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Abstract: The field of robotics has made significant advances towards generalist
robot manipulation policies. However, real-world evaluation of such policies is
not scalable and faces reproducibility challenges, issues that are likely to worsen
as policies broaden the spectrum of tasks they can perform. In this work, we
demonstrate that simulation-based evaluation can be a scalable, reproducible, and
reliable proxy for real-world evaluation. We identify control and visual disparities
between real and simulated environments as key challenges for reliable simulated
evaluation and propose approaches to mitigating these gaps without the need to
painstakingly craft full-fidelity digital twins. We then employ these techniques
to create SIMPLER, a collection of simulated environments for policy evaluation
on common real robot manipulation setups. Through over 1,500 paired sim-and-
real evaluations of manipulation policies across two embodiments and eight task
families, we demonstrate a strong correlation between policy performance in SIM-
PLER environments and that in the real world. Beyond aggregated trends, we find
that SIMPLER evaluations effectively reflect the real-world behaviors of individ-
ual policies, such as sensitivity to various distribution shifts. We are committed to
open-sourcing all SIMPLER environments along with our workflow for creating
new environments to facilitate research on general-purpose manipulation policies
and simulated evaluation frameworks. Website: https://simpler-env.github.io
Keywords: Policy Evaluation, Real-to-Sim, Robot Manipulation

Real robot evaluation (train on real, evaluate in real)

Simulated evaluation (train on real, evaluate in sim)
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Figure 1: Characterizing generalist robot manipulation policies typically involves evaluating them on many
tasks & scenarios, a laborious undertaking in the real world (top left). In this work, we design an evaluation
procedure where policies trained on real data are evaluated in purpose-built simulated environments (bottom
left). Our approach yields a strong correlation between real-world and simulated performance (right) for various
open-source robot policies [1, 2, 3] across two commonly used robot embodiments (Google Robot and Wid-
owX) and over 1500 evaluation episodes. These results highlight the potential of simulation-based approaches
for evaluating generalist real-world robot manipulation policies in a scalable, reproducible, and reliable way.

1 Introduction
Remarkable progress has been made in recent years toward building generalist real-world robot
manipulation policies [1, 2, 3, 4, 5], i.e., policies that can perform a wide range of tasks across
many environments and even robot embodiments. However, evaluating these policies in a scalable
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Simulated Manipulation Policy Evaluation
for Real Robot Setups

SIMPLER

Pick Coke Can Move Near

Open/Close Drawer Put Object in Drawer

Google Robot

Put Carrot on Plate

Stack Cubes Put Eggplant in Basket

Put Spoon on Towel

BridgeData V2

import simpler_env

env = simpler_env.make(
    "google_robot_pick_coke_can"
)
policy = load_policy()

env.reset()
env.step(
    policy.sample_action()
)

Figure 2: We introduce SIMPLER, a suite of simulated evaluation environments for common real robot manip-
ulation setups, namely the Google Robot evaluations from the Robotics Transformer series of works [1, 2, 17],
and environments from the BridgeData V2 dataset [5] (see Appendix for detailed environment descriptions).
We make using SIMPLER easy via exposing a standard Gym interface. Additionally, we commit to open-source
policy inference code for real-to-sim evaluation of common generalist robot policies (RT-1 [1], RT-1-X [2], and
Octo [3]), and provide detailed guides for evaluating new policies and creating new evaluation environments.

and reproducible way remains challenging, as real-world evaluation is expensive and inefficient.
Compared to the evaluation burden of works that study robot performance in narrower settings, the
scope of evaluations required for faithful performance estimates of generalist policies increases with
the breadth of their abilities. This underlines a growing challenge in robot manipulation research: as
we scale the capabilities of robot policies, how do we correspondingly scale our ability to accurately,
reproducibly, and comprehensively evaluate them?

In this work, we propose simulated evaluation as a possible answer, in which manipulation policies
trained on real data are evaluated in purpose-built simulated environments (Fig. 1). Such real-to-sim
evaluation can serve as a scalable, reproducible, and informative tool to complement gold-standard
real-world evaluations. Indeed, evaluation in simulation is common practice for testing autonomous
driving policies across a wide range of scenarios before real-world deployment [6, 7, 8]. However,
performing simulated evaluations for robotic manipulation poses additional challenges due to the
diverse interactions between the agent and the environment. At the same time, research on sim-to-
real policy learning [9, 10] has demonstrated that considerable transfer between simulation and the
real world is possible even for manipulation policies. While sim-to-real approaches typically train
in simulation and evaluate in the real world, we are interested in the opposite question: how can we
build systems for evaluating manipulation policies trained on real data in simulated environments?

One option to build such simulated environments is to fully replicate an existing real-world en-
vironment by creating a simulated “digital twin”, an approach popular in navigation [11, 12] and
autonomous driving [13]. However, for robot manipulation, reconstructing dynamic and interactive
objects [14], along with realistic materials and lighting [15] in simulation remains an open research
question. Furthermore, building full-fidelity digital twins demands extensive time and resources,
typically requiring digital artists to manually craft object geometries and materials [11, 16]. Captur-
ing precise physical properties of objects for manipulation simulation, such as the center of mass,
inertia, and static and dynamic friction, further complicates scalability.

A key idea in this work is that we do not need to build exact replicas of real-world environments.
Instead, we aim for simulated environments that are merely realistic enough, such that the perfor-
mance of policies evaluated in simulation correlates well with their real-world performance. This
allows us to design environment creation pipelines that are more scalable than creating exact digital
twins. Through extensive experiments, we examine the challenges of building effective simulated
evaluation pipelines, specifically control and visual disparities between real and simulated environ-
ments. We then propose and evaluate approaches for mitigating these differences based on offline
system identification, “green-screening” simulation observations using real-world backgrounds, and
object texture baking from real-world images.

Using these techniques, we create SIMPLER, a suite of simulated manipulation policy evaluation
environments for commonly used real robot setups, namely the RT-1 [1] and BridgeData V2 [5]
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evaluation setups (Fig. 2). For both setups, we perform extensive paired sim-and-real evaluations
for multiple open-source manipulation policies such as RT-1-X [2] and Octo [3], and we demonstrate
a strong correlation between policy performance as assessed by SIMPLER and the corresponding
real environments (Fig. 1, right). In addition, we find that simulated policy evaluations in SIM-
PLER environments accurately reflect policy behavior modes in the real world, such as sensitivity
to various distribution shifts. As such, SIMPLER is a first step toward using simulated evaluation
as a tool for reliable, scalable, and reproducible manipulation policy evaluation. We are committed
to open-sourcing our workflow for constructing SIMPLER environments to facilitate research on
general-purpose manipulation policies and simulated evaluation frameworks.

2 Related Work
Reproducible evaluation of real robot policies is a long-standing challenge. Initiatives like YCB [18]
and NIST [19] were introduced to standardize evaluation objects, yet standardizing other variables
such as lighting, camera setups, and workspaces proves difficult. Other benchmarks like the Amazon
Picking Challenge [20], DARPA Robotics Challenges [21], TOTO [22], and RB2 [23] require on-
going maintenance of real-world evaluation setups, representing a significant long-term investment.
As real-world robotic datasets [1, 2, 5] and generalist policies [24, 17, 3, 25] proliferate, the demand
for reliable, scalable, and reproducible methods of evaluating these policies grows. The need is
particularly acute given the difficulty faced by the research community in conducting evaluations
without standardized hardware.

Simulation-based algorithmic research offers an alternative to real-world evaluation. A wide range
of simulation benchmarks [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38] have been established
to facilitate scalable and reproducible evaluation. However, most previous work considers both
training and evaluation in simulation, and the resulting policies might exhibit distinct behaviors
when deployed on real robot hardware. In contrast, we aim to both measure and enhance simulated
evaluations’ ability to reflect a policy’s real-world performance and behaviors.

