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Abstract

Natural Language to SQL (NL2SQL) has seen001
significant advancements with large language002
models (LLMs). However, these models often003
depend on closed-source systems and high com-004
putational resources, posing challenges in data005
privacy and deployment. In contrast, small lan-006
guage models (SLMs) struggle with NL2SQL007
tasks, exhibiting poor performance and incom-008
patibility with existing frameworks. To address009
these issues, we introduce Feather-SQL, a010
new lightweight framework tailored for SLMs.011
Feather-SQL improves SQL executability and012
accuracy through 1) schema pruning and link-013
ing, 2) multi-path and multi-candidate genera-014
tion. Additionally, we introduce the 1+1 Model015
Collaboration Paradigm, which pairs a strong016
general-purpose chat model with a fine-tuned017
SQL specialist, combining strong analytical018
reasoning with high-precision SQL generation.019
Experimental results on BIRD demonstrate that020
Feather-SQL improves NL2SQL performance021
on SLMs, with around 10% boost for models022
without fine-tuning. The proposed paradigm023
raises the accuracy ceiling of SLMs to 54.76%,024
highlighting its effectiveness.025

1 Introduction026

Natural Language to SQL (NL2SQL) is the task of027

converting natural language questions into corre-028

sponding SQL queries, allowing users to retrieve029

structured data from databases without requiring030

proficiency in SQL language. In recent years, the031

field has seen significant advancements with the032

emergence of large language models (LLMs) such033

as GPT-4 (OpenAI et al., 2024), enabling frame-034

works like CHASE-SQL (Pourreza et al., 2024) and035

XiYan-SQL (Gao et al., 2025b) to achieve state-of-036

the-art (SOTA) performance. However, two limi-037

tations hinder their practical adoption. First, main-038

stream methods depend on closed-source models,039

and their reliance on external APIs introduces data040

privacy risks in sensitive domains like healthcare041

Figure 1: NL2SQL performance on the BIRD DEV
dataset. EXE (Executability) measures successful query
executions, while ACC (Accuracy) measures correct
result matches.

and finance (Liu et al., 2024). Second, most open- 042

source research focuses on models with 7B–30B 043

parameters, leaving small language models (SLMs) 044

with 4B or fewer parameters relatively underex- 045

plored. Meanwhile, many relational databases 046

are deployed on high-performance systems with 047

limited GPU resources. With efficient inference 048

frameworks (e.g., Intel IPEX-LLM (Intel, 2024)) 049

or quantization techniques, SLMs can help drive 050

the broader adoption of NL2SQL in real-world sce- 051

narios while preserving data privacy. 052

In this paper, we focus on enhancing NL2SQL 053

performance using SLMs. As shown in Figure 054

1, SLMs face two key challenges: (1) one criti- 055

cal issue is their sharp decline in executability. 056

Unlike LLMs, which can effectively handle long- 057

context dependencies, SLMs struggle with complex 058

database schema and verbose prompts, often lead- 059

ing to confusion or hallucinated outputs (Nguyen 060

et al., 2024; Qu et al., 2024) (Figure 2); (2) existing 061

frameworks for NL2SQL tasks with LLMs are 062

incompatible with SLMs, as they rely on strong 063

instruction-following capabilities to produce inter- 064

mediate results, which SLMs lack. As illustrated in 065

Figure 3, SLM outputs frequently violate imposed 066

requirements: they often fail to conform to JSON 067
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Figure 2: Examples of typical syntax errors produced by
small language models (SLMs) in an NL2SQL scenario.

or array specifications and do not meet predefined068

constraints. Directly applying these frameworks to069

SLMs may further degrade executability.070

To address these challenges, we propose071

Feather-SQL, a lightweight framework tailored072

for SLMs to enhance both executability and accu-073

racy in NL2SQL tasks. Feather-SQL consists of six074

key components: schema pruning, schema linking,075

multi-path generation, multi-candidate generation,076

correction, and selection. Designed specifically077

for SLMs, schema pruning streamlines input pro-078

cessing by discarding irrelevant tables, allowing079

models to concentrate on essential database ele-080

ments. Schema linking improves alignment be-081

tween questions and database schema, ensuring082

accurate column selection. To mitigate errors from083

linking and pruning, multi-path generation explores084

diverse query formulation strategies, enhancing ro-085

bustness. Multi-candidate generation further im-086

proves the model’s executability and accuracy by087

enhancing the variety of generated SQL queries,088

thereby increasing the likelihood of producing cor-089

rect candidates. The best candidate is then selected090

through execution validation and ranking. Comple-091

menting these components, we introduce extraction092

and simplification prompting strategies. Extraction093

selectively retrieves key information, while simpli-094

fication removes extraneous prompt details to lower095

computational overhead. By integrating these tech-096

niques, Feather-SQL enables SLMs to generate097

SQL queries more reliably despite their inherent098

limitations.099

A common approach to enhancing SLMs is fine-100

tuning. However, while fine-tuned SLMs for SQL101

generation tasks (e.g., Prem-SQL (Anindyadeep,102

2024), CodeS (Li et al., 2024)) outperform general-103

purpose chat models on core NL2SQL tasks, they104

suffer from catastrophic forgetting (Luo et al.,105

2025; Kotha et al., 2024) on auxiliary tasks—where106

task-specific fine-tuning erodes their foundational107

reasoning abilities. To counter this, we propose108

Figure 3: Experiments conducted on a CHESS-provided
BIRD subset for schema linking. Models are required to
output a JSON-formatted response containing no more
than five relevant columns related to the question, with-
out generating any extraneous content.

