A = 7, (as formally proven in Appendix B), which is independent of process rewards
and benefits from variance reduction due to normalization. This aligns with the intended behavior
of an advantage estimator as a relative, variance-reduced training signal.

D RELATED WORKS

D.1 PROCESS REWARD MODELS

Process Reward Models (PRMs) aim to assess the quality of reasoning trajectories by assigning
rewards to each evaluation unit—typically a reasoning step—complementing traditional outcome
rewards (Li & Li, 2024; Setlur et al., 2024; Zhang et al., 2025). Depending on the evaluation
paradigm, PRMs are typically categorized into discriminative and generative approaches (Zhao
et al., 2025). Discriminative PRMs learn to predict step-level correctness scores through supervised
training (ol Open Series, 2024b;a). OpenAI’s PRM80OK dataset (Lightman et al., 2023), with
large-scale human annotations, has significantly advanced this area. Wang et al. (2023b); Luo et al.
(2024); Wang et al. (2024c); Lu et al. (2024b;a) explore automatic labeling through simulation.
However, discriminative PRMs often suffer from poor generalization, vulnerability to reward hacking,
and limited interpretability (Guo et al., 2025) due to their reliance on domain-specific training and
direct score prediction. In contrast, Generative PRMs treat evaluation as a generation task (Ankner
et al., 2024; Zhao et al., 2025). Rather than predicting rewards directly, they analyze whether each
reasoning step is correct and use the generation probability of indicative tokens (e.g., “correct”, “yes”)
as rewards (Zhang et al., 2024b; Mahan et al., 2024). These approaches offer greater interpretability
and scalability by leveraging LLMs’ intrinsic reasoning capabilities (Wang et al., 2023a). Many
works adopt an LLM-as-a-Judge framework (Zheng et al., 2023; Gu et al., 2024), prompting LLMs
for evaluation without further training (Zheng et al., 2024), and some others enhance evaluation via
further training (Wang et al., 2024b; Khalifa et al., 2025; Zha et al., 2025; Xiong et al., 2025).

This work does not seek to explore how training might enhance the performance gains of GenPRM;
nevertheless, we believe our framework can achieve additional evaluation improvements via training.

16



Published as a conference paper at ICLR 2026

Instead, it targets fundamental issues in the GenPRM workflow that have been overlooked in prior
studies. These include whether evaluation should be grounded in reasoning ability or decomposed
around other core capabilities, determining suitable reward granularity, and identifying the proper
timing for applying process rewards. We hope our findings stimulate broader discussion within the
community on these topics. Therefore, our contribution lies primarily in rethinking and innovating
the philosophy of generative evaluation and reward design,

D.2 PRMS FOR OPTIMIZING LARGE REASONING MODELS

Prior to the release of DeepSeek R1, process rewards are widely explored as a means to improve
the reasoning capabilities of LLMs (Zhang et al., 2024a; Wang et al., 2024a). Depending on
the application stage, process rewards are typically employed to guide trajectory pruning during
inference (Uesato et al., 2022; Kalra & Tang, 2025; Muennighoff et al., 2025) or to shape optimization
during training (Zhang et al., 2024c). In this work, we focus on PRM’s role in training. Early
approaches such as Rest-MCTS* (Zhang et al., 2024a) train PRMs to rank reasoning trajectories,
selecting high-quality traces for the learning process of reasoning. (Chen et al., 2024) estimates
step rewards via question decomposition, but ultimately integrate them into the outcome reward,
limiting the benefit of fine-grained supervision. A similar issue arises in (Li et al., 2024b), where
process rewards are not effectively utilized. While OpenR (Wang et al., 2024a) employs PRMs to
guide policy iteration in LLM training, it remains confined to the discriminative PRM paradigm.
After the release of DeepSeek R1 (Guo et al., 2025), research attention on PRMs shifted toward
Generative PRMs (ol Open Series, 2024a). For instance, ReasonFlux-PRM (Zou et al., 2025)
estimates process rewards to guide GRPO optimization but still integrates process rewards to outcome
ones without fully utilizing the process rewards. To unlock the full potential of PRMs, several key
challenges must be addressed, including ambiguous step segmentation, reward hacking, and continual
retraining requirements. In response, we propose a suite of targeted improvements: a comprehension-
driven evaluation strategy, a thought-level granularity for assessment, and a capacity-adaptive reward
mechanism.

E MORE EXPERIMENT SETTINGS

E.1 TRAINING SETTINGS

For process-level evaluation, we employ Qwen3-32B as the primary evaluator model. To mitigate the
substantial computational cost associated with this step, we implement several heuristic rules to filter
out solutions that are unlikely to benefit from fine-grained process rewards:

* Solutions that yield correct final answers but have concise reasoning chains (fewer than 4,096
characters) are excluded, as their intermediate steps are presumptively correct.

» Solutions that produce incorrect and very short answers (fewer than 256 characters) are also
filtered out, as they seldom contain discernible reasoning steps.

* Solutions truncated due to exceeding maximum length constraints are similarly discarded.

Due to the application of the aforementioned filtering rules and the fact that some solutions receive
no process reward after evaluation, the number of effective training samples in each TP-GRPO
iteration is often insufficient to train 50 steps (more details can be found in Appendix G). As a result,
TP-GRPO performs fewer than 50 steps per iteration and does not save checkpoints at fixed 50-step
intervals.

Our implementation of TP-GRPO, as well as all replicated baseline experiments, is built upon the
GRPO algorithm. We incorporate two key modifications proposed in DAPO: the €4, parameter and
the use of token-level loss. The outcome reward function combines accuracy and format rewards. We
extract the answer from "\boxed{ }" and compare it against the golden answer: a perfect match yields
an accuracy reward of 1, otherwise 0. Additionally, we observed collapse when reproducing the
on-policy GRPO baseline with 8 = 0. Therefore, following the open-rl implementation (Hugging
Face, 2025), we set 5 = 0.04 for the GRPO baseline. Additional hyperparameters and configurations
are summarized in Table 6.
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Table 6: All key configuration hyperparameters used in this paper.

