
Learning Generalizable Symbolic Options for Transfer
in Reinforcement Learning

Rashmeet Kaur Nayyar, Shivanshu Verma, and Siddharth Srivastava
School of Computing and Augmented Intelligence

Arizona State University
Tempe, AZ 85281

{rmnayyar,sverma76,siddharths}@asu.edu

Abstract

This paper presents a new approach for Transfer Reinforcement Learning (RL)
for Stochastic Shortest Path (SSP) problems in factored domains with unknown
transition functions. We take as input a set of problem instances with sparse reward
functions. The presented approach first learns a semantically well-defined state
abstraction and then uses this abstraction to invent high-level options, to learn
abstract policies for executing them, as well as to create abstract symbolic represen-
tations for representing them. Given a new problem instance, our overall approach
conducts a novel bi-directional search over the learned option representations while
also inventing new options as needed. Our main contributions are approaches for
continually learning transferable, generalizable knowledge in the form of symbol-
ically represented options, as well as for integrating search techniques with RL
to solve new problems by efficiently composing the learned options. Empirical
results show that the resulting approach effectively transfers learned knowledge
and achieves superior sample efficiency compared to SOTA methods.

1 Introduction

At the heart of creating intelligent AI agents is the ability to learn representations for efficient
reasoning and generalize behaviors to new, unseen situations. As Reinforcement Learning (RL)
can be sample-inefficient and difficult to scale in long horizon sparse settings (Dadvar et al., 2023),
much research has extensively investigated Transfer Learning (TL) from source tasks to improve
sample-efficiency of RL in related but distinct target tasks (Taylor and Stone, 2009). Hierarchical
Reinforcement Learning (HRL) (Barto and Mahadevan, 2003), in particular the options framework
(Sutton et al., 1999), provides a principled way of using macro-actions for temporal abstraction to
accelerate RL. However, despite much effort in autonomously learning options (Menache et al., 2002;
Frans et al., 2017), these approaches suffer from limited generalizability and sample-inefficiency.

We present a novel approach for sample-efficient transfer learning in RL for factored domains by
learning composable and generalizable options with abstract symbolic representations (illustrated in
Fig. 1). Such problems include many practical real-world scenarios (e.g., pick-up and drop-off taxi
service) where states can be intuitively expressed in terms of values of state variables. Our approach
starts by learning a semantically well-defined state abstraction from source problems and then uses
this abstraction to learn high-level generalizable options with abstract symbolic representations and
policies for executing them. Given a target problem, our approach conducts a novel bi-directional
search over these options to compose and invent new options if needed.

Through an extensive evaluation on a diverse range of challenging domains, we demonstrate that our
approach significantly outperforms state-of-the-art RL baselines in terms of sample efficiency on
target problems with the same state variables but different tasks using a small set of source problems.

NeurIPS 2023 Workshop on Generalization in Planning (GenPlan 2023).

Furthermore, the learned symbolic options are semantically meaningful and have composable and
generalizable properties that aid transfer.

(a) Option o1 (b) Option o2 (c)

Figure 1: Illustration of options in taxi world with passengers and a
destination. The images (a) and (b) show abstract policies and initia-
tion sets for option o1 (to navigate and pickup passenger) and option
o2 (to navigate and dropoff passenger) respectively that are generaliz-
able due to state abstraction. The image (c) shows composability of
the options as abstract state in the termination of o1 (shown in green)
is in the initiation of o2 (shown in blue).

The presented approach is related
to research in option discovery (Ba-
con et al., 2017; Riemer et al.,
2018; Klissarov and Precup, 2021).
However, unlike conventional ap-
proaches, we learn composable and
generalizable options with abstract
symbolic representations without
the need to prespecify the number
of options to be learned. Our ap-
proach also provides the benefits
of transfer to environments that are
larger and more cluttered than those
used in the source problems. For in-
stance, most self-driving cars today
train and over-fit to known scenar-
ios which makes it difficult to start operations in new, more crowded cities and countries. Effective
transfer in these scenarios requires learning transferable knowledge, identifying useful knowledge
during transfer, as well as discovering and learning new relevant knowledge.

To our knowledge, this is the first end-to-end approach for learning composable and generalizable
options with abstract symbolic representations in a transfer learning setting without the need for any
hand-engineered inputs and a predefined number of options. Our key contributions are:

• Learning composable and generalizable options: We present a novel approach for learning
options with abstract symbolic representations that exhibit composable and generalizable
properties from a set of source problems without any hand-engineered inputs.

• Continually inventing options: We present a novel bi-directional planner that uses an
initial library of learned options to continue to invent new options for target problems by
prioritizing search over the previously learned options.

• Integrating planning with reinforcement learning: We present a general framework that
identifies relevant transferred options using the learned abstract representations that express
their initiation and termination conditions, and effectively recomposes these learned options
to find a plan to solve a target problem.

The rest of this paper is organized as follows: We begin by reviewing related work in Sec. 2. We
establish the relevant notation and review essential key concepts in Sec. 3. Then, we describe the
proposed novel integrated bi-directional planning and learning framework for transfer in Sec. 4. We
present the empirical results in Sec. 5. Finally, we conclude and discuss the future work in Sec. 6.

2 Related Work

Symbolic planning and reinforcement learning A line of research has emerged trying to combine
symbolic planning with RL (Grounds and Kudenko, 2005; Yang et al., 2018; Lyu et al., 2019; Illanes
et al., 2020; Kokel et al., 2021). Taskable RL (Illanes et al., 2020) assumes that a high-level model
of the environment is provided and uses a planner to provide high-level actions to a low-level RL.
RePRel (Kokel et al., 2021) requires hand-crafted abstractions as input for integrating planning with
learning. In contrast, we learn composable options and abstract representations without requiring any
human-engineered inputs that allow planning at the high level and RL at the low level.