1+1 Model Collaboration Paradigm, in which 109

a general-purpose chat model handles reasoning- 110

intensive auxiliary tasks (e.g., schema linking and 111

candidate selection), while a fine-tuned SQL spe- 112

cialist focuses on query generation. This collabo- 113

ration leverages both models’ strengths: the gen- 114

eral model provides broad reasoning ability, while 115

the specialist delivers domain-specific precision. 116

Experiments confirm that the paradigm improves 117

overall performance. Our main contributions are 118

as follows: 119

• We introduce Feather-SQL, an NL2SQL 120

framework for SLMs to address their unique 121

challenges of low executability and incompat- 122

ibility with existing LLM-based frameworks. 123

• We propose a novel 1+1 Model Collabora- 124

tion paradigm that mitigates catastrophic for- 125

getting in fine-tuned SLMs by delegating 126

reasoning-intensive tasks to a general-purpose 127

chat model. 128

• Extensive experiments on the Spider and 129

BIRD datasets demonstrate that Feather-SQL 130

consistently achieves strong performance with 131

various SLMs, and when paired with the 132

paradigm, it yields SOTA results on BIRD 133

within the scope of SLMs. 134

2 Related Work 135

2.1 Conventional Methods 136

Early NL2SQL systems were rule- or template- 137

based (Zelle and Mooney, 1996; Li and Jagadish, 138

2014; Saha et al., 2016). Although effective 139

on small, curated datasets, these approaches de- 140

manded extensive manual engineering and did 141

not generalise well. The arrival of sequence-to- 142

sequence (Seq2Seq) neural models marked a shift 143
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to data-driven methods. Models such as Seq2SQL144

(Zhong et al., 2017), SQLNet (Xu and et al., 2017),145

IRNet (Jha et al., 2019), RyanSQL (Choi et al.,146

2021), and RESDSQL (Li et al., 2023a) jointly en-147

code the natural-language question and database148

schema before decoding the corresponding SQL149

query. Fine-tuning pretrained language models150

(PLMs)—for example, BERT (Devlin et al., 2019)151

and T5 (Raffel et al., 2023), as used in Graphix-152

T5 (Li and et al., 2023)—further improves robust-153

ness, yet still requires substantial annotated data154

and struggles with highly complex schemas.155

2.2 LLM and SLM Approaches156

Instruction-tuned large language models (LLMs)157

now achieve state-of-the-art performance by de-158

composing NL2SQL into subtasks. Systems such159

as DIN-SQL (Pourreza and Rafiei, 2023), TASQL160

(Qu et al., 2024), MAC-SQL (Wang et al., 2024),161

and CHESS (Talaei et al., 2024) exceed earlier162

accuracy, but their multi-stage prompting incurs163

significant computation, and potential privacy risks164

when queries leave the user’s environment.165

To alleviate these drawbacks, researchers have166

turned to small language models (SLMs). Ap-167

proaches such as CodeS (Li et al., 2024), DTS-168

SQL (Dong et al., 2023), Prem-SQL (Anindyadeep,169

2024), and SQLCoder (Defog) fine-tune SLMs170

on NL-to-SQL datasets. However, training makes171

them susceptible to catastrophic forgetting, dimin-172

ishing their compositional-reasoning ability. MSc-173

SQL (Gorti et al., 2025) trains separate ∼10B-174

parameter models for different subtasks to preserve175

capabilities, but at the expense of extra memory and176

storage, limiting practical deployment. Therefore,177

a lightweight framework that empowers SLMs to178

perform NL2SQL effectively—without prohibitive179

resource demands—remains an open and important180

research goal.181

3 Methodology182

3.1 Feather-SQL183

As shown in Figure 4, we propose Feather-SQL184

to enhance the performance of SLMs in NL2SQL.185

This framework comprises several components, in-186

cluding Schema Pruning, Multi-Path, and Multi-187

Candidate Generation, which are specifically de-188

signed to address the challenges of SLMs. We will189

elaborate on these components in the following190

sections.191

Schema Pruning. This step dynamically reduces192

schema complexity by identifying and filtering out 193

tables semantically irrelevant to the user’s ques- 194

tion. Only the Data Definition Language (DDL) 195

statements of tables judged pertinent advance to 196

later stages in the pipeline, preventing small lan- 197

guage models from being overwhelmed by lengthy 198

inputs while preserving essential information. Al- 199

though pruning was previously explored by Jose 200

and Cozman (2023)— who applied it as an offline, 201

training-time preprocessing step driven by statisti- 202

cal analysis—our approach performs it on-the-fly 203

at inference using one SLM. 204

Schema Linking. This step aligns the question 205

with the database schema by identifying relevant 206

columns through semantic analysis (Jha et al., 207

2019). As a commonly adopted practice, schema 208

linking extracts pertinent columns from the com- 209

plete schema based on the given question, facilitat- 210

ing downstream processing (Wang et al., 2021; Ta- 211

laei et al., 2024). By establishing precise mappings 212

between natural language expressions and database 213

elements, this process significantly enhances SQL 214

generation accuracy. 215

Multi-Path Generation. This step employs four 216

distinct prompt types: (1) with both schema link- 217

ing and pruning, (2) linking only, (3) pruning only, 218

and (4) without either operation. The multi-path 219

design mitigates the risk of information loss caused 220

by pruning errors and reduces potential misunder- 221

standings arising from linking inaccuracies. 222

Multi-Candidate Generation. This step gener- 223

ates multiple SQL queries in parallel to increase 224

the likelihood of producing a correct result (Pour- 225

reza et al., 2024; Gorti et al., 2025). To ensure 226

diversity, beam search is employed alongside care- 227

fully tuned temperature and top-p parameters. Each 228

path consistently generates a fixed number of can- 229

didate queries, maintaining a balanced exploration 230

of possible solutions. Notably, while LLMs often 231

generate executable answers on the first attempt 232

with minimal accuracy improvement from addi- 233

tional candidates, SLMs benefit significantly from 234

multi-candidate generation, which enhances both 235

executability and accuracy (Appendix B). 236

Correction. This step executes each generated 237

query and handles it based on the outcome (Wang 238

et al., 2024; Pourreza and Rafiei, 2023). If a query 239

executes successfully, it is directly added to the ar- 240

ray of executable SQL queries. For failed queries, 241

error feedback is used to revise the query through a 242

self-correction approach, generating two new can- 243

didate queries. If any of these revised queries are 244
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Figure 4: An overview of the Feather-SQL framework for small language models (SLMs) in NL2SQL tasks. The
pipeline comprises six core modules—schema pruning, schema linking, multi-path generation, multi-candidate
generation, correction, and selection—which collaboratively boost query executability and accuracy. Additionally,
the 1+1 Model Collaboration Paradigm pairs a general-purpose Chat Model with a SQL fine-tuned Model: the
Chat Model conducts the Multi-path and Selection stages (upper dashed links), while the SQL Model performs the
Multi-Candidate and Correction stages (lower dashed links).