Hyperparameter

Value

Sampling Configuration
system prompt

{problem} Let’s think step by step and
output the final answer within \boxed{}.

temperature 1.0
max prompt length 1024
max response length 8192
rollout size 8
Process Evaluation Configuration

default model Qwen3-32B
backend VLLM
temperature 0.7
max tokens 8192
tensor-parallel-size(VLLM) 2
max_num_seqs(VLLM) 512
Training Configuration

gradient accumulation steps 1
learning rate 1.0e-06
Ir scheduler type constant
max steps 50

max iteration num 20

per device train rollout batch size 5
process reward coefficient o 1

€low 0.2
€high 0.28
Evaluation Configuration

max tokens 32768
temperature 0.6

top P 0.95
top K -1
gpu_memory_utilization 1.0

E.2 EVALUATION SETTINGS

All evaluation experiments—including those for TP-GRPO and all baselines—are conducted using
the evaluation codes from the rllm project (Luo et al., 2025).

F PROCESS EVALUATION DETAILS

In this section, we provide the implementation details of the process evaluation introduced in Section
3.1

Overall of our generative process evaluation Pipeline We first revisit the overall process evalua-
tion pipeline proposed in Section 3.1. As illustrated in Figure 7, the pipeline evaluates solutions in
three sequential steps. In the first step, we decompose the reasoning process into individual steps and
apply different strategies to determine each step’s type based on the correctness of thinking content.
In the second step, consecutive correct or incorrect steps are grouped together to form thought-level
segments. The rationale behind this approach is supported by the results shown in Section 4.3.1.
In the third step, we adaptively assign different rewards to correct and incorrect thought segments
based on the model’s capability for the given problem, thereby effectively balancing exploitation and
exploration during training.

18



Published as a conference paper at ICLR 2026
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: through Step Mergin
1.1 Evaluation for <think> {Check each step 1 ‘ b e
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Figure 7: The pipeline of intrinsic signal-driven thought-level generative process evaluation. The
whole process consists of three steps: (1) Intrinsic Signal-driven Step-level Process Evaluation,
which evaluates each reasoning step using intrinsic signals from solutions; (2) Thought-level Process
Evaluation through Step Merging, which merges continuous steps with the same correctness to enable
thought-level evaluation; and (3) Ability-Adaptation Process Reward Mechanism, which calculates
rewards based on model capability, balancing exploration and exploitation.

Atomic Logical Actions-Based Decompose Each solution should first be decomposed into a series
of steps with appropriate granularity for subsequent processing. Given that model-generated solutions
are often lengthy and unstructured, directly segmenting them into content-complete steps with clear
boundaries is challenging. Our decomposition begins by splitting the solution into shorter sentences
using the "\n\n" delimiter. However, we observed in practice that the model often generates "\n\n"
in the middle of a process, leading to excessive fragmentation. To address this, we curated a list of
punctuation marks (detailed in Table 15) that reliably signify the end of a semantically complete,
fine-grained sentence. We then sequentially merge consecutive short sentences until the merged
segment terminates with one of these specified punctuation marks. For ease of subsequent processing,
we then insert a sequentially increasing label (e.g., «0», «1», ...) at the beginning of each merged
sentence. To ensure that each sentence has an appropriate semantic granularity, we define eight atomic
logical actions and prompt GenPRM to further merge consecutive sentences based on these actions.
Ultimately, for each solution we obtain a series of steps with appropriate quantity and granularity, as
well as clear semantic boundaries. The prompt used is shown in Table 17. For solutions marked as
incorrect, the corresponding final answer also requires decomposition. As answers are considerably
shorter than the full reasoning trajectory, we bypass the initial punctuation-based merging and directly
apply the atomic logical action decomposition. Specifically, GenPRM is prompted to enclose each
identified step within "<step>" and "</step>" tags. It facilitates the subsequent parsing of steps
using regular expressions, and mitigates the risk of GenPRM corrupting the original answer (e.g., by
rewriting or omitting parts). The prompt for answer decomposition is shown in Table 18.

Match-Based Step Type Check for Incorrect Solutions Following the decomposition, each step
within an incorrect solution is assessed by performing a semantic match against the corresponding
answer (Section 3.1.1). For solutions that remain excessively long (i.e., exceeding 8192 characters),
we apply an additional step-level summarization using GenPRM. The prompt used is shown in Table
19. This makes them more concise for subsequent processing. We focus solely on semantic and
content similarity, disregarding whether the solution steps themselves are correct or not. The prompt
used can be found in Table 20.

Reflection-Based Step Type Check for Correct Solutions For solutions that yield a correct
final answer, we assess the correctness of each intermediate step using a three-stage methodology:
Localization, Traceback, and Verification (Section 3.1.1). First, in the Localization stage, the
step-decomposed solution is provided to GenPRM, which is tasked with identifying all reflection
segments. To filter out generic validation statements (e.g., "double-checking"), we constrain the
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Figure 8: The overview of our proposed efficient off-policy training pipeline. This design ensures
full utilization of GPU resources at each stage—all GPUs are either concurrently used for sampling,
process evaluation, or parameter updates, avoiding any idle computation.

model to identify only those reflections that pinpoint concrete errors. The prompt for this task is
detailed in Table 21. Second, duringTraceback, we iterate through each identified reflection to trace
its corresponding error source, defined as the earliest step where the specified error first occurred
(see prompt in Table 22). After identifying the source for each reflection, we retain only the one
with the earliest index, as this represents the ultimate origin of the error. If multiple reflections map
to this same earliest source, we select the reflection with the latest index to define the end of the
error-reflection span. All steps within this span are considered semantically related to the source error.
Finally, in the Verification stage, GenPRM classifies each step within the identified span into one of
three types: Incorrect, Reflection, and Correct.