Can simulated evaluations reliably predict real-world policy performance and behavior modes?
While several studies [12, 11, 39] have explored this question in navigation tasks, we focus on sim-
ulation evaluation for real-world manipulation policies. Manipulation presents unique challenges
due to the tight interaction loop between policy and environment, dynamic rather than static scenes,
along with the intricate, precise, and complex action sequences where even slight variations can
significantly impact task outcomes.

For robot manipulation, the sim-to-real setting has been extensively investigated, where one aims to
train policies in simulation and deploy them in the real world. To tackle the gaps between simulation
and reality, prior work has adopted domain randomization [40, 41, 42, 43, 44, 10, 45, 46, 47] and
domain adaptation [48, 49, 50, 51, 52] approaches. For instance, Generative Adversarial Networks
(GANs) [48, 49, 50, 51] are trained to modify images generated in simulations so they resemble the
style of real-world images. Alternatively, Du et al. [52] aim to align the feature space of observa-
tions between simulated and real-world environments, creating a more consistent visual experience
across these domains. In contrast to these methods of sim-to-real learning, we focus on the opposite
question: building simulation systems that effectively and faithfully evaluate real-world robot ma-
nipulation policies. To this end, we introduce approaches to addressing both real-to-sim visual and
control gaps to enhance real-&-sim evaluation correlations.

3 Using Physics Simulators for Evaluation of Robot Manipulation Policies
Problem formulation. We study the problem of using physics simulators to evaluate performance
and examine the behavior modes of real robot manipulation policies. We emphasize that our goal is
not to completely replace real-world evaluations or to perfectly replicate real-world policy behaviors
in simulations, as there are always gaps between sim and real. Instead, we aim to achieve strong
correlation between relative policy performances in the real world and in simulation. This gives
practitioners a readily available policy improvement signal to guide their research. Formally, for
two policies πa and πb with real-world performance measures Ra and Rb - such as their success
rates across tasks - we aim to construct a simulator S (with performance measures RS,a and RS,b)
that achieves strong correlation between relative performances in simulation and in the real world.
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Figure 3: Illustration of mean maximum rank violation (MMRV, range [0, 1], lower is better) and Pearson cor-
relation coefficient (Pearson r, range [−1, 1], higher is better) for assessing the policy performance correlation
in real-world and simulation, as well as the overall quality of simulated evaluation pipelines. Each circle rep-
resents a policy. For the two leftmost pipelines, both metrics yield valuable insights, identifying one as poor
and the other as good. The two rightmost examples highlight the limitations of Pearson r: it can penalize
simulation pipelines that fail to linearly recover the real results despite recovering the correct ranking, and it is
overly sensitive to minor noise in evaluations when different policies perform similarly in the real world.

Metrics for real-to-sim evaluation pipelines. A standard approach for measuring the correlation
between two variables is the Pearson correlation coefficient (Pearson r) [53]. However, Pearson
correlation has two important limitations for judging simulated evaluation pipelines: (1) It only
assesses the linear fit between real and simulated performance, which is not necessarily required
so long as the simulated pipeline reflects real-world performance improvements between different
policies (Fig. 3, middle right); (2) It does not reflect the range of values it is computed over. Thus,
for policies performing similarly in the real world, r may change drastically based on the inherent
noise in real-world evaluations (Fig. 3, far right grey vs. green).

To address the first drawback of the Pearson correlation, we can additionally report a ranking metric
that measures whether the simulated evaluation ranks the policies correctly based on their real-world
performance, independent of whether the relationship is linear. However, conventional ranking met-
rics such as Spearman’s rank correlation [54] still suffer from the second shortcoming: they operate
purely on the rankings and disregard the underlying margins between real values. When choosing
a suitable ranking metric, the key point is that we need to take the magnitude of the rank violation
into account, measured as the difference in real-world performance between the mis-ranked policies.
This provides a clear signal whether rank violations are caused by small real-world performance dif-
ferences that are often the result of inherent noise in real robot evaluations, as the far-left example
of Fig. 3, or constitute clear failures of the evaluation pipeline, as the middle-left example of Fig. 3.

Thus, we propose the mean maximum rank violation (MMRV) metric to better assess the consis-
tency of the real-and-sim policy ranking. Given N policies π1...N and their respective performance
measures (e.g., success rates) R1...N , RS,1...N from real and simulated evaluations, we have:

MMRV(R,RS) =
1

N

N∑
i=1

max
1≤j≤N

|Ri −Rj | 1[(RS,i < RS,j) ̸= (Ri < Rj)] (1)

The key underlying quantity is the rank violation between two policies πi and πj , which weighs the
significance of the simulator’s incorrect ranking by the corresponding real-world performance mar-
gin. MMRV then averages each policy’s worst-case rank violation. We will report both MMRV and
Pearson r as they provide complementary perspectives on the simulated evaluation’s effectiveness.

4 SIMPLER: Simulated Manipulation Policy Evaluation for Real Robots
This section introduces our approach to designing a simulation evaluation pipeline for real robot
manipulation policies. We take inspiration from the rich literature on sim-to-real policy learning [45,
40, 41, 10] and focus on control and visual gaps between simulation and the real world.

4.1 Mitigating the Real-to-Sim Control Gap via Offline System Identification
First, we need to ensure that the policy actions executed in simulation yield comparable ef-
fects on the system state as those observed when executed on the real robot. Concretely, let
{(xi, Ri) : xi ∈ R3, Ri ∈ SO(3)}Ti=1 be a 6D end-effector pose trajectory recorded when rolling
out an action trajectory {ai}Ti=1 on a real robot. Let {(x′

i, R
′
i) : x′

0 = x0, R
′
0 = R0}Ti=1 =

Sim(p,d, {ai}Ti=1,x0, R0) be the corresponding trajectory when unrolling the same sequence of
actions in the simulation in an open-loop manner using stiffness and damping parameters (i.e., PD
parameters) (p,d). Then, we define our system identification loss from translation and rotation
errors as Lsysid(p,d) =

1
T

∑T
i=1

(
||xi − x′

i||2 + arcsin
(

1
2
√
2
||Ri −R′

i||F
))

.
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In practice, we use a small sample of 20 trajectories from an offline dataset D, e.g., a real-world
demonstration dataset, to retrieve action and end-effector pose trajectories and compute the system
identification loss above. For all environments in this work, we use trajectories from existing open-
source demonstration datasets [1, 5], and thus do not need to collect any new data. We also ensured
that each trajectory comes from different task instructions to encourage trajectory diversity.

Next, we optimize the parameters of our controller: given initial PD parameters (p0,d0) and search
ranges [plow,0,phigh,0], [dlow,0,dhigh,0], we normalize the range to [0, 1] and perform simulated an-
nealing [55] to optimize Lsysid in a gradient-free manner. We then select the PD parameters with
the lowest Lsysid as (p1,d1), and initialize another round of simulated annealing with a reduced
parameter search range. In total, we perform 3 rounds of simulated annealing.

Real Sim w/o SysID Sim w/ SysID

On the right, we qualitatively illustrate the ef-
fects of our system identification for one of our
simulated environments, the Google Robot [1].
We find that naively using PD parameter values
from real controllers results in inaccurate track-
ing of the real robot’s end-effector movements, which culminates in a missed grasp on the Coke can.
After system identification, the controller more accurately tracks the motion in simulation: the robot
is able to grasp the object when replaying the demonstration’s action sequence.