executable, they are also stored in the array of exe-245

cutable SQL queries.246

Selection. This step applies a selection-ranking247

method to assess all executable queries according248

to their alignment with the expected answers (Pour-249

reza et al., 2024; Gao et al., 2025b; Talaei et al.,250

2024). If a query yields a limited number of results,251

the evaluation considers both the query and its exe-252

cution outcome. In contrast, the evaluation focuses253

solely on the query itself. The selection process is254

repeated three times, and the mode of the rankings255

is returned as the final result.256

3.2 Prompting Strategies257

Extraction. As mentioned in Section 1, SLMs258

struggle to meet structural constraints, thus we pro-259

pose an extraction strategy to avoid rigid struc-260

tural outputs by allowing SLMs to freely gener-261

ate responses. This improves accuracy on reason-262

ing tasks by bypassing syntactic constraints. We263

have two methods to achieve that: (1) Lexical264

Matching: This method identifies valid schema265

elements by matching table/column names explic-266

itly mentioned in the natural language response267

against the database schema. For instance, when268

the SLM outputs "The required tables include cus-269

tomer and orders", the system verifies and extracts270

customer/orders only if they exist in the schema.271

(2) Pattern Matching: This method extracts the272

final answer by identifying predefined patterns in273

the model’s output, such as "answer is" or "An-274

swer:". For example, if the model generates “The275

answer is 128", the framework detects the pattern 276

and extracts "128" as the final result. 277

Simplification. The simplification strategy reduces 278

computational overhead by minimizing prompt ver- 279

bosity. In Feather-SQL, we achieve this by remov- 280

ing superfluous details and using concise instruc- 281

tions with the fewest effective examples (Appendix 282

C). This approach refines the input by eliminat- 283

ing unnecessary complexity, avoiding the need for 284

SLMs to process lengthy inputs while maintaining 285

the clarity of the task. 286

3.3 1+1 Collaboration Paradigm 287

Our paradigm categorizes NL2SQL pipeline tasks 288

into two types: reasoning-intensive tasks and SQL 289

generation tasks. Reasoning tasks, such as schema 290

linking and candidate evaluation, require strong 291

contextual understanding and adaptability, while 292

SQL generation demands precision in query synthe- 293

sis. To optimize performance, we employ two spe- 294

cialized models: the general-purpose chat Model 295

for reasoning tasks and the SQL fine-tuned model 296

for SQL generation. By leveraging their comple- 297

mentary strengths, our approach improves overall 298

NL2SQL accuracy and robustness. 299

General-purpose Chat Model. This model is 300

designed for reasoning-intensive tasks, leverag- 301

ing broad linguistic and contextual comprehen- 302

sion without domain-specific fine-tuning, which 303

helps prevent catastrophic forgetting. Compared 304

to the SQL Specialist Model, it is more effective 305

in schema linking and evaluating SQL candidates, 306
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Method Qwen2.5-1.5B Yi-Coder-1.5B Phi3-Mini-3.8B
EX (%) EP (%) EX (%) EP (%) EX (%) EP (%)

DR 19.36 53.52 15.84 54.82 27.44 71.90
FEQ 21.51 68.25 18.71 73.60 30.12 67.93
MAC-SQL 18.06 52.28 7.63 59.52 29.99 77.64
CHESS 18.71 43.55 2.48 7.82 18.12 39.70
Feather-SQL (Ours) 31.81 88.33 25.23 90.61 36.64 83.70

Method MiniCPM3-4B Prem-SQL-1.3B CodeS-3B
EX (%) EP (%) EX (%) EP (%) EX (%) EP (%)

DR 27.57 69.30 47.07 88.14 24.19 59.32
FEQ 29.34 63.89 51.63 92.70 25.03 57.50
MAC-SQL 37.35 81.68 8.67 (8.87*) 17.01 (19.23*) 10.10 (13.23*) 40.87 (56.26*)
CHESS 28.42 54.43 24.64 43.22 26.53 56.91
Feather-SQL (Ours) 40.09 87.02 49.28 98.04 33.96 85.31

Table 1: Comparison of EX (Execution Accuracy) and EP (Execution Proportion) across different methods on the
BIRD DEV dataset. The best and second-best results are highlighted by Bold and underline, respectively. ∗ denotes
results with the extraction strategy.