* Incorrect: A step containing a logical or computational error.
* Reflection: A step containing a reflective or self-correcting action.
* Correct: A step that is neither Incorrect nor a Reflection.

The prompt used for this classification task is shown in Table 23. This multi-stage workflow is
implemented by parsing the JSON output from each stage and using it as input for the subsequent
stage.

G OFF-POLICY TRAINING PIPELINE DETAILS

Conventional on-policy RL training alternates between sampling rollouts and performing policy
updates, often on separate sets of GPUs. This approach can lead to significant GPU idling and low
overall utilization, as policy update hardware waits for the sampling phase to complete. To overcome
this inefficiency, we propose an off-policy training framework, depicted in Figure 8, which decouples
these phases into three distinct steps:

* Solution Sampling: The policy model is deployed using the vLLM backend. A batch of prompts
sufficient for n update steps (n=50 in our experiments) is prepared, and the model generates
responses for all prompts. The resulting data is saved locally.

* Process Evaluation: The policy model is unloaded from the GPUs, and our GenPRM is deployed,
also using the vLLM backend. The process evaluation pipeline, as described in Section 3.1, is
then applied to generate process rewards for the data collected in the previous step.

* Policy Optimization: Finally, GenPRM is unloaded, and the policy model is reloaded for training.
The model is then trained on the offline-collected, reward-annotated data for the target number of
steps. This completes one full iteration of our framework, and the cycle is repeated until training
converges.

H MORE EXPERIMENTS RESULTS

H.1 HYPERPARAMETERS ANALYSIS

We further analyze the hyperparameter « to assess its impact on model performance. Experiments
are conducted on the 1.5B model with « € {0,0.5,1, 2,4}, and the results on AIME 2024, AIME
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Table 7: Hyperparameter Analysis with different o settings.

Model | AIME24 AIME25 AMC23 Avg.
Base Model 28.80 22.50 62.90 38.07
TP-GRPO (o = 0) 30.00 25.00 62.50 39.17
TP-GRPO (o = 0.5) 31.46 24.17 63.78 39.80
TP-GRPO (o = 1) 33.12 25.63 64.01 40.92
TP-GRPO (o = 2) 32.29 25.00 64.46 40.58
TP-GRPO (o = 4) 31.46 23.33 64.38 39.72

2025, and AMC 2023 are summarized in Table 7. The results show that & = 1 achieves the best
performance. This can be explained by the advantage computation for incorrect thoughts:

A=7°—r°=7°—«a-accq. (11

When o = 1, we have 0 < A < #°, meaning that incorrect thoughts receive positive but reduced
advantage values—effectively suppressing their optimization strength relative to correct ones. As «
decreases, this regularization weakens; when a = 0, the mechanism reduces to outcome-only off-
policy GRPO, losing the benefits of process-aware credit assignment for correct solutions. Conversely,
when « > 1, the penalty intensifies, potentially driving A < 0, which may over-suppress erroneous
reasoning paths and hinder the LRM’s ability to engage in productive trial-and-error exploration.

H.2 ANALYSIS ON OFF-POLICY TRAINING PIPELINE

In this work, we propose an off-policy training pipeline to reduce training time by reducing GPU
idling. According to the results in Figure 3, it is evident that off-policy GRPO underperforms
on-policy GRPO in both accuracy and training efficiency, indicating that on-policy training is
more advantageous—consistent with conventional training experience. Figure 3 presents a clearer
comparison, where on-policy GRPO demonstrates a more pronounced improvement trend over
training steps. To further investigate the impact of update frequency in off-policy training, we reduce
the update interval of TP-GRPO’s off-policy pipeline from 50 steps to 25 steps (and to 1 step in an
extreme case, which essentially corresponds to true on-policy updates). We observe that both AIME
24 and AMC 23 tasks show further performance improvements. In summary, although off-policy
training is known to be less effective than on-policy training, TP-GRPO trained under the off-policy
setting still outperforms the on-policy GRPO baseline. This further validates the effectiveness of our
proposed GenPRM mechanism.

Table 8: Analysis study on the impact of off-policy training.

Model | AIME24 AIME25 AMC23 Training Steps
On-policy GRPO 32.71 24.58 64.53 850
Off-policy GRPO 30.83 24.79 62.05 950
TP-GRPO (25 steps) 33.54 23.96 64.53 207
TP-GRPO (50 steps) 33.12 25.63 64.01 140

H.3 TRAINING EFFICIENCY COMPARISON

We evaluated the training efficiency of TP-GRPO against other high-performing methods, with
corresponding hyperparameters summarized in Table 10. Our method demonstrates substantial
improvements in training efficiency on both the DeepSeek-R1-Distill-Qwen-1.5B and DeepSeek-R1-
Distill-Qwen-7B models. Relative to the baseline GRPO algorithm, TP-GRPO accelerates training
by a factor of 4 to 8 while also achieving superior performance, as detailed in Section 4.2.

H.4 CASE STUDIES

To intuitively compare the improvements of our proposed TP-GRPO algorithm over the original
GRPO, we selected one problem each from the AIME24 and AIME2S5. These problems were then
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Table 9: Analysis study on the impact of off-policy training.