State and Action Abstractions The majority of the current literature tackles either state or action
abstraction in isolation. However, the problem of jointly learning both abstractions remains largely
unaddressed (Konidaris, 2019). Dietterich (1999) show the importance of combining state abstractions
with action hierarchies, however, assume that state abstractions are provided. Jonsson and Barto
(2000) learn state abstractions for options, similar to this work, however, assume options are provided.
Ravindran and Barto (2003) introduce homomorphisms between original MDP and minimized MDP

2

obtained by collapsing state-action pairs. Abel et al. (2020) analyze value-preserving properties of
provided state-action abstractions. Walsh et al. (2006) infer and transfer state abstractions while
Silver et al. (2023) learn predicates, assuming that the model of the environment is known. In contrast,
our approach exploits the benefits of both temporal and state abstractions by autonomously learning
them for transfer RL. We first learn state abstractions and then options from source problems, then
continually learn new options and option-driven state abstractions for target problems.

Discovering Task Hierarchies Hierarchical Reinforcement Learning (HRL) (Barto and Mahade-
van, 2003) frameworks such as Options (Parr and Russell, 1997), MAXQ (Dietterich, 1999), and
HAMs (Sutton et al., 1999) provide a way of decomposing the original problem into a hierarchy of
subproblems to make RL more sample-efficient. HEXQ (Hengst et al., 2002) and VISA (Jonsson and
Barto, 2006) learn subtasks based on changing values of state variables. Mehta et al. (2008) learn
hierarchies by discarding irrelevant state variables.

Discovering Temporal Abstractions Recent work has developed methods for learning options
based on policy gradients (Bacon et al., 2017; Riemer et al., 2018). However, these approaches need
to prespecify the number of options to be learned and lack diversity in the learned options. Bagaria
and Konidaris (2020) discover options by chaining but do not learn or employ state abstractions to
represent or discover options. Konidaris and Barto (2007) reframe the state space into agent-centric
and problem-centric representations and transfer portable options in the agent-space.

Discovering Subgoals Another avenue of research has explored a combination of graph-partitioning
(Menache et al., 2002; Şimşek and Barto, 2007; Machado et al., 2017; Bacon and Precup, 2013),
clustering (Mannor et al., 2004), and frequency-based (McGovern and Barto, 2001; Stolle and Precup,
2002) techniques to identify subgoals or bottleneck states. Unlike these approaches, this paper’s
primary focus is on transfer.

3 Preliminaries

In this section, we establish relevant notation and review required key concepts.

Reinforcement Learning In this work, we formalize each problem as a factored Stochastic Shortest
Path (SSP) problem M = ⟨S,A, T ,R, so, sg, γ⟩ where S is a set of states, A is a set of actions,
T : S ×A× S → [0, 1] is a transition function, R : S ×A → R is a reward function, so is a start
state, sg is a goal state, and γ ∈ (0, 1] is a discount factor. We define each state s ∈ S using a set of n
variables V = {v1, . . . , vn} where each vi takes on values in some interval Dom(vi) = [vmin

i , vmax
i],

where vmin
i and vmax

i denote the lower and upper bounds on the value of vi respectively.

A solution to an SSP is a policy π : S → A that prescribes an action that should be taken in each
state. Generally, dynamic programming methods such as Value Iteration and Policy Iteration can be
used to compute a solution. However, in most real-world scenarios, these methods fail as T and R
are unknown. In such cases, RL methods (Sutton and Barto, 2018) such as Q-learning (Watkins and
Dayan, 1992) and DQN (Mnih et al., 2013) can be used to solve such problems, however, they are
sample inefficient. In this paper, we consider SSPs with unknown T and R.

Conditional State Abstractions We define a state abstraction function as ϕ : S → S where each
ground state s ∈ S is mapped to an abstract state s ∈ S. Given a set of variables V , we define an
abstract state s = {θi|vi ∈ V} as a set of partitions of the form θi = [vlow

i , vhigh
i] for each variable

vi ∈ V such that vlow
i and vhigh

i ∈ [vmin
i , vmax

i] and vlow
i ≤ vhigh

i . E.g., [1,2] is a partition of the original
value range [1,4] for a variable. The most trivial abstract state sinit has the original value range itself
as the partition for each variable, i.e., sinit = {θi|∀vi ∈ V, vlow

i = vmin
i , vhigh

i = vmax
i }.

A hierarchy of state abstractions in the form of a Conditional Abstraction Tree (CAT)
(Dadvar et al., 2023) is defined as ξ = ⟨N , E⟩ where N is a set of possible abstract
states where the root node represents sinit and E is a set of directed edges connecting
possible abstract states. Each edge ∈ E from a parent abstract state sp to a child ab-
stract state sc exists iff sc can be obtained by directly refining sp denoted by sc ⊵ sp.

3

Figure 2: CAT

Fig. 2 shows an example CAT for x and y vari-
ables where [1-4] represents the complete range
of values for the variables. Given a CAT ξ, the set
of leaves represents the complete set of abstract
states S of the most refined state abstraction in ξ.

The CAT+RL algorithm takes as input an SSP
M and learns a CAT ξ and an abstract policy
π. However, it does not address the problem of
learning options, which is the focus of this paper.
In this work, we use CAT+RL as an underlying
algorithm to learn state abstractions.

Temporal abstractions The standard formulation of the options framework (Sutton et al., 1999)
does not involve state abstractions. In this work, we define an option over a set of abstract states S as
o = ⟨I, β, π⟩ where I ⊂ S is a subset of abstract states where the option o can initiate, β ⊂ S is a
subset of abstract states where the option o terminates, and π : S→ A is a prescribed abstract policy.

Given a set of source problems M and a target problem M, we aim to efficiently learn a solution for
M. In the next section, we present a novel end-to-end framework that achieves this by autonomously
learning and transferring generalizable knowledge in the form of symbolically represented options
and a CAT from M, while also continually inventing new options as needed to solve M.

4 Integrated Planning and Learning for Transfer

The key major contributions of this work are that our approach automatically (i) identifies existing
options relevant for a target problem, as well as (ii) identifies new options needed to solve the target
problem. This focused learning of new abstract policies aids transferability. The learned symbolic
option representations are composable and generalizable, enabling effective planning and transfer.