ensuring that the SQL generation process is guided307

by accurate and well-structured contextual infor-308

mation.309

SQL Fine-tuned Model. Optimized exclusively310

for SQL generation, this model is extensively311

trained on large-scale NL2SQL datasets, allowing312

it to achieve superior performance on SQL-specific313

tasks. Its focused training reduces hallucinations314

and enhances both query executability and accu-315

racy.316

4 Experiments317

4.1 Settings318

4.1.1 Datasets319

BIRD (Li et al., 2023b) as a representative and320

challenging benchmark dataset for NL2SQL, en-321

compasses databases over 37 professional domains.322

Due to the proprietary nature of the BIRD TEST323

dataset, we conduct our experiments using the pub-324

licly accessible BIRD DEV subset, which contains325

1,534 unique question-SQL pairs.326

Spider (Yu et al., 2019) is another large-scale327

benchmark dataset for cross-domain SQL genera-328

tion, covering 138 different domains. Compared to329

BIRD, Spider is relatively simpler, as its SQL struc-330

tures and schema are generally less complex. Our331

experiments utilize the SPIDER TEST set, com-332

prising 2,147 question-SQL pairs.333

4.1.2 Evaluation Metrics334

Execution Accuracy (EX) (Li et al., 2023b) is335

a widely adopted metric in NL2SQL evaluations,336

measuring whether the result of executing the gen-337

erated query matches the result of the ground truth338

query. This metric allows for different query for- 339

mulations that yield the same result. It is calculated 340

as: 341

EX =
|{n ∈ N | E(Qgen) = E(Qgt)}|

N
× 100% 342

where N denotes the number of questions. Qgen 343

represents the SQL query generated by the model, 344

while Qgt is the ground truth answer. E is the exe- 345

cution function. 346

Execution Proportion (EP) is an auxiliary metric 347

we proposed, evaluating the proportion of gener- 348

ated SQL queries that can be executed on the cor- 349

responding database without syntax errors. This 350

metric reflects the model’s upper-bound capability 351

by assuming that any executable query is poten- 352

tially correct. It is defined as: 353

EP =
|{n ∈ N | E(Qgen) ̸= error}|

N
× 100% 354

4.1.3 Baselines 355

Direct Response (DR) directly generates an SQL 356

query from the natural language question without 357

applying any refinement techniques. The process 358

follows a single-turn interaction. 359

First Executable Query (FEQ) leverages the 360

model’s ability to generate multiple SQL candi- 361

dates. Among candidates, the first executable query 362

is selected without any refinement. This approach 363

simulates multi-turn query generation. 364

MAC-SQL (Wang et al., 2024) is an LLM-based 365

multi-stage framework, featuring a core Decom- 366

poser agent for SQL generation supported by auxil- 367

iary agents for sub-database acquisition and query 368
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Method Qwen2.5-0.5B Yi-Coder-1.5B DeepSeek-Coder-1.3B
EX (%) EP (%) EX (%) EP (%) EX (%) EP (%)

DR 28.50 56.45 45.23 87.24 49.28 90.68
FEQ 36.53 67.35 48.30 86.77 45.46 89.89
MAC-SQL 29.06 89.61 13.04 21.70 52.12 93.62
CHESS 15.42 29.16 3.68 10.29 30.18 46.30
Feather-SQL (Ours) 36.98 75.08 49.56 92.04 51.19 94.13

Method MiniCPM3-4B Prem-SQL-1.3B CodeS-3B
EX (%) EP (%) EX (%) EP (%) EX (%) EP (%)

DR 55.10 93.71 60.92 85.79 47.74 64.23
FEQ 55.75 89.52 64.23 85.75 49.60 64.65
MAC-SQL 25.01 38.47 0.14 (67.91*) 0.14 (100*) 0 (74.48*) 0 (100*)
CHESS 56.73 89.99 63.86 92.08 66.65 88.54
Feather-SQL (Ours) 58.92 94.18 66.60 92.78 63.25 88.96

Table 2: Comparison of EX (Execution Accuracy) and EP (Execution Proportion) across different methods on the
Spider TEST dataset. The best and second-best results for EX are highlighted by bold and underline, respectively. ∗

denotes results with the extraction strategy.

refinement. It also utilizes few-shot chain-of-369

thought reasoning to enhance generation processes.370

CHESS (Talaei et al., 2024) comprises four special-371

ized agents: Information Retriever, Schema Selec-372

tor, Candidate Generator, and Unit Tester. Notably,373

it employs locality-sensitive hashing and vector374

databases to efficiently retrieve relevant data from375

extensive database values and catalogs.376

4.1.4 Implementation Details377

Backbone Models. Our implementation leverages378

both general-purpose chat models and SQL fine-379

tuned models. The chat models include Qwen2.5-380

0.5B, Qwen2.5-1.5B, Qwen2.5-Coder-1.5B (Hui381

et al., 2024), Yi-Coder-1.5B (AI et al., 2025),382

DeepSeek-Coder-1.5B (DeepSeek-AI, 2024), Phi3-383

mini-3.8B (Abdin et al., 2024), and MiniCPM3-4B384

(Hu et al., 2024), while the SQL-tuned models con-385

sist of Prem-SQL-1.3B (Anindyadeep, 2024) and386

CodeS-3B (Li et al., 2024).387

Candidate Size. In the multi-candidate generation388

stage, we generate 4 candidates per path, resulting389

in a total candidate pool of 16. During the correc-390

tion stage, the candidate size is reduced to 2.391

Selection Rounds. During the selection stage, we392

perform 3 rounds for each selection (Appendix D).393

The final choice is the majority vote across the394

three rounds, ensuring consistency of the selected395

candidate.396

4.2 Main Results 397

4.2.1 Feather-SQL 398

To validate the general effectiveness of Feather- 399

SQL for SLMs, we conducted experiments on two 400

datasets across a range of models (all results here 401

were obtained using a unified model without adopt- 402

ing the collaboration paradigm). 403

BIRD Results. As shown in Table 1, Feather- 404

SQL demonstrates superior performance across all 405

general-purpose chat models, achieving the highest 406

scores in both EX and EP, with EX showing an 407

average increase of approximately 10% and EP ex- 408

ceeding a 20% improvement compared to FEQ. For 409

SQL fine-tuned models, Feather-SQL combined 410

with CodeS achieves substantial gains in both EX 411

and EP, while Prem-SQL shows notable improve- 412

ments specifically in EP, with an average increase 413

of around 5% compared to FEQ. Besides, we ex- 414

plored the upper bound of Feather-SQL on this 415

dataset (Appendix F). 416

Moreover, we observe that CHESS and MAC- 417

SQL do not perform effectively on SLMs, with 418

their results on Qwen2.5 and Yi-Coder showing 419

even lower EX and EP scores compared to DR. 420

Their performance also falls behind that of FEQ. 421

Spider Results. Table 2 highlights the results on 422

the Spider TEST split. To check robustness over 423

different model sizes and architectures, we intro- 424

duce two models—Qwen2.5-0.5B and DeepSeek 425

Coder-1.3B—that were not used for BIRD (Ap- 426

pendix E). Feather-SQL still yields clear gains, 427
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Chat Model SQL Model EX (%) EP (%)

