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Abstract
This paper addresses the challenge of 3D co-speech gesture gen-
eration, aiming to generate body gestures that align with spoken
content. Existing methods leverage multimodal features, such as
speech and transcripts, to improve the expressiveness of generated
gestures. However, generating gestures that express the semantic
meaning of the speech remains challenging. To address this lim-
itation, we propose SemGest, a framework featuring a semantic-
to-gesture alignment mechanism and a feature fusion module that
effectively integrates speech features and semantic features extracted
from the transcribed text. A diffusion-based model is then condi-
tioned on the fused features to generate realistic and semantic-aware
co-speech gestures. By aligning semantic and gesture spaces and
adaptively fusing speech and semantic features, the resulting feature
space is more robust, aiding in the conditional generation process.
We perform a detailed experimental analysis, demonstrating the ad-
vantages of our proposed framework over the baseline algorithms
in generating vivid co-speech gestures. Our experimental results
demonstrate the superiority of the proposed framework. Further-
more, ablation studies also validate the effectiveness of the proposed
semantic-to-gesture alignment and feature fusion mechanisms in the
proposed framework.

CCS Concepts
• Computing methodologies → Image and video acquisition; Mo-
tion processing.
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1 Introduction
Co-speech gesture generation is an important task that generates
gestures corresponding to a given speech, which aids the speaker
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When people pass by…greet them with a bow…help him walk into that place

            …                                          …

SemGest

Input: Speech audio & Transcripts

Output: 
Semantic-aware 
co-speech gestures

Figure 1: Goal. Given speech and transcripts, SemGest can
generate upper-body co-speech gestures that express semantic
meanings.

in effectively communicating their intent and emotions. Generating
speech-synchronized or co-speech gestures has broad applications
in areas such as robotics, AR/VR, and game development [9].

To generate co-speech gestures, previous studies have incorpo-
rated various multimodal inputs apart from speech, such as text [21,
37–39], speaker identity [21, 23, 37], and emotion [9, 21, 25]. In
these studies, the smoothness and naturalness of synthetic gestures
are improved, but the generated gestures are only correlated to the
speech rhythm without being sensitive to the underlying semantics.
Owing to this limitation, generating semantic-aware gestures, in-
cluding iconic, metaphoric, and deictic gestures [4], is challenging.
This can be primarily attributed to speech being the dominant modal-
ity [39], which hinders the ability of the system to effectively lever-
age the information from other modalities to generate the semantic-
aware gestures. While early rule-based approaches [5, 6] relying on
predefined correspondences between vocabularies and gestures can
address this limitation, they typically generate deterministic results,
limiting their flexibility and applicability. In recent years, with ad-
vancements in deep learning, various approaches [3, 18] attempt to
address these issues using conditional generative models and prede-
fined gesture classes to enhance the semantic awareness. However,
the generated gestures remain constrained by the predefined gesture
class. Other deep-learning-based methods have leveraged semantic
features extracted from off-the-shelf Language Models (LMs) [16]
or Vision-Language Models (VLMs) [35, 39] to learn a joint space
of gestures and semantics. However, the learned joint space does not
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Table 1: We compare the incorporated modalities and the fusion mechanisms between existing works and the proposed method.

Method Input Modalities Fusion Strategy

Trimodal [37] Speech, Text, Identity Concatenation of all encoded modalities
CaMN [21] Speech, Text, Identity, Emotion, Facial blendweights Concatenation of encoded modalities
DiffGesture [40] Speech and initial poses Concatenation of speech and initial pose as Transformer’s input
LivelySpeaker [39] Speech, Text, Identity Stage 1: Gesture generation from text

Stage 2: Concatenate time-aligned corrupted gestures, audio, and identity
as denoiser’s input

TalkSHOW [36] Speech, Identity Concatenation of MFCC and (one-hot) identity
EMAGE [20] Speech, Text, Identity Attention
MMoFusion [31] Speech, Text, Identity, Emotion Progressive fusion with masked style matrix
SemGest (Ours) Speech, Text, Identity Dual-branch cross-attention (See Fig. 3)

effectively bridge the distribution gap between the semantic and ges-
ture feature space because of the many-to-many mapping between
the input semantic-gesture features and the output gestures. Previ-
ous studies [21, 37] in co-speech gesture generation typically rely
on concatenation or self-attention to integrate multimodal features,
especially speech and text. These approaches overlook the inherent
correlation between the two input modalities, leading to redundant
or even conflicting information. These limitations in generating
semantic-aware co-speech gestures from speech underscore the need
to balance the influence of speech and semantic information.