4.2 Mitigating the Real-to-Sim Visual Gap via Visual Matching and Variant Aggregation

Real Raw Sim Sim                 
+ Green Screen     
+ Texture Matching

Sim                 
+ Green Screen     

Visual discrepancies between real and simu-
lated environments can cause distribution shifts
that adversely impact policy behavior, making
simulated evaluations less reliable [11]. While
modern graphics pipelines are able to create
highly realistic visuals, developing the underly-
ing assets and determining the lighting parame-
ters to accurately model existing environments
involves significant manual labor. Our goal is to
match the simulator visuals to those of the real-
world environment with only a modest amount
of manual effort. For the scene background, we
propose a “green screening” approach in which we overlay an image of the real-world environment
onto the background of the simulated scene (see the wrapped figure). Concretely, we perform the
following steps: (1) we remove the robot and foreground objects from the first frame of a real-
world evaluation video Ireal using online image inpainting tools (e.g., https://cleanup.pictures); (2)
we create a binary mask M isolating the foreground objects (robot arm and interactable objects,
such as tabletop objects and articulated objects) in the simulation rendering Isim by querying ground
truth segmentation masks in simulation; and (3) we combine the real-world background with the
simulation foreground: I ′ = M ⊙ Isim + (1−M)⊙ Ireal, producing the green-screened image.

In practice, we find that many tested policies are also sensitive to changes in foreground object
and robot textures, yet available simulation assets often exhibit appearance differences from real-
world objects. Thus, we tune simulation asset textures for many objects to more closely match their
real-world counterparts. We term this approach “Visual Matching” (see above for an illustration).
Concretely, we project the real texture onto the simulation object by (1) segmenting the object in
a real-world image [56]; (2) aligning the simulated object pose to the real image; and (3) “unpro-
jecting” the texture onto the object mesh in simulation. We provide step-by-step instructions in
Appendix B.2, and we will release a convenient command-line script for this process. Otherwise,
for assets like robot visual meshes with texture maps already resembling their real-world counter-
parts, we can instead selectively copy and paste color values from real to simulated texture maps.
Finally, as robot arms may change colors during movement, we found it helpful to obtain multiple
tuned robot arm colors that match the real-world textures from different phases of a manipulation
task. We then average their evaluation results to mitigate this confounding factor.
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As an alternative to Visual Matching, we explore a mitigation strategy for real-to-sim visual gaps
inspired by domain randomization: instead of minimizing the gap, we heavily randomize visual
aspects of the scene to create environment variants. We then obtain an estimate of a policy’s perfor-
mance by aggregating evaluation results across multiple such variants, which we term as “Variant
Aggregation” (see Appendix B.3 for more details and visualizations). Note that the Variant Aggre-
gation setup does not seek to match the visual appearances between sim and real. As a result, it can
utilize any scenes from public datasets like ReplicaCAD [16] and any objects (including the tabletop
objects and the cabinets) from public datasets like Objaverse [57] for evaluation, whose appearances
are out-of-distribution for the policies evaluated in this paper.

SIMPLER environments and other details. We instantiate SIMPLER on two commonly used real
robot evaluation setups: the Google Robot from the RT series of work [1, 17, 2] and the WidowX
BridgeData V2 setup [5]. For each setup, we provide simulations for multiple tasks spanning a
range of skills, interacted objects, object positions and orientations, backgrounds, and lighting con-
ditions (see Fig. 2). The tasks are chosen to be representative of those in the corresponding training
datasets, while also involving largely rigid body objects whose dynamics can be reasonably well-
approximated by modern physics simulators. We also instantiate SIMPLER on top of the SAPIEN
physics simulator [58], but later show that our contributions are independent of the simulator used
and can be reproduced in Isaac Sim [59]. Creating most new environments takes an experienced
user approximately one hour. See Appendix A and Appendix B for more details.

5 Experimental Results
In this section, we empirically test the performance correlation between real-world robot evaluations
and simulated evaluations in SIMPLER environments for a representative set of open-source gener-
alist robot manipulation policies. Concretely, our experiments are designed to answer the following
questions: (1) Do relative performances of different manipulation policies in SIMPLER strongly
correlate with those observed in real evaluation (Section 5.2)? (2) For a given policy, can SIMPLER
evaluations accurately reproduce real-world policy behavior modes, e.g. sensitivity to various visual
distribution shifts (Section 5.3)? (3) How sensitive is the fidelity of SIMPLER evaluations to (i)
control and visual gaps, (ii) physical property gaps, and (iii) the choice of simulator (Section 5.4)?

5.1 Experimental Setup
To quantitatively evaluate correlations between real and simulation policy performance, we perform
paired sim-and-real experiments, i.e., with the same task instructions, object & robot poses, evalu-
ation trials, and success criterions between the simulation and the real world (note that the paired
experiments are not restricted to the tasks and setups in policies’ training data). We use popular
open-source generalist robot policies: RT-1-X [2] and Octo [3] (Octo-Base and Octo-Small). For
evaluations in the Google Robot environments, we additionally use a number of RT-1 [1] check-
points at various stages of training: RT-1 trained to convergence (RT-1 (Converged)), RT-1 at 15%
of training steps (RT-1 (15%)), and RT-1 at the beginning of training (RT-1 (Begin)). We also report
results on RT-2-X [17]. More details in Appendix A.

5.2 SIMPLER Environments Show Strong Performance Correlations with Real Evaluations
We summarize the results of our main paired real-world and simulation evaluations in Fig. 4 (detailed
breakdown in Appendix Table 2). We observe a strong correlation between the relative performances
in simulation and in the real world across most policy checkpoints and tasks we evaluate, as reflected
in low values for the MMRV metric introduced in Section 3 and high values for Pearson r.

In Table 1, we compare SIMPLER with using the action MSE in validation episodes for policy
ranking, which is common for model selection within supervised learning settings (e.g., imitation
learning). However, we find that validation MSE is not a good proxy for a policy’s real-world per-
formance, leading to high MMRV and low Pearson r. On the other hand, SIMPLER evaluations
more accurately reflect relative policy performances in the real world, obtaining significantly lower
MMRV and higher Pearson r. Additionally, we find that an alternative implementation of SIMPLER
using Variant Aggregation (Section 4.2) performs worse: since it does not seek to match real-world
visuals (Fig. 5), policies more sensitive to visual distribution shifts exhibit larger real-and-sim per-
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Figure 4: Real vs. SIMPLER success rates on Google Robot &
Bridge V2 tasks. SIMPLER evaluations (“Visual Matching” setup)
show a strong correlation with real policy performance.

Evaluation Protocol Pick Can Move Near Drawer Avg.

MMRV ↓

Validation MSE 0.412 0.408 0.306 0.375
SIMPLER-VarAgg 0.084 0.111 0.235 0.143
SIMPLER-VisMatch 0.031 0.111 0.027 0.056

Pearson r ↑

Validation MSE 0.464 0.230 0.231 0.308
SIMPLER-VarAgg 0.960 0.887 0.486 0.778
SIMPLER-VisMatch 0.976 0.855 0.942 0.924

Table 1: Comparison of manipulation
policy evaluation protocols for ranking
6 common open-source policy check-
points (3 RT-1 checkpoints, RT-1-X,
RT-2-X, Octo-Base) on Google Robot
tasks. See Appendix Table 2 for a de-
tailed breakdown of results per policy.

formance discrepancies. In summary, SIMPLER leads to a strong correlation with real-world
policy performance, and we recommend Visual Matching as the default evaluation approach.

5.3 SIMPLER Evaluations Effectively Model Policy Robustness to Distribution Shifts
Previously, we showed that SIMPLER evaluations strongly correlate with real-world performances
based on trial averages. Beyond comparing average policy performances, it would be beneficial to
let practitioners gauge more fine-grained aspects of a policy’s behavior, such as its robustness to
distribution shifts like lighting, background, and texture changes. We ask: do SIMPLER evaluations
accurately reflect a policy’s real-world behavior under such distribution shifts, and can they thus be
used for more fine-grained policy evaluation beyond average performance?