Algorithm 1: COPlanLearn
Input: Source SSPs MS , Target SSPMT (initial state:

so, goal state: sg)
Output: Solution Π forMT , Option library O, CAT ξ

1 /∗ Invent CAT-Options from Source Problems ∗/
2 Initialize O, ξ
3 forMS∈MS do
4 ξ, π, τ ← CAT+RL(MS ,ξ)
5 Π← inventCATOptionsPlan(MS ,ξ,π,τ)
6 O.update(Π)

7 /∗ Invent Bridge-Options for target problem ∗/
8 so, sg ← getAbstractStates(ξ,so,sg)
9 Π← inventBridgeOptionsPlan(MT ,O,so,sg)

10 /∗ Learning Abstract Policies for Invented Options ∗/
11 if Π found then
12 Π, ξ← LearnOrFinetuneOptionPolicies(Π,MT ,ξ)

13 if Π not found or fails then
14 ξ, π, τ ← CAT+RL(MT ,ξ)

15 Π← inventCATOptionsPlan(MT ,ξ,π,τ)
16 O.update(Π)
17 return Π, O, ξ

We present a novel general frame-
work called CAT Options Planning and
Learning -- COPlanLearn -- that inputs a
set of source problems M and integrates
planning with learning to solve a new
target problem MT (Alg. 1). COPlan-
Learn first learns a CAT ξ and a library
of reusable options called CAT-options
O from a set of source problems M
(lines 2-6, Sec. 4.1). COPlanLearn then
transfers these abstractions while invent-
ing new options called bridge-options if
needed to compute an option plan Π for
a new target problem MT . We present a
novel bi-directional search algorithm to
compute these bridge-options (lines 8-9,
Sec. 4.2). Then, COPlanLearn learns or
fine-tunes policies for options in the op-
tion plan Π while updating the CAT ξ to
find a complete solution for MT . If such
a plan is not found or fails, COPlanLearn
instead learns an updated CAT ξ. Finally,
it learns new CAT-options for MT and updates the option library O (lines 11-16, Sec. 4.3). The
framework returns the solution found for MT along with the learned option library O and the CAT ξ.

We now discuss these major components of Alg. 1 in detail in the sections below.

4

4.1 Inventing CAT-options

We present a novel approach based on CATs to first extract subgoal abstract states and then invent
CAT-options. The structure of abstraction in well-developed CATs reveal subgoal-based temporal
abstractions or options. As the subtask (unknown) of current focus changes for a given problem, the
abstraction that is relevant to achieve the subtask changes. We use the structure of a CAT to identify
the points of change in the relevant abstraction for a solution trajectory and determine the subgoal
abstract states corresponding to the subtasks. We then leverage these subgoals and the learned CAT to
invent options called CAT-options, updating the option library for transfer to other problems. We first
describe the approach for learning a well-defined CAT for a given problem and extracting subgoals.
We then describe our approach for inventing corresponding CAT-options with abstract symbolic
representations.

Learning CAT and Abstract Policy We first learn a semantically meaningful state abstraction as a
CAT and an associated policy over that CAT abstraction for a source SSP using CAT+RL.

Extracting subgoals from CAT Given a CAT and abstract trajectory, we identify subgoals as abstract
states that alter the relevant CAT abstraction. For example, in Taxi World, the abstraction shifts when
a passenger is picked up - from subtrees that are refined more on the passenger location variables
to subtrees that are refined more on the destination location variables. Given a concrete trajectory,
whenever the abstraction distance between two states s and s′ is beyond a certain threshold or is
non-zero, the subtask in focus changes and the abstract state for s′ is extracted as a subgoal.

To detect change in abstraction between two consecutive states, we construct a pruned CAT for each
state by abstracting high frequency variables and fixing values of other variables. Variable change
frequencies can be readily calculated from concrete trajectories during CAT learning. Fig. 3 displays
pruned CATs of the CAT in Fig. 2 for the states y=2 and y=3. In both CATs, the variable x has been
abstracted—all values of x are considered when constructing these pruned variants. We now describe
the Abstraction distance metric for comparing state abstractions of two pruned CATs to identify
subgoal abstract states, as described below.

(a) For y = 2 (b) For y = 3

Figure 3: Pruned CATs

Abstraction distance between pruned
CATs for two states in a transition captures
the change in the abstraction relevant for
the two states. This distance is computed
by observing the change in the structure
of abstraction encoded by the two pruned
CATs. This is computed by adding the
depths of all the dissimilar nodes in the
two pruned CATs.

Inventing CAT-options from subgoals
We extract partial trajectories for each sub-
goal, using only segments of available tra-
jectories that originate either from the initial state or the previous subgoal. We then develop termina-
tions for options by calculating the distance between consecutive abstract states and their common
ancestor in the CAT. When this distance exceeds a threshold, that abstract state initializes the ter-
mination set of a new option. After defining these option terminations, we determine initiations by
identifying abstract states in the partial trajectories that lead to those terminations. Since these options
are derived from the learned CAT structure, we call them CAT-options.

4.2 Inventing bridge-options

Our approach invents new options for a target problem MT using a novel bi-directional search over
the existing option library (Alg. 2) if needed. It chains the existing options in O from the initial
abstract state so and the goal abstract state sg, and invents novel options called bridge-options to
compute a complete option plan Π. The approach identifies relevant existing options and discovers
declarative abstract representation or option signature for new options capturing initiation and
termination conditions.

The search initializes a forward fringe from the initial abstract state so and a backward fringe
from the goal abstract state sg. As search expands the fringes, the forward fringe main-

5

tains all termination sets of options in O reachable from the initial abstract state and the
backward fringe maintains all initiation sets of options in O from which you can reach the
goal abstract state. Given an arbitrary distance measure between abstract states, states reach-
able from a state within a threshold ϵ are used to expand the forward and backward fringes.