To address these challenges, this paper proposes SemGest, a
novel diffusion-based framework that leverages both speech and
semantic features to guide the co-speech gesture generation. The pro-
posed framework contains two key stages: semantic-aware feature
extraction and conditional gesture generation. In the semantic-aware
feature extraction stage, we first introduce a semantic-to-gesture
alignment mechanism, utilizing a transformer-encoder-based model.
The transformer-based model maps the CLIP [27] text embeddings
to a pre-trained gesture space. The resulting embedding yields a
semantic-gesture joint space aligning semantic and gesture features
closely. This makes the semantic features carry gesture-relevant
information that can guide the generation process. Apart from the
alignment mechanism, we also propose a feature fusion mechanism
in the semantic-aware feature extraction stage that employs a dual-
branch cross-attention mechanism to integrate speech and semantic
features. The attention mechanism comprises speech-to-semantic
and semantic-to-speech cross-attention layers that learn the correla-
tion between speech and semantic features. The attention mechanism
additionally contains self-attention layers with an aggregation token
to extract the final representation of speech and semantics to aid the
conditional generation. Using the attention layers, the feature fusion
mechanism effectively integrates speech and semantics and reduces
redundant information, resulting in a robust latent representation that
guides the following conditional gesture generation process. Using
the semantic-to-gesture alignment and feature fusion mechanisms,
our proposed framework generates realistic and semantic-aware
co-speech gestures. Comparative experiments demonstrate the ad-
vantage of the proposed methods over the baseline methods. The
ablation studies further validate the effectiveness of the semantic-
aware feature extraction and feature fusion mechanisms. The main
contributions of this paper are summarized as follows:

• We introduce a semantic-to-gesture alignment mechanism,
which learns a robust semantic-motion space where gesture-
relevant semantic features are obtained.

• We propose a feature fusion mechanism that progressively and
effectively integrates speech and semantic features, resulting
in a robust feature representation.

• Our framework achieves state-of-the-art performance on co-
speech gesture generation using skeletal human body repre-
sentation.

2 Related Work
2.1 Co-speech gesture generation
Co-speech gesture generation has been an active research topic for
several years. Early studies [5, 6] relied on rule-based approaches
to produce deterministic results. To tackle the amount of varying
motions, recent advances in literature have shifted the focus towards
data-driven methods based on models such as GANs [1, 14, 26],
VAEs [12, 17], VQ-VAEs [7, 20, 34, 36], and Mamba [11]. Yoon
et al. [37] proposed an LSTM-based model conditioned on tempo-
ral synchronized multimodal context to model upper-body gestures.
However, this approach is limited to controlling personal styles. Liu
et al. [21] introduced a cascaded architecture that incorporates addi-
tional features such as emotion, facial blendshape weights to synthe-
size more expressive upper-body gestures. Recently, diffusion-based
methods [8, 9, 24, 33, 35, 40] have gained popularity because of their
ability to model complex data distributions. Compared with these
methods, which only generate upper-body gestures, Yi et al. [36]
proposed a framework that generates 3D holistic co-speech ges-
tures by separately modeling different body parts, with each body
part having an independent correlation with speech. Liu et al. [20]
adopted a cross-attention mechanism between speech and content
while leveraging masked modeling to generate holistic co-speech
motions. Chen et al. [7] introduced a prompt-based, data-augmented
approach to enable synergistic and out-of-domain holistic motion
generation conditioned on speech and user prompts. These works in-
corporate modalities beyond audio and motion to generate co-speech
gestures, primarily relying on concatenation or cross-attention to
integrate multimodal information (See Tab. 1). Wang et al. [31]
proposed a progressive fusion strategy by leveraging concatenation,
attention, and masked style matrix to integrate multimodal features,
aiming to reduce the unnecessary features and noise. Compared with
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the existing research, the proposed multimodal feature fusion mod-
ule is based on the dual-branch cross-attention strategy to provide
a robust latent representation that guides the conditional co-speech
gesture generation.

2.2 Semantic-aware co-speech gesture generation
Although multimodal inputs are incorporated in co-speech gesture
generation, the dominant speech rhythm overshadows other modality
features to generate gestures. This results in the degradation of the
generated gestures with limited semantic awareness and the ineffec-
tive utilization of available modalities. Several studies have been
conducted to address this issue. Liang et al. [18] first mined the
beat and semantic information from speech and then leveraged a
semantic prompter to model semantic co-speech gestures. Zhi et
al. [39] adopted a two-stage framework, consisting of the semantic-
aware generator (SAG) and rhythm-aware generator (RAG). SAG
utilizes CLIP [27] to construct a joint space for text and motion.
Subsequently, a diffusion-based RAG models the distribution condi-
tioned on speech rhythm. The method proposed by Liu et al. [19]
first learned a joint space using consistency loss to enhance the se-
mantic correspondence between speech and motion and trained a
weakly supervised detector to identify salient postures, defined by
large movements with rich semantic information, to enforce space
alignment. Compared to the aforementioned literature, in our pro-
posed framework, we introduce a semantic-to-gesture alignment
mechanism that maps the semantic space to a pre-trained gesture
space to align the two latent spaces.

3 Proposed Framework
Given an input audio sequence 𝐴1:𝑁 = {a1, . . . , a𝑁 }, the proposed
framework G generates upper-body co-speech gestures 𝑃1:𝑁 =

p1, . . . , p𝑁 (𝑁 pose frames), where each p𝑖 comprises 𝐽 joints in 3D
space. Apart from speech, the proposed framework is conditioned on
the transcribed text and speaker identity, represented as 𝐶. Follow-
ing previous studies [20, 21], the first 𝑀 pose frames {p1, . . . , p𝑀 }
serve as the initial seed to guide the generation of subsequent 𝑁
frames, where 𝑀 ≪ 𝑁 . Hence, the overall objective of the model is
formulated as:

arg min
G

= ∥𝑃 − G(𝐴1:𝑁 ,𝐶, 𝑝1:𝑀 )∥. (1)

The proposed framework SemGest is shown in Fig. 2. We next
present the details of the feature extraction mechanism followed by
conditional co-speech gesture generation mechanism in Sec. 3.2.