Model | Traing Steps  Batch Size  Rollout Size  Effic.
DeepSeek-R1-Distill-Qwen-1.5B
AutoThink (Stage 1) 220 128 16 -0.53
AdaptThink 300 128 16 0.53
Open-RS1 100 96 6 0.57
Still-3-1.5B-Previous 250 128 8 0.98
AReal.-1.5B-Preview(Stage 1) 200 1024 8 0.13
DS-1.5B-Preview 1750 128,128,128 8,16,16 <0.49
GRPO Replication | 850 5 8 4.65
TP-GRPO | 140 5 8 36.43
DeepSeek-R1-Distill-Qwen-7B
AutoThink (Stage 1) 220 128 16 -0.53
ReasonFlux-F1 3750 16 1 -1.15
AdaptThink 150 128 16 0.10
AReal.-boba-RL-7B 250 512 16 0.37
Skywork-OR1 1320 256,160 16,32 <0.26
GRPO Replication | 400 5 8 9.6
TP-GRPO | 214 5 8 40.07

Table 10: Training hyperparameters for efficiency comparison.

presented to the DeepSeek-R1-Distill-Qwen-1.5B and DeepSeek-R 1-Distill-Qwen-7B models, which
were trained using both algorithms respectively, to observe their corresponding reasoning processes.
The detailed results for the DeepSeek-R1-Distill-Qwen-1.5B model are shown in Table 11 and
Table 12. , while the detailed results for the DeepSeek-R1-Distill-Qwen-7B model are shown in
Table 13 and Table 14. As observed from the model’s thinking content, the model post-trained with
the TP-GRPO algorithm can correct the specific reasoning errors made by the model trained with
the original GRPO. This provides an intuitive demonstration of the effectiveness of our proposed
algorithm.

[Question]

Alice chooses a set A of positive integers. Then Bob lists all finite nonempty sets B of
positive integers with the property that the maximum element of B belongs to A. Bob’s list
has 2024 sets. Find the sum of the elements of A. Let’s think step by step and output the final
answer within \boxed{ }.

[Model Thinking Content]

Okay, so Alice picks a set A of positive integers. Then Bob lists all finite nonempty sets B of
positive integers where the maximum element of B is in A. The total number of such sets B
is 2024. We need to find the sum of the elements of A.

So, if A has n elements, then the total number of such sets B is the sum from k=1 to n of 2=,
Because for each element ay, in A, the number of subsets where ay, is the maximum is 251
Therefore, the total number of sets B is 2" — 1, since the sum from k=0 to n-1 of 2% is 2" —1 So,
if A has elements a1, as, ..., a,, then the total number is 272 —1 4+ 292=1 4 4 9an—1 — 9024
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plus 32 is 2016, plus 4 is 2020. Wait, that’s 1024 + 512 + 256 + 128 + 64 + 32 + 4 = 2020.
Hmm, but 2024 is 4 more, so 2020 + 4 is 2024. So, in terms of powers of 2, 2024 =
210 4 29 4 98 4 97 4 26 1 95 4 92,

Table 11: Case study of DeepSeek-R1-Distill-Qwen-1.5B with GRPO. For the given problem, the
model incorrectly answered 54, while the correct answer is 55. Due to the model’s extensive thinking
process, we have excerpted the key steps for clarity. As shown, the error (highlighted by orange)
stems from a miscalculation in the binary representation of 2024.

[Question]

Alice chooses a set A of positive integers. Then Bob lists all finite nonempty sets B of
positive integers with the property that the maximum element of B belongs to A. Bob’s list
has 2024 sets. Find the sum of the elements of A. Let’s think step by step and output the final
answer within \boxed{ }.

[Model Thinking Content]

Okay, so I have this problem here where Alice chooses a set A of positive integers. Then
Bob lists all finite nonempty sets B of positive integers with the property that the maximum
element of B belongs to A. Bob’s list has 2024 sets. I need to find the sum of the elements of
A. Hmm, let me try to break this down step by step.

So for each a in A, the number of such sets is equal to the number of subsets of 1, 2, ..., a-1.
Because each subset can be combined with a to form a set B with maximum a.

Therefore, for each a in A, the number of sets B with maximum a is 2¢~!. Because the
number of subsets of a set with n elements is 2™. So in this case, n is a-1, so it’s 2¢~1.

So, if A is a set of numbers, say A = ay,as, ..., ai, then the total number of sets B that
Bob can list is the sum over each a; in A of 2% 1. Because each a; contributes 2%~ sets.
Therefore, the total number of sets B is the sum of 2%~ for all a; in A. So, let me denote

that § = 34 201 — 2024.

So, let’s factor 2024 into its prime factors to see if we can represent it as a sum of powers of
2.

First, 2024 divided by 2 is 1012, divided by 2 again is 506, divided by 2 again is 253. 253 is
not divisible by 2, so the prime factors are 23 x 253.

Now, 253 divided by 11 is 23, because 11%¥23 is 253. So, 2024 = 23 x 11 x 23. So,
2024 = 8 x 11 x 23. Hmm, interesting.
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But how does this help me? I need to express 2024 as the sum of 2¢~! terms, each of which
is a power of 2, and each a is a positive integer. So, each term is a power of 2, and the sum is
2024. So, to find A, I need to express 2024 as the sum of distinct powers of 2

So, let me compute the binary representation of 2024. Calculating:

210 — 1024
29 =512
28 — 256
27 =128
26 — 64

25 =32

23 =8

So, summing these up:
1024 + 512 = 1536
1536 + 256 = 1792
1792 + 128 = 1920
1920 + 64 = 1984
1984 + 32 =2016
2016 + 8 = 2024
Yes, that adds up correctly. So, 2024 in binary is 11111101000. So, the binary representation
has 1s at positions 10,9,8,7,6,5,3. So, that would mean that the exponents in the sum are
10,9,8,7,6,5,3.

So, if the exponents are 10,9,8,7,6,5,3, then the corresponding a’s are 11,10,9,8,7,6,4.
Therefore, set A is 4,6,7,8,9,10,11.

So, the sum of elements in Ais4+6+7+8+9+ 10+ 11.

Let me compute that:

4+6=10

10+7=17
17+8=25
25+9=34
34 +10=44
44+ 11=55

So, the sum is 55.

Final Answer: The sum of the elements of A is .

Table 12: Case study of DeepSeek-R1-Distill-Qwen-1.5B with TP-GRPO. Using the same problem
from Table 11, we also present only the key steps. Post-training with TP-GRPO, the model
successfully computes the binary representation of 2024 and yields the correct final answer. We use
blue to highlight these steps.

