
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ACCELERATING AUTO-REGRESSIVE TEXT-TO-IMAGE
GENERATION WITH TRAINING-FREE SPECULATIVE JA-
COBI DECODING

Anonymous authors
Paper under double-blind review

ABSTRACT

The current large auto-regressive models can generate high-quality, high-resolution
images, but these models require hundreds or even thousands of steps of next-
token prediction during inference, resulting in substantial time consumption. In
existing studies, Jacobi decoding, an iterative parallel decoding algorithm, has
been used to accelerate the auto-regressive generation and can be executed without
training. However, the Jacobi decoding relies on a deterministic criterion to
determine the convergence of iterations. Thus, it works for greedy decoding but
is incompatible with sampling-based decoding which is crucial for visual quality
and diversity in the current auto-regressive text-to-image generation. In this paper,
we propose a training-free probabilistic parallel decoding algorithm, Speculative
Jacobi Decoding (SJD), to accelerate auto-regressive text-to-image generation. By
introducing a probabilistic convergence criterion, our SJD accelerates the inference
of auto-regressive text-to-image generation while maintaining the randomness in
sampling-based token decoding and allowing the model to generate diverse images.
Specifically, SJD facilitates the model to predict multiple tokens at each step and
accepts tokens based on the probabilistic criterion, enabling the model to generate
images with fewer steps than the conventional next-token-prediction paradigm. We
also investigate the token initialization strategies that leverage the spatial locality
of visual data to further improve the acceleration ratio under specific scenarios.
We conduct experiments for our proposed SJD on multiple auto-regressive text-to-
image generation models, showing the effectiveness of model acceleration without
sacrificing the visual quality. Code will be released upon acceptance.

1 INTRODUCTION

Auto-regressive models enable generative tasks by performing next-token prediction, which is widely
used in multiple domains such as the language (Bubeck et al., 2023), image (Yu et al., 2022),
and video (Kondratyuk et al., 2023) generation. Notably, auto-regressive text-to-image generation
models (Ding et al., 2021; Ramesh et al., 2021; Yu et al., 2022) have shown promising results
in generating high-quality images. Auto-regressive text-to-image generation models have better
potential in scalability and pave the way for native multi-modal models (Team, 2024). However, the
auto-regressive paradigm creates high latency during inference because it necessitates the decoding
of tokens in a sequential, token-by-token manner. Therefore, the models have to sequentially go
through hundreds or even thousands of forward passes to generate a single image. Unlike diffusion
models of which the inference acceleration methods have been extensively investigated (Song et al.,
2023; Luo et al., 2023; Yin et al., 2024b), there has been limited previous work exploring the
acceleration of auto-regressive text-to-image generation models. Moreover, those auto-regressive
models that are capable of text-to-image generation typically have several billions of parameters,
making the common training-based generative model acceleration techniques such as self-consistency
distillation computationally expensive (Kou et al., 2024). Therefore, our work aims to accelerate the
auto-regressive text-to-image generation models in a training-free manner.

An intuitive approach is to enable the auto-regressive models to decode multiple tokens in parallel
within a forward pass. In the early research on auto-regressive image generation, Jacobi decoding (Or-
tega & Rheinboldt, 2000) has been employed to achieve this objective (Song et al., 2021). Jacobi

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Prompt: A hawk-man with a red head

Steps: 1012 (𝟐. 𝟑 × Faster)Steps: 2357
Prompt: A masterpiece of oil painting about the starry sky

Steps: 959 (𝟐. 𝟓 × Faster)Steps: 2357

Prompt: A Corgi dog in 2D logo style, simple texture, clean

background, facial- and eye-symmetry.

Steps: 844 (𝟐. 𝟖 × Faster)Steps: 2357
Prompt: Macro photography of a transparent water drop in the

shape of a cat.

Steps: 1085 (𝟐. 𝟐 × Faster)Steps: 2357

Prompt: most beautiful anime artwork, a most cute anime girl,

double exposure, iridescent nebula galaxy, black background,

ethereal glow, bloom, hdr, high-quality, 8K

Steps: 934 (𝟐. 𝟓 × Faster)Steps: 2357
Prompt: A cool furry black monkey meditates on the clean wet

ground, in the dusk, the golden sunset is shining on the ground on

one side and the other side, high-quality, 8K, facial-symmetry

Steps: 1075 (𝟐. 𝟐 × Faster)Steps: 2357

Figure 1: We propose Speculative Jacobi Decoding, a training-free multi-token prediction algorithm,
to accelerate auto-regressive text-to-image generation by reducing the number of model forward
passes (denoted as steps) during inference. We perform our algorithm on Lumina-mGPT, and the
reduced steps are marked in red. The original steps are marked in black.

decoding is an iterative algorithm starting from a sequence of randomly initialized tokens, and this
algorithm can be executed directly on pre-trained auto-regressive models in a training-free way. In
each Jacobi iteration, the model performs a single forward pass on the input sequence with a causal
mask, thus decoding tokens in parallel. The decoded tokens would converge after multiple iterations
of parallel decoding. The criterion for this convergence is defined as follows: the difference between
the values of decoded tokens remains within a sufficiently small threshold over two consecutive
iterations. Since the number of iterations required for convergence is typically smaller than the
sequence length and the parallel forward pass runs fast in GPUs, the generation can be accelerated
with Jacobi Decoding.

However, Jacobi decoding faces significant challenges when applied to recent auto-regressive text-
to-image generation models. We observe that the recent auto-regressive text-to-image generation
models Liu et al. (2024b); Chern et al. (2024); Sun et al. (2024a) greatly rely on sampling-based
decoding with high randomness to generate diverse images. We present the generated images using
top-K sampling with various K values, where a larger K indicates higher randomness. As shown
in Fig. 2, the model with high randomness in sampling generates images with diverse and high-
fidelity details and structures, whereas it outputs monotonous or even incomprehensible images with
greedy decoding. Unfortunately, Jacobi decoding with the deterministic criterion of convergence is
incompatible with such highly random sampling (analyzed in Sec. 5.4), i.e., and it cannot accelerate
the inference given such sampling decoding.

In this work, we propose a probabilistic Jacobi decoding algorithm to accelerate the inference of auto-
regressive text-to-image generation models and to support the sampling decoding methods for those
models. We observe that the acceleration of Jacobi decoding relies on the assumption that multiple

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

consecutive tokens can be correctly decoded in each Jacobi iteration (shown by green stepped area
in Fig. 3). Similar ideas have been applied in other probabilistic algorithms for accelerating the
decoding of large language models. For example, in speculative sampling (Leviathan et al., 2023;
Chen et al., 2023), an additional small model is trained for rapidly generating draft sequences, and
then the large language model probabilistically accepts a subset of draft tokens from left to right.
Drawing from the above analysis, in this paper, we advance the deterministic Jacobi decoding into
a probabilistic algorithm, coined as Speculative Jacobi Decoding (SJD). Our method allows the
auto-regressive text-to-image generation models to decode multiple tokens within one forward pass
in a training-free manner. In SJD, the model computes the conditional probability for a sequence
of draft tokens with a single forward pass. Then, we define a probabilistic criterion to determine
which draft tokens to accept, from left to right. The accepted tokens are appended to the fixed
pre-filling sequence. The remaining tokens are concatenated with a set of newly initialized tokens,
serving as the draft tokens for the next decoding iteration. Our SJD accelerates the inference of
auto-regressive text-to-image generation models without requiring additional training or tuning of
separate modules. Moreover, we propose the spatial locality-aware token initialization strategy to
accelerate the generation process further.

We perform quantitative and qualitative experiments to demonstrate the effectiveness of our method.
Results show that our method can accelerate several auto-regressive text-to-image generation models
without sacrificing the quality of generated images. For example, it can accelerate Anole (Chern
et al., 2024) and Lumina-mGPT (Liu et al., 2024b) by about 2× with almost no loss in visual quality.
Moreover, the acceleration ratio can be beyond 3× in certain scenarios containing simple patterns.

To the best of our knowledge, SJD is the first method for accelerating the inference of auto-regressive
text-to-image models that rely on sampling decoding. We summarize our contributions as follows:

• We propose a new probabilistic multi-token decoding algorithm, coined as Speculative
Jacobi Decoding (SJD), to speed up the inference of auto-regressive image generation. Our
approach addresses the problem that previous Jacobi decoding cannot be applied to recent
auto-regressive text-to-image generation models, which rely on sampling-based decoding
rather than greedy decoding.

• Compared with previous Speculative Decoding to accelerate language models, our approach
is training-free and does not require training an extra model to predict draft tokens.

• Experiments demonstrate that our method can accelerate auto-regressive text-to-image
generation by around 2× with almost no sacrifice in visual quality.