3.1 Sematic-aware feature extraction
In semantic-aware feature extraction, we first use two encoders to
extract unimodal features from speech and transcribed text, respec-
tively. Next, a dual-branch cross-attention feature fusion module is
formulated to integrate the multimodal features, producing semantic-
aware features.
Speech feature extraction. Given the input audio, we adopt a
transformer-based encoder and decoder to obtain the speech la-
tent representation. Specifically, we employ the Audio Spectrogram
Transformer [13], which leverages the power of ViT [10], to embed
the spectrogram to a latent vector z𝐴 = 𝐸𝐴 (𝐴) ∈ R1×𝑑 . The decoder
is then tasked with reconstructing the filterbanks from the latent

vector. To preserve crucial speech information, we additionally en-
force speech power reconstruction, which serves as an indicator of
the gesture beats. Furthermore, to exploit the emotion cues in the
speaker’s speech for the co-speech gesture generation, we also train
an emotion classifier that predicts emotion using the latent vector
z𝐴. For training, the module employs a combined loss consisting of
the weighted sum of reconstruction loss of the filterbank and speech
power reconstruction loss, and emotion classification cross-entropy.
Semantic-to-gesture alignment. We leverage the semantics in the
underlying transcripts to generate semantic-aware co-speech ges-
tures. Similar to previous studies [30, 39], we employ the text em-
beddings derived from pre-trained CLIP [27] (ViT-B/32). We pro-
pose a semantic-to-gesture projection module consisting of three
transformer-encoder layers to construct a semantic-gesture joint
space and extract gesture-relevant semantic features. Specifically,
an encoder-decoder-based Transformer model is trained for gesture
reconstruction. Subsequently, the proposed semantic-to-gesture pro-
jection module projects the CLIP text space onto the gesture space,
aligning the CLIP text embeddings with the corresponding gesture
latent vectors using the synchronized time stamps. This alignment
process is supervised by the MSE loss between gesture-relevant
semantic features and the gesture latent vectors.
Feature fusion. Recognizing the importance of modeling the cor-
relation between speech and semantic, we propose a feature fusion
module that adaptively aggregates the speech and semantic features
(Sec Fig. 3). Inspired by dual-branch architectures [22, 32], our mod-
ule first utilizes speech-to-semantic and semantic-to-speech cross-
attention to model the correlation between the two input modalities.
Subsequently, the two intermediate features are concatenated along
the temporal axis with a special token appended at the beginning
(similar to the class token in ViT [10]), resulting in an intermedi-
ate feature representation with shape R(1+1+𝑁 )×𝑑 . This sequence is
processed by a transformer encoder, and the special token’s value is
considered as the final feature representation z𝑓 𝑒𝑎𝑡 for conditional
co-speech gesture generation.

3.2 Conditional co-speech gesture generation
The architecture of the conditional generation module is based on
the latent diffusion model [28], which applies forward diffusion and
denoising on the gesture latent space. The gesture prior model recon-
structs the input pose sequence. Sebsequently, the latent diffusion
model uses a forward and backward diffusion process to learn the
underlying distribution and generate co-speech gestures. Finally, a
spatial-temporal self-attention module smooths the resulting ges-
tures.
Gesture prior model. The gesture prior model adopts a transformer-
based encoder-decoder architecture. The encoder E𝑃 maps a pose
sequence 𝑝1:𝑁 and positional encoding to a latent representation z𝑃 .
The decoder D, initialized by the seed pose, reconstructs the pose
sequence from the query vector and the memory vector z𝑃 . Similar
to the fusion module, a special token is appended at the beginning
of the pose sequence to summarize the multi-frame sequence into
a single-frame gesture embedding, z𝑃 ∈ R1×𝑑 . To enhance the
correlation between gesture beat and speech audio beat, we introduce
an additional cross-attention layer that incorporates speech onset
information.
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I love cooking...

Speaker-2

Denoiser
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Figure 2: SemGest consists of two stages: semantic-aware feature extraction and conditional co-speech gesture generation. In the first
stage, speech features are extracted from our pre-trained audio encoder, and gesture-relevant semantic features is produced from the
proposed semantic-to-gesture alignment, which maps the CLIP text embeddings to a pre-trained gesture space. Next, a feature fusion
module with cross-attention layers is used to fuse the speech and semantic features and embed them to a latent representation. In
the second stage, the latent embedding is concatenated with noisy gesture latents (extracted by gesture prior encoder), timestamps,
and speaker identity, and processed by denoiser Δ through reverse diffusion. Finally, the gesture decoder and the spatial-temporal
attention module reconstruct or generate gestures 𝑝1:𝑁 from latent gestures z𝑃 or denoised representation z̃𝑃 , respectively.