Case Study for 7B Model with GRPO

[Question]

Let A be the set of positive integer divisors of 2025. Let B be a randomly selected subset of
A. The probability that B is a nonempty set with the property that the least common multiple
of its elements is 2025 is ™, where m and n are relatively prime positive integers. Find
m + n. Let’s think step by step and output the final answer within \boxed{ }.

[Model Thinking Content]
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Okay, so I have this problem here where I need to find the probability that a randomly selected
subset B of the set A (which consists of all positive integer divisors of 2025) has the property
that the least common multiple (LCM) of its elements is 2025.

I know that 2025 divided by 25 is 81, because 25 times 81 is 2025. And 81 is 9 squared,
s0 2025 is 25 times 81, which is 5 squared times 3 to the fourth power. So, 2025 = 5234,
Therefore, the prime factorization of 2025 is 523

Now, to find all the positive divisors of 2025, I can use the exponents of its prime factors. The
number of divisors is given by multiplying one more than each of the exponents in the prime
factorization. So here, for 52, the exponent is 2, so we have 2 + 1 = 3. For 34, the exponent
is 4, so 4 + 1 = 5. Therefore, the total number of divisors is 3 x 5 = 15. So, set A has 15
elements.

Next, we need to consider all possible subsets B of A, and find the probability that the LCM
of the elements in B is 2025. Since we’re dealing with subsets, the total number of subsets is
215 because each element can either be included or excluded. However, the problem specifies
that B is a nonempty set, so we have to subtract 1 for the empty set.

Given that 2025 = 3%52, the LCM of a subset B is 2025 if and only if the subset contains
elements that cover all the prime factors with their maximum exponents.

By inclusion-exclusion, this number is U — |A| — |B| 4+ |A N B|.

Now, we need to simplify this fraction. Let’s see if 8191 and 32767 have any common factors.
First, let me factorize 32767. I know that 32767 is 215 — 1, which is 32768 - 1 = 32767.
32767 is a Mersenne number, 2'° — 1. Let’s see if it’s prime.

Well, 21° is 32768, so 32767 is 32768 - 1. Let me check its divisibility.

327677 : 74681 = 327677 Let’s check: 7 x 4000 = 28000, 7 x 681 = 4767, so 28000 + 4767
=32767. Yes, s0 32767 =7 x 4681.

Now, let’s factor 4681. Let me check if 4681 is divisible by 7: 7 x 668 = 4676, 4681 - 4676 =
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5,sono. Next, 11: 4 -6 + 8 - 1 =5, which is not divisible by 11. 13: 4681 + 13. 13 x 360 =
4680, so 4681 - 4680 = 1, sono. 17: 17 x 275 = 4675, 4681 - 4675 = 6, not divisible. 19: 19
X 246 = 4674, 4681 - 4674 = 7, no. 23: 23 x 203 = 4669, 4681 - 4669 = 12, no. 29: 29 x 161
= 4669, same as above. 31: 31 x 151 = 46817 Let’s compute 31 x 150 = 4650, plus 31 =
4681. Yes! So, 4681 =31 x 151.

Therefore, 32767 =7 x 31 x 151.

Now, let’s check if 8191 is divisible by any of these primes: 7, 31, 151.

8191 +7: 7x 1170 = 8190, so 8191 - 8190 = 1, so remainder 1. Not divisible by 7.

8191 + 31: Let’s see, 31 x 264 = 8184, 8191 - 8184 =7, so remainder 7. Not divisible by 31.
8191 = 151: 151 x 54 = 8154, 8191 - 8154 = 37, which is less than 151, so not divisible.
Therefore, 8191 and 32767 share no common factors besides 1, so the fraction S:2L

ey Wiz 32767 18
already in its simplest form.

Table 13: Case study of DeepSeek-R1-Distill-Qwen-7B with GRPO. For the given problem, the
model incorrectly answered 40958, while the correct answer is 237. Due to the model’s extensive
thinking process, we have excerpted the key steps for clarity. As shown, the error (highlighted by
orange) mainly from a miscalculation in the number of corresponding subsets.

[Question]

Let A be the set of positive integer divisors of 2025. Let B be a randomly selected subset of
A. The probability that B is a nonempty set with the property that the least common multiple
of its elements is 2025 is 7, where m and n are relatively prime positive integers. Find
m + n. Let’s think step by step and output the final answer within \boxed{ }.

[Model Thinking Content]

Okay, so I have this problem here where I need to find the probability that a randomly selected
subset B of the set A (which consists of all positive integer divisors of 2025) has the property
that the least common multiple (LCM) of its elements is 2025.

A is the set of all positive integer divisors of 2025. So, let me factorize 2025 to find out
its divisors. 2025 is a number I might recognize as a square. Let me check: 45 squared is
2025 because 45 x 45 is 2025. So, 2025 = 452. But 45 itself can be broken down further:
4? = 92>< 5,and 9 is 3. So, 2025 is 3* x 52. Therefore, the prime factorization of 2025 is
3% x 5%,

Now, to find the number of positive divisors, we can use the formula for the number of divisors
based on prime factorization. If a number N has the prime factorization N = p{* «pg?x*...xp2n,
then the number of positive divisors is (a1 + 1)(az + 1)...(a, + 1). So, for 2025, which is
3% x 52, the number of divisors is (4 +1) x (2+ 1) = 5 x 3 = 15. So, set A has 15 elements.

Next, I need to consider the power set of A, which is all possible subsets of A, including the
empty set and A itself. The number of subsets of a set with n elements is 2". Since A has 15
elements, the power set has 2 L5 subsets. Therefore, the total number of possible subsets B is
32768.

Now, the problem is asking for the probability that a randomly selected subset B has an LCM
of 2025. So, I need to find how many such subsets exist where the LCM of their elements is
2025, and then divide that by the total number of subsets, which is 32768.