2 RELATED WORK

Auto-regressive image generation. Auto-regressive image generation models have two features:
next-token-prediction and discrete image tokenization. Early works including PixelCNNs (Van den
Oord et al., 2016; Salimans et al., 2017) and PixelSNAIL (Chen et al., 2018) use the auto-regressive
strategy to model the image generation with the convolutional neural networks on the discretized
pixel space. These works generate the pixels in the raster-scan ordering or the zigzag ordering.
DALL-E (Ramesh et al., 2021) and CogView (Ding et al., 2021) pave the way for the pipeline of
the auto-regressive image generation: A discrete autoencoder trained to compress RGB images into
image tokens and a large auto-regressive model trained to make predictions based on these image
tokens. Parti (Yu et al., 2022) uses a transformer encoder (Vaswani et al., 2017) to provide the textual
features for the auto-regressive model to perform the next image token prediction, thereby achieving
text-to-image generation. LlamaGen (Sun et al., 2024a) acts as a class-to-image auto-regressive
baseline on ImageNet dataset (Deng et al., 2009). MARS (He et al., 2024) performs multi-modal
generation with a mixture of auto-regressive models, where its image model is initialized with the pre-
trained large language model and is fine-tuned to perform image generation. Chameleon (Team, 2024)
aims to unify all multi-modal tasks with discrete tokens and perform the next token prediction on
these tokens with a large auto-regressive model. Anole (Chern et al., 2024) and Lumina-mGPT (Liu
et al., 2024b) fine-tune Chameleon for better text-to-image generation. In this paper, we conduct
experiments mainly on Lumina-mGPT and Anole to verify the effectiveness of our method.

Acceleration of image generation models. The iterative image generation requires acceleration. For
instance, the diffusion model, originally trained on a denoising trajectory with one thousand steps, has

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

been accelerated to perform inference using just dozens or even a few steps. Given that the diffusion
model has emerged as a leading approach in text-to-image generation (OpenAI, 2023; Rombach et al.,
2022; Esser et al., 2024), most acceleration methods in image generation are built upon it. Many
acceleration methods focus on shortening the denoising trajectory by distillation technique (Salimans
& Ho, 2022; Song et al., 2023; Wang et al., 2024; Kim et al., 2023; Xu et al., 2024; Yin et al.,
2024b;a) while some other studies focus on reducing the computational complexity (Yuan et al.,
2024; Zhao et al., 2024; Ma et al., 2024). In contrast to the diffusion model, acceleration methods for
auto-regressive image generation have not been extensively explored, primarily due to the absence
of powerful base models. Jacobi decoding is applied to PixelCNNs for inference acceleration in
the early research (Song et al., 2021), yet it lacks a careful design for the random token sampling,
significantly impacting its acceleration on current auto-regressive models. In this paper, we enhance
Jacobi decoding to be compatible with this random sampling. Also, the inference process of each
iteration in our method is similar to that of non-auto-regressive models (Chang et al., 2022; Tian et al.,
2024; Li et al., 2024b). Nevertheless, unlike these models, our approach only modifies the inference
schedule of pre-trained auto-regressive models instead of training a separate non-auto-regressive
model, thereby preserving the performance and scalability of the auto-regressive models.

Acceleration of language models. Different from image generation, the auto-regressive paradigm
prevails in language processing. A lot of works (Zhou et al., 2024; Devoto et al., 2024; Liu et al.,
2024a;c; Yang et al., 2024a; DeepSeek-AI, 2024; Zhang et al., 2024; Fu et al., 2024a; Li et al.,
2024a) focus on compressing the models by weight pruning, activation sparsification, quantization,
factorization, but the paradigm of token-by-token prediction remains unchanged. There are also
works fine-tuning the auto-regressive models to predict multiple tokens in parallel with several
decoding heads (Gloeckle et al., 2024). However, these works require more memory to load these
additional heads in GPUs. The speculative sampling (Leviathan et al., 2023; Chen et al., 2023; Li
et al., 2024c; Sun et al., 2024b) uses a small language model to assist the large language model in
sequence generation. This model is trained on the same domain as the large model and is small
enough for faster generation. It first generates a sequence with its own inference paradigm. Then, the
large model verifies and samples only one prefix of this sequence to serve as part of the final output
by executing a single forward pass. The verification phase is well-designed to guarantee that each
sampled token theoretically satisfies the conditional probability parameterized by the large model.
Jacobi decoding (Song et al., 2021; Santilli et al., 2023; Fu et al., 2024b; Kou et al., 2024) allows the
model to iteratively decode multiple tokens in fewer steps than the token counts with the deterministic
greedy sampling but without auxiliary modules. In this work, we adapt the probabilistic verification
of speculative sampling into Jacobi decoding, thereby advancing it into a probabilistic algorithm.
Additionally, unlike existing speculative decoding methods, our method utilizes the intermediate
results of Jacobi iterations as draft sequences without requiring any additional training.

3 PRELIMINARIES

3.1 AUTO-REGRESSIVE TEXT-TO-IMAGE GENERATION

The auto-regressive text-to-image generation models are composed of three components: a discrete
image tokenizer that encodes images into discrete tokens, an auto-regressive transformer-based
generator that generates discrete image tokens with next-token-prediction conditioned on the text
prompts, and an image decoder that decodes the predicted image tokens to pixel-space images. The
most time-consuming component for auto-regressive text-to-image generation is the auto-regressive
transformer, and our work aims at accelerating the inference of the auto-regressive transformer to
predict discrete image tokens based on text prompts.

During each inference step of the auto-regressive transformer, the model predicts the probability
distribution of the next token over the entire vocabulary of the tokenizer (implemented through a
softmax classifier) and then samples from this distribution to generate the token. Specifically, given a
sequence of pre-filled or already decoded tokens (x1, x2, · · · , xi), the auto-regressive model predicts
a categorical distribution pθ(x|x1:i), where we denote the input token sequence (x1, x2, · · · , xi) as
x1:i for simplicity, θ denotes the auto-regressive model parameters, and x is the random variable
representing the next token (category). Then, a token is sampled according to pθ(x|x1:i), treated as
xi+1, and is subsequently appended to (x1, x2, · · · , xi) for the next decoding step. In text-to-image
auto-regressive generation, the above process starts with a sequence of text tokens and a special token

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

K=2000K=100K=10Greedy

Figure 2: The results of the greedy de-
coding (no randomness), top-10, top-
100, and top-2000 sampling (high
randomness) of Lumina-mGPT (Liu
et al., 2024b). Each row presents the
images generated with the same ran-
dom seeds.

Previous Tokens

Jacobi
Iterations

Decoding

④ Outputs 𝑥𝑖
(𝑗+1)

…

…
③ Sample

Probability
𝑝𝜃(𝑥|𝑥1:𝑖−1

𝑗
)

② Parallel
Forward

① Inputs 𝑥𝑖
(𝑗)

Accepted

…
Initial Candidate Tokens

Acceptance

1

2

3

⇔

⇔

Figure 3: The pipeline of the vanilla Jacobi decoding on
an auto-regressive model. The prediction with sampling
is performed in parallel at each Jacobi iteration. We use
different shades of blue to indicate the differences between
the tokens that have not been accepted.

to represent the beginning of image token prediction. To facilitate the generation of diverse images,
top-K sampling is commonly employed as the token sampling strategy for text-to-image generation.

3.2 JACOBI DECODING

Jacobi decoding deems the auto-regressive inference as a process of solving the fixed point of a
nonlinear equation in a triangular system (Song et al., 2021). This decoding algorithm iteratively
performs multi-token decoding and can be executed without fine-tuning or auxiliary modules. We
show the specific process of decoding one sequence of tokens in Fig. 3. First, given the previously
pre-filled or decoded tokens, we randomly initialize a sequence of candidate tokens. Then, in each
iteration, we execute one forward pass of the auto-regressive model for all the candidate tokens
with a causal mask. The predicted probabilities then generate the tokens via greedy sampling, and
these sampled tokens are taken as the inputs of the next iteration. This process can be formulated as:
x
(j+1)
i = argmaxx pθ(x|x(j)

1:i−1), where i denotes the token index and j denotes the iteration index.
The Jacobi decoding process continues iterating until the convergence is reached, as determined by a
deterministic criterion where these tokens remain unchanged between consecutive iterations.

Discussion. The acceleration of Jacobi decoding derives from an assumption that multiple tokens
can be correctly decoded within one forward pass in Jacobi iteration. Fig. 3 illustrates this scenario,
where the accepted tokens (green stepped area) extend beyond the dashed green triangle outline.
Specifically, the model accepts two consecutive tokens after the first Jacobi iteration. Thus, it can
generate at least four tokens through three forward passes. In the worst case, only three tokens can be
generated through three forward passes (Song et al., 2021). Note that the number of forward passes
in the worst case of Jacobi decoding is equal to that in the original auto-regressive case.