Algorithm 2: Bi-directional Search to Invent Bridge
Options and Compute Option Plan
Input: Target SSPMT , Option library O, Initial

abstract state so, Goal abstract state sg
Output: Plan of options Π

1 Π← Initialize empty
2 add so to fwdFringe and fwdVisited
3 add sg to bwdFringe and bwdVisited
4 repeat
5 if fwdFringe then
6 sBest← fwdFringe.getBest()
7 expandFwdFringe(O, sBest)

8 if bwdFringe then
9 gBest← bwdFringe.getBest()

10 expandBwdFringe(O, gBest)

11 mBest← fwdVisited.intersection(bwdVisited)
12 plan← callPlanner(O, sBest, bwdFringe)
13 if plan or mBest ̸= ∅ then
14 Π← reconstruct path of options
15 break

16 until not fwdFringe and not bwdFringe;
17 if Π not found and (sBest ̸= so or gBest ̸= sg) then
18 O += inventOptionSignature(sBest, gBest)
19 Π← reconstruct path of options

20 return Π

Algorithm 3: Bi-directional Search Fringe Expansion

1 Function expandFwdFringe(O, sBest):
2 for o in O do
3 if sBest ∈ o.I(ϵ) and o.β /∈ fwdVisited then
4 add o.β to fwdFringe and fwdVisited

5 Function expandBwdFringe(O, gBest):
6 for o in O do
7 if gBest ∈ o.β(ϵ) and o.β /∈ bwdVisited then
8 add o.I to bwdFringe and bwdVisited

Alg. 2 repeatedly pops the most promis-
ing node sBest from the forward fringe
and expands the forward fringe (Alg. 2
lines 6-7). Similarly, it repeatedly pops
the most promising node gBest from the
backward fringe and expands the back-
ward fringe (Alg. 2 lines 9-10). Alg. 3 ex-
pands the forward fringe by adding states
from the termination of options whose
initiation sets are reachable from sBest
(Alg. 3 lines 1-4) and expands the back-
ward fringe by adding states from the
initiation of options whose termination
sets are reachable from gBest (Alg. 3
lines 8-14).

If the fringes intersect at some state
mBest, an option plan is reconstructed
by tracking parent states back to the ini-
tial and goal abstract states (Alg. 2 line
11). The search also checks for a partial
plan from sBest to any state in the entire
backward fringe by calling any off-the-
shelf planner (Alg. 2 line 12). If such a
partial plan is found, a complete option
plan from from so to sg is reconstructed.
Finally, if an option plan is not found
and sBest or gBest differ from the ini-
tial and goal abstract states respectively,
then a new bridge-option is constructed
with sBest in the initiation and gBest
in the termination sets, to find a complete
composable option plan Π from so to sg .
In the next section, we discuss how ab-
stract policies for the newly discovered
bridge-option is learned.

4.3 Learning Abstract Policies for Options

We now discuss our approach for learning or fine-tuning abstract policies for options in the plan Π to
solve the target problem MT (Alg. 1 lines 11-12).

Alg. 1 loops over the option plan, executing each option if its policy is already learned. For newly
learned options without a policy, Alg. 1 constructs an SSP specific to that option and uses CAT+RL to
learn a refined state abstraction by expanding the CAT ξ. It also learns an abstract policy specific to the
option. If an option fails, it’s abstraction and/or policy is fine-tuned for the target problem similarly.
The option’s declarative abstract representation is then updated to reflect the state abstraction encoded
in the learned CAT ξ. Finally, the option plan Π and the CAT ξ are updated with the learned option
policies and abstractions.

Throughout the approach, the most refined CAT ξ is maintained. The declarative representations
of all options must reflect the state abstraction defined by this CAT to enable flexible planning. As
optimization, concrete states are cached when options initiate and terminate during learning/execution.
When the CAT is further refined, these states are used to identify relevant new abstractions to update
the options’ declarative representations. Additionally, each option maintains its own internal CAT

6

0 5K 10K 15K
0.0

0.2

0.4

0.6

0.8

1.0
Maze World

0 5K 12K 20K

Rooms World

0 12K 24K 36K

Office World

0 10K 20K 30K

Taxi World

0 5K 8K 12K

Mountain Car

 Fr
ac

tio
n

of

 P
ro

bl
em

s S
ol

ve
d

BDPLearn (Ours) CAT+RL Option-Critic DQN

Figure 4: An average of the fraction of problems solved vs learning episodes required by each approach in
each domain, computed from 10 independent trials. A total of 20 problems (2 source, 18 target) were solved
sequentially by each approach.

to determine the abstract state and action prescribed by its learned abstract policy during execution.
This allows learning an abstraction tailored specifically to the subtask defined by that option.

If an option plan is not found or it fails, the CAT ξ is refined for MT using CAT+RL and CAT-options
are learned eventually as described in 4.1, updating the option library O (Alg. 1 lines 13-16). Finally,
Alg. 1 returns the learned option plan Π for MT , the option library O, and the CAT ξ.

5 Empirical Evaluation

We now evaluate COPlanLearn on a diverse range of domains in a transfer learning setting. We
implemented the method in Python and ran all experiments on 5.0 GHz Intel i9 CPUs with 64 GB
RAM running Ubuntu 22.04. The details regarding the environments and hyper-parameters are
included in the appendix. We sought to empirically answer the following questions:

Q1 Does COPlanLearn outperform state-of-the-art RL and transfer RL approaches to solve
a diverse set of problems that differ in initial and goal configurations?
Q2 Does COPlanLearn learn abstract symbolic options that are semantically meaningful?
Q3 Does COPlanLearn transfer to larger and more cluttered or obstructed environments?

Environments We performed an extensive evaluation of the literature to ensure that the selected
domains are challenging for SOTA methods. We conducted our investigation of COPlanLearn on
these stochastic versions of environments: (1) Maze World (Ramesh et al., 2019) with randomly
placed walls as obstacles; (2) Four Rooms World (Sutton et al., 1999) where an agent can navigate
within rooms and through hallways to other rooms; (3) Office World (Icarte et al., 2018) requires
an agent to pick-up coffee, then pick-up mail, and deliver them both to an office, (4) Taxi World
introduced by Dietterich (2000) has a taxi that picks up a passenger from its pick-up location and
drops it off at its destination location, and (5) Continuous state Mountain Car domain from Brockman
et al. (2016).

