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Abstract

Computational efficiency is a major bottleneck in
using classic graph-based approaches for semi-
supervised learning on datasets with a large num-
ber of unlabeled examples. Known techniques to
improve efficiency typically involve an approxi-
mation of the graph regularization objective, but
suffer two major drawbacks – first the graph is as-
sumed to be known or constructed with heuristic
hyperparameter values, second they do not provide
a principled approximation guarantee for learning
over the full unlabeled dataset. Building on recent
work on learning graphs for semi-supervised learn-
ing from multiple datasets for problems from the
same domain, and leveraging techniques for fast
approximations for solving linear systems in the
graph Laplacian matrix, we propose algorithms
that overcome both the above limitations.
We show a formal separation in the learning-
theoretic complexity of sparse and dense graph
families. We further show how to approximately
learn the best graphs from the sparse families effi-
ciently using the conjugate gradient method. Our
approach can also be used to learn the graph effi-
ciently online with sub-linear regret, under mild
smoothness assumptions. Our online learning re-
sults are stated generally, and may be useful for
approximate and efficient parameter tuning in other
problems. We implement our approach and demon-
strate significant (∼10-100x) speedups over prior
work on semi-supervised learning with learned
graphs on benchmark datasets.

1 INTRODUCTION

As machine learning finds applications in new domains like
healthcare, finance and a variety of industrial sectors [Va-

mathevan et al., 2019, Kumar et al., 2022, Larrañaga et al.,
2018], obtaining sufficiently large human-annotated datasets
for applying supervised learning is often prohibitively ex-
pensive. Semi-supervised learning can solve this problem
by utilizing unlabeled data, which is more readily avail-
able, together with a small amount of human-labeled data.
Graph-based techniques, where the similarity of examples
is encoded using a graph, are popular and effective for learn-
ing using unlabeled data [Zhu and Goldberg, 2009]. Several
heuristic approaches for learning given the graph are known,
but the choice of a good graph is strongly dependent on the
problem domain. How to create the graph has largely been
‘more of an art than science’ [Zhu, 2005], although recent
work proposes how to provably learn the best graph for a
given problem domain from the data [Balcan and Sharma,
2021]. A key limitation of the proposed techniques is their
computational efficiency, as the proposed algorithms take
Õ(n4) time which make them impractical to run on real
datasets. In this work we propose new and more practical
approaches that exploit graph sparsity and employ approxi-
mate optimization to obtain more powerful graph learning
techniques with formal guarantees for their effectiveness,
and improved efficiency guarantees.

Past work on improving the efficiency of graph-based semi-
supervised learning has focused largely on selecting a subset
of ‘important’ unlabeled examples. One may use a greedy
algorithm [Delalleau et al., 2005] or a k-means based heuris-
tic [Wang et al., 2016], run the graph-based algorithm only
on the selected subset of examples and use some local inter-
polation for remaining nodes. In this work we provide more
principled approaches that come with formal near-optimality
guarantees, and demonstrate the trade-off between accuracy
and efficiency. We focus on the data-driven setting, first
studied by [Balcan and Sharma, 2021] for this problem,
where one repeatedly solves multiple semi-supervised learn-
ing problems from the same problem domain, and hopes to
learn a common graph that works well over the domain.

We give tools for analysis of regret of online learning
algorithms in data-driven algorithm design, applicable
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beyond semi-supervised graph learning, and useful in
any problem where the loss functions can be easily
approximated. We also study sample efficiency of the
number of problem samples needed to learning a good
parameter when the problems come from a distribution over
semi-supervised learning problems. Our work extends prior
theoretical results [Balcan and Sharma, 2021] on sample
efficiency to additional graph families that capture sparsity,
obtaining improved sample complexity for sparse graphs.
We further propose algorithms which improve over the
running time of previous proposed approaches for learning
the graph. We employ the conjugate gradient method to
compute fast, approximate inverses and optimize over new
multi-parameter graph families that include sparse graphs
which can be more efficiently optimized. Empirically, we
observe that our proposed approaches are computationally
efficient, while retaining the effectiveness guarantees of
learning the best graph for the given problem distribution.