4 SPECULATIVE JACOBI DECODING

Analysis. The vanilla Jacobi decoding incorporates a deterministic criterion for determining the
convergence, which works well with greedy sampling (no randomness) in language models (Fu et al.,
2024b; Kou et al., 2024). In contrast, in auto-regressive text-to-image generation, randomness plays a
crucial role in the sampling-based decoding process, i.e., higher randomness corresponds to highly
diverse details and structures in the generated images. As shown in Fig. 2, we use the text prompt “a
cat on a mat” to generate images with different sampling strategies including greedy decoding and
top-K decoding with different values of K. We observe that the generated images would contain
more details and diverse structures as the K increases. The greedy decoding (K = 1 with no equal
probabilities) leads to suboptimal performance with low quality and no diversity in generated images
Therefore, random sampling-based decoding is important to image generation, but the original Jacobi
decoding is incompatible with such randomness in sampling.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Speculative
Jacobi Iteration

For 𝑖 :

 If 𝑟~𝑈 0,1 , 𝑟 < min(1,
𝑝𝜃(𝑥𝑖

(𝑗)
|𝑥1:𝑖−1

(𝑗)
)

𝑝𝜃(𝑥
𝑖
(𝑗)

|𝑥
1:𝑖−1
(𝑗−1)

)
):

 Acceptance:

𝑥𝑖
(𝑗+1)

≔ 𝑥𝑖
𝑗

⇒ Jacobi Convergence

 Else:

 Rejection, Resample 𝑖 with Calibrated Prob:

 𝑥𝑖
(𝑗+1)

~ 𝑝𝜃(𝑥|𝑥1:𝑖−1
(𝑗)

) − 𝑝𝜃(𝑥|𝑥1:𝑖−1
(𝑗−1)

)
+

 Then, Sample ∀ 𝑖′, 𝑖′ > 𝑖 :

 𝑥𝑖′
(𝑗+1)

~ 𝑝𝜃(𝑥|𝑥
1:𝑖′−1

(𝑗)
)

 Break

// Thus, 𝑥𝑖
𝑗+1

~𝑝𝜃(𝑥|𝑥1:𝑖−1
𝑗

) is kept for all 𝑖 s

Vectors of Probability:
𝑝𝜃(𝑥|𝑥1:𝑖−1

(𝑗−1)
)

Draft Tokens: 𝑥𝑖
(𝑗)

Vectors of
Probability :
𝑝𝜃(𝑥|𝑥1:𝑖−1

(𝑗)
)

Accepted
𝑥𝑖

(𝑗+1)

① Inputs (
 Jacobi Window)

④ Outputs for the Next Iter

③ Verification & Sampling

…

…

② Parallel
 Forward

…

New Init
𝑥𝑖

(𝑗+1)

Unaccepted
𝑥𝑖

(𝑗+1)

…

Figure 4: Overview of one iteration of our speculative Jacobi decoding (SJD). First, a sequence
of draft tokens and the corresponding probabilities are taken as the inputs. Second, we perform a
forward pass with the auto-regressive model on the draft tokens, obtaining the probabilities of these
tokens. Third, we perform the verification according to these two types of probabilities, accepting a
subset of tokens and (re-)sampling the remaining tokens. Last, the accepted tokens are appended to
the pre-filling tokens and fixed, while the resampled tokens, along with newly initialized tokens, will
serve as the draft tokens for the next iteration.

To address the aforementioned issue, we advance the deterministic Jacobi iteration into a new training-
free probabilistic parallel decoding algorithm, inspired by speculative sampling (Leviathan et al.,
2023). Specifically, in each iteration, we decode multiple tokens in parallel and utilize a probabilistic
criterion to accept multiple decoded tokens from the outputs of the previous iteration. Moreover, to
reduce the number of iterations required for inference, we propose a new image token initialization
strategy incorporating spatial priors.

4.1 SPECULATIVE JACOBI ITERATION

After pre-filling the tokens of text prompts, we perform speculative Jacobi decoding for the image
tokens. Acknowledging the computational expense of decoding all image tokens simultaneously, we
decode multiple tokens per iteration in a sliding-window manner, termed the Jacobi window. Our
method starts with a sequence of initialized candidate tokens, the length of which corresponds to
the window size. During each decoding iteration, we predict the token probabilities for the draft
token sequence within the current window. Then, a subset of these tokens is accepted based on a
probabilistic criterion, and these accepted tokens are added to the fixed pre-filling tokens for the next
iteration. The remaining unaccepted tokens are resampled for the next iteration. In the next iteration,
the Jacobi windows slides to include the unaccepted tokens from the previous iteration plus some
newly initialized tokens to maintain the Jacobi window size during decoding. The process of our
iteration is illustrated in Fig. 4. Assuming that we have pre-filled or accepted n tokens and the Jacobi
window size is W , we would decode the next W tokens. The iteration can be described as follows:

Step 1: At the j-th iteration, we have the input tokens that are either predicted (but not accepted) in
the previous (j − 1)-th iteration or newly initialized (Sec. 4.2). These tokens serve as the draft tokens
in this iteration, denoted as (x(j)

n , x
(j)
n+1, · · · , x

(j)
n+W−1). We denote the probability corresponding to

the draft token x
(j)
i as pθ(x|x(j−1)

1:i−1). This probability is set to be conditioned on the input tokens of
the previous iteration (Step 3 ensures this setting).

Step 2: We execute a single forward pass of the auto-regressive model to obtain the conditional
probability for the draft tokens in parallel. The probability for x(j)

i is denoted as pθ(x|x(j)
1:i−1).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Step 3: We conduct the speculative verification between the conditional probability given the draft
tokens from the previous iteration, pθ(x|x(j−1)

1:i−1), and the conditional probability from the current

iteration, pθ(x|x(j)
1:i−1). In this verification process, we scan the draft sequence from left to right and

determine the acceptance of each token based on a probabilistic threshold. We measure the ratio
of the probability conditioned on the draft tokens in the current iteration to that conditioned on the
tokens from the previous iteration. Intuitively, this ratio measures how well the token is decoded from
the previous iteration (the draft token) and whether further decoding is necessary. The acceptance
criterion of a token x

(j)
i can be formulated as follows:

x
(j+1)
i ← x

(j)
i if r ∼ U [0, 1], r < min

(
1,

pθ(x
(j)
i |x

(j)
1:i−1)

pθ(x
(j)
i |x

(j−1)
1:i−1)

)
, (1)

where r is a random variable and U [0, 1] represents a uniform distribution between 0 and 1. If a token
meets the above criterion, it is accepted and appended to the pre-filling token sequence for the next
iteration, i.e., x(j′)

i = x
(j)
i ∀j′ > j. After accepting one token, we continue this scan until a token is

rejected. If the token x
(j)
i is rejected, i.e., the inequality in Equ. (1) is not true, we resample a new

token by a calibrated distribution, and the resampled token will serve as the draft token for the next
decoding iteration:

x
(j+1)
i ∼

max(0, pθ(x|x(j)
1:i−1)− pθ(x|x(j−1)

1:i−1))∑
x max(0, pθ(x|x(j)

1:i−1)− pθ(x|x(j−1)
1:i−1))

. (2)

Then, unlike the vanilla speculative sampling, we do not end this scan, but sample the tokens at the
remaining indexes with the conditional probability calculated in this iteration. This sampling process
is consistent with the original Jacobi iteration, and the specific process is as follows:

x
(j+1)
i′ ∼ pθ(x|x(j)

1:i′−1), ∀i
′ > i. (3)

It can be proven that all the accepted and sampled tokens in the Jacobi iteration satisfy x
(j+1)
i ∼

pθ(x|x(j)
1:i−1) (the proof is in the appendix). This conditional probability pθ(x|x(j)

1:i−1) is exactly the
probability predicted by the parallel forward pass on the input draft tokens, and is passed to the next
iteration together with the sampled tokens.

Step 4: we append the unaccepted tokens with newly initialized candidate tokens, forming a new
Jacobi window with W tokens, as the draft tokens for the next iteration. We use this fixed window
size instead of the whole sequence to save the memory usage and accelerate the inference speed.

4.2 TOKEN INITIALIZATION WITH SPATIAL PRIOR

Vanilla Jacobi decoding methods sample the initial candidate tokens from a uniform distribution.
However, 2D images exhibit unique characteristics of spatial locality, i.e., spatially adjacent tokens
tend to share similar semantics and textures. Leveraging these characteristics for token initialization
may enable faster convergence. Considering that auto-regressive models generate image tokens in
a raster scan order (from the top-left to the bottom-right in 2D space), we propose the following
strategies for initializing new tokens: (a) repeating the previously generated left adjacent token;
(b) repeating the previously generated above adjacent token; (c) resampling from the predicted
probability from the left adjacent token; (d) resampling from the predicted probability from the above
adjacent token. Experimental results demonstrate that these strategies provide greater acceleration
than random initialization under certain scenarios.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

We experiment with two recent and representative auto-regressive text-to-image generation models,
Lumina-mGPT (Liu et al., 2024b) and Anole (Chern et al., 2024). For Lumina-mGPT (Liu et al.,
2024b), by default, we use its 7B version to generate 768×768 images for evaluation, and we measure

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: The evaluation on the validation set of MSCOCO2017 with A100. JD: Jacobi decoding.
ISP: initialization with spatial prior. SJD: Speculative Jacobi decoding.