– Prem-SQL 49.28 98.04
Qwen Prem-SQL 52.44 ↑ 94.08
Qwen Coder Prem-SQL 52.83 ↑ 98.31
Yi Coder Prem-SQL 54.76 ↑ 93.94

– CodeS 33.96 83.31
Qwen CodeS 35.79 ↑ 80.05
Qwen Coder CodeS 37.03 ↑ 81.10
Yi Coder CodeS 39.43 ↑ 80.44

Table 3: Paradigm performance under Feather-SQL on
the BIRD DEV dataset. When no chat model is speci-
fied, the SQL model is also used as the chat model.

confirming its effectiveness under this alternative428

setting.429

Although MAC-SQL and CHESS show incon-430

sistent performance across models, MAC-SQL gen-431

erally performs well. Notably, for SQL fine-tuned432

models, MAC-SQL could achieve the best EX if433

extraction is applied, highlighting the necessity of434

this step. This may be attributed to MAC-SQL’s435

Selector mechanism, which also employs schema436

pruning. Unlike our table pruning approach, MAC-437

SQL adopts column pruning, which may be more438

effective for SPIDER’s relatively simple schema439

structures.440

4.2.2 1+1 Collaboration Paradigm441

As observed in Table 1, although Feather-SQL im-442

proves the EP of Prem-SQL, its EX shows a 2%443

decrease compared to FEQ. This decline is primar-444

ily due to Prem-SQL’s inability to handle auxiliary445

reasoning tasks. To address this limitation, we pro-446

pose a division of tasks where the general-purpose447

chat model handles auxiliary reasoning, while the448

SQL fine-tuned model focuses on SQL generation.449

As shown in Table 3, our 1+1 collaboration450

paradigm under Feather-SQL achieves a 3–6%451

improvement in EX for both Prem-SQL and452

CodeS, with Prem-SQL reaching SOTA perfor-453

mance among existing SLMs (Appendix G). How-454

ever, we observe a decline in EP when paired with455

a chat model. This is because when the SQL model456

is also used as the chat model during schema prun-457

ing, it returns a query instead of the expected an-458

swer. But our extraction strategy sitll retrieves table459

names from the output, often resulting in an overly460

pruned schema-containing only one or two tables.461

While a simplified schema can occasionally boost462

EP, it frequently leads to lower overall EX.463

Additionally, Table 4 shows that our paradigm464

Chat Model SQL Model EX (%) EP (%)

– Prem-SQL 24.64 43.22
Qwen Prem-SQL 49.28 ↑ 82.07
Qwen Coder Prem-SQL 49.61 ↑ 79.60
Yi Coder Prem-SQL 47.65 ↑ 79.79

– CodeS 26.53 56.91
Qwen CodeS 28.55 ↑ 56.19
Qwen Coder CodeS 28.88 ↑ 63.04
Yi Coder CodeS 27.44 ↑ 55.22

Table 4: Paradigm performance under CHESS on the
BIRD DEV dataset. When no chat model is specified,
the SQL model is also used as the chat model.

Framework EX (%) EP (%)

Full Model 31.81 88.33
–w/o Schema Pruning -4.63 ↓ -20.34 ↓
–w/o Schema Linking -3.45 ↓ -20.92 ↓
–w/o Multi-Candidate -2.47 ↓ -17.99 ↓
–w/o Correction -0.20 ↓ -12.58 ↓
–w/o Selection -2.21 ↓ -10.36 ↓

Table 5: Ablation Study on Framework Components.

improves both Prem-SQL and CodeS in CHESS, 465

with EX increasing by ~20% and EP by over ~35% 466

for Prem-SQL, while CodeS sees a smaller but 467

consistent EX gain with no clear trend in EP. 468

However, the two models benefit differently due 469

to their handling of auxiliary tasks. Prem-SQL at- 470

tempts to answer linking questions but often does 471

so incorrectly, whereas CodeS, due to severe catas- 472

trophic forgetting, fails to provide valid responses. 473

As a result, CHESS defaults to using the original 474

schema with CodeS, reducing linking errors. 475

Furthermore, since CHESS constructs long 476

prompts without schema pruning, introducing a 477

chat model increases input length and complexity. 478

While this improves reasoning, it does not fully 479

offset CodeS’s limitations in processing extended 480

inputs, restricting its EX improvement. 481

4.3 Ablation Studies 482

4.3.1 Component Contribution 483

We conducted an ablation study to quantify the 484

impact of each framework component by removing 485

them one at a time and measuring changes in EX 486

and EP on the BIRD DEV dataset, using QWen2.5- 487

1.5B (Table 5). 488
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We can see from the ablation results that remov-489

ing any of the components causes a drop in both490

EX and EP. This underscores that each step in our491

pipeline contributes to overall performance, and492

omitting even one module leads to noticeably re-493

duced accuracy or executability.494

Among these, schema pruning is shown to be495

the most critical: when it is removed, EX falls496

from 31.81% to 27.18%, the single largest drop in497

our study. This highlights how focusing on only498

the relevant tables and columns helps the model499

concentrate on essential schema elements, thereby500

yielding more accurate SQL generation. In contrast,501

removing correction only reduces EX by 0.20%,502

indicating that it has a relatively minor impact on503

the framework’s effectiveness.504

4.3.2 Path Contribution505

We analyzed the origins of SQL answers from four506

models to understand how each processing path507

affects the final output. As shown in Figure 5, our508

multi-path framework includes four paths: one us-509

ing both schema linking and pruning, one using510

only schema linking, one using only schema prun-511

ing, and one without either.512

For all four models, the path Full Schema &513

Linking is consistently the largest contributor, fol-514

lowed by Pruned Schema & Linking. This ranking515

underscores the critical role of linking in the frame-516

work, regardless of whether the schema is pruned517

or not.518

Additionally, we find that schema pruning col-519

lectively accounts for over 25% across the models.520

These observations are consistent with the ablation521

findings in 4.3.1, further illustrating the essential522

roles of each component in ensuring executable523

and accurate query generation.524

Figure 5: Distribution of correct SQL answers con-
tributed by each path across four different SLMs.