Forward diffusion process. To obtain noisy latent representation,
fixed variance and linearly scaled noise scheduler are utilized to
progressively add Gaussian noise to the gesture latent representation
z𝑃 over 𝐷 diffusion timestamps:

𝑞(z(𝑡𝑑 )
𝑃

|z(0)
𝑃

) = N(z(𝑡𝑑 )
𝑃

;
√︁
𝛼𝑡𝑑 z

(0)
𝑃

, (1 − 𝛼𝑡𝑑 )I), (2)

where 𝛼𝑡𝑑 = 1−𝛽𝑡𝑑 , 𝛼𝑡𝑑 =
∏𝑡𝑑

𝑠=1 𝛼𝑠 . Following [15], 𝛼𝑡𝑑 is a notation
and 𝛽𝑡𝑑 represents diffusion process variance.
Conditional denoising model. Starting from the noisy latent rep-
resentation z(𝑡𝑑 )

𝑃
∼ N(0, 𝐼 ), the denoiser Δ, implemented as a trans-

former encoder, progressively refines the noisy latent vector and
reconstructs the original gesture latent z(0)

𝑃
. To generate the ges-

tures, the concatenated noisy gesture latent z(𝑡𝑑 )
𝑃

, positional-encoded
timestep 𝑃𝐸 (𝑡) ∈ R𝑑 , fused feature z𝑓 𝑒𝑎𝑡 , speaker identity 𝑠, and
seed poses 𝑝1:𝑀 are given as input to the denoiser. This is represented
as,

z(𝑡𝑑−1)
𝑃

= Δ( [z(𝑡𝑑 )
𝑃

, 𝑃𝐸 (𝑡𝑑 ), z𝑓 𝑒𝑎𝑡 , 𝑠, 𝑝1:𝑀 ]) . (3)

The denoiser output represents the noise between z(𝑡𝑑 )
𝑃

, and

z(𝑡𝑑−1)
𝑃

. Based on the noise prediction, a DDIM scheduler [29]

is utilized to convert z(𝑡𝑑−1)
𝑃

back to z(𝑡𝑑 )
𝑃

.

Spatial-temporal self-attention. Inspired by [2], we utilize the
spatial-temporal self-attention module to learn the spatial and tem-
poral dependency and generate smooth gesture sequences.
Training. The audio encoder and the semantic-to-gesture projec-
tion layer are frozen, while the other modules are optimized jointly.
In particular, our training process involves three primary stages:
gesture reconstruction, noise modeling, and conditional gesture gen-
eration. Firstly, we train the gesture encoder, decoder, and the spatial-
temporal self-attention module mainly using Huber loss (Eq. (4)) to
minimize the discrepancy between the ground truth and the recon-
structed gesture. Subsequently, a gesture embedding ẑ𝑃 , extracted
from the gesture encoder with gradient calculation disabled, under-
goes the forward diffusion process and is transformed into a noisy
embedding z(𝐷 )

𝑃
. The denoiser is trained with the Mean Squared

Error to predict the noise 𝛿𝑡𝑑 added during the foward diffusion pro-
cess (𝛿𝑡𝑑 ). In the final step, we employ the generation loss (Eq. (6))
to minimize the discrepancy the ground truth and the generated
gesture. To improve robustness in the generation, a random noise
is fed to the denoiser, resulting in a fully denoised latent z̃𝑚 . This
latent embedding is then processed by the gesture decoder and the
spatial-temporal self-attention module to generate co-speech ges-
tures p̃1:𝑁 . We also incorporate velocity losses (Eq. (7)) as additional



SemGest: A Multimodal Feature Space Alignment and Fusion Framework GENEA ’25, October 27–31, 2025, Dublin, Ireland.

Norm

Multi-head
Self-attention

+

Norm

Feed
Forward

+

QK, V

Norm

Multi-head
Self-attention

+

Norm

Feed
Forward

+

Q K, V

Transformer Encoder
Layers

[CLS]

Semantic BranchSpeech Branch

Figure 3: Details of fusion module. The fusion module integrates
the speech feature and the semantic feature from the joint space.
It first employs cross-attentions to learn the correlation between
the two modalities, and then a transformer encoder is leveraged
to transform the sequence of features into a feature representa-
tion, which serves as the condition for the generation process.

loss terms to regularize the reconstructed and generated gestures.
From empirical results, we observe that there are redundant motion
beats in specific joints. Hence, we emphasize the reconstruction and
generation loss on the corresponding joints, denoted as L 𝑗𝑜𝑖𝑛𝑡_𝑟𝑒𝑐
and L 𝑗𝑜𝑖𝑛𝑡_𝑔𝑒𝑛 and similarly implemented by Huber loss. Details
of these loss terms are explained in detail in the supplementary
materials.