To test this, we use SIMPLER environments to perform controlled experiments along five dis-
tribution shift axes inspired by Xie et al. [60]: background, lighting, distractors, table texture,
and robot camera pose. We adopt the base environment setup and the two variations per axis
from our Variant Aggregation evaluation (see Appendix B.3), adding two more variations for the

∆ Real success rate
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−0.39  

w/o Data Augmentation   MMRV = 0.000 ↓ r= 0.831 ↑

w/ Data Augmentation   MMRV = 0.016 ↓ r= 0.970 ↑

new camera pose axis. We evaluate two RT-1 check-
points trained with and without data augmentation,
which exhibit different robustness behaviors to distri-
bution shifts. For simulated results and real-world re-
sults, we report the difference in the success rate with
and without each distribution shift. The wrapped figure
shows the results (more details in App. Table 4). We find
that SIMPLER evaluations effectively reflect the poli-
cies’ robustness to various distribution shifts in the real
world. Notably, in both real and sim, changing robot
camera poses and table textures has a significant impact on policy performance, while the impact of
lighting and distractor changes are relatively minor.

Furthermore, we find that an even more fine-grained analysis is possible through simulated evalua-
tion. For example, when varying real-world table textures, both policies are more robust to unseen
solid table colors than unseen patterned table textures (4% vs. 25% avg. performance decrease).
This behavior is well reflected in SIMPLER: policy performance in simulation decreases by 2% on
average when new colors of the solid table are introduced and by 24% for new patterned textures.

 Real, original arm texture  Real, new arm texture
SIMPLER, arm texture sensitivity

0.0 0.2 0.4 0.6 0.8 1.0

Success rate

RT-1-XOcto-Base

Testing novel distribution shifts. Based on these results, we
put our simulated evaluations to the test and ask: can SIM-
PLER evaluations be used to predict the robustness of policies
to new distribution shifts in the real world? Throughout our
simulated evaluations, we observe that Octo-Base is particu-
larly sensitive to changes in the simulated robot arm textures.
Specifically, under our “Visual Matching” evaluation setup, its
success rate is 0% on the “Pick Coke Can” task using the un-
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tuned robot arm, but 29.3% using one of our tuned robot arms. On the other hand, RT-1-X, also
trained on the same Open-X-Embodiment dataset [2], exhibits higher robustness to different simu-
lated robot arm textures. To test whether this trend in simulation holds in real-world evaluations,
we design a novel real-world distribution shift evaluation, where we change the real robot arm tex-
ture by wrapping it using multiple gift wrapping papers. We report results in the wrapfigure and
Appendix Table 6. The real-world evaluations support the simulated results: Octo-Base is more sen-
sitive to changes in arm texture than RT-1-X. This indicates that simulated evaluations in SIMPLER
environments can be predictive of real-world policy behaviors under novel distribution shifts.
5.4 Ablation Studies

Control Params Control Loss ↓ MMRV ↓

Setting 1 0.267 0.070
Setting 2 0.432 0.100
SIMPLER SysID 0.131 0.031

Effect of system identification. To test the impact of system identi-
fication (Section 4.1), we repeat the Google Robot’s Visual Matching
evaluations from Section 5.2, but perturb the stiffness and damping
parameters of robot joints from the results of system identification.
On the right, we show that the noisy system identification parameters lead to worse MMRV, i.e.,
worse correlation between simulated and real-world evaluations. This underlines the importance of
accurate system identification for simulated evaluation.

Green
Screen

Drawer
Matching

Robot
Matching MMRV ↓ Real-Sim

Success Gap ↓

✗ ✗ ✗ 0.087 0.272
✗ ✓ ✗ 0.087 0.266
✗ ✗ ✓ 0.087 0.272
✗ ✓ ✓ 0.087 0.328
✓ ✗ ✗ 0.087 0.198
✓ ✓ ✗ 0.142 0.253
✓ ✓ ✓ 0.050 0.136

Effect of visual matching. We ablate the impact of our ap-
proaches in Section 4.2 for matching sim and real visual ap-
pearances. We use the RT-1 (Converged), RT-1 (Begin), and
RT-1-X checkpoints on the Google Robot’s open/close drawer
tasks, and we compare the effectiveness of different combi-
nations of background “green-screening”, object texture, and
robot texture settings. Results are reported in the wrapfigure
(more details in App. Table 7). We observe the lowest MMRV and real-to-sim performance gap
when combining background “green-screening” with object texture tuning for both drawer and robot
assets. Interestingly, only tuning the drawer texture or the robot texture (but not both) is insufficient
in improving the real-and-sim correlation. We hypothesize that this causes appearance inconsisten-
cies between different parts of a scene, resulting in larger real-and-sim performance disparities.

Sensitivity to physical property gap. When developing SIMPLER environments, we simplified
the physical properties (e.g., the center of mass and friction coefficients) of objects and robots due
to the complexity and time-consuming nature of precise modeling and system identification. In this
section, we investigate whether our simulated evaluation is sensitive to such a real-to-sim physical
property gap. We conduct 2 experiments: (1) For the “pick coke can” task, we vary the mass of
the empty coke can (by varying its density), along with the static friction of the gripper finger; (2)
For the “open/close drawer” task, we vary the joint frictions of the articulated cabinet. We report
the MMRV and the Pearson correlation results in Appendix Tab. 8. We find that our simulated
evaluation remains effective across a spectrum of plausible physical property parameters, evidenced
by the low MMRV and the high Pearson correlation, even though altering these parameters has a
moderate (≤ 15%) impact on the success rates of different policies. SAPIEN      MMRV = 0.082 ↓ r= 0.923 ↑

Isaac Sim   MMRV = 0.058 ↓ r= 0.919 ↑
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Sensitivity to the choice of physics simulator. To investigate whether
our results are sensitive to the underlying physics simulator, we repro-
duce the Google Robot evaluation in Isaac Sim [59]. The results on
the right (details in Table 9) show that SIMPLER’s results are repro-
ducible in Isaac Sim. In particular, we also observe a strong real-to-sim
performance correlation across most checkpoints for SIMPLER-Isaac.
This suggests that the choice of physics simulator is not critical for the
tasks we tested, which mainly involve rigid body manipulations.

6 Conclusion
As generalist robot manipulation policies advance, scalable evaluation approaches become essential
for the rapid development of algorithms, models, and datasets. We introduce SIMPLER, a suite of
real-to-sim evaluation environments that show a strong correlation to real-world policy performance.
We provide a detailed discussion of our current work’s limitations in Appendix Sec. G.
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A Full Environment and Evaluation Protocol Details

In this section, we provide detailed descriptions of our SIMPLER environments along with our
simulation and real-world evaluation protocols.

For the RT-1 Robot, we adopt the following language-conditioned tasks:

• “pick coke can”. The robot is instructed to grasp the empty coke can on the table and lift
it up. In the default setting, no distractors are added to the scene. We place the coke can
in 3 different orientations: horizontally laying, vertically laying, and standing. For each
orientation, we place the coke can at 25 grid positions within a rectangle on the tabletop,
yielding 25 trials per orientation and 75 trials in total.

• “move {obj1} near {obj2}”. We place a triplet of objects on the tabletop in a triangle
pattern. In each trial, one object serves as the source object, one serves as the target, and the
other serves as the distractor (this creates 6 trials for each triplet and each triangle pattern).
We randomly choose 5 triplets of objects among a total of 8 objects (blue plastic bottle,
pepsi can, orange, 7up can, apple, sponge, coke can, redbull can), and adopt 2 triangle
patterns (upright and inverted). This creates a total of 5× 2× 6 = 60 trials. The 5 triplets
chosen are:

– blue plastic bottle, pepsi can, orange
– 7up can, apple, sponge
– coke can, redbull can, apple
– sponge, blue plastic bottle, 7up can
– orange, pepsi can, redbull can

• “(open / close) (top / middle / bottom) drawer”. The robot is positioned in front of a
cabinet that contains 3 drawers and instructed to open / close a specific drawer, testing its
ability to manipulate articulated objects. We place the robot at 9 grid positions within a
rectangle on the floor, yielding a total of 9× 3× 2 = 54 trials.