Baselines We compare with the state-of-the-art transfer RL Option-Critic (Bacon et al., 2017) and
the state-of-the-art RL CAT+RL (Dadvar et al., 2023) approaches that learn abstractions without any
hand-engineered inputs. Option-Critic is a hierarchical RL approach that automatically discovers
and learns options that can be transferred to related problems, whereas, CAT+RL is a top-down RL
approach that automatically learns hierarchical state abstractions. For continuous domain, we also
compare with DQN since multiple layers in the neural network successively learn state abstractions.
We use its implementation from Stable-Baselines3 1 framework by Raffin et al. (2019).

Experimental setup and metrics reported We provide a total of 20 randomly selected diverse
problems with different initial and goal configurations to all the approaches and investigate their
ability to solve a maximum number of problems using a minimum amount of learning experience.
For methods that transfer, we use two randomly selected problems as source problems and the rest
of them as target problems. This setting allows us to assess the combined ability of the methods to

1https://github.com/DLR-RM/stable-baselines3

7

transfer options from a small set of source problems and discover new options if needed in a large set
of target problems. The approaches first jointly learn to solve all source problems and then transfer
independently to solve each of the target problems.

We report an average of the fraction of total problems solved and the number of learning episodes
required to solve them by each approach for each domain, along with the standard deviations
computed from 10 independent runs. A problem is considered as solved only if an approach achieves
a mean evaluation success rate of 0.9 or above, computed by evaluating the learned greedy policy
for 100 episodes. We provide each approach a maximum allowed learning experience of n episodes
to solve each problem (n = 7000 for Taxi World and n = 5000 for the rest of the domains). Upon
reaching this limit or solving the problem, whichever happens first, each approach moves on to solve
the next problem. We now discuss our results and analysis in detail below.

5.1 Results

Fig. 4 shows that COPlanLearn consistently solves all of the problems faster compared to the baselines
in all the domains. This is reflected in the fraction of the total problems solved by COPlanLearn
compared to the baselines. Option-Critic performs poorest in all the experiments, even when compared
with CAT+RL which does not transfer. The reasons can be attributed to the benefits gained from
learning state abstractions by CAT+RL, and insufficient diversity in reusable options learned by
Option-Critic. Our approach COPlanLearn significantly outperforms the baselines in terms of sample
efficiency as it learns both temporal as well as state abstractions, and as a result solves a higher number
of problems using the same amount of learning experience as used by all the baselines. Empirically,
we found that COPlanLearn learns one successful abstract trajectory within a few learning episodes
and hence use it to compute an abstract state distance heuristic and invent new options. The learning
episodes for COPlanLearn also includes the steps taken for execution of options.

5.2 Analysis

We now present our analysis and answer each of the three key questions raised earlier in Sec. 5.

Improved Sample efficiency The results in Fig. 4 corroborate that the symbolically represented
options learned by our approach COPlanLearn have high utility in a transfer learning setting. COPlan-
Learn solves all the problems faster compared to the baselines in all the domains. The superior sample
efficiency achieved by COPlanLearn demonstrates that it (i) derives benefits from learning both
temporal and state abstractions, and (ii) effectively identifies reusable abstractions while discovering
new relevant abstractions if needed.

Figure 5: Visualization of options for Taxi World. Dashed and
solid lines show the initiation and termination sets for an option
respectively. Left: the initial state and the destination. Middle:
an option for navigation to pickup the passenger. Right: an
option for navigation to dropoff the passenger.

Semantically meaningful options An
important property of the learned op-
tions is that they express meaning-
ful high-level behaviors and are inter-
pretable due to their abstract representa-
tions. Fig. 5 shows a visualization of op-
tions learned in Taxi World highlighting
their initiation and termination sets. The
images show two options that clearly
express: taxi navigation to the pickup
location to pick up a passenger, and taxi
navigation to the destination to drop off
the passenger.

Transfer to more cluttered environments We conducted an additional study to investigate whether
the abstractions learned by COPlanLearn express generalizable knowledge that can be transferred to
more obstructed environments in Maze and Rooms domains. Fig.6 shows that COPlanLearn achieves
superior performance even with increased obstacles in the environment. This demonstrates that
COPlanLearn has a broader applicability and capability to transfer.

8

(a) Transfer from less to more cluttered environments.

(b) Transfer from smaller to larger environments.

Figure 6: An average of fraction of problems solved
vs learning episodes when transferred from one source
problem in a less cluttered (top) (Maze: 24×24, Rooms:
33×33) or smaller (down) (Maze: 8×8, Rooms: 11×11)
environment to 20 target problems in a more cluttered
(top) or larger (down) environment (Maze: 24×24, Rooms:
33×33) with different initial and goal configurations for
Maze World and Rooms World domains.

Transfer to larger environments We
also conducted an additional study to test
COPlanLearn’s ability to transfer to environ-
ments that are much larger than the source
environment. Fig. 6 clearly shows that op-
tions learned by COPlanLearn are general-
izable as it effectively fine-tunes abstract
policies for options in environments that are
9 times larger than the source environment.

As the target problem’s state space differs
from the source problem, COPlanLearn ex-
trapolates the CAT learned from the source
problem to build a new CAT for the tar-
get problem and creates a mapping between
abstract states in these two CATs. It then
uses this mapping to update the declarative
abstract representations of the transferred
options. The superior sample efficiency
achieved clearly demonstrates it’s capabil-
ities to effectively generalize.

6 Conclusions and Future Work

We presented novel approaches for learning
symbolic options with abstract representa-
tions and composing the learned options to
solve a target problem in a transfer learn-
ing setting. Extensive empirical evaluation
demonstrated that the presented approach
achieves superior sample efficiency com-
pared to the baselines, even in environments
that are more cluttered and larger than the
source environments. The learned options
are generalizable, composable, as well as express semantically meaningful high-level behaviors. In
the future, we plan to investigate learning hierarchies of temporal and state abstractions in tandem.