L𝑟𝑒𝑐 = L𝐻𝑢𝑏𝑒𝑟 (𝑝1:𝑁 , 𝑝1:𝑁 ) (4)

L𝑙𝑑𝑚 = L𝑀𝑆𝐸 (𝛿𝑡𝑑 , 𝛿𝑡𝑑 ) (5)

L𝑔𝑒𝑛 = L𝐻𝑢𝑏𝑒𝑟 (𝑝1:𝑁 , 𝑝1:𝑁 ) (6)

L𝑟𝑒𝑐_𝑣𝑒𝑙 = L𝐻𝑢𝑏𝑒𝑟 ( ¤𝑝1:𝑁 , ¤̂𝑝1:𝑁 ); L𝑔𝑒𝑛_𝑣𝑒𝑙 = L𝐻𝑢𝑏𝑒𝑟 ( ¤𝑝1:𝑁 , ¤̃𝑝1:𝑁 )
(7)

The overall training objective is the weighted sum of L𝑟𝑒𝑐 , L𝑙𝑑𝑚 ,
L𝑔𝑒𝑛 , L𝑟𝑒𝑐_𝑣𝑒𝑙 , L𝑔𝑒𝑛_𝑣𝑒𝑙 , L 𝑗𝑜𝑖𝑛𝑡_𝑟𝑒𝑐 , and L 𝑗𝑜𝑖𝑛𝑡_𝑔𝑒𝑛 .
Inference In the inference phase, similar to the last forward pass in
training, a random noise z(𝑡𝐷 )

𝑃
∼ N(0, 𝐼 ) is sampled and iteratively

refined by the denoiser. The fully denoised latent z̃𝑃 is fed to the
gesture decoder and the spatial-temporal self-attention module for
gesture generation.

4 Implementation Details
Dataset and human body representation. We conduct experiments
on BEAT dataset [21]. In particular, we use version v0.2.1, which
employs a 78-joint skeletal human body representation, capturing
the Euler angle of joints in a manner that is invariant to body shape.
Conventionally, we only consider the upper body joints, resulting
in 𝐽 = 47. The pose sequences are downsampled into 15 FPS and
divided into chunks of 34 frames. While there are other 3D gesture
generation datasets [38], these datasets lack detailed emotion annota-
tion cues to train the audio encoder in the proposed method. Hence,
we only conduct experiments using BEAT dataset.
Audio preprocessing. Speech sequences are segmented into approx-
imately 2-second intervals, which are temporally aligned with the
pose chunks. Each audio chunk is converted into a spectrogram
with 128 mel-frequency bins, using a 25ms Hamming window and a
10ms frameshift. To enhance the robustness, we also inject noise for
filterbank reconstruction.
Architecture. Except for the audio encoder that leverages AST and
the motion decoder that adopts the transformer decoder, all the other
modules are implemented by the transformer encoder. The spatial-
temporal self-attention module contains a single layer, while all the
other transformer-based models consist of 3 layers. The hidden space
of all the modules is set to 512.
Denoiser. Following [9], we use 100 diffusion steps in training while
50 in inference. 𝛽 ranges from 8.5 × 10−4 to 1.2 × 10−2.

5 Experiments
5.1 Experiment settings
Evaluation metrics To quantitatively evaluate the generation quality,
we adopted the following metrics, which are used in [21]:

• Fréchet gesture distance (FGD) compares the distribution
between the synthetic gesture and ground truth motion on
the feature space. The motion features are extracted by a
pre-trained autoencoder.

• Diversity (Div) measures the L1 variance of the generated
gesture.

• Beat alignment (BA) computes the synchrony between the
audio beats and the motion kinematic beats in the generated
gesture.

• Semantic-relevant gesture recall (SRGR) uses the semantic
score, provided by the BEAT dataset, as the weight for the
Probability of Correct Keypoint (PCK) between synthesized
and ground truth motion.

Compared with the other metrics that only evaluate certain aspects
of the generated gesture, we consider FGD as the main metric as it
evaluates the overall motion feature distribution.
Baseline methods We evaluated the performance of our model
against CaMN [21], Trimodal [37], LivelySpeaker [39], and DiffGes-
ture [40]. To evaluate the performance of LivelySpeaker, we con-
sidered two settings: Rhythm-Aware Generator (RAG) only and the
full framework (Semantic-Aware Generator and RAG). We utilized
the officially released checkpoints of CaMN and LivelySpeaker, and
the Trimodal checkpoint re-implemented by [21]. As DiffGesture is
originally trained on TED Gesture [37, 38] and TED expressive [23],
we retrained the official scripts on the BEAT dataset.
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Table 2: Quantitative evaluation on BEAT dataset. We report the experimental result. Under the two settings, our frameworks
significantly improve the FGD, indicating the distribution of the synthesized gestures is closer to that of the ground truth. Our
framework also achieves the highest BA and SRGR.

Method
w/o post-processing w/ post-processing

FGD ↓ Div BA ↑ SRGR ↑ FGD ↓ Div BA ↑ SRGR ↑
Ground truth - 1710.17 0.89 - - 1710.17 0.89 -
Trimodal [37] 372.44 1334.84 0.70 0.12 367.80 1335.17 0.70 0.12
CaMN [21] 265.52 2042.10 0.80 0.16 259.88 2083.16 0.80 0.16
DiffGesture [40] 215.66 3987.37 0.92 0.18 195.21 3806.84 0.92 0.19
LivelySpeaker (RAG) [39] 158.27 667.75 0.91 0.20 168.50 675.53 0.91 0.20
LivelySpeaker (full; RAG+SAG) [39] 169.54 475.38 0.92 0.21 180.87 482.28 0.91 0.21
SemGest (Ours) 82.65 1212.82 0.93 0.24 83.42 1212.96 0.93 0.24

Table 3: Ablation study on different components in the proposed method.