• “open top drawer; place apple into top drawer”. The robot opens the top drawer and
places the apple from the cabinet top into the top drawer, testing its ability to perform
longer-horizon tasks. We place the robot at 3 different positions on the floor and the apple
at 9 different positions within a grid on the cabinet top, yielding a total of 3×9 = 27 trials.
Initially, the policies receive the “open top drawer” instruction. We switch to the “place
apple into top drawer” instruction once the robot outputs the “terminate” token or after half
of the time limit has elapsed.

For the WidowX + Bridge (with WidowX-250 6DOF robot), we adopt the following tasks:

• “put the spoon on the towel”. We place the spoon on a vertex of a square (with edge
length 15cm) on the tabletop, and we place the towel on another vertex. The spoon’s initial
orientation switches between horizontal and vertical, requiring the robot to perform gripper
reorientation. This creates a total of 2× 12 = 24 trials.

• “put carrot on plate”. We adopt a similar setup as “put the spoon on the towel”, replacing
the spoon with carrot and the towel with plate.

• “stack the green block on the yellow block”. We place a green block on a vertex of
a square on the tabletop, and we position a yellow block on another vertex. The block
dimensions are 3cm. We also adopt two differently-sized squares (edge length 10cm and
20cm). This creates a total of 2× 12 = 24 trials.

• “put eggplant into yellow basket”. We place an eggplant on the right basin of a sink,
and we place a yellow basket on the left basin. The eggplant is dropped into the sink at a
random position and orientation, and we ensure that the eggplant is directly graspable (i.e.,
not too close to the edges of the sink basin). We perform a total of 24 trials.
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Algorithm 1 RT-1 Robot Controller in Simulation
Require: (1) Current end-effector action (xa, Ra), along with sensed arm joint positions and velocities

qarm, varm; (2) Current gripper action ga, along with sensed gripper joint position and velocity qgrip, vgrip;
(3) Simulation frequency Hsim (501 in our implementation), action output frequency (control frequency)
Hctrl (3 in our implementation following [1]); (4) Arm velocity, acceleration, and jerk limits Larm (equal to
1.5, 2.0, 50.0 respectively); (5) Gripper velocity, acceleration, and jerk limits Lgrip (equal to 1.0, 7.0, 50.0
respectively); (6) Current action timestep T within an episode; (7) A planner that takes goal and initial
joint positions and velocities as input (along with velocity, acceleration, and jerk constraints), and outputs
a time-parametrized trajectory.

1: # Arm motion planning
2: (x, R) = ForwardKinematics(qarm)
3: (xgoal, Rgoal) = (xa + x, Ra ·Rarm)
4: (qgoal, vgoal) = (InverseKinematics(xgoal, Rgoal, qarm), 0.0)
5: ArmPlan = Planner(qgoal, vgoal, qarm, varm, Larm)
6: # Gripper motion planning
7: if T = 0 then ▷ At the beginning of episode
8: qlastplan,grip, vlastplan,grip = qgrip, 0.0
9: qlastgoal,grip = qgrip

10: end if
11: if |ga| < 0.01 then ▷ Small action filtering
12: qgoal,grip = qlastgoal,grip
13: else
14: qgoal,grip = qlastplan,grip + ga
15: end if
16: vgoal,grip = 0.0
17: GripPlan = Planner(qgoal,grip, vgoal,grip,

qlastplan,grip, vlastplan,grip, Lgrip)
18: # Execute arm and gripper plans at each simulation step
19: for each i = 1 · · · Hsim

Hctrl
do

20: t = i
Hsim

21: qlastplan, = ArmPlan(t)
22: SetArmJointPosTarget(qlastplan)
23: qlastplan,grip, vlastplan,grip = GripPlan(t)
24: SetGripperJointPosTarget(qlastplan,grip)
25: SetGripperJointVelTarget(vlastplan,grip)
26: end for each
27: qlastgoal,grip = qgoal,grip
28: T = T + 1

For Octo simulated evaluations, since the model involves a non-deterministic diffusion head, we
average its success rates across three different random seeds to produce a lower-variance estimate of
the policy’s simulation performance. Additionally, for RT-1 Robot simulated evaluations, we aver-
age results over four versions of robot arm and gripper colors to account for changes in arm texture
during real robot rollouts (see Section 4.2). For the WidowX environments, given the consistent
black color of the arm and gripper across videos, we skip this step.

The number of evaluation trials we present above pertain to the real-world evaluation setup. For
our “Variant Aggregation” simulation evaluation setup, the number of trials is multiplied by the
number of simulation environment variants. For our “Visual Matching” simulation evaluation setup,
the number of trials is multiplied by the number of tuned robot arm colors for the RT-1 Robot
evaluation setup, along with the number of seeds for the Octo policies.

B More Implementation Details of Our Real-to-Sim Evaluation System

B.1 Robot Controllers

RT-1 Robot Given translation, rotation, and gripper action output from a model, we adopt Algo-
rithm 1 in simulator to execute the action commands. The simulation frequency in the algorithm
refers to the number of simulation steps per second, while the control frequency refers to the num-
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Algorithm 2 WidowX Controller in Simulation
Require: (1) Current end-effector action (xa, Ra), along with sensed arm joint positions qarm; (2) Current

gripper action ga, along with sensed gripper joint position qgrip; (3) Simulation frequency Hsim (500 in our
implementation), action output frequency (control frequency) Hctrl (5 in our implementation following);
(4) Current action timestep T within an episode; (5) A function S that maps a R3 position vector and a 3x3
SO(3) rotation matrix to a 4x4 SE(3) matrix.

1: if T = 0 then ▷ At the beginning of episode
2: qlastgoal = qarm
3: end if
4: (x, R) = ForwardKinematics(qlastgoal)
5: (xgoal, Rgoal) = S−1(S(x, I) · S(xa, Ra)·

S(−x, I) · S(x, Rarm))
6: qgoal = InverseKinematics(xgoal, Rgoal, qarm)
7: qgoal,grip = ga
8: SetArmJointPosTarget(qgoal)
9: SetGripperJointPosTarget(qgoal, grip)

10: qlastgoal = qgoal
11: T = T + 1

ber of control commands (policy action outputs) per second. We use the open-source library Ruckig1

for time-optimal joint motion planning with velocity, acceleration, and jerk constraints. Note that
the duration of planned trajectories may exceed the interval between two control commands.

WidowX We present our WidowX controller implementation in Algorithm 2.

B.2 Robot and Object Assets

Robots For RT-1 Robot, we convert the publically-released MuJoCo .mjcf robot description to
URDF robot description. We also refine the collision mesh of the robot base link from the original
assets to prevent erroneous mesh penetrations. For WidowX, we directly export the URDF robot
descriptions from the official Interbotix repository using ROS. To simulate the RT-1 Robot, we
find that the Projected Gauss-Seidel solver in PhysX causes mesh penetration behaviors during the
process of object grasping. Thus, we enable the Temporal Gauss-Seidel solver in both SAPIEN and
Isaac Sim’s simulation backends to produce correct grasping behaviors.

The RT-1 Robot uses a customized egocentric camera mounted on the robot head, while the WidowX
+ Bridge V2 setup uses a Logitech C920 third-view camera. We use known robot camera intrinsics
if possible, and when they are unknown, we obtain them from real evaluation video frames using
efficient interactive GUI tools such as fSpy.

Objects We adopt the following procedure to obtain object assets. Except creating precise models
for articulated objects like cabinets, the process is semi-automatic, does not require extensive manual
effort, and typically takes less than 20 minutes.

• Obtain raw 3D object models from public repositories (e.g., Objaverse [57]), from 3D
scanning of objects purchased from Amazon, from single-view 3D generation (e.g., One-
2-3-45++ [61]), or from manual modeling based on precise measurements of real-world
counterparts (we only used the last technique for articulated objects like cabinets since this
requires the most human effort; we highlight the acceleration of articulated asset curation
process through approaches like multi-view [62] or interactive [63] articulated object gen-
eration as an avenue for future work).