Configuration Average Acceleration (↑) FID (↓) CLIP-Score (↑)Latency (↓) Latency Step

A Lumina-mGPT (Liu et al., 2024b) 87.23s 1.00× 1.00× 30.76 31.29
B w. JD (Song et al., 2021) 85.20s 1.02× 1.04× 30.66 31.38
C w. SJD 42.73s 2.04× 2.22× 30.85 31.35
D w. SJD (ISP) 42.49s 2.05× 2.23× 31.13 31.33

E Anole (Chern et al., 2024) 48.96s 1.00× 1.00× 28.87 30.59
F w. SJD (ISP) 26.18s 1.87× 1.97× 29.14 30.61

Table 2: The evaluation on the validation set of Parti-prompt with RTX4090. JD: Jacobi decoding.
ISP: initialization with spatial prior. SJD: Speculative Jacobi decoding.

Configuration Average Acceleration (↑) CLIP-Score (↑)Latency (↓) Latency Step

A Lumina-mGPT (Liu et al., 2024b) 100.69s 1.00× 1.00× 32.13
B w. JD (Song et al., 2021) 100.00s 1.01× 1.04× 32.17
C w. SJD 47.52s 2.12× 2.26× 32.13
D w. SJD (ISP) 47.35s 2.13× 2.28× 32.06

E Anole (Chern et al., 2024) 48.24s 1.00× 1.00× 30.46
F w. SJD (ISP) 25.12s 1.92× 2.11× 30.48

the sampling randomness by the value K of its top-K logit sampler. Following the basic setting of
Lumina-mGPT, K is set to 2000 and the classifier-free guidance weight is set to 3.0. Anole (Chern
et al., 2024) is another 7B auto-regressive generation model finetuned from Chameleon (Team, 2024)
that can generate 512× 512 images.

Metrics. For visual quality, we use FID (Heusel et al., 2017) and CLIP-Score (Radford et al., 2021)
as the metrics for evaluation. We use the step compression ratio (Fu et al., 2024b): S = # generated tokens

decoding steps
to show the theoretical acceleration ratio. For each benchmark, we report the average of the step
compression ratio on all generated images. We also attach this ratio to each image sample in the
qualitative comparison of our method with other approaches. Moreover, we also report the latency
acceleration of the model forward passes on a single GPU for testing the actual speedup.

Benchmark. The parti-prompts (Yu et al., 2022) and the validation set of MS-COCO 2017 (Lin et al.,
2014) are taken as the benchmarks of image generation. On parti-prompts, we use the CLIP-Score
and the acceleration of latency and steps excluding FID for evaluation because this benchmark only
provides prompts without ground-truth images.

5.2 QUANTITATIVE RESULTS

As shown in Tab. 1 and Tab. 2, our speculative Jacobi decoding accelerates the auto-regressive
text-to-image generation nearly without sacrificing visual qualities. When comparing our SJD
(config C and D) with the vanilla Jacobi decoding (config B) on Lumina-mGPT, we observe that our
probabilistic method greatly accelerates the generation by more than 2× while the Jacobi decoding
cannot. Moreover, our method can provide a step compression of about 2× for Anole. We observe
that the token initialization with spatial priors has a marginal influence on the speed of general image
generation. We further analyze the specific scenarios of this modification in our ablation studies.

5.3 QUALITATIVE RESULTS

As shown in Fig. 5, we present the images generated with different configurations. For comparison,
we set the same random seed for each image sample. According to our observation, the visual
qualities of the images generated by different methods are similar, illustrating that our method can
keep the visual quality for multiple styles of images. More importantly, our speculative Jacobi
decoding with or without our spatial initialization can greatly reduce the inference steps by more than
2× for each case, and thus accelerate the inference process.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Original Jacobi
Decoding

Speculative Jacobi
Decoding

Speculative Jacobi
Decoding + Spatial Init

Steps: 2357 Steps: 2257 (1.0 × Faster) Steps: 1012 (2.3 × Faster) Steps: 1001 (𝟐. 𝟒 × Faster)

Prompt: a cool man with a beautiful face wearing a yellow suit stands in the Mountain, the most Professional high-quality 8K photograph

Steps: 2357 Steps: 2267 (1.0 × Faster) Steps: 1077 (2.2 × Faster) Steps: 1049 (𝟐. 𝟐 × Faster)

Prompt: Most beautiful girl (with deep red iris, short white hair, and a sly smile) wearing purple clothes and a hood. eye-symmetry, facial-
symmetry, 8K, high quality, realistic

Steps: 2357 Steps: 2253 (1.0 × Faster) Steps: 1035 (2.3 × Faster) Steps: 1032 (𝟐. 𝟑 × Faster)

Prompt: one typical zebra's upper body in the grassland, not occluded by grass, the zebra has only two ears, clear striped pattern, the most
Professional high-quality 8K photograph, clear texture, sharp-focus, Exquisite details

Steps: 2357 Steps: 2293 (1.0 × Faster) Steps: 1059 (2.2 × Faster) Steps: 1029 (𝟐. 𝟑 × Faster)

Prompt: a giant golden flying saucer firing lasers from the bottom, scorching the ground, the most Fantasy high-quality photos

Figure 5: The images generated by Lumina-mGPT with different acceleration methods.

5.4 ABLATION STUDIES

We perform ablation studies on Lumina-mGPT 7B. Except for the experiments involving multiple
resolutions, we use this model to generate 768× 768 images for evaluation.

The correlation between the sampling strategy in decoding and the acceleration ratio. We
compare the deterministic Jacobi decoding to our method under various randomness of the logit
sampling. In Fig. 6, We show the correlation between their acceleration ratio and the randomness
of logit sampling. According to this figure, our method is stable across multiple randomness and
can achieve more than 2× step compression ratio. On the contrary, the Jacobi decoding can only
accelerate the greedy sampling (top-1 sampling), which is useless for image generation.

The relationship between the image resolution and the acceleration ratio. We employ the 7B
Lumina-mGPT to generate images with the resolutions 512 × 512 (about 1,000 tokens), 768 ×
768 (about 2,300 tokens), and 1024 × 1024 (about 4,100 tokens). We calculate the average step
compression ratio for each resolution given the same set of text prompts. Then, we present these

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

1

1.5

2

2.5

3

1 10 100 2000

St
ep

 C
om

pr
es

si
on

Top-K

Jacobi Decoding
Ours

Figure 6: Our method beats the vanilla Jacobi
decoding under various sampling randomness.

1

1.5

2

2.5

3

512 768 1024

St
ep

 C
om

pr
es

si
on

Resolution

Figure 7: Higher image resolution can result in a
slightly larger acceleration in our method.

0.5

1

1.5

2

2.5

3

1 4 16 32

St
ep

 C
om

pr
es

si
on

Window Size

Figure 8: The acceleration ratio is
the largest when the Jacobi window
size is at least 16.

2.5

3

3.5

4

Horizontal
Sample

Vertical
Sample

Horizontal
Repeat

Vertical
Repeat

Random

St
ep

 C
om

pr
es

si
on

Examples

Figure 9: The token initialization strategy impacts the accelera-
tion ratio of image generation that contains simple and repeat
patterns (examples of generated images on the right side).

ratios in Fig. 7. The results demonstrate that our method is stable across multiple resolutions, i.e., the
acceleration on each resolution is larger than 2×. Moreover, with higher resolutions, the acceleration
can be slightly better. For example, SJD achieves 2.43× acceleration for 1024× 1024 images.

Studies on the window size of each iteration. As mentioned in Sec. 4.1, we append newly initialized
tokens onto the unaccepted tokens in each iteration, fixing the Jacobi window size. Accordingly,
we perform the ablation studies on the size of the window. We report the acceleration ratios under
various sequence lengths in Fig. 8. The results show that our acceleration ratio reaches almost the
maximum when the number of input tokens is greater than or equal to 16 tokens.

Studies on the initialization of candidate tokens. The acceleration ratio of our speculative Jacobi
decoding is also related to the application scenarios. For example, when generating images composed
of many simple and repeating patterns, a token initialization correlated with the already sampled
tokens can provide a more precise guess than the random initialization. As shown in Fig. 9, we
adopt an extreme case, the textual prompt “2D logo of a pure white box in a pure black background”,
for evaluation. We run the accelerated forward passes ten times with different random seeds for
each initialization. The results show that the average step compression with the spatial-prior-aware
initialization is much greater than that using the random initialization. Also, Fig. 1 shows that
generating 2D logo requires fewer steps than generating images containing exquisite details.

6 CONCLUSION

This paper proposes a new training-free probabilistic parallel decoding algorithm, called Speculative
Jacobi Decoding (SJD), to accelerate auto-regressive text-to-image generation. The sampling-based
decoding is critical for image generation models, which prevents naive Jacobi Decoding from being
applied to accelerate AR-based text-to-image generation models. By introducing a probabilistic
convergence criterion, our SJD allows the model to iteratively predict-then-sample multiple tokens in
fewer steps than the token counts for AR-based T2I models with sampling-based decoding rather
than greedy decoding. We also propose the spatial-aware token initialization to reduce the number
of iterations under specific scenarios. We conduct experiments to verify the effectiveness of SJD
on multiple auto-regressive text-to-image generation models, and it accelerates the models without
sacrificing visual quality.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Emu3 Team BAAI. Emu3: Next-token prediction is all you need, 2024. URL https://emu.
baai.ac.cn/.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott M. Lundberg, Harsha Nori, Hamid Palangi, Marco Túlio
Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early experiments with GPT-4.
CoRR, abs/2303.12712, 2023.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
image transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11315–11325, 2022.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Xi Chen, Nikhil Mishra, Mostafa Rohaninejad, and Pieter Abbeel. Pixelsnail: An improved autore-
gressive generative model. In International conference on machine learning, pp. 864–872. PMLR,
2018.