Method
w/o post-processing w/ post-processing

FGD ↓ Div BA ↑ SRGR ↑ FGD ↓ Div BA ↑ SRGR ↑
Full 82.652 1212.824 0.930 0.243 83.419 1212.958 0.929 0.243
w/o Semantic projection module 169.540 1460.758 0.929 0.240 162.143 1460.762 0.929 0.240
Concatenation 177.421 1224.985 0.929 0.251 170.021 1224.873 0.928 0.252
Speech feature only 142.728 2995.257 0.930 0.244 141.945 2994.030 0.931 0.244
Semantic feature only 130.930 2044.934 0.929 0.251 130.393 2043.692 0.930 0.251
Replace AST with TCN 136.100 0.929

For a fair comparison, both our framework and the baseline mod-
els were trained on Speaker-2, 4, 6, 8 from BEAT dataset [21],
consisting of 16 hours of speech. The length of the seed pose 𝑀

is set to 4 frames. During testing, we generated the whole pose
sequence (around 1 minute long) chunk-by-chunk, leveraging the
previous 𝑀 chunks to generate the current pose chunk.

To mitigate the jittering artifacts presented in the gestures gener-
ated by certain methods, we applied Kalman smoothing as a post-
processing step. We report the performance both before and after
applying this smoothing technique.

5.2 Quantitative evaluation
Table 2 presents the performance of the quantitative evaluation. Our
model outperforms all the other baselines in terms of FGD, indi-
cating the generated gestures exhibit a distribution closer to that of
the ground truth. Additionally, our model achieves the best score on
both BA and SRGR. This demonstrates a balance between rhythm-
aware and semantic-aware gesture generation. A comparison of the
two LivelySpeaker settings reveals that the Semantic-Aware Gen-
erator (SAG) improves the SRGR, highlighting the importance of
the semantic-motion joint space. Sharing similar objectives with
SAG, our model achieves a higher SRGR, demonstrating the effec-
tiveness of the proposed semantic-to-gesture alignment mechanism.
Although DiffGesture exhibits a higher Div compared to the ground
truth, we observe that it generates unnatural motions occasionally,
leading to an abnormal Div score. Similarly, Trimodal and CaMN
also produce unnatural poses, characterized by a lack of large move-
ments and poor adherence to speech rhythm. These factors contribute
to their poor performance on FGD and BA.

5.3 Qualitative evaluation
In Fig. 4, we visualize and compare the gestures generated by
SemGest against baseline methods. It demonstrates that SemGest
is able to generate semantic-aware gestures. For instance, SemGest
demonstrates gesture “two”, which is semantically aligned with the
saying “secondly”. SemGest can also generate gestures that align
with speech rhythm. When saying “gun fire” with an astonished tone,
the generated hands display a blow that is synchronized with the
audio beat. This demonstrates SemGest’s ability to balance semantic-
aware gestures and rhythm-aware gestures. Besides the proposed
method, LivelySpeaker [39] achieves good results in generating
high-quality gestures but shows a preference for small movements.
In contrast, Trimodal [37] and CaMN [21] tend to produce unnatural
gestures, while DiffGesture [40] exhibits redundant gestures and
lacks smooth transitions. Please refer to the supplementary materials
for the video clips.

5.4 Ablation study
Semantic-to-gesture alignment. We ablated the semantic projection
module by replacing the semantic features with CLIP text embed-
dings. As shown in Tab. 3, our full framework outperforms the
ablated model in terms of FGD and SRGR. This validates the effec-
tiveness of extracting gesture-relevant semantic information.
Feature fusion mechanism. We replaced our proposed dual-branch
cross-attention mechanism with a simple concatenation of speech
and semantic features along the temporal axis. The results, presented
in Tab. 3, show that our full framework outperforms on FGD and
achieves comparable BA and SRGR scores. This underscores the
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GT

Transcripts:
Secondly, if I cook well...

Trimodal

CaMN

DiffGesture

LivelySpeaker

SemGest (Ours)

(a)

SemGest (Ours)

Transcripts:
(... heard a sound of) gun fire

LivelySpeaker

(b)

Figure 4: Qualitative evaluation. We visualize ground thruth (GT) gestures the those generated by SemGest and baselines. (a) As shown
in the green circle, SemGest exhibit “two” when saying “secondly”. We observe artifacts in Trimodal [37] and CaMN [21], highlighted
in red. (b) Compared to LivelySpeaker [39], SemGest generates diverse and rhythm-synchronized gestures.
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Table 4: Quantitative evaluation on BEATv2.0.1.