• Process 3D object models in Blender such that the dimensions of objects are similar to
those used in the real world, and that the object meshes do not contain too many vertices
(to limit the sizes of object meshes).

• Optionally, use our Visual Matching approach (see below) to improve the texture of 3D
object models.

1https://github.com/pantor/ruckig
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Figure 5: Subset of environment variations under our “Variant Aggregation” evaluation setup, visualized in
SAPIEN from RT-1 Robot’s egocentric view. The variations cover different lightings, backgrounds and table
textures and are modified from ReplicaCAD [16] scenes.

• Export visual mesh and collision mesh of objects. For collision mesh, further perform
CoACD [64] to obtain watertight and locally convex collision meshes. Optionally, simplify
the resulting collision mesh and perform minor modifications using Blender (e.g., make the
bottom of cans or bottles flat).

• Set the object to have a simple uniform density by querying their common material density
in GPT-4 or google search, or (for objects with non-uniform densities like empty coke can),
querying their mass and dividing by their visual mesh volume.

To perform visual matching of object textures, we adopt the following steps: (1) Crop the target
object in a real image using SAM [56]; (2) Perform a coarse estimation of object pose by importing
it into the simulation and adjusting its position such that its simulation segment mask overlaps with
the real one; (3) Employ differential rendering (using Nvdiffrast) to optimize the simulation asset’s
pose such that it precisely aligns with the real object’s segmentation mask; (4) “Unproject” the real
object’s RGB texture values onto the simulation object mesh; (5) Optionally, generate the remaining
views of the object through a diffusion model (Zero123++ [65]), and refine the poses of novel views
using a rendering loss with the existing object view. Finally, unproject the novel view textures
onto the simulation object mesh. This whole process is semi-automatic, and can thus be completed
efficiently. We commit to release a convenient command-line python script for this process.

B.3 SIMPLER-Variant Aggregation

A common approach for addressing visual gaps in sim-to-real policy training is domain random-
ization. By performing training across a range of randomized parameters, such as textures and
lighting, prior works aim to obtain policies that are robust to visual distribution shifts in the real-
world [40, 41]. Similarly, in real-to-sim evaluation, we can aggregate evaluation results across a
range of visual simulator characteristics to obtain a more faithful signal for the policy’s perfor-
mance. In practice, we implement this SIMPLER-“Variant Aggregation” approach as an alternative
to SIMPLER-Visual Matching, described in Section 4.2. Concretely, we create a “base” version
of our simulation environment and then creating “variants” of this environment along four axes of
visual variation: background, lighting, distractors, and table texture. For each axis, we construct 2
variations of the base setup similar to [60], covering backgrounds from different rooms, lighter and
darker lighting, fewer and more distractors, and solid color and complex table textures. We visual-
ize an example of such simulator variations for various table-top tasks in Fig. 5. We average policy
performance in simulation across all variants of an environment to obtain our final performance
estimate.
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RT-1 Robot
Evaluation Setup Policy

Pick Coke Can Move Near Open / Close Drawer Open Top Drawer
and Place Apple

Horizontal
Laying

Vertical
Laying Standing Average Average Open Close Average Average

Real Eval

RT-1 (Converged) 0.960 0.880 0.720 0.853 0.633 0.815 0.926 0.870 0.185
RT-1 (15%) 1.000 0.960 0.800 0.920 0.583 0.704 0.889 0.796 0.185
RT-1-X 0.880 0.560 0.840 0.760 0.450 0.519 0.741 0.630 0.407
RT-2-X 0.920 0.800 1.000 0.907 0.733 0.333 0.630 0.481 0.074
Octo-Base 0.440 0.200 0.240 0.293 0.350 0.148 0.519 0.333 0.000
OpenVLA-7B 0.640 0.280 0.360 0.427 0.667 0.111 0.148 0.130 0.000
RT-1 (Begin) 0.200 0.000 0.200 0.133 0.017 0.000 0.000 0.0002 0.000

SIMPLER Eval
(Variant Aggregation)

RT-1 (Converged) 0.969 0.760 0.964 0.898 0.500 0.270 0.376 0.323 0.026
RT-1 (15%) 0.920 0.704 0.813 0.813 0.446 0.212 0.323 0.267 0.021
RT-1-X 0.569 0.204 0.698 0.490 0.323 0.069 0.519 0.294 0.101
RT-2-X 0.822 0.754 0.893 0.823 0.792 0.333 0.372 0.353 0.206
Octo-Base 0.005 0.000 0.013 0.006 0.031 0.000 0.021 0.011 0.000
OpenVLA-7B 0.644 0.218 0.729 0.530 0.469 0.148 0.164 0.156 0.000
RT-1 (Begin) 0.022 0.013 0.031 0.022 0.040 0.005 0.132 0.069 0.000

MMRV↓ 0.149 0.194 0.240 0.168 0.105 0.350 0.3283 0.304 0.127
Pearson r↑ 0.927 0.937 0.824 0.922 0.881 0.583 0.648 0.728 0.313

SIMPLER Eval
(Visual Matching)

RT-1 (Converged) 0.960 0.900 0.710 0.857 0.442 0.601 0.861 0.730 0.065
RT-1 (15%) 0.860 0.790 0.480 0.710 0.354 0.463 0.667 0.565 0.130
RT-1-X 0.820 0.330 0.550 0.567 0.317 0.296 0.891 0.597 0.213
RT-2-X 0.740 0.740 0.880 0.787 0.779 0.157 0.343 0.250 0.037
Octo-Base 0.210 0.210 0.090 0.170 0.042 0.009 0.444 0.227 0.000
OpenVLA-7B 0.310 0.030 0.190 0.177 0.492 0.250 0.574 0.412 0.000
RT-1 (Begin) 0.050 0.000 0.030 0.027 0.050 0.000 0.278 0.139 0.000

MMRV↓ 0.023 0.046 0.046 0.027 0.095 0.069 0.265 0.177 0.000
Pearson r↑ 0.963 0.951 0.948 0.969 0.864 0.914 0.674 0.823 0.973

Table 2: Real-world and SAPIEN evaluation results across different policies on RT-1 Robot tasks. We present
success rates for the “Variant Aggregation” and “Visual Matching” approaches in Sec. 4.2. We calculate the
Mean Maximum Rank Violation (“MMRV”, lower is better) and the Pearson correlation coefficient (“Pearson
r”, higher is better) to assess the alignment between simulation and real-world relative performances across
different policies.

WidowX+Bridge
Evaluation Setup Policy

Put Spoon on Towel Put Carrot on Plate Stack Green Block on Yellow Block Put Eggplant in Yellow Basket

Grasp Spoon Success Grasp Carrot Success Grasp Green Block Success Grasp Eggplant Success

Real Eval
RT-1-X 0.042 0.000 0.167 0.000 0.000 0.000 0.033 0.000
Octo-Base 0.500 0.333 0.500 0.250 0.292 0.000 0.400 0.233
Octo-Small 0.542 0.417 0.208 0.083 0.583 0.125 0.700 0.433

SIMPLER Eval
(Visual Matching)

RT-1-X 0.167 0.000 0.208 0.042 0.083 0.000 0.000 0.000
Octo-Base 0.347 0.125 0.528 0.083 0.319 0.000 0.667 0.431
Octo-Small 0.778 0.472 0.278 0.097 0.403 0.042 0.875 0.569

MMRV↓ 0.000 0.000 0.000 0.111 0.000 0.000 0.000 0.000
Pearson r↑ 0.778 0.827 0.995 0.575 0.964 1.000 0.995 0.990

Table 3: Real-world and SAPIEN simulation evaluation results for the WidowX + Bridge setup. We report both
the final success rate (“Success”) along with partial success (e.g., “Grasp Spoon”).