Given that 2025 is 3* x 52, the LCM of a subset will be 2025 if and only if in the subset,
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there is at least one number with 3% and at least one number with 52. Wait, is that correct? Or
is it sufficient that the maximum exponent of 3 in the subset is 4 and the maximum exponent
of 51is 2?

Yes, exactly. So, for the LCM to be 2025, the subset must include numbers such that the
highest power of 3 in the subset is 3* and the highest power of 5 is 52. So, in other words, the
subset must contain at least one multiple of 3* (which is 81) and at least one multiple of 52
(which is 25).

Therefore, the number of subsets with LCM 2025 is equal to the number of subsets that
include at least one multiple of 81 and at least one multiple of 25. So, to compute this, we
can use the principle of inclusion-exclusion.

First, let’s denote:

- Let S be the set A, which has 15 elements.

- Let X be the set of subsets of S that include at least one multiple of 81.

- Let Y be the set of subsets of S that include at least one multiple of 25.

We need to find | X NY|, which is the number of subsets that include at least one multiple of
81 and at least one multiple of 25.

By the principle of inclusion-exclusion:

IXNY|=|X|+|Y|—|X UY]| So, let’s compute each term.

Total subsets: 21°.

Subsets without any multiple of 81: So, we need to count the number of subsets that do not
include 81. 2025 is 3* x 52, so the divisors are of the form 3% x 5° where a is 0,1,2,3,4 and b
is 0,1,2.

The number of divisors is 15. The number of divisors that are multiples of 81: 81 is 3%,
so any multiple of 81 must have a=4. So, the number of such divisors is equal to the
number of possible b’s, which are 0,1,2. So, there are 3 divisors that are multiples of 81:
81 x 1 = 81,81 x 5 = 405,81 x 25 = 2025.

Therefore, the number of elements not divisible by 81 is 15 - 3 = 12. Therefore, the number
of subsets without any multiple of 81 is 2'2.

Similarly, subsets without any multiple of 25: 25 is 52. So, the divisors that are multiples of
25 are those with b=2. The number of such divisors is equal to the number of a’s, which
are 0,1,2,3.4. So, that’s 5 divisors: 1, 5, 25, 75, 225, 2025? Wait, no: 1is 3° x 5%, 5
is 3% x 51, 251is 3% x 52, 75 is 31 x 52, 225 is 3% x 52, 2025 is 3% x 52. Wait, that’s 6
divisors. Wait, but 2025 is 3% x 52, so for b=2, a can be 0,1,2,3,4: that’s 5 divisors. Wait,
30 x 52, 3! x 52,...,3% x 52: that’s 5 divisors. Wait, why did I think 6? Hmm, maybe I
confused with 2025’s total divisors.

Wait, no, the number of divisors where b=2 is 5 because a can be 0,1,2,3,4. So, 5 divisors.
Therefore, the number of divisors not divisible by 25 is 15 - 5 = 10. Therefore, the number of
subsets without any multiple of 25 is 21°.

Now, the subsets that include neither any multiple of 81 nor any multiple of 25: So, these
are subsets that do not contain any of the 3 multiples of 81 and do not contain any of the 5
multiples of 25. So, how many such elements are there?

Total elements:15.

Number of elements that are multiples of 81 or 25: Let’s compute this using inclusion-
exclusion. Number of multiples of 81:3, multiples of 25:5, and multiples of both 81 and 25:
Well, 81 and 25 are coprime, so their least common multiple is 81 x 25 = 2025. So, only
2025 is a multiple of both 81 and 25. Therefore, the number of elements that are multiples of
8lor25is3+5-1=7.

Therefore, the number of elements that are neither multiples of 81 nor multiples of 25 is 15 -
7=28.

Therefgre, the number of subsets that include neither any multiple of 81 nor any multiple of
25 is 2°.

Therefore, putting it all together:

|X NY'| = Total subsets - subsets without 81 - subsets without 25 + subsets without both 81
and 25

Which is:
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X NY| =215 212 2104 98
Let me compute these values step by step.
First, 215 = 32768

212 = 4096
210 = 1024
28 = 256

So, substituting:

| X NY| = 32768 — 4096 — 1024 + 256

Let me compute this step by step:

First, 32768 - 4096 = 28672

Then, 28672 - 1024 = 27648

Then, 27648 + 256 = 27904

So, | X NY| = 27904

Therefore, the number of subsets B where LCM(B) = 2025 is 27904.

a1 27904
Therefore, the probability is 39768 -

Now, we need to reduce this fraction to its lowest terms. Let’s find the greatest common
divisor (GCD) of 27904 and 32768.

First, let’s note that both numbers are divisible by 16: 27904 + 16 = 1744, 32768 + 16 =
2048.

So, 1744 and 2048.

Again, both are divisible by 16: 1744 +~ 16 = 109, 2048 + 16 = 128.

So, 109 and 128. Now, 109 is a prime number (since it’s not divisible by 2,3,5,7,11;
V109 ~ 10.4, so primes up to 11 are tested). 128 is 27. Since 109 is prime and doesn’t
divide 128, the GCD is 1.

Therefore, the reduced fraction is %. Wait, no: wait, 27904 ~ 16 = 1744, 32768 - 16 =

2048. Then, 1744 - 16 = 109, 2048 ~ 16 = 128. So, the reduced fraction is %.
Wait, but 1744 +16=109? Wait, 16¥109=1744? Let me compute 16*100=1600, 16%9=144,
so 1600+144=1744. Yes, correct. Similarly, 16%128=2048, which is correct.

So, 109 and 128 are coprime, so the reduced fraction is %.

i s 109 _ _
Therefore, the probability is 125 SO m=109, n=128.

Thus, m + n=109 + 128 = 237.

Wait, hold on, but let me confirm the calculations once more because 27904 divided by

32768 reduces by 16 twice, leading to }Tog, which is correct.

cae s 27904 109
Therefore, the probability is e = TRc

Thus, I think that is the correct answer.
Final Answer:

som + n = 237.