Method FGD ↓ Div BA ↑ SRGR ↑
EMAGE [20] 0.37 13.23 0.75 0.33
SynTalker [7] 0.33 12.98 0.74 0.34
Ours 0.72 9.20 0.78 0.34

effectiveness of the proposed feature fusion mechanism in improving
the quality of the generated co-speech gesture.
The impact of speech and semantic modality. In this experiment,
we only incorporated a single modality to evaluate its contribution
to the generated co-speech gesture. The result is shown in Tab. 3. It
is interesting to note that both the speech-only and text-only models
outperform the early fusion approach, highlighting the importance
of proper feature integration. Furthermore, the overall performance
of the semantic-only model is better than the speech-only model, em-
phasizing the crucial role of semantic feature extraction in generating
co-speech gestures.
Ablation of AST. We conducted an experiment in which we re-
placed the AST with the TCN network in EMAGE [20] and eval-
uated the performance using the FGD score. The result, reported
in Tab. 3, demonstrates the effectiveness of AST in generating ges-
tures that better align with the ground truth distribution and are
rhythm-synchronized.

6 Discussion and Future Work
SMPL-X human body representation. We report a quantitative
evaluation result on the BEATv2.0.1, which adopts SMPL-X human
body representation, in Tab. 4. While our method achieves higher
FGD compared with baselines, the generated gestures are visually
plausible. Further studies and experiments are needed, and we will
focus on this in our future work. Detailed analysis is provided in the
supplementary materials.
Holistic co-speech gesture generation. Our model can only gen-
erate upper-body gestures. In our future work we will focus on
extending the method to generate holistic gestures that include the
lower-body and facial expressions.
Post-processing. In our future work, we will investigate methods to
improve the smoothness and remove the post-processing step.

7 Conclusion
We present SemGest, a framework for co-speech gesture genera-
tion. To generate semantic-aware gestures, we devise a semantic-
to-gesture alignment scheme to extract gesture-relevant semantic
features from transcripts. Our proposed feature fusion mechanism
models the correlation and adaptively integrates speech and semantic
features, leading to a robust representation for diffusion-based model
to generate expressive co-speech gestures. Extensive experiments
demonstrate the superiority and effectiveness of our model.
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Supplemental Materials
A Supplementary Video
We provide the results compared to baseline models [21, 37, 39, 40].
Specifically, we present:

• A comparison with baseline models. We provide video clips
of Fig. 4a.

• Ablation comparison of different modules.
• Gesture generation on various emotion labels.
• A comparison of results with and without the post-processing

step.

B Training Loss
As mentioned in Sec. 3.2, additional loss terms Eq. (8), Eq. (9), Eq. (10),
and Eq. (11) are adopted to regulate reconstructing and generating
gestures in specific joints. In particular, the loss terms are imple-
mented as follows:

L 𝑗𝑜𝑖𝑛𝑡_𝑟𝑒𝑐 = L𝐻𝑢𝑏𝑒𝑟 (𝑝1:𝑁
𝐽 , 𝑝1:𝑁

𝐽 ) (8)

L 𝑗𝑜𝑖𝑛𝑡_𝑔𝑒𝑛 = L𝐻𝑢𝑏𝑒𝑟 (𝑝1:𝑁
𝐽 , 𝑝1:𝑁

𝐽 ), (9)

L 𝑗𝑜𝑖𝑛𝑡_𝑟𝑒𝑐_𝑣𝑒𝑙 = L𝐻𝑢𝑏𝑒𝑟 ( ¤𝑝1:𝑁
𝐽 , ¤̂𝑝1:𝑁

𝐽 ) (10)

L 𝑗𝑜𝑖𝑛𝑡_𝑔𝑒𝑛_𝑣𝑒𝑙 = L𝐻𝑢𝑏𝑒𝑟 ( ¤𝑝1:𝑁
𝐽 , ¤̃𝑝1:𝑁

𝐽 ) (11)

where 𝐽 represents the specific joints, e.g. elbows.
We scale all the loss terms to balance contribution, and the total

training loss L𝑡𝑜𝑡𝑎𝑙 is:
L𝑡𝑜𝑡𝑎𝑙 = L𝑟𝑒𝑐 + L𝑔𝑒𝑛 + L𝑟𝑒𝑐_𝑣𝑒𝑙 + L𝑔𝑒𝑛_𝑣𝑒𝑙 + L𝑙𝑑𝑚

+ 𝜆 𝑗𝑜𝑖𝑛𝑡L 𝑗𝑜𝑖𝑛𝑡_𝑟𝑒𝑐

+ 𝜆 𝑗𝑜𝑖𝑛𝑡L 𝑗𝑜𝑖𝑛𝑡_𝑔𝑒𝑛

+ 𝜆 𝑗𝑜𝑖𝑛𝑡L 𝑗𝑜𝑖𝑛𝑡_𝑟𝑒𝑐_𝑣𝑒𝑙

+ 𝜆 𝑗𝑜𝑖𝑛𝑡L 𝑗𝑜𝑖𝑛𝑡_𝑔𝑒𝑛_𝑣𝑒𝑙 ,

(12)

where 𝜆 𝑗𝑜𝑖𝑛𝑡 is set to 100.

C Evaluation Settings
To compute the FGD score, an autoencoder M is leveraged to extract
the gesture feature. We use the official checkpoint provided by [21],
which is trained on Speaker-2, 4, 6, 8, aligned with our training data.