Ethan Chern, Jiadi Su, Yan Ma, and Pengfei Liu. Anole: An open, autoregressive, native large
multimodal models for interleaved image-text generation. arXiv preprint arXiv:2407.06135, 2024.

DeepSeek-AI. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model,
2024.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Alessio Devoto, Yu Zhao, Simone Scardapane, and Pasquale Minervini. A simple and effective l 2
norm-based strategy for kv cache compression. arXiv preprint arXiv:2406.11430, 2024.

Ming Ding, Zhuoyi Yang, Wenyi Hong, Wendi Zheng, Chang Zhou, Da Yin, Junyang Lin, Xu Zou,
Zhou Shao, Hongxia Yang, et al. Cogview: Mastering text-to-image generation via transformers.
Advances in neural information processing systems, 34:19822–19835, 2021.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. arXiv preprint arXiv:2403.03206, 2024.

Tianyu Fu, Haofeng Huang, Xuefei Ning, Genghan Zhang, Boju Chen, Tianqi Wu, Hongyi Wang,
Zixiao Huang, Shiyao Li, Shengen Yan, et al. Moa: Mixture of sparse attention for automatic large
language model compression. arXiv preprint arXiv:2406.14909, 2024a.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the sequential dependency of llm inference
using lookahead decoding. arXiv preprint arXiv:2402.02057, 2024b.

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Rozière, David Lopez-Paz, and Gabriel Synnaeve.
Better & faster large language models via multi-token prediction. arXiv preprint arXiv:2404.19737,
2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Wanggui He, Siming Fu, Mushui Liu, Xierui Wang, Wenyi Xiao, Fangxun Shu, Yi Wang, Lei
Zhang, Zhelun Yu, Haoyuan Li, et al. Mars: Mixture of auto-regressive models for fine-grained
text-to-image synthesis. arXiv preprint arXiv:2407.07614, 2024.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

11

https://emu.baai.ac.cn/
https://emu.baai.ac.cn/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Anthony Hu, Lloyd Russell, Hudson Yeo, Zak Murez, George Fedoseev, Alex Kendall, Jamie Shotton,
and Gianluca Corrado. Gaia-1: A generative world model for autonomous driving. arXiv preprint
arXiv:2309.17080, 2023.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Ue-
saka, Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning
probability flow ode trajectory of diffusion. arXiv preprint arXiv:2310.02279, 2023.

Dan Kondratyuk, Lijun Yu, Xiuye Gu, José Lezama, Jonathan Huang, Rachel Hornung, Hartwig
Adam, Hassan Akbari, Yair Alon, Vighnesh Birodkar, et al. Videopoet: A large language model
for zero-shot video generation. arXiv preprint arXiv:2312.14125, 2023.

Siqi Kou, Lanxiang Hu, Zhezhi He, Zhijie Deng, and Hao Zhang. Cllms: Consistency large language
models. arXiv preprint arXiv:2403.00835, 2024.

LAION. Laion-coco 600m, 2022. URL https://laion.ai/blog/laion-coco.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Shiyao Li, Xuefei Ning, Luning Wang, Tengxuan Liu, Xiangsheng Shi, Shengen Yan, Guohao
Dai, Huazhong Yang, and Yu Wang. Evaluating quantized large language models. International
Conference on Machine Learning, 2024a.

Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image
generation without vector quantization. arXiv preprint arXiv:2406.11838, 2024b.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
rethinking feature uncertainty. arXiv preprint arXiv:2401.15077, 2024c.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pp. 740–755. Springer, 2014.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholamreza Haffari, and Bohan Zhuang. Minicache: Kv
cache compression in depth dimension for large language models. arXiv preprint arXiv:2405.14366,
2024a.

Dongyang Liu, Shitian Zhao, Le Zhuo, Weifeng Lin, Yu Qiao, Hongsheng Li, and Peng Gao. Lumina-
mgpt: Illuminate flexible photorealistic text-to-image generation with multimodal generative
pretraining. arXiv preprint arXiv:2408.02657, 2024b.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time. Advances in Neural Information Processing
Systems, 36, 2024c.

Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models:
Synthesizing high-resolution images with few-step inference. arXiv preprint arXiv:2310.04378,
2023.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache: Accelerating diffusion models for free.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
15762–15772, 2024.

OpenAI. Dalle-2, 2023. URL https://openai.com/dall-e-2.

James M Ortega and Werner C Rheinboldt. Iterative solution of nonlinear equations in several
variables. SIAM, 2000.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. In ICML, volume 139 of
Proceedings of Machine Learning Research, pp. 8748–8763. PMLR, 2021.

12

https://laion.ai/blog/laion-coco
https://openai.com/dall-e-2

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International conference on machine
learning, pp. 8821–8831. Pmlr, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, pp. 10674–10685. IEEE,
2022.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022.

Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P Kingma. Pixelcnn++: Improving the
pixelcnn with discretized logistic mixture likelihood and other modifications. arXiv preprint
arXiv:1701.05517, 2017.

Andrea Santilli, Silvio Severino, Emilian Postolache, Valentino Maiorca, Michele Mancusi, Riccardo
Marin, and Emanuele Rodolà. Accelerating transformer inference for translation via parallel
decoding. arXiv preprint arXiv:2305.10427, 2023.

Yang Song, Chenlin Meng, Renjie Liao, and Stefano Ermon. Accelerating feedforward computation
via parallel nonlinear equation solving. In International Conference on Machine Learning, pp.
9791–9800. PMLR, 2021.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023.

Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
Autoregressive model beats diffusion: Llama for scalable image generation. arXiv preprint
arXiv:2406.06525, 2024a.

Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami, Himanshu Jain, and Felix
Yu. Spectr: Fast speculative decoding via optimal transport. Advances in Neural Information
Processing Systems, 36, 2024b.

Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. arXiv preprint
arXiv:2405.09818, 2024.

Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
Scalable image generation via next-scale prediction. arXiv preprint arXiv:2404.02905, 2024.

Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Conditional
image generation with pixelcnn decoders. Advances in neural information processing systems, 29,
2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Fu-Yun Wang, Zhaoyang Huang, Alexander William Bergman, Dazhong Shen, Peng Gao, Michael
Lingelbach, Keqiang Sun, Weikang Bian, Guanglu Song, Yu Liu, et al. Phased consistency model.
arXiv preprint arXiv:2405.18407, 2024.

Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
Human preference score v2: A solid benchmark for evaluating human preferences of text-to-image
synthesis. arXiv preprint arXiv:2306.09341, 2023.

Chen Xu, Tianhui Song, Weixin Feng, Xubin Li, Tiezheng Ge, Bo Zheng, and Limin Wang. Accelerat-
ing image generation with sub-path linear approximation model. arXiv preprint arXiv:2404.13903,
2024.

Dongjie Yang, XiaoDong Han, Yan Gao, Yao Hu, Shilin Zhang, and Hai Zhao. Pyramidinfer: Pyramid
kv cache compression for high-throughput llm inference. arXiv preprint arXiv:2405.12532, 2024a.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transformers
with the delta rule over sequence length. arXiv preprint arXiv:2406.06484, 2024b.

Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, and
William T Freeman. Improved distribution matching distillation for fast image synthesis. arXiv
preprint arXiv:2405.14867, 2024a.

Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman,
and Taesung Park. One-step diffusion with distribution matching distillation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6613–6623, 2024b.

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, et al. Scaling autoregressive models for content-
rich text-to-image generation. arXiv preprint arXiv:2206.10789, 2022.

Zhihang Yuan, Pu Lu, Hanling Zhang, Xuefei Ning, Linfeng Zhang, Tianchen Zhao, Shengen Yan,
Guohao Dai, and Yu Wang. Ditfastattn: Attention compression for diffusion transformer models.
Advances in Neural Information Processing Systems, 2024.

Yichi Zhang, Bofei Gao, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao Chang, Junjie
Hu, Wen Xiao, et al. Pyramidkv: Dynamic kv cache compression based on pyramidal information
funneling. arXiv preprint arXiv:2406.02069, 2024.

Tianchen Zhao, Xuefei Ning, Tongcheng Fang, Enshu Liu, Guyue Huang, Zinan Lin, Shengen Yan,
Guohao Dai, and Yu Wang. Mixdq: Memory-efficient few-step text-to-image diffusion models
with metric-decoupled mixed precision quantization. ECCV, 2024.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning Wang,
Zhihang Yuan, Xiuhong Li, et al. A survey on efficient inference for large language models. arXiv
preprint arXiv:2404.14294, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A PROOFS

Theorem 1 (The correctness of speculative Jacobi decoding) The token sampled in each speculative
Jacobi iteration satisfies pθ(x|x(j)

1:i−1), where x denotes a token, j denotes the index of iteration, i
denotes the token index, and θ denotes the auto-regressive model parameters.