4.3.3 Candidate Size 525

We further investigated the impact of different can- 526

didate sizes. Figure 6 presents the results based on 527

our four paths. In our experiments, the total candi- 528

date size increases from 4 to 24, which corresponds 529

to the number of candidates generated per path in- 530

creasing from 1 to 6. The figure illustrates how EX 531

changes as the overall candidate size grows from 4 532

to 24. 533

We observe a concave trend, consistent with Ap- 534

pendix B: EX steadily increases as the candidate 535

size rises from 4 to 16 but then plateaus from 16 to 536

24. Once the model reaches its approximate upper 537

bound, further increases in candidate size result in 538

only a marginal difference in performance. There- 539

fore, we select a candidate size of 16, as it is the 540

earliest point at which EX saturates, thus balancing 541

computational efficiency and model performance. 542

Figure 6: Effect of candidate size on EX performance.

5 Conclusion 543

In this work, we introduced Feather-SQL, the 544

first lightweight framework designed to enhance 545

NL2SQL performance for SLMs. We conduct com- 546

prehensive evaluations on the challenging BIRD 547

and Spider datasets, where Feather-SQL yields 548

improvements in both executability and accuracy. 549

Additionally, we present the 1+1 Model Collab- 550

oration paradigm—a novel approach that pairs a 551

general-purpose chat model with a SQL special- 552

ist to combine robust reasoning with precise query 553

generation. Our evaluation results show that this 554

paradigm boosts accuracy across different frame- 555

works, demonstrating its consistent effectiveness. 556

Moreover, the flexibility of our approach provides a 557

robust foundation not only for advancing NL2SQL 558

but also for application to other structured tasks 559

and domains. Together, our work outline a prac- 560

tical path toward trustworthy, lightweight, edge- 561

deployable database querying. 562
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6 Limitations563

Despite the promising performance gains achieved564

by Feather-SQL, our current framework does not565

yet reach very high absolute accuracy on datasets.566

For instance, the best cumulative accuracy on567

BIRD DEV is around 74% (Gao et al., 2025b;568

Pourreza et al., 2024). In fact, many LLM-based569

NL2SQL systems typically report accuracy in the570

60+% range, while the SOTA results achieved by571

SLMs remain below 55%. However, our approach572

is the first to surpass all previous methods at the573

1B-parameter scale. Feather-SQL with the Model574

Collaboration Paradigm lays a strong foundation575

for promoting the broader adoption of NL2SQL in576

real-world applications.577
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A Experimental Settings784

All experiments were conducted on 4 NVIDIA A6000 GPUs using the vLLM inference acceleration785

framework to improve model efficiency. For stages that produce multiple answers, such as candidate786

generation and selection, we primarily used a temperature of 0.2 and a top_p of 0.8 to balance diversity787

and accuracy. In contrast, for tasks requiring a single answer, such as schema pruning and schema linking,788

we employed greedy search to ensure deterministic outputs.789

B Multi-Candidate Motivation790

Top-N Yi-Coder-1.5B MiniCPM3-4B Prem-SQL-1.3B
ACC (%) EXE (%) ACC (%) EXE (%) ACC (%) EXE (%)

1 15.65 46.26 26.53 65.31 55.78 92.52
3 24.49 70.75 35.37 76.87 59.86 97.28
5 30.61 78.91 36.05 82.31 62.59 97.96
7 33.33 82.31 37.41 84.35 65.31 97.96

Top-N CodeS-3B GPT-4o Claude-3.5-Sonnet
ACC (%) EXE (%) ACC (%) EXE (%) ACC (%) EXE (%)

1 24.49 61.90 51.70 93.20 40.82 86.39
3 27.21 68.71 53.74 94.56 41.50 87.76
5 29.93 72.11 56.46 94.56 42.18 88.44
7 29.93 73.47 56.46 94.56 42.18 88.44

Table 6: Comparison of Accuracy (ACC) and Execution (EXE) on the BIRD DEV Subset from CHESS using
multi-candidate generation strategy.
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Figure 7: Improvement in Accuracy (∆ACC) and Executable Rate (∆EXE) compared to Top-1 candidates

The results demonstrate that SLMs exhibit a performance gap between TOP-1 and TOP-7 results. This791

indicates that employing a multi-candidate generation strategy can effectively improve the accuracy and792

execution rates by selecting the best result. In contrast, larger models already perform robustly with TOP-1793

outputs, and therefore, the additional benefit from multi-candidate generation is limited. Additionally, the794

fine-tuned SQL model CodeS-3B shows some improvement, but the gains are not as pronounced as those795

observed in the other SLMs.796
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C Prompt Length Comparison 797

On average, CHESS uses notably longer prompts due to detailed instructions and complex examples, 798

while MAC-SQL has fewer words overall. Feather-SQL demonstrates the smallest average prompt length, 799

indicating that concise design can effectively balance context and complexity. 800

Method Stage Word Count

CHESS

Information Retriever 423
Schema Selector 2522
Generate Candidate 4888
Revise 1835

MAC-SQL
Selector 552
Decomposer 836
Reviser 174

Feather-SQL

Schema Pruning 267
Schema Linking 287
Generation 190
Correction 106
Selection 271

Table 7: Stages and corresponding word counts for each baseline.