D Analysis of Semantic-to-Gesture Alignment
To obtain the semantic-to-gesture alignment module, a gesture prior
encoder consisting of 3-layer Transformer encoder is trained to map
the CLIP [27] text embedding space to a pre-trained gesture latent
space. Fig. 8 illustrates the training and evaluation pipeline. We
conduct quantitative evaluation between applying cosine similarity
loss (denoted as CosSimLoss) and MSE as the alignment loss L𝑎𝑙𝑖𝑔𝑛

and present the results in Tab. 5. Training the semantic-to-gesture
alignment module with MSE loss results in a lower FGD score,
indicating the distribution of the generated gesture is closer to the
distribution of the ground truth gestures. Additionally, we visualize
the joint space of semantic features and gesture latents in Fig. 5. It
is obvious that semantic features generated by the one trained with
MSE are closer to the gesture embedding. Hence, we adopt MSE as
the alignment loss.

E Analysis of Gesture Emotion Recognition
To assess the gesture emotion expressiveness, we train a gesture
emotion classifier on the gesture features extracted by the autoen-
coder M. As illustrated in Fig. 6, chunk-level gesture embeddings
are extracted from M, then the concatenation of all the gesture
embeddings is fed to the gesture emotion classifier to predict the
clip-level emotion label. In Tab. 6, we present the classification result
of our framework, baseline methods, and the ablated models. Despite
the lower-than-expected accuracy of our method, it is noteworthy
that the speech-only model outperforms the full framework and the
semantic-only model, indicating the effectiveness of the emotion
classification loss used in training the audio encoder. This finding
also suggests that transcripts may contain less explicit emotional
information and implies the need for a more refined feature fusion
mechanism to support both semantical and emotional co-speech
gesture generation. Another observation is that the emotion accuracy
of ground truth gestures is 65%, indicating room for improvement
in gesture emotion recognition. To benefit future studies, we present
the confusion matrix of the proposed method in Fig. 7.

F Supplementary Video: SMPL-X Data
BEATv2.0.1 adopts SMPL-X human body representation. It con-
tains 55 joints, including both upper-body and lower-body joints.

Table 5: Quantitative evaluation on the semantic-to-gesture align-
ment. The autoencoder reported in this tableis trained on all of
the 30-speaker data, while the one used in Table 2 and Table 3
of the main paper is trained on speaker-2, 4, 6, 8 only.

Loss FGD ↓ BA ↑ SRGR ↑
CosSimLoss 1231.46 0.93 0.24
MSE 996.34 0.92 0.18

Figure 5: Visualization of the semantic-gesture joint space. We
visualize the latent embeddings of the testing set. The blue dots
represent the GT gesture embeddings, while the orange dots
and the green dots represent the outputs of semantic-to-gesture
alignment module trained with MSE and cosine similarity loss,
respectively.



SemGest: A Multimodal Feature Space Alignment and Fusion Framework GENEA ’25, October 27–31, 2025, Dublin, Ireland.

Table 6: Evaluation of gesture emotion recognition.

Method Emotion Accuracy ↑
Ground truth 65.63
Trimodal [37] 28.13
CaMN [21] 48.44
DiffGesture [40] 54.69
LivelySpeaker (RAG) [39] 46.88
LivelySpeaker (full) [39] 51.56
SemGest (full) 45.31
SemGest (w/o semantic projection) 42.19
SemGest (concatenation) 39.06
SemGest (speech-only) 51.56
SemGest (semantic-only) 43.75

... Gesture Emotion
Classifier

Neutral, Happy,
Anger, Sad,

Contempt, Surprise,
Fear, Disgust

Figure 6: The framework of gesture emotion classifier.

Figure 7: Gesture emotion recognition confusion matrix of the
proposed method.

Following [7, 20], we downsample the pose sequences into 30 FPS,
divide the sequence into chunks of 64 frames, and train the pro-
posed framework on the same training set. As SemGest can only
produce upper-body gestures while the baseline models [7, 20] gen-
erate holistic gesture, we use the identical lower-body gesture and
facial expression in quantitative evaluation and visualization. The
visualization video clips compared to baseline models [7, 20] are
provided in the supplementary videos.
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Train

CLIP Text
Encoder

Gesture
Prior

Encoder

Transcripts:
I love cooking...

Semantic-to-gesture
Alignment

Spatial-temporal
Self-attention

CLIP Text
Encoder
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Inference
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Prior
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Figure 8: The training and evaluation pipeline of semantic-to-gesture alignment.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Co-speech gesture generation
	2.2 Semantic-aware co-speech gesture generation

	3 Proposed Framework
	3.1 Sematic-aware feature extraction
	3.2 Conditional co-speech gesture generation

	4 Implementation Details
	5 Experiments
	5.1 Experiment settings
	5.2 Quantitative evaluation
	5.3 Qualitative evaluation
	5.4 Ablation study

	6 Discussion and Future Work
	7 Conclusion
	Acknowledgments
	References
	A Supplementary Video
	B Training Loss
	C Evaluation Settings
	D Analysis of Semantic-to-Gesture Alignment
	E Analysis of Gesture Emotion Recognition
	F Supplementary Video: SMPL-X Data