Table 14: Case study of DeepSeek-R1-Distill-Qwen-7B with TP-GRPO. Using the same problem
from Table 13, we also present only the key steps. Post-training with TP-GRPO, the model
successfully computes the number of corresponding subsets and yields the correct final answer. We
use blue to highlight these steps.

Punctuation Marks List

Table 15: The punctuation marks list we use to merge consecutive pre-split sentences.
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Prompt for LLLM-as-a-judge

I will provide a math problem along with a solution. They will be formatted as follows:
[Math Problem]

<math_problem >

...(math problem)...

</math_problem >

[Solution]
<step_1 >
...(step 1 of solution)...
</step_1 >

<step_n >
...(step n of solution)...
</step_n >

Your task is to review each step of the solution in sequence, analyzing, verifying, and
critiquing the reasoning in detail. You need to provide the analyses and the conclusion in the
following format:

<analysis_1 >
...(analysis of step 1)...
</analysis_1 >

<analysis_n >
...(analysis of step n)...
</analysis_n >

<conclusion >
Correct/Incorrect
</conclusion>

* When you analyze each paragraph, you should use proper verification, recalculation, or
reflection to indicate whether it is logically and mathematically valid. Please elaborate on the
analysis process carefully.

* If an error is detected in any step, you should describe the nature and cause of the error in
detail, and suggest how to correct the error or the correct approach. Once a step is found
to contain any error, stop further analysis of subsequent steps (as they may depend on the
identified error) and directly provide the conclusion of "Incorrect." For instance, given a solu-
tion of five steps, if an error is found in the third step, you should reply in the following format:

<analysis_1 >
...(analysis of step 1)...
</analysis_1 >

<analysis_2 >
...(analysis of step 2)...
</analysis_2 >

<analysis_3 >
...(analysis of step 3; since an error is found here, also provide detailed critique and correction
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guideline)...
</analysis_3 >

<conclusion >
Incorrect

</conclusion >

Note that the analyses of steps 4 and 5 should be skipped as the step 3 has been found to
contain an error.

* Respond with your analyses and conclusion directly

The following is the math problem and the solution for you task:

[Math Problem]
{question}

[Solution]
{decomposed_think_steps}

Table 16: The prompt used for LLM-as-a-judge.
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You need to read the problem-solving process below, which is divided into some steps using
line breaks, with each step labeled by a tag "«»" .

[Pre Split Format Thought]
{format solution}

Then, you are required to combine consecutive steps into several logically independent
sections. Note that each independent section must belong to one of the eight action categories
listed below:

(1) Problem Analysis: Decompose the original problem, clarify known conditions and
objectives

(2) Subtask Definition: Establish phased goals (e.g., equation construction, variable
definition)

(3) Calculation Solving: Perform numerical operations or symbolic derivations

(4) Reflection Check: Verify logical/computational errors

(5) Answer Validation: Confirm correctness of final/intermediate conclusions

(6) Error Correction: Rectify identified issues

(7) Strategy Shift: Switch to alternative problem-solving approach

(8) Final Conclusion: Summarize and present ultimate answer

**Qutput Specifications**

- Maintain original thought chain order when outputting sections

- Section format: «start »- «end » Concise explanation the reasons for combining these steps
together(max 15 words)

- Must satisfy: start < end < next_start

**Special Constraints**

- If several consecutive steps involving calculations, enumerations, proofs, or similar
processes are working toward the same objective—such as solving the same equation,
proposition, or problem—please group them together into a single section without splitting
them apart!

- If several consecutive steps are reflections on or verifications for the same issue, combine
them into a single section and do not separate them!

**Example output®*

«0 » - «2 »These three steps aim to analyze the question

«3 » - «5 »These three steps is computing the same equation
«6 » - «6 »This step aims to draw the final answer

Table 17: The prompt used to decompose preprocessed solutions. We define eight atomic logical
actions and use them to guide the step-wise decomposition.
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You will be presented with the following content:

[Math Problem]
{problem}

[Answer]
{answer of the problem}

**Task Requirements**

Insert "<step>" and "</step>" into the original answer to break down the above answer
into several atomic reasoning steps. Each atomic reasoning step belongs to only one of the
following actions:

1. **Problem Analysis**: Analyze the original problem, organize the conditions, and deepen
the understanding of the problem.

2. **Set Subtask Goals**: Clearly define the specific goal to be solved next, such as setting
up an equation.

3. **Calculating or Solving**: Calculate a variable or solve an equation.

4. **Self-Reflection**: Reflect on potential mistakes and assess whether previous thoughts
contain mistakes.

5. **Verify Correctness**: Validate whether the final answer or intermediate conclusions are
correct.

6. **Error Correction**: Rectify identified mistakes.

7. **Switch Thinking**: Change to a different thought for solving the problem.

8. **Arrive at the Final Answer**: Conclude with the final answer.

**Qutput Format**

1. The breakdown of steps should not be too coarse; each step should belong to only one type
of action.

2. Separate the reasoning steps by inserting "<step>" and "</step>".

3. Besides inserting the "<step>" and "</step>" tags, do not change the original solution.

4. Do not alter the original solution except for inserting the "<step>" and "</step>" tags;
keep the original solution complete.

5. You only need to reply with the complete solution, without outputing any additional content.

Table 18: The prompt used to decompose answer. We used the same set of eight atomic logical
actions as detailed in Table 17, with only minor modifications to the phrasing.
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Prompt for Summarizing Solution

You will be presented with the following two contents:

[Math Problem]
{problem}

[Solution]
{solution in a list format, each element is a step}

This thought process includes len(solution) Steps in total.

Your task is to summarize the main content of these all Steps in the solution.

Make sure each summary clearly describes the key points and the intermediate conclusion of
the respective step in the thought process.