6.1 Acknowledgement

This work was supported in part by the NSF Grant 1909370 and the ONR grant N000142312416.

References
D. Abel, N. Umbanhowar, K. Khetarpal, D. Arumugam, D. Precup, and M. Littman. Value preserving

state-action abstractions. In International Conference on Artificial Intelligence and Statistics,
pages 1639–1650. PMLR, 2020.

P.-L. Bacon and D. Precup. Using label propagation for learning temporally abstract actions in
reinforcement learning. In Proceedings of the Workshop on Multiagent Interaction Networks,
pages 1–7, 2013.

P.-L. Bacon, J. Harb, and D. Precup. The option-critic architecture. In Proceedings of the AAAI
conference on artificial intelligence, 2017.

A. Bagaria and G. Konidaris. Option discovery using deep skill chaining. In International Conference
on Learning Representations, 2020.

A. G. Barto and S. Mahadevan. Recent advances in hierarchical reinforcement learning. Discrete
event dynamic systems, 13(1-2):41–77, 2003.

9

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. Openai
gym. arXiv preprint arXiv:1606.01540, 2016.

M. Dadvar, R. K. Nayyar, and S. Srivastava. Conditional abstraction trees for sample-efficient
reinforcement learning. In Uncertainty in Artificial Intelligence, pages 485–495. PMLR, 2023.

T. Dietterich. State abstraction in maxq hierarchical reinforcement learning. Advances in Neural
Information Processing Systems, 12, 1999.

T. G. Dietterich. Hierarchical reinforcement learning with the maxq value function decomposition.
Journal of artificial intelligence research, 13:227–303, 2000.

K. Frans, J. Ho, X. Chen, P. Abbeel, and J. Schulman. Meta learning shared hierarchies. arXiv
preprint arXiv:1710.09767, 2017.

M. Grounds and D. Kudenko. Combining reinforcement learning with symbolic planning. In
European Symposium on Adaptive Agents and Multi-Agent Systems, pages 75–86. Springer, 2005.

B. Hengst et al. Discovering hierarchy in reinforcement learning with hexq. In Icml, volume 19,
pages 243–250. Citeseer, 2002.

R. T. Icarte, T. Klassen, R. Valenzano, and S. McIlraith. Using reward machines for high-level
task specification and decomposition in reinforcement learning. In International Conference on
Machine Learning, pages 2107–2116. PMLR, 2018.

L. Illanes, X. Yan, R. T. Icarte, and S. A. McIlraith. Symbolic plans as high-level instructions for
reinforcement learning. In Proceedings of the international conference on automated planning
and scheduling, volume 30, pages 540–550, 2020.

A. Jonsson and A. Barto. Automated state abstraction for options using the u-tree algorithm. Advances
in neural information processing systems, 13, 2000.

A. Jonsson and A. Barto. Causal graph based decomposition of factored mdps. Journal of Machine
Learning Research, 7(11), 2006.

M. Klissarov and D. Precup. Flexible option learning. Advances in Neural Information Processing
Systems, 34:4632–4646, 2021.

H. Kokel, A. Manoharan, S. Natarajan, B. Ravindran, and P. Tadepalli. Reprel: Integrating relational
planning and reinforcement learning for effective abstraction. In Proceedings of the International
Conference on Automated Planning and Scheduling, volume 31, pages 533–541, 2021.

G. Konidaris. On the necessity of abstraction. Current opinion in behavioral sciences, 29:1–7, 2019.

G. D. Konidaris and A. G. Barto. Building portable options: Skill transfer in reinforcement learning.
In Ijcai, volume 7, pages 895–900, 2007.

D. Lyu, F. Yang, B. Liu, and S. Gustafson. Sdrl: interpretable and data-efficient deep reinforcement
learning leveraging symbolic planning. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 2970–2977, 2019.

M. C. Machado, M. G. Bellemare, and M. Bowling. A laplacian framework for option discovery
in reinforcement learning. In International Conference on Machine Learning, pages 2295–2304.
PMLR, 2017.

S. Mannor, I. Menache, A. Hoze, and U. Klein. Dynamic abstraction in reinforcement learning
via clustering. In Proceedings of the twenty-first international conference on Machine learning,
page 71, 2004.

A. McGovern and A. G. Barto. Automatic discovery of subgoals in reinforcement learning using
diverse density. In Proceedings of the 18th International Conference on Machine Learning, 2001,
2001.

10

N. Mehta, S. Ray, P. Tadepalli, and T. Dietterich. Automatic discovery and transfer of maxq
hierarchies. In Proceedings of the 25th international conference on Machine learning, pages
648–655, 2008.

I. Menache, S. Mannor, and N. Shimkin. Q-cut—dynamic discovery of sub-goals in reinforcement
learning. In Machine Learning: ECML 2002: 13th European Conference on Machine Learning
Helsinki, Finland, August 19–23, 2002 Proceedings 13, pages 295–306. Springer, 2002.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

R. Parr and S. Russell. Reinforcement learning with hierarchies of machines. Advances in neural
information processing systems, 10, 1997.

A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and N. Dormann. Stable baselines3, 2019.

R. Ramesh, M. Tomar, and B. Ravindran. Successor options: An option discovery framework for
reinforcement learning. arXiv preprint arXiv:1905.05731, 2019.

B. Ravindran and A. G. Barto. Smdp homomorphisms: an algebraic approach to abstraction in
semi-markov decision processes. In Proceedings of the 18th international joint conference on
Artificial intelligence, pages 1011–1016, 2003.

M. Riemer, M. Liu, and G. Tesauro. Learning abstract options. Advances in neural information
processing systems, 31, 2018.

T. Silver, R. Chitnis, N. Kumar, W. McClinton, T. Lozano-Pérez, L. Kaelbling, and J. B. Tenenbaum.
Predicate invention for bilevel planning. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 12120–12129, 2023.