Proof. The main process of speculative Jacobi iteration is decomposed into two cases: (a) obtaining the
token sampled in the previous iteration and then accepting it according to an acceptance probability;
(b) rejecting the sampled token and resampling a new token according to a calibrated probability. Thus,
to prove the correctness of speculative Jacobi decoding, we verify that the conditional probability
of a token sampled following the above two cases, alongside the manually designed acceptance and
resampling probability, remains pθ(x|x(j)

1:i−1).

For simplicity, by default, we omit the token index i and denote the token category of x(j)
i as x.

We denote the condition of token x
(j)
i at the j-th Jacobi iteration (i.e., the tokens x(j)

1:i−1 and model
weights θ) to Jj . Thus, the condition of the (j − 1)-th Jacobi iteration is denoted as Jj−1. Thus, we
can denote the probability pθ(x|x(j)

1:i−1) as p(x|Jj), and denote pθ(x|x(j−1)
1:i−1) as p(x|Jj−1). We use

a random boolean variable r to represent the acceptance. With these notations, the proof is as follows:

First, the acceptance probability on the token category x is manually set as follows:

p(r is true|x,Jj ,Jj−1) = min{1, p(x|Jj)
p(x|Jj−1)

}, (4)

and the calibrated resampling probability subsequent to the rejection is set as follows:

p(x|r is false,Jj ,Jj−1) =
max{0, p(x|Jj)− p(x|Jj−1)}∑
x′ max{0, p(x′|Jj)− p(x′|Jj−1)}

. (5)

Next, we make an assumption that Jj and x are conditionally independent given Jj−1:

p(Jj |x,Jj−1) = p(Jj |Jj−1) (6)

This assumption is reasonable due to the properties of the Jacobi iteration and the auto-regressive
paradigm, i.e., with the observation of the sequence x

(j−1)
1:i−1 , one of the tokens in x

(j)
1:i−1 (denoted

as x
(j)
k) can be determined by x

(j)
k = f(x

(j−1)
1:k−1, θ) (k < i) where the function f indicates the

prediction-then-sampling of auto-regressive models, so the variable x
(j)
i is redundant as one of the

conditions in the probability p(Jj |x,Jj−1). Thus, Equ. (6) is reasonable.

Then, with Bayes rule, Equ. (6) has the following equivalence:

p(Jj |x,Jj−1) = p(Jj |Jj−1) ⇔ p(x|Jj ,Jj−1) = p(x|Jj−1) (7)

Hence, according to Equ. (4) and Equ. (7), the probability that a token category x is sampled in the
previous iteration and subsequently accepted can be computed as:

p(r is true, x|Jj ,Jj−1) = p(x|Jj ,Jj−1) · p(r is true|x,Jj ,Jj−1)

= p(x|Jj−1) ·min{1, p(x|Jj)
p(x|Jj−1)

}

= min{p(x|Jj), p(x|Jj−1)}

(8)

With Equ. (8), we can calculate the probability of rejection with the law of total probability on the
token categories:

p(r is false|Jj ,Jj−1) = 1− p(r is true|Jj ,Jj−1)

= 1−
∑
x′

p(r is true, x′|Jj ,Jj−1)

=
∑
x′

p(x′|Jj)−min{p(x′|Jj), p(x′|Jj−1)}

=
∑
x′

max{0, p(x′|Jj)− p(x′|Jj−1)}.

(9)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 10: The images generated by Lumina-mGPT (Liu et al., 2024b) with our acceleration method.

Then, with Equ. (5) and Equ. (9), we get the following equation:

p(x|r is false,Jj ,Jj−1) · p(r is false|Jj ,Jj−1)

=
max{0, p(x|Jj)− p(x|Jj−1)}∑
x′ max{0, p(x′|Jj)− p(x′|Jj−1)}

·
∑
x′

max{0, p(x′|Jj)− p(x′|Jj−1)}

= max{0, p(x|Jj)− p(x|Jj−1)}.

(10)

Since

∀a ∈ R, b ∈ R, a = min{a, b}+max{0, a− b}, (11)

we can decompose p(x|Jj) as follows:

p(x|Jj) = min{p(x|Jj), p(x|Jj−1)}+max{0, p(x|Jj)− p(x|Jj−1)}. (12)

With Equ. (8), Equ. (10) and Equ. (12), we can compute:

p(x|Jj) = min{p(x|Jj), p(x|Jj−1)}+max{0, p(x|Jj)− p(x|Jj−1)}
= p(x|Jj−1) · p(r is true|x,Jj ,Jj−1)

+ p(r is false|Jj ,Jj−1) · p(x|r is false,Jj ,Jj−1).

(13)

According to Equ. (13), the conditional distribution p(x|Jj) can exactly represent (a) obtaining the
token sampled in the previous iteration and then accepting it according to an acceptance probability;
(b) rejecting the sampled token and resampling a new token according to a calibrated probability. In
conclusion, the token sampled in each speculative Jacobi iteration satisfies pθ(x|x(j)

1:i−1).

B MORE QUALITATIVE RESULTS

In Fig. 10, we showcase more generated images with Lumina-mGPT accelerated by our method.
These results illustrate that our method functions well on the image contents including humans,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Steps: 8193 → 3581 (𝟐. 𝟑 × Faster)Steps: 8193 → 3515 (𝟐. 𝟑 × Faster) Steps: 8193 → 3472 (𝟐. 𝟒 × Faster)

Figure 11: The images generated by Emu3 (BAAI, 2024) with our acceleration method.

animals, and landscapes. Recently, a new powerful auto-regressive model, Emu3 (BAAI, 2024), has
been released. We also explore our method on Emu3 for text-to-image generation, and we find it
still leads to great step compression, shown in Fig. 11. We leave the quantitative results of Emu3 for
future work.

We have included additional qualitative results for Lumina-mGPT and Anole in the supplementary
material of the revised paper, specifically in Fig. 15 and Fig. 16, and we report both the steps
and latency. According to the reported latency and step compression in these figures, our SJD
outperforms other decoding methods while maintaining visual quality. Furthermore, spatial token
initialization can further enhance the acceleration of our SJD. Additionally, we observe that Anole
exhibits significantly higher image diversity compared to Lumina-mGPT. Despite the fixed random
seed, it remains challenging for Anole to generate similar images due to the differences among the
decoding methods.

C INFERENCE LATENCY

100.70

47.36

156.76

76.53

0.00

50.00

100.00

150.00

Baseline Ours

La
te

nc
y

(s
)

768

1024

Figure 12: The latency of Lumina-mGPT
on generating 768× 768 and 1024× 1024
images without or with our method.

In addition to reporting the step compression ratio, we
also report the practical latency of SJD on servers. We
set the batch size as 1 for testing, and report the latency
of the accelerated Lumina-mGPT 7B excluding the pre-
and post-processing operations. For 768× 768 image
generation (the number of generated tokens is at least
2357), we perform the experiments on one RTX 4090
GPU. For 1024× 1024 image generation (the number
of generated tokens is at least 4165), we perform the
experiments on one A100 GPU. In these settings, the
latency of Lumina-mGPT with and without our method
is presented in Fig. 12. Our method significantly accel-
erates the auto-regressive image generation.

D MORE QUANTITATIVE RESULTS

Results on more models. In addition to Anole (Chern et al., 2024) and Lumina-mGPT (Liu
et al., 2024b), we evaluate our method with the text-to-image LlamaGen (Sun et al., 2024a). This
model adopts a two-stage training strategy: (a) stage1: LlamaGen is first trained on a subset of
LAION-COCO (LAION, 2022) (50M 256× 256 images); (b) stage2: it is then fine-tuned on 10M
high aesthetic quality internal data with a resolution of 512× 512. In Tab. 3, we evaluate our method
with the two versions of LlamaGen. The results show that our method can still accelerate this model
without sacrificing the visual quality. However, in comparison to the experiments conducted on
Lumina-mGPT and Anole, the acceleration ratios on LlamaGen are lower. We hypothesize that this
discrepancy is attributed to the model size (LlamaGen has 3.1B model parameters while Lumina-
mGPT has 7B parameters), as some existing works for multi-token prediction demonstrate that the

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 3: The evaluation of LlamaGen (Sun et al., 2024a) with or without our method on
MSCOCO2017 (Lin et al., 2014) and Parti-prompt (Yu et al., 2022).

Dataset Configuration Acceleration (↑) FID (↓) CLIP-Score (↑)Latency Step

COCO

LlamaGen-stage1 1.00× 1.00× 28.54 30.87
LlamaGen-stage1 + Ours 1.56× 1.63× 29.00 30.82
LlamaGen-stage2 1.00× 1.00× 56.21 28.26
LlamaGen-stage2 + Ours 1.54× 1.63× 57.02 28.33

Parti

LlamaGen-stage1 1.00× 1.00× - 30.22
LlamaGen-stage1 + Ours 1.57× 1.73× - 30.29
LlamaGen-stage2 1.00× 1.00× - 28.14
LlamaGen-stage2 + Ours 1.62× 1.69× - 28.16

Figure 13: The visualization of the accelerated tokens on 2D space.

model size has a great influence on the effectiveness of acceleration (Gloeckle et al., 2024). We leave
this investigation to future work.