C Full Results for Real-and-Sim Relative Policy Performance Correlation
Experiments

In Table 2 and Table 3, we present full evaluation results for our experiments in Sec. 5.2, which
demonstrate that SIMPLER environments show strong performance relationship correlations with
real-world evaluations.
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Policy Distribution Shift
Pick Coke Can Move Near Avg. Real TableTop [60]

|∆ Success| MMRV↓ r ↑ |∆ Success| MMRV↓ r ↑ |∆ Success| MMRV↓ r ↑ |∆ Success|

RT-1
w/o Aug

Background 0.013

0.000 0.779

0.083

0.055 0.939

0.048

0.000 0.831

0.028
Lighting 0.040 0.075 0.057 0.083
Distractors 0.027 0.133 0.080 0.111
Table Texture 0.113 0.175 0.144 0.389
Camera Pose 0.753 0.192 0.473 0.458

RT-1
+Aug

Background 0.153

0.041 0.984

0.092

0.125 0.721

0.123

0.041 0.970

0.167
Lighting 0.033 0.117 0.075 0.042
Distractors 0.033 0.084 0.059 0.083
Table Texture 0.220 0.159 0.189 0.167
Camera Pose 0.613 0.175 0.394 0.375

Table 4: Impact of various distribution shifts on the tabletop manipulation performance of RT-1 policies trained
with and without image augmentation. SIMPLER evaluations accurately track the policies’ robustness to dis-
tribution shifts, exhibiting low Mean Maximum Rank Violation (“MMRV”) and high Pearson correlation coef-
ficient (“r”) with the real world evaluations [60].

Policy Robustness Factor Pick Coke Can Move Near

RT-1
w/o Aug

Base Setup 0.920 0.467
Background 0.933/0.907 0.533/0.567
Lighting 0.960/0.960 0.483/0.600
Distractors 0.880/0.901 0.600a

Table Texture 0.867/0.747 0.550/0.200
Camera Pose 0.053/0.280 0.117/0.433

RT-1
+Aug

Base Setup 0.800 0.383
Background 0.747/0.547 0.483/0.467
Lighting 0.760/0.773 0.517/0.483
Distractors 0.813/0.747 0.467
Table Texture 0.667/0.493 0.450/0.133
Camera Pose 0.267/0.107 0.200/0.217

aThe base setup environment already contains dis-
tractors, so we construct environment variants without
distractors.

Table 5: Success rates of different out-of-distribution generalization factors on the tabletop manipulation per-
formance of RT-1 policies in the SAPIEN simulator. “a/b” denote results on different environment variants
(lighting: darker / brighter; table texture: solid color / contrastively patterned; camera pose: oriented lower /
higher).

D Full Results for Real-and-Sim Policy Behavior Correlation Experiments
under Environment Distribution Shifts

In Table 4, Table 5, and Table 6, we present full evaluation results for our experiments in Sec. 5.3,
which demonstrate that SIMPLER environments show strong policy behavior correlations with real-
world evaluations under different environment distribution shifts.

E Full Results for Main Paper Ablation Experiments

We present detailed results for our main paper’s ablations in Table 7, Table 8, and Table 9.

2After running 2 real evaluation trials, robot operators decided that since this policy would potentially
damage the robot on the Drawer tasks, the real evaluation was terminated.

3As real evaluation was terminated due to risk of damaging the robot, we expect the MMRV to be less than
this number if real evaluation were to continue.

Policy Sim Success Range Real Success
Orig Arm Texture OOD Arm Texture

RT-1-X [0.507, 0.653] 0.760 0.520
Octo-Base [0.000, 0.293] 0.293 0.000

Table 6: Impact of arm textures on the success rates of “Pick Coke Can” task in the SAPIEN simulator (Visual
Matching evaluation setup) and in the real-world. The ranges of simulation success rates across multiple (tuned
and untuned) robot arm colors can predict policy sensitivity to real-world OOD arm textures.
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Components Open Drawer Close Drawer

Background Drawer Robot RT-1 (Converged) RT-1 (15%) RT-1-X MMRV↓ RT-1 (Converged) RT-1 (15%) RT-1-X MMRV↓

Real Real Real 0.815 0.704 0.519 N/A 0.926 0.889 0.741 N/A
GreenScreen Curated Curated 0.703 0.556 0.333 0.000 0.889 0.667 0.851 0.099
GreenScreen Curated Original 0.444 0.444 0.259 0.111 0.741 0.630 0.926 0.173
GreenScreen Original Original 0.593 0.519 0.148 0.000 0.852 0.778 0.963 0.173
ReplicaCAD Curated Curated 0.407 0.259 0.111 0.000 0.667 0.481 0.778 0.173
ReplicaCAD Curated Original 0.630 0.407 0.074 0.000 0.630 0.593 0.667 0.173
ReplicaCAD Original Curated 0.556 0.296 0.074 0.000 0.667 0.704 0.815 0.173
ReplicaCAD Original Original 0.556 0.333 0.074 0.000 0.704 0.556 0.741 0.173

Table 7: Impact of real-to-sim visual gaps on real-and-sim performance correlations. We report the success
rates of 3 different policies on 2 tasks: Open Drawer and Close Drawer. The settings with the smallest MMRV
and the smallest absolute performance gap with the real performance are highlighted. Using a combination of
“green-screened” background and curated foreground object and robot assets provides the best correlation.

Gripper Friction Coefficient

Coke Can Mass 0.25 0.50 1.0 2.0

10 g 0.957 0.967 0.971 0.978
20 g 0.969 0.975 0.978 0.977
40 g 0.963 0.976 0.976 0.976
80 g 0.962 0.962 0.975 0.990

(a) Pearson r between real and SIMPLER evaluations on the Pick Coke Can task under different settings of can
mass and gripper friction coefficient. The MMRV is 0.031 in all cases. The use of empty coke cans follows the
setup from the RT-1 Robot demonstration dataset and the RT-1 paper [1].

Cabinet Joint Friction 0.0125 0.025 0.05 0.10 0.15 0.20

MMRV↓ 0.055 0.055 0.055 0.055 0.105 0.055
Pearson r↑ 0.930 0.941 0.915 0.923 0.903 0.928

(b) MMRV and Pearson r between real and SIMPLER evaluations on the Open/Close Drawer tasks under
different settings of cabinet joint friction.

Table 8: SIMPLER is robust to imprecisely estimated physical simulation parameters such as object mass and
friction coefficients, as indicated by the low MMRV and high Pearson r in both ablation studies. We use the 6
policies from our RT-1 Robot experiments in these ablations.

RT-1 Robot
Evaluation Setup Policy

Pick Coke Can Move Near

Horizontal
Laying

Vertical
Laying Standing Avg. Success Avg. Success

Real Eval

RT-1 (Converged) 0.960 0.880 0.720 0.853 0.633
RT-1 (15%) 1.000 0.960 0.800 0.920 0.583
RT-1-X 0.880 0.560 0.840 0.760 0.450
Octo-Base 0.440 0.200 0.240 0.293 0.350
RT-1 (Begin) 0.200 0.000 0.200 0.133 0.017

SIMPLER Eval
(Isaac, Variant Aggre.)

RT-1 (Converged) 0.418 0.377 0.436 0.410 0.150
RT-1 (15%) 0.428 0.306 0.590 0.441 0.100
RT-1-X 0.340 0.182 0.618 0.380 0.125
Octo-Base 0.015 0.020 0.010 0.015 0.020
RT-1 (Begin) 0.036 0.040 0.054 0.044 0.000

MMRV↓ 0.096 0.112 0.016 0.064 0.053
Pearson r↑ 0.961 0.949 0.989 0.973 0.865

Table 9: Real-world and Isaac Sim evaluation results for the RT-1 Robot setup. The findings on Isaac Sim are
consistent with the findings on the SAPIEN simulator.
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Task Validation Action MSE Sim Eval (Visual Matching)

Pick Coke Can 0.412 / 0.464 0.031 / 0.976
Move Near 0.408 / 0.230 0.111 / 0.855
Open / Close Drawer 0.346 / 0.264 0.055 / 0.915
Open Drawer & Place Apple 0.265 / 0.198 0.000 / 0.969
Put Spoon on Towel 0.389 / -0.951 0.000 / 0.827
Put Carrot on Plate 0.194 / -0.342 0.111 / 0.575
Stack Block 0.125 / -0.857 0.000 / 1.000
Put Eggplant in Basket 0.366 / -1.000 0.000 / 0.990

Table 10: MMRV / Pearson correlation comparison between our Visual Matching simulation evaluation ap-
proach and the simulation-free approach that assesses the MSE between predicted and ground-truth actions
on validation trajectories. For the latter approach, we calculate the MMRV / Pearson correlation between the
negative MSE and the real policy performance. Our approach yields significantly better real-and-sim policy
performance correlations.