D Selection Rounds 801

We repeat the selection step R times and return the SQL that appears most often (mode). Table 8 shows 802

execution accuracy (EX) on BIRD DEV set with Qwen2.5-1.5B. 803

Rounds R EX (%)

1 29.40
3 31.81
5 31.23
7 31.49

Table 8: Effect of selection rounds on EX.

Accuracy peaks at R=3 and then plateaus, so we adopt three rounds by default. 804

E Additional Results 805

Table 9 reports execution accuracy (EX) and execution proportion (EP) of Qwen2.5-0.5B and DeepSeek- 806

Coder-1.3B on BIRD DEV. The best EX in each column is bold; the second-best is underline. Feather-SQL 807

again outperforms all baselines, maintaining a substantial margins. 808

F Framework Upper Bound 809

To explore the upper bound of the Feather-SQL framework, we also evaluated its performance using 810

cumulative accuracy, which measures whether the correct SQL query is present within the Top-n generated 811

results. Specifically, we retained the top 4 candidates after the selection ranking in this experiment, rather 812

than solely selecting the top 1 candidate in default. 813
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Method Qwen2.5-0.5B DeepSeek-Coder-1.3B
EX (%) EP (%) EX (%) EP (%)

DR 6.71 26.99 29.27 64.41
FEQ 9.65 29.14 30.38 67.67
MAC-SQL 2.54 26.40 29.99 77.64
CHESS 0.91 4.82 18.12 32.97
Feather-SQL (Ours) 12.52 30.46 36.19 83.70

Table 9: Performance of Qwen2.5-0.5B and DeepSeek-Coder-1.3B across different methods on the BIRD DEV
dataset.

As indicated in Table 10, Top-3 is approximately 10% higher than Top-1 (EX). This suggests that there814

is room for further improvement in the selection mechanism. If the selection can be refined to accurately815

identify the optimal SQL query, the performance gap between Top-N and Top-1 could be considerably816

reduced.817

Model Top-1(%) Top-2(%) Top-3(%)

Qwen 31.8 39.0 40.5

Yi Coder 25.2 32.6 34.5

Prem-SQL 49.2 60.2 62.6

Table 10: Cumulative Accuracy on BIRD DEV.

G SOTA Result Illustration818

Figure 8 benchmarks our best Feather-SQL configuration against virtually every open-source model819

containing around or under 4B parameters, namely Qwen2.5-0.5B, Qwen2.5-Coder (Hui et al., 2024),820

DeepSeek-Coder-1.3B (DeepSeek-AI, 2024), Yi-Coder-1.5B (AI et al., 2025), Granite-3.1B (Mishra et al.,821

2024), SmolLM2-1.7B, Prem-SQL-1.3B (Anindyadeep, 2024), CodeS-3B (Li et al., 2024), Llama3.2-3B822

(Dubey et al., 2024), Falcon-3B (Gao et al., 2025a), Phi3-3.8B (Abdin et al., 2024), MiniCPM3-4B (Hu823

et al., 2024), and Nomotron-4B (Nvidia et al., 2024). Our method delivers the highest accuracy within824

this entire size bracket, establishing a new state-of-the-art for small language models on the task.825

14



Figure 8: Accuracy (%) versus model size (in billions of parameters) for various small language models. Fine-tuned
models are shown in yellow, general-purpose chat models in blue, and ours (Feather-SQL + Model Collaboration
Paradigm) is marked with a red star.

H Prompts 826

H.1 827

Schema Pruning Prompt

prompt_pruning_system = """
You are an agent designed to find all related tables to generate SQL query
for question based on the database schema and hint.

## Requirements
1. You don't need to answer the question, your task is only finding all related tables .
2. Consider all constraints of each table, including primary keys, foreign keys, and data

types.
3. You can generate chain of thoughts, but ensure all tables mentioned truly exist.
4. Successfully answer related columns could help you win $100000 dollars.
"""

prompt_pruning = """
## Instructions
1. Prioritize the table that most directly contains the information needed to answer the

question, considering:
- Table relationships such as foreign keys.
- Whether the table has columns directly related to the entities or actions in the
question.

2. Reasoning like two shown examples.

----------Example----------
## Database Schema
CREATE TABLE Employees (

employee_id INT PRIMARY KEY,
name VARCHAR(100),
department VARCHAR(100),
salary DECIMAL(10, 2)

);

828
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CREATE TABLE Departments (
department_id INT PRIMARY KEY,
department_name VARCHAR(100),
location VARCHAR(100)

);

## Question
What is the salary of the employee named 'Alice'?

## Relevant Tables
This table directly contains the columns name and salary, which are the only necessary fields

to answer the question.
The name column is used to locate the specific employee named 'Alice', and the salary column

provides the required
salary information. The Departments table is irrelevant because it does not store employee-

level data like salaries
or names, and its information is unrelated to this specific query.
The relevant table is Employees.

----------Task----------
## Database Schema
You are provided with the structure of the database "{database_name}":
{database_schema}

## Question
{question}

## Hint
{hint}

Among the following tables: {tables}, which tables are relevant for addressing the question?
## Relevant Tables
"""

829

H.2830

Schema Linking Prompt

prompt_linking_system="""
You are an agent designed to find all related columns to generate SQL query for question based

on the database schema and the hint.

## Requirements
1. You don't need to answer the question, your task is only finding all related columns.
2. Hint could help you to find the correct related columns.
3. Consider all constraints of each table, including primary keys, foreign keys, and data

types.
4. You can generate chain of thoughts, but ensure all columns mentioned truly exist.
7. Successfully answer related columns could help you win $100000 dollars.
"""

prompt_linking="""
## Instructions
1. Select columns that relates to information requested by the question, considering:

- Whether the column is key to filtering results (used in WHERE clauses).
- Whether the column should be part of the SELECT statement to fulfill the user query.
- The relationship of the column to other parts of the question, such as groupings,
aggregations, or direct match to entities mentioned.