We further compare SJD to other decoding methods on Anole (Chern et al., 2024). As shown in Tab. 4
and Tab. 5, consistent with the results on Lumina-mGPT, SJD with spatial token initialization can
create larger acceleration ratios than other decoding methods on Anole, and the cost of visual quality
is small.

More results about visual quality. We take the CLIP-Score and the human preference
score (HPSv2) (Wu et al., 2023) as the metrics for evaluating the visual quality for our ablation studies
(the step compression ratios are reported in Sec. 5.4). We present the results in Tab. 7, Tab. 8, Tab. 9,
and Tab. 10. From Tab. 7, given any K values in the top-K sampling strategies, we can observe that
the human preferences are also not much different among the original auto-regressive decoding, the
original Jacobi decoding, and our SJD.

Perplexity. We also compare the perplexities between SJD and other decoding methods on Lumina-
mGPT, as detailed in Tab. 6. Since the perplexities are influenced by the sampling strategies (Hu
et al., 2023), we report the perplexities under various K values. Given an identical K value, the
perplexities between our method and other decoding methods are close. Furthermore, we note that
K = 2000 results in a perplexity higher than that of large language models (Gu & Dao, 2023; Yang
et al., 2024b) on language processing tasks. Despite this high value, the text-to-image auto-regressive
model can still generate high-quality images. This indicates that image generation can tolerate a wide
range of image tokens.

Statistics of model outputs. We compute the statistics of the logarithm of the token probability
for both auto-regressive decoding and our method. The average and standard deviation of all image
tokens are presented in Tab. 11. The results demonstrate that the image tokens accepted by our method
exhibit similar statistics to those accepted by the original auto-regressive decoding. Consequently,
our method generally does not mistakenly accept tokens with lower probabilities.

E VISUALIZATION OF ACCELERATION IN 2D SPACE

We visualize the impact of multi-token prediction in a 2D space. As illustrated in Fig. 13, the
color of each long strip area represents the length of accepted tokens from that area, with darker
colors indicating longer sequences of accepted tokens, i.e., higher acceleration. We observe that

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

high acceleration tends to occur in the background, particularly on the left and right sides of images.
Additionally, while some high acceleration is observed on foreground objects, it is relatively sparse
in 2D space.

F LIMITATION AND FUTURE WORK

Since our speculative Jacobi decoding is training-free, the accelerated model itself is still not spe-
cialized for multi-token prediction. Therefore, the acceleration ratio has the potential to be further
improved. In the future, we believe that fine-tuning the auto-regressive models for fast image genera-
tion is a promising direction. Also, acceleration is important for long-sequence generation, like video
generation. Since videos contain more redundancy than images, the initialization of candidate tokens
should be carefully designed if applying our speculative Jacobi decoding to video generation.

G BROADER IMPACTS

Image generation offers extensive utility in helping users, designers, and artists produce fantastic
content. Nonetheless, these models could be exploited to create deceptive content. Thus, it is crucial
for the users including researchers and developers to acknowledge the potential negative social impact
of image generation models.

H ANALYSIS ON THE EFFECTIVENESS OF OUR METHOD

This section analyzes the acceleration mechanism of our speculative Jacobi decoding in image
generation. We empirically find that this acceleration stems from the resampling of unaccepted tokens.
Specifically, some tokens are continuously resampled (i.e., their positions within the entire sequence
are reused for multiple forward passes) according to Equ. (3) over iterations until they are accepted.
For clarity and simplicity, we refer to this process of a token being continuously resampled by Equ. (3)
(except the possible rejection resampling) as refinement. Consequently, Equ. (3) is the main operation
of every refinement step. In the following paragraphs, we explore the influences of this refinement.

The acceleration originates from the refinement of unaccepted tokens. In our verification
phase, there are three treatments for the tokens: acceptance, rejection, and refinement, corresponding
to Equ. (1), Equ. (2), and Equ. (3), respectively. We empirically find that only the first two treatments
are insufficient to support acceleration. We conduct the following experiment to demonstrate that our
method makes it hard to achieve acceleration without refinement: when we deactivate the refinement
(i.e., using the newly initialized tokens to replace the unaccepted tokens as the draft tokens in the
next iterations), we observe that the model requires over two thousand forward passes to generate
images rather than one thousand forward passes. Although our token initializations with spatial
prior (e.g., horizontal repeat) are slightly better than the random token initialization in replacing the
unaccepted tokens, its performance is still much worse than directly refining the unaccepted tokens.
The examples of the generated images under such setting are shown in Fig. 14. This phenomenon
illustrates that the acceleration of our method originates from refining unaccepted tokens.

I QUALITATIVE ANALYSIS OF IMAGE RANDOMNESS ON OUR METHOD

Like Fig. 2, we also examine the image randomness with both the auto-regressive decoding and
our speculative Jacobi decoding. As shown in Fig. 17, first, we find that SJD does introduce some
randomness into image generation (the random variable r in Equ. (1)), so the images generated with
auto-regressive decoding cannot exactly align those generated with SJD, even when the random seed
is fixed. Therefore, in Fig. 17, given a column, two images with the same K value cannot be exactly
identical.

However, the diversity of the set of images is not observed to be influenced. In Fig. 17, we present
the images generated based on three textual prompts. Given the same prompt and K value from
top-K sampling, the model with different decoding methods generates images with many similarities.
For example, when K = 2000, for the first prompt “an apple of a strange color”, the images in the
identical columns show the apples with similar color patterns and styles. Also, for the third prompt

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Latency: 107.35s
Steps: 2356

Latency: 107.49s
Steps: 2356

Latency: 107.96s
Steps: 2357

Latency: 107.64s
Steps: 2355

Latency: 107.80s
Steps: 2357

Examples of Images Generated (Without Refinement; With random initialization)

Latency: 99.25s
Steps: 2273

Latency: 93.88s
Steps: 2254

Latency: 95.08s
Steps: 2285

Latency: 95.60s
Steps: 2300

Latency: 95.42s
Steps: 2291

Examples of Images Generated (Without Refinement; With horizontal repeat initialization)

Latency: 42.49s
Steps: 1032

Latency: 42.52s
Steps: 1049

Latency: 41.95s
Steps: 969

Latency: 41.23s
Steps: 947

Latency: 42.44s
Steps: 1029

Examples of Images Generated (With Refinement; With horizontal repeat initialization only for New Tokens)

Figure 14: Ablation studies on acceleration mechanism: examples of images generated by our SJD
without or with refining unaccepted tokens. When the refinement defined by Equ. (3) is NOT applied
(i.e., using the newly initialized tokens to replace the unaccepted tokens as the draft tokens in the
next iterations), there is almost no acceleration (though one of our token initializations with spatial
prior, horizontal repeat, can slightly reduce the steps in these images). This illustrates that refining
unaccepted tokens is essential to the acceleration mechanism in SJD.

“pumpkin on the table”, the frequency of faces carved on the pumpkins is consistent for these two
decoding methods.

Moreover, the K value in top-K sampling still dominates the image randomness about texture, color,
and local structure details. With larger K, the image details about textures, colors, and local structures
increase. Such image randomness still largely comes from the random token sampling.

J ANALYSIS ON FAILURE CASES

As shown in Fig. 18, when generating images with exquisite details, although auto-regressive decoding
can produce artifacts, SJD seems to generate continuous tokens that cause the artifacts, as highlighted
by the red boxes in this figure. The pre-trained auto-regressive model is not sufficiently robust to
handle such complex images. Consequently, it may mistakenly accept a sequence of draft tokens that
contain artifacts.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 4: The evaluation of Anole on the validation set of MSCOCO2017. JD: Jacobi decoding. ISP:
initialization with spatial prior. SJD: Speculative Jacobi decoding.

Configuration Average Acceleration (↑) FID (↓) CLIP-Score (↑)Latency (↓) Latency Step

A Anole (Chern et al., 2024) 48.96s 1.00× 1.00× 28.87 30.59
B w. JD (Song et al., 2021) 47.60s 1.03× 1.06× 29.34 30.64
C w. SJD 27.08s 1.81× 1.94× 29.04 30.54
D w. SJD (ISP) 26.18s 1.87× 1.97× 29.14 30.61

Table 5: The evaluation of Anole on the validation set of Parti-prompt. JD: Jacobi decoding. ISP:
initialization with spatial prior. SJD: Speculative Jacobi decoding.

Configuration Average Acceleration (↑) CLIP-Score (↑)Latency (↓) Latency Step

A Anole (Chern et al., 2024) 48.24s 1.00× 1.00× 30.46
B w. JD (Song et al., 2021) 44.65s 1.08× 1.14× 30.57
C w. SJD 26.77s 1.80× 2.00× 30.55
D w. SJD (ISP) 25.12s 1.92× 2.11× 30.48

Table 6: The comparison of perplexity on Lumina-mGPT.