Finally, your output should be in standard JSON format:
7 json

{’ Thought Step 0’: ’'Summary of Step 0’,
"Thought Step 1’: ’Summary of Step 1',
.}

Table 19: The prompt used to summarize each step of a solution. Note that the input solution has
already been decomposed into steps in a list format.
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Prompt for Matching Solution and Answer

You will be given the following three sections:

[Math Problem]

{problem}

[Summarized Solution]

{summarized solution in a list format, each element is a summarized step}
[Answer]

{answer of the problem in a list format, each element is a step in answer}

**Task Requirements**

1. Establish a mapping relationship between all these solution steps and the answer steps.
2. For each answer step, find all solution steps whose summaries match the content of the
current solution step summary.

3. Allow one-to-many or many-to-one correspondence.

**Matching Criteria**

1. The Answer Step should summarize the corresponding Solution Step, or be a refined
articulation of it.

2. If the LAST step of the Solution includes the "final answer" from the Answer, it should at
least match the LAST step of the Answer.

**Qutput Requirements**

1. Analysis Report:

- Explain the matching basis for each solution step in order.
- Only record clear content correspondences.

2. Mapping Table (JSON format):

{"Solution_Step_Number": [Thought_Step_Numbers], ...}
- Unmatched thought process steps are not included.

3. Example:

7 json

{"o": [1, 31,"1": [5]}

Table 20: The prompt used to match each answer step with its corresponding solution step(s). Note
that both the solution and the answer have already been decomposed into steps in a list format.
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**Instruction:**

You will receive the following two pieces of content:
[Math Problem]

{problem}

[Decomposed Solution]
{decomposed solution in a list format, each element is a step}

Note that this thought process has been broken down into multiple steps, documenting the
complete path from the initial attempt to the final correct solution. It may include attempts
with incorrect reasoning, reflections on those attempts, and subsequent corrections.

**Your Task:**

Carefully read and analyze the provided thought process to identify all segments where *an
error in previous reasoning steps was discovered through reflection or verification.” For each
identified segment, complete the following tasks:

1. Record the Step Index: Indicate the step number where this segment occurs.

2. Identify the Fragment: Clearly specify the exact content of these segments.

3. Summarize the Cause: Analyze and summarize the reason why the error occurred.

**Qutput Format Requirements:**
Return your results in the following JSON format:

ENENEN

json
{"Reflection 1": {"Step Index": "The step number where this
segment occurs", "Identified Fragment": "The exact content

of the segment where an error in previous reasoning steps
was discovered through reflection or verification",
"Reason": "A summary of the reason why the error occurred"},

-}

**Notes: **

1. The steps you find MUST have identified a previous ERROR through reflection. If this
step ONLY involves double-checking a previous calculation to verify its correctness, without
finding a specific error, then ignore this step.

2. If there are no qualifying segments in the thought process, return an empty JSON object:

"0

Table 21: The prompt used to find reflection segments within a correct solution. Note that the input
solution has already been decomposed into steps in a list format.
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You will see a math problem and a pre-decomposed thought process for solving this math
problem:

[Math Problem]

{problem}

[Decomposed Solution]
{decomposed solution in a list format, each element is a step}

This solution records the complete mental journey from initial attempts to the final correct
answer, including trials of incorrect approaches, reflections, and corrections.

The following paragraph explicitly highlights the discovery of a mistake through reflection:
[Identified Fragment]
{reflection identified fragment}

And the reason of the mistake is summarized as following:
[Reason]
{reflection reason}

Your task is to identify the earliest step in the thought process that is responsible for this
mistake.

**Task Requirements**

-The step you find MUST itself actually contain logical or calculation errors. You need to
verify the step you have identified CAREFULLY.

- Before stating the earliest step you believe is responsible for this mistake, you need to
carefully think and provide your detailed analysis.

- Finally, based on your analysis, output the earliest thought step and step number that you
believe is responsible for the mistake, and provide your reason.

**Qutput Format Requirements:**
Return the final results in the following JSON format:

ENENEN

json
{"Earliest Step": "The earliest step content that is
responsible for this mistake", "Step Index": "The step number
of this thought step", "Reason": "The reason you believe

this step is responsible for this mistake"}

ENENEN

Table 22: The prompt used to find the error source based on a reflection segment. This prompt utilizes
information returned from the prompt in Table 21.
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You will be presented with the following content:

- A math problem:

[Math Problem]

{problem}

- A decomposed thought process for solving the problem:
[Decomposed solution]

{decomposed solution in a list format, each element is a step }

This thought process does not directly lead to the correct answer but includes attempts with
incorrect reasoning, reflections, and corrections before arriving at the right solution.

- In Step <reflection start step index> of the thought process, a critical mistake occurs:
[Earliest Step]

{reflection earliest step}

- This mistake is identified through reflection in Step <reflection step index>:
[Identified Fragment]

{reflection identified fragment}

**Task Description®*

- Your task is to identify the types of thinking steps within the range from step <reflection
start step index > to step<reflection step index> that meet the following definitions. You need
to check each definition in sequence. Once a definition is met, immediately label it with the
corresponding step type and stop checking further.

- Reflection Steps: A step that involves reflecting on or verifying the error and its resulting
subsequent mistakes.

- Incorrect Step: A step is considered incorrect if: It contains mistakes itself or it continues
the analysis based on the error from above steps without introducing a new, correct
approach or making a proper correction.

**Specific Requirements**
- For each thinking step, carefully analyze and explain your reason before determining its

type.
- The final output format should strictly adhere to standard JSON, for example:

**json

{"Step k": {"Analysis": "The specific analysis for Step k
before determining its type", "Step Type": ("Incorrect" /
"Reflection" / "Correct")}, ...}

**Notes™*

- Ensure that your analysis of each step is well-reasoned and avoids subjective assumptions.

Table 23: The prompt used to determine the category of each step within the source-to-reflection
range. This prompt utilizes information returned from the prompts in Table 21 and Table 22.
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