2. Reasoning like two shown examples.

----------Example----------
## Database Schema
CREATE TABLE Employees (

employee_id INT PRIMARY KEY,
name VARCHAR(100),

831
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department VARCHAR(100),
salary DECIMAL(10, 2)

);

CREATE TABLE Departments (
department_id INT PRIMARY KEY,
department_name VARCHAR(100),
location VARCHAR(100)

);

## Question
What is the salary of the employee named 'Alice'?

## Relevant Columns
The name column is essential to filter the employee named 'Alice' in the WHERE clause,

ensuring we identify the correct individual. The salary column is needed to extract the
requested information, which is the employee's salary. Since the question does not
involve departments, the Departments table and its columns are irrelevant.

The related columns are Employees.name and Employees.salary.

----------Task----------
## Database Schema
You are provided with the structure of the database "{database_name}":
{schema}

## Question
{question}

## Hint
{hint}

Among the columns, which are relevant for addressing the question?
## Relevant Columns
"""

832

H.3 833

Multi-path Generation Prompt

system_prompt_sql_generation = """
You are an expert SQL assistant tasked with generating precise SQL queries based on given

database schemas, questions, and hint.

## Responsibilities
1. Analyze the **database schema** and **hint** to determine relationships, including **

primary keys, foreign keys, data types, and constraints**.
2. Generate a single, valid **SQLite SQL query** to answer the question, using provided schema

linking information for table and column selection.
3. Your response should contain only the **SQL query**, using standard SQL syntax with correct

use of table/column names and SQL clauses.

## Requirements
- Respond with only one SQL query, formatted as ```SQL```.
- Use clauses like **SELECT**, **FROM**, **WHERE**, **JOIN**, **GROUP BY**, **ORDER BY**, etc.
- Ensure SQL is efficient and respects **Important Columns**, table relationships, and

relevant constraints.
"""

prompt_generation_with_linking = """
You are given a database schema, question, important columns and hint. Generate a valid SQLite

query that answers the question.

## Instructions
1. Your response should only contain one SQL query, in standard SQL syntax.
2. Consider all **table relationships**, **primary/foreign keys**, **data types**, and **

Important Columns** while generating the query.

834
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## Database Schema
Database "{database_name}":
{database_schema}

## Important Columns
{schema_linking}

## Question
{question}

## Hint
{hint}

## Output Requirement
Format the response as:
```sql
[SQL query]
```
"""

prompt_generation_without_linking = """
You are given a database schema, question, and hint. Generate a valid SQLite query that

answers the question.

## Instructions
1. Your response should only contain one SQL query, in standard SQL syntax.
2. Consider all **table relationships**, **primary/foreign keys**, **data types** while

generating the query.

## Database Schema
Database "{database_name}":
{database_schema}

## Question
{question}

## Hint
{hint}

## Output Requirement
Format the response as:
```sql
[SQL query]
```
"""

835

H.4836

Correction Prompt

prompt_answer_correction_system ="""
Suppose you are an expert in SQLite and database management.

## Instructions
1. Based on the database structure provided, previous answer and its error messages, generate

one SQL query that answers the question.
2. You should try to fix the error of the previous answer and avoid it from happening again.

## Requirements
1. Your response should consist of only one SQL query, don't generate anything else.
3. Consider all constraints of each table, including primary keys, foreign keys, and data

types.
4. Provide your query in standard SQL format with appropriate use of SQL functions, joins, and

conditions.
"""
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prompt_answer_correction = """
## Database Schema
Given the structure of database:
{schema}

## Question
{question}

## Hint
{hint}

## Previous answer
{prev_ans}

## Error
{errorMsg}

## New Answer
"""

838

H.5 839

Selection Prompt

system_prompt_query_selection = """
You are an expert in analyzing SQL queries and determining their relevance to a given question.

Your task is to evaluate multiple SQL queries and select the one that best answers the
question based on the provided database schema and context.

## Responsibilities
1. Analyze the given question: Understand the intent of the question and its expected output.
2. Evaluate each SQL query: Consider the correctness, relevance, and completeness of each

query in relation to the question.
3. Select the best query: Choose the query that most accurately answers the question, while

considering database structure, table relationships, and query efficiency.

## Requirements
- Respond with the most relevant SQL query, and nothing else.
- Ensure the selected query is valid for the given database schema and directly addresses the

question.
"""

query_selection_prompt = """
You are given a question, a database schema, and multiple SQL queries. Your task is to select

the SQL query that is most relevant and best answers the question.

## Instructions
1. Analyze the Question: Understand what the user is asking and identify the information that

needs to be extracted from the database.
2. Evaluate SQL Queries: For each provided SQL query, determine its relevance based on:

- Accuracy: Does the query correctly match the question's intent?
- Completeness: Does the query retrieve all the necessary information without omitting
important details?
- Efficiency: Is the query optimized for the task, avoiding unnecessary joins or
conditions?

3. Select the Most Relevant Query: Choose the query that is the best match for the question.

## Database Schema
Database "{database_name}":
{database_schema}

## Question
The question is:
{question}

840
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## Hint
{hint}

## SQL Queries
{queries}

## Output Requirement
Reply the query Index in the format of "Index: ".

## Output
"""

query_with_response_selection_prompt = """
You are given a question, a database schema, multiple SQL queries, and their execution results.

Your task is to select the SQL query that best answers the question based on the query
and its result.

## Instructions
1. Understand the Question: Determine what the user is asking and identify the specific

information that needs to be retrieved.
2. Evaluate Each Query and Response Pair: For each provided SQL query and its result,

determine:
- Query Accuracy: Does the query correctly represent the user's intent?
- Result Relevance: Does the result contain the data needed to answer the question
completely and correctly?
- Efficiency: Is the query optimized, avoiding unnecessary complexity?

## Database Schema
Database "{database_name}":
{database_schema}

## Question
{question}

## Hint
{hint}

## SQL Queries and Execution Results
{queries}

## Output Requirement
Only reply the query Index in the format of "Index: ".
"""
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