Ö. Şimşek and A. G. Barto. Betweenness centrality as a basis for forming skills. Technical Report
07-26, University of Massachusetts, 2007.

M. Stolle and D. Precup. Learning options in reinforcement learning. In Abstraction, Reformulation,
and Approximation: 5th International Symposium, SARA 2002 Kananaskis, Alberta, Canada
August 2–4, 2002 Proceedings 5, pages 212–223. Springer, 2002.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for temporal
abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

M. E. Taylor and P. Stone. Transfer learning for reinforcement learning domains: A survey. Journal
of Machine Learning Research, 10(7), 2009.

T. J. Walsh, L. Li, and M. L. Littman. Transferring state abstractions between mdps. In ICML
Workshop on Structural Knowledge Transfer for Machine Learning, 2006.

C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8:279–292, 1992.

F. Yang, D. Lyu, B. Liu, and S. Gustafson. Peorl: Integrating symbolic planning and hierarchical
reinforcement learning for robust decision-making. arXiv preprint arXiv:1804.07779, 2018.

11

7 Appendix

7.1 Environment Details

(a) Maze (24×24) (b) Four Rooms (33×33) (c) Office (11×15) (d) Taxi (30×30)

Figure 7: Office, Taxi, Maze, and Four Rooms World environments.

Maze World We consider a Maze World Ramesh et al. (2019) of dimensions 24×24 (Fig. 7a)
with randomly placed walls as obstacles. The agent can take up, down, left and right actions. Upon
applying any action, the agent executes the action successfully with a probability of 0.8 and may slip
to one of the two adjacent cells with a probability of 0.1 each. The agent receives a reward of 500
on completing the task of reaching the goal from the start successfully, -2 on bumping against the
wall, and -1 otherwise. Target problems differ from the source problems in the initial and destination
locations of the agent.

We conducted additional studies to evaluate transfer from small (Fig. 7a map of size 8×8) to large
(Fig. 7a map of size 24×24) environments, and from less cluttered (Fig. 8a map of size 24×24) to
more (Fig. 8b map of size 24×24) cluttered environments in the Maze World domain.

(a) Less cluttered (24×24) (b) More cluttered (24×24)

Figure 8: Transfer from less cluttered (left) to more cluttered (right) environments in Maze World.

Four Rooms World We consider a Four Rooms World from Sutton et al. (1999) of dimensions
33×33 (Fig. 7b) where an agent can navigate within rooms and through hallways to other rooms.
The actions, stochastic probabilities, and the reward structure are the same as in the Maze World.
The agent starts from a random location in any room and needs to reach a particular destination in a
different room. The initial and goal locations for all source and target problems are different.

We also conducted additional studies to evaluate transfer from smaller (Fig. 9a map of size 8×8) to
larger environments (Fig. 9a map of size 24×24) as well as from less cluttered (Fig. 9a map of size
24×24) to more cluttered (Fig. 9b map of size 24×24) environments in the Four Rooms domain.

Office World We consider an Office World from Icarte et al. (2018) with dimensions 11×15
(Fig. 7c). The agent can take up, down, left and right actions. On applying any action, the agent
executes the action successfully with a probability of 0.8 and may slip to one of the two adjacent cells
with a probability of 0.1 each. The agent needs to pick-up coffee, then pick-up mail, and deliver them
both to an office in an environment with various rooms and offices. The agent receives a reward of
500 when the agent delivers coffee and mail to the office, and 0 otherwise. Target problems differ
from the source problems in the initial location of the agent and the location of the office.

12

(a) Less cluttered (24×24) (b) More cluttered (24×24)

Figure 9: Transfer from less cluttered (left) to more cluttered (right) environments in Four Rooms.

Taxi World We consider a scenario of Taxi World, a classic benchmark introduced by Dietterich
(2000) of dimensions 30×30 (Fig. 7d). There are four pick-up and drop-off locations, one in each
corner of the grid. The agent can take up, down, left, right, pick-up, and drop-off actions. Each
move action has stochastic probabilities similar to Office world. Taxi World has a taxi that starts
from a random location and needs to pick up a passenger from its pick-up location and drop-off at its
destination location. The agent obtains a reward of -1 on applying a move action and -100 on illegal
pick-up and drop-off actions. Upon dropping the passenger at the correct destination, it receives a
positive reward of 500. Target problems differ from the source problems in the initial location of the
agent and the drop-off location for the passenger.

Mountain Car We consider the continuous state and discrete action environment from Open AI
Gym 1. The agent receives -1 reward on each step and 500 reward on reaching the goal position. The
maximum number of steps allowed in an episode is 200. All the target and source problems differ in
the initial and goal locations of the taxi.

7.2 Hyper-parameters

We used the open-source code available for the state-of-the-art baselines Option-Critic 2, CAT+RL
3, and DQN implemented in Stable-Baselines3 4 framework by Raffin et al. (2019). The presented
approach COPlanLearn does not need to predefine the number of options as Option-Critic. COPlan-
Learn’s uses parameters ncheck, tsucc, and cap k similar to CAT+RL. ncheck is the interval of number
of episodes at which abstraction is evaluated for refinement, tsucc is the threshold of success rate,
and the cap k is the maximum number of unstable states that can be refined in each refinement. f is
the factor used to control the abstraction distance heuristic of edges retained and is set to 1

4 for all
domains. neval is the number of episodes for which the learned policy is evaluated which is set to
100 for all the approaches. Tables 1, 2, 3, 4, 5, 6, 7, 8, and 9 show all the hyper-parameters for all the
approaches and domains.

1https://www.gymlibrary.dev/environments/classic_control/mountain_car/
2https://github.com/lweitkamp/option-critic-pytorch
3https://github.com/AAIR-lab/CAT-RL.git
4https://github.com/DLR-RM/stable-baselines3

13

Hyper-parameters COPlanLearn Option-Critic CAT+RL
Threshold (tsucc) 0.9 0.9 0.9
ncheck 100 100 100
neval 100 100 100
Cap (k) 10 10 10
Exploration rate (ϵ) 1.0 − 1.0
Minimum exploration rate 0.05 − 0.05
Exploration decay 0.9996 − 0.9996
Discount factor (γ) 0.99 0.99 0.99
Number of episodes 5000 5000 5000
Maximum episode length 500 500 500
Maximum option length 500 − −
Number of predefined options − 8 −

Table 1: Parameters used in Maze World.