Policy Avg. Real Success Avg. Sim Success
(Visual Matching)

RT-1 (Converged) 0.853 0.857
RT-1 (15%) 0.920 0.710
RT-1 (Single Task Policy) 0.680 0.403
RT-1-X 0.760 0.567
RT-2-X 0.907 0.787
Octo-Base 0.293 0.170
RT-1 (Begin) 0.133 0.027

MMRV↓ 0.027
Pearson r↑ 0.959

Table 11: Real-world and simulated evaluation results on the Pick Coke Can task, after adding an RT-1 policy
trained solely on the Pick Coke Can demonstrations. Our simulated evaluation remains effective, exhibiting
low MMRV and high Pearson correlation coefficient with real evaluations.

F More Experiment Results

F.1 More Ablations

Simulated vs. simulation-free evaluation approaches: To evaluate and select real-world robot ma-
nipulation policies, a widely-adopted approach involves calculating the MSE loss between predicted
and ground-truth actions on a set of held-out validation demonstration trajectories. We are thus in-
terested in the following question: Does simulated evaluation produce significantly better real-to-
sim relative performance correlation than simulation-free approaches? We conduct an experiment
where we calculate the action-prediction MSE loss on the RT-1 Robot dataset and the Bridge dataset.
For the Bridge dataset, we randomly select 25 trajectories from the validation demonstration split.
For the RT-1 Robot dataset, as a validation split is not publicly available, we randomly select 25
trajectories from the training demonstrations.

We report the results in Table 10. We find that SIMPLER evaluation produces significantly bet-
ter correlations between real-and-sim performances across different policies, as highlighted by a
substantially-lower MMRV and a substantially-higher Pearson correlation coefficient. Furthermore,
as demonstrated in Sec. 5.3 of the main paper, SIMPLER evaluation reveals finegrained policy
behavior modes, such as robustness to visual distribution shifts, offering insights beyond policy
performance comparisons, unlike simulation-free evaluations.

Is simulated evaluation still effective on single-task policies? Previously in the main paper, we
focused our simulated evaluation on policies trained on multi-task datasets, such as the RT-1 Robot
RT-1 dataset and the Open-X-Embodiment dataset, which contain ≥80k demonstrations. In this
section, we further ask the question: Is SIMPLER evaluation still effective on policies trained on
smaller-scale data, which are potentially more sensitive to real-to-sim visual and control gaps? To
this end, we conduct an experiment where we train RT-1 only with the “pick coke can” demon-
strations and evaluate its real and simulation performance. We also compare the MMRV and the
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RT-1 Robot
Evaluation Setup Metric

Pick Coke Can Move Near Open / Close Drawer Open Top Drawer
and Place Apple

Horizontal
Laying

Vertical
Laying Standing Avg. Success Avg. Success Open Close Avg. Success Avg. Success

SIMPLER (VisMatch) Kruskal-#Policy p<0.05 0 0 2 3 3 1 2 2 0

(a)

WidowX+Bridge
Evaluation Setup Metric

Put Spoon on Towel Put Carrot on Plate Stack Green Block on Yellow Block Put Eggplant in Yellow Basket

Grasp Spoon Success Grasp Carrot Success Grasp Green Block Success Grasp Eggplant Success

SIMPLER (VisMatch) Kruskal-#Policy p<0.05 0 0 0 0 0 0 1 0

(b)

Table 12: For our Visual Matching evaluation approach, we conduct Kruskal-Wallis test to assess whether
simulation and real-world policy evaluations exhibit significant distribution shift, even though we do not expect
to obtain an exact reproduction of real-world performance.

Pearson correlation before and after incorporating this single-task policy into the RT-1 Robot exper-
iments. Results are shown in Table 11. We find that our simulated evaluation effectively reflects the
performance rankings of the newly-added single-task policy, with the MMRV remaining low and
the Pearson Coefficient remaining high. This demonstrates SIMPLER evaluation’s versatility across
policies trained on diverse data scales.

F.2 Other Metrics: Kruskal Wallis

In our previous analysis, we primarily focused on metrics that measure real-to-sim relative per-
formance alignment between policies. As we match real-to-sim visual input appearance in our
Visual Matching evaluation approach, it also becomes meaningful to measure the simulation distri-
bution shift of absolute performance from real-world evaluations, even though we do not expect
the real-to-sim absolute performances to exactly match. Let the real-world evaluation results of N
policies be r = {r1, r2, . . . , rN}, where ri = (rij)

Ntrial
j=1 is the indicator of each trial’s success in

the real-world. Let the corresponding simulation evaluation results be s = {s1, s2, . . . , sN}, where
si = (sij)

Ntrial
j=1 . We perform Kruskal-Wallis test for each individual policy (i.e., between each ri and

si) to measure whether simulation evaluations exhibit significant distribution shift from real evalua-
tions. We then report the number of policies with significant distribution shift (which we denote as
“Kruskal-#Policy p<0.05”).

We present the Kruskal-Wallis results in Tab. 12. We find that with the Visual Matching evalua-
tion approach, the simulation trial success distribution is not significantly different from the real
results (p ≥ 0.05) across many tasks and policies, demonstrating the effectiveness of our simulation
evaluation tool. We also note that our MMRV and the Kruskal metrics complement each other’s
limitations, with the former providing a real-to-sim relative performance alignment perspective, and
the latter providing an absolute performance alignment perspective.

G Limitations of Our Current Work

Our current work has several limitations: (1) We focus our evaluations on rigid-object manipulation
tasks, as they are most straightforward to simulate. Extending simulated evaluation to soft-object
tasks is an exciting avenue for future work. (2) For our Visual Matching evaluation approach, the
background “green-screening” technique limits evaluations to fixed cameras and does not accurately
capture object shadows and other visual details (our Variant Aggregation evaluation does support
variable camera poses). (3) Our current pipeline for generating simulated evaluation environments
involves some manual effort in curating assets and assembling scenes. Enabling a fully automatic
and more scalable pipeline for creating thousands of realistic simulated environments is an ambitious
goal for future work. In particular, a promising future direction is to automatically reconstruct real-
world scenes and backgrounds with high-quality geometries, materials, and lighting, while enabling
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fast simulation of these scenes. In the beginning of the project, we did preliminary investigations
using state-of-the-art approaches in Gaussian Splatting [66, 67], but found the scene quality to be
insufficient for real-to-sim manipulation evaluation (e.g., uneven table surface geometries, floaters
while rendering from novel camera views). Additionally, importing Gaussian Splatting-based scenes
into simulation environments would entail non-trivial changes to the existing simulators’ rendering
pipeline, which we leave for future work. (4) Our current simulated environments are limited to
RGB image and proprioceptive policy inputs. We believe that future simulated evaluation tools
could incorporate other modalities such as LIDAR [6], acoustic [68], and tactile sensors [69] as
research on their effective and accurate simulation continues to advance. (5) We adopt a simple
system identification approach that we find to be adequate for scenarios like rigid object grasping and
articulated furniture manipulation. It is unlikely that system identification using open-loop contact-
free trajectories will be sufficient to accurately model robot control parameters for situations such as
high-speed robot-object collisions and dexterous manipulation.
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