Configuration Perplexity with Top-K sampling
K = 10 K = 100 K = 2000

A Lumina-mGPT (Liu et al., 2024b) 7.31 43.37 204.06
B w. JD (Song et al., 2021) 7.20 43.85 197.64
C w. SJD 7.34 43.87 217.96
D w. SJD (ISP) 7.26 44.03 199.70

Table 7: CLIP-Score of various decoding methods on Lumina-mGPT with different top-K values.
The image qualities for Jacobi Decoding and our method correspond to Fig. 6. The image qualities
for Auto-regression are only for the comparison in this table. Note that the image quality score with
greedy sampling is extremely poor, as this setting leads to meaningless images for a lot of prompts
(analyzed in Fig. 2).

Decoding Methods Sampling CLIP-Score HPSv2

Auto-regression Top-1 Sampling 26.40 0.1976
Auto-regression Top-10 Sampling 32.83 0.2950
Auto-regression Top-100 Sampling 32.41 0.3020
Auto-regression Top-2000 Sampling 32.00 0.2965

Jacobi Decoding Top-1 Sampling 26.34 0.1413
Jacobi Decoding Top-10 Sampling 32.75 0.2960
Jacobi Decoding Top-100 Sampling 32.46 0.3089
Jacobi Decoding Top-2000 Sampling 31.68 0.3103

Ours Top-1 Sampling 26.16 0.1695
Ours Top-10 Sampling 32.27 0.2942
Ours Top-100 Sampling 32.65 0.2977
Ours Top-2000 Sampling 31.83 0.3020

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Original Jacobi
Decoding

Speculative Jacobi
Decoding

Speculative Jacobi
Decoding + Spatial Init

Latency: 91.58s
Steps: 2357

Latency: 91.15s (1.0 × Faster)
Steps: 2293 (1.0 × Fewer)

Latency: 47.13s (1.9 × Faster)
Steps: 1115 (2.1 × Fewer)

Latency: 45.97s (𝟐. 𝟎 × Faster)
Steps: 1094 (𝟐. 𝟐 × Fewer)

Prompt: A giant golden-haired lion with an indigo face roars at the gate of heaven

Latency: 90.05s
Steps: 2357

Latency: 88.31s (1.0 × Faster)
Steps: 2240 (1.1 × Fewer)

Latency: 43.09s (2.1 × Faster)
Steps: 1031 (2.3 × Fewer)

Latency: 41.75s (𝟐. 𝟐 × Faster)
Steps: 996 (𝟐. 𝟒 × Fewer)

Prompt: Portrait of the most beautiful Asian woman, Wearing a dress and headdress decorated with peacock feathers

Latency: 90.60s
Steps: 2357

Latency: 89.74s (1.0 × Faster)
Steps: 2270 (1.0 × Fewer)

Latency: 43.26s (2.1 × Faster)
Steps: 1009 (2.3 × Fewer)

Latency: 40.39s (𝟐. 𝟐 × Faster)
Steps: 962 (𝟐. 𝟓 × Fewer)

Prompt: An oil painting of a lady

Latency: 92.47s
Steps: 2357

Latency: 89.84s (1.0 × Faster)
Steps: 2293 (1.0 × Fewer)

Latency: 42.31s (2.3 × Faster)
Steps: 1003 (2.3 × Fewer)

Latency: 41.95s (𝟐. 𝟑 × Faster)
Steps: 969 (𝟐. 𝟒 × Fewer)

Prompt: One lynx in the forest is illuminated by a gloomy strong light, the most Professional high-quality 8K photograph

Latency: 93.63s
Steps: 2357

Latency: 92.00s (1.0 × Faster)
Steps: 2304 (1.0 × Fewer)

Latency: 42.14s (2.3 × Faster)
Steps: 1015 (2.3 × Fewer)

Latency: 41.23s (𝟐. 𝟑 × Faster)
Steps: 947 (𝟐. 𝟓 × Fewer)

Prompt: Atlantis, the most Fantasy high-quality photos

Figure 15: The qualitative comparison of different decoding methods on Lumina-mGPT.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Original Jacobi
Decoding

Speculative Jacobi
Decoding

Speculative Jacobi
Decoding + Spatial Init

Latency: 47.90s
Steps: 1026

Latency: 46.36s (1.0 × Faster)
Steps: 955 (1.1 × Fewer)

Latency: 24.14s (2.0 × Faster)
Steps: 483 (2.1 × Fewer)

Latency: 23.55s (𝟐. 𝟎 × Faster)
Steps: 463 (𝟐. 𝟐 × Fewer)

Prompt: Generate an image of a cute Beagle dog.

Latency: 47.54s
Steps: 1026

Latency: 46.63s (1.0 × Faster)
Steps: 969 (1.1 × Fewer)

Latency: 26.71s (1.8 × Faster)
Steps: 548 (1.9 × Fewer)

Latency: 21.38s (𝟐. 𝟐 × Faster)
Steps: 428 (𝟐. 𝟒 × Fewer)

Prompt: Generate an image of a square box of cookies.

Latency: 47.40s
Steps: 1026

Latency: 46.21s (1.0 × Faster)
Steps: 966 (1.1 × Fewer)

Latency: 25.91s (1.8 × Faster)
Steps: 526 (2.0 × Fewer)

Latency: 25.05s (𝟏. 𝟗 × Faster)
Steps: 505 (𝟐. 𝟎 × Fewer)

Prompt: Generate an image of a blue Porsche 356 parked in front of a yellow brick wall.

Figure 16: The qualitative comparison of different decoding methods on Anole. Considering the high
image diversity of Anole, although the random seed is fixed, it is still hard for Anole to generate
similar images with different decoding methods.

Table 8: CLIP-Scores on Lumina-mGPT with various resolutions. The image qualities of our method
under different settings correspond to Fig. 7. The image qualities for Auto-regression are only for the
comparison in this table.

Decoding Methods Resolutions CLIP-Score HPSv2

Auto-regression 512 29.49 0.2503
Auto-regression 768 32.00 0.2965
Auto-regression 1024 31.41 0.2961

Ours 512 29.69 0.2558
Ours 768 31.83 0.3020
Ours 1024 31.11 0.2935

Table 9: CLIP-Score of our method on Lumina-mGPT with various Jacobi window sizes. The image
qualities correspond to Fig. 8.

Jacobi Window Size CLIP-Score HPSv2

1 32.00 0.2965
4 31.91 0.3046

16 31.83 0.3020
32 31.55 0.3045

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

K=2000

K=100

K=10

Speculative Jacobi Decoding with Top-K sampling

Auto-regressive Decoding with Top-K sampling

"There is an apple of a strange color on the table" “A beautiful cat on the pillow" “Pumpkin on the table, Halloween"

K=2000

K=100

K=10

Figure 17: Comparing our method to the original auto-regressive decoding on the image randomness.
First, considering the random variable in SJD, given a column, two images with the same K value
cannot be exactly identical. Second, changing the decoding method from auto-regression to SJD
has little influence on the image diversity for each prompt (e.g., given K = 2000 for each decoding
method, the color patterns and styles of the generated apples are similar, and the frequency of the
carved faces on pumpkins is also similar). Third, the top-K sampling still dominates the image
randomness about texture, color, and local structure details. The images in each column share a single
random seed.

Speculative Jacobi Decoding

Prompt: Image of a bustling downtown street in Tokyo at night, with neon signs, crowded
sidewalks, and tall skyscrapers.

Figure 18: Failure Cases. In complex image scenarios, our method generates some continuous
tokens that result in artifacts, as highlighted by the red boxes. The pre-trained model inaccurately
accepts a large sequence of the tokens that cause the artifacts.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 10: CLIP-Score of our method on Lumina-mGPT with various token initialization when
generating images with simple patterns. The image qualities correspond to Fig. 9.

Token Initialization CLIP-Score HPSv2

Horizontal Sample 31.52 0.2567
Vertical Sample 30.91 0.2622
Horizontal Repeat 31.17 0.2616
Vertical Repeat 31.15 0.2651
Random 31.37 0.2681

Table 11: The comparison of token statistics on Lumina-mGPT.

Decoding Methods Logarithm of Token Probability
Average Standard Deviation

Auto-regression -4.8950 2.3457
Ours -4.9007 2.3275

25

	Introduction
	Related Work
	Preliminaries
	Auto-regressive Text-to-image Generation
	Jacobi Decoding

	Speculative Jacobi Decoding
	Speculative Jacobi Iteration
	Token Initialization with Spatial prior

	Experiments
	Implementation Details
	Quantitative Results
	Qualitative Results
	Ablation Studies

	Conclusion
	Proofs
	More Qualitative Results
	Inference Latency
	More Quantitative Results
	Visualization of Acceleration in 2D space
	Limitation and future work
	Broader Impacts
	Analysis on the Effectiveness of our method
	Qualitative Analysis of image randomness on our method
	Analysis on Failure Cases