Hyper-parameters COPlanLearn Option-Critic CAT+RL
Threshold (tsucc) 0.9 0.9 0.9
ncheck 100 100 100
neval 100 100 100
Cap (k) 10 10 10
Exploration rate (ϵ) 1.0 − 1.0
Minimum exploration rate 0.05 − 0.05
Exploration decay 0.9996 − 0.9996
Discount factor (γ) 0.99 0.99 0.99
Number of episodes 5000 5000 5000
Maximum episode length 500 500 500
Maximum option length 500 − −
Number of predefined options − 8 −

Table 2: Parameters used in Maze World (less to more cluttered environment).

Hyper-parameters COPlanLearn Option-Critic CAT+RL
Threshold (tsucc) 0.9 0.9 0.9
ncheck 100 100 100
neval 100 100 100
Cap (k) 10 10 10
Exploration rate (ϵ) 1.0 − 1.0
Minimum exploration rate 0.05 − 0.05
Exploration decay (small environment) 0.991 − 0.991
Exploration decay (large environment) 0.9996 − 0.9996
Discount factor (γ) 0.99 0.99 0.99
Number of episodes 5000 5000 5000
Maximum episode length (small envi-
ronment)

75 75 75

Maximum episode length (large envi-
ronment)

500 500 500

Maximum option length 500 − −
Number of predefined options − 8 −

Table 3: Parameters used in Maze World (small to large environment).

14

Hyper-parameters COPlanLearn Option-Critic CAT+RL
Threshold (tsucc) 0.9 0.9 0.9
ncheck 100 100 100
neval 100 100 100
Cap (k) 10 10 10
Exploration rate (ϵ) 1.0 − 1.0
Minimum exploration rate 0.05 − 0.05
Exploration decay 0.9996 − 0.9996
Discount factor (γ) 0.99 0.99 0.99
Number of episodes 5000 5000 5000
Maximum horizon 600 600 600
Maximum option length 600 − −
Number of predefined options − 8 −

Table 4: Parameters used in Four Rooms World.

Hyperparameters COPlanLearn Option-Critic CAT+RL
Threshold (tsucc) 0.9 0.9 0.9
ncheck 100 100 100
neval 100 100 100
Cap (k) 10 10 10
Exploration rate (ϵ) 1.0 − 1.0
Minimum exploration rate 0.05 − 0.05
Exploration decay 0.9996 − 0.9996
Discount factor (γ) 0.99 0.99 0.99
Number of episodes 5000 5000 5000
Maximum horizon 600 600 600
Maximum option length 600 − −
Number of predefined options − 8 −

Table 5: Parameters used in Four Rooms World (less to more cluttered environment).

Hyperparameters COPlanLearn Option-Critic CAT+RL
Threshold (tsucc) 0.9 0.9 0.9
ncheck 100 100 100
neval 100 100 100
Cap (k) 10 10 10
Exploration rate (ϵ) 1.0 − 1.0
Minimum exploration rate 0.05 − 0.05
Exploration decay for small environ-
ment

0.991 − 0.991

Exploration decay for large environ-
ment

0.9996 − 0.9996

Discount factor (γ) 0.99 0.99 0.99
Number of episodes 5000 5000 5000
Maximum episode length (small en-
vironment)

100 100 100

Maximum episode length (large en-
vironment)

600 600 600

Maximum option length 600 − −
Number of predefined options − 8 −

Table 6: Parameters used in Four Rooms World (small to large environment).

15

Hyperparameters COPlanLearn Option-Critic CAT+RL
Threshold (tsucc) 0.9 0.9 0.9
ncheck 100 100 100
neval 100 100 100
Cap (k) 10 10 10
Exploration rate (ϵ) 1.0 − 1.0
Minimum exploration rate 0.05 − 0.05
Exploration decay 0.9991 − 0.9991
Discount factor (γ) 0.99 0.99 0.99
Number of episodes 5000 5000 5000
Maximum episode length 300 300 300
Maximum option length 300 − −
Number of predefined options − 8 −

Table 7: Parameters used in Office World.

Hyperparameters COPlanLearn Option-Critic CAT+RL
Threshold (tsucc) 0.9 0.9 0.9
ncheck 100 100 100
neval 100 100 100
Cap (k) 10 10 10
Exploration rate (ϵ) 1.0 − 1.0
Minimum exploration rate 0.05 − 0.05
Exploration decay 0.992 − 0.992
Discount factor (γ) 0.99 0.99 0.99
Number of episodes 7000 7000 7000
Maximum episode length 1500 1500 1500
Maximum option length 1500 − −
Number of predefined options − 8 −

Table 8: Parameters used in Taxi World.

Hyper-parameters COPlanLearn DQN CAT+RL
Threshold (tsucc) 0.9 0.9 0.9
ncheck 100 − 100
neval 100 − 100
Cap (k) 10 − 10
Exploration rate (ϵ) 1.0 1.0 1.0
Minimum exploration rate 0.05 0.05 0.05
Exploration decay 0.9996 0.99 0.9996
Discount factor (γ) 0.99 0.99 0.99
Number of episodes 5000 5000 5000
Maximum episode length 200 200 200
Maximum option length 200 − −
Number of predefined options − − −

Table 9: Parameters used in Mountain Car.

16

	Introduction
	Related Work
	Preliminaries
	Integrated Planning and Learning for Transfer
	Inventing CAT-options
	Inventing bridge-options
	Learning Abstract Policies for Options

	Empirical Evaluation
	Results
	Analysis

	Conclusions and Future Work
	Acknowledgement

	Appendix
	Environment Details
	Hyper-parameters