In more detail, we learn the graph ‘bandwidth’ hyperparam-
eter for the commonly used Gaussian kernel, optimizing
over a continuous parameter domain. This approach is more
powerful than a grid search, which only computes results
at some finite set of hyperparameter values. We extend
the recent line of work on data-driven algorithm design
(Section 1.2) to approximate online feedback, and achieve
provably near-optimal hyperparameter selection.

1.1 MAIN CONTRIBUTIONS

• (Section 3) We provide a general analysis for online data-
driven algorithm design with approximate loss functions,
quantifying the accuracy-efficiency trade-off. While prior
work on approximate algorithm selection [Balcan et al.,
2020c] studies bounded ℓ∞-norm approximations in the
distributional setting, we generalize along two axes – we
study a more general approximation class necessary to
analyse our semi-supervised learning algorithm, and our
results apply to online learning, even in the presence of
(the more realistic) partial feedback.

• (Section 4) For graph-based semi-supervised learning, we
show a formal gap in the pseudodimension of learning
sparse and dense graphs. Concretely, if each graph node is
connected to at most K neighbors, the pseudodimension is
O(K+log n), which implies an asymptotic gap relative to
Ω(n) bound for learning complete graphs with Gaussian
RBF kernels [Balcan and Sharma, 2021].

• (Section 5) We propose an efficient algorithm based on ap-
proximate Laplacian inverse for approximately computing
the hyperparameter intervals where the semi-supervised
loss objective is constant. We prove convergence guaran-
tees for our algorithm, which capture a trade-off between
the computational efficiency and the accuracy of loss es-
timation. We instantiate our approach for approximate
graph learning for the classic harmonic-objective algo-

rithm of Zhu et al. [2003], as well as the computationally
efficient algorithm of Delalleau et al. [2005].

• (Section 6) We implement our algorithm 1 and provide
extensive empirical study showing improvement over pre-
viously proposed approaches on standard datasets. Specif-
ically, we improve the running time by about 1-2 orders
of magnitude, while almost retaining (and in some cases
slightly increasing) the accuracy.

1.2 RELATED WORK

Approximate Laplacian inverse. The conjugate gradient
method [Hestenes and Stiefel, 1952] is an iterative algo-
rithm used to approximately solve a system Ax = b for
symmetric, positive definite matrices. Starting with the zero
vector as an approximate solution, every iteration computes
a gradient used to update this approximation in the direction
of the exact solution. The exact solution itself is obtained in
n steps, but good approximate solutions can be found much
sooner for graphs with low condition number κ [Axelsson,
1976, Vishnoi, 2012]. Furthermore, each iteration computes
a finite number of matrix-vector products on A, yielding
good runtime guarantees. Many variants of the Conjugate
gradient method exist [Hager and Zhang, 2006], in this work
we use the original version. The conjugate gradient method
is a tool in use for calculating fast matrix inverses across
machine learning applications, in domains such as deep re-
inforcement learning [Schulman et al., 2015, Rajeswaran
et al., 2017] and market forecasting [Shen et al., 2015]. We
choose the conjugate gradient method over other iterative
techniques to solve Ax = b like Lanczos iteration due to
its stability, simplicity, and previous success in other ma-
chine learning applications. Further, the conjugate gradient
method offers strong theoretical guarantees, leading to fast
approximate convergence for our use case.

Semi-supervised learning. Semi-supervised learning is a
paradigm for learning from labeled and unlabeled data ([Zhu
and Goldberg, 2009, Balcan and Blum, 2010]). A popu-
lar approach for semi-supervised learning is to optimize
a graph-based objective. Several methods have been pro-
posed to predict labels given a graph including st-mincuts
([Blum and Chawla, 2001]), soft mincuts that optimize a har-
monic objective ([Zhu et al., 2003]), and label propagation
([Zhu and Ghahramani, 2002]). Prior research for efficient
semi-supervised learning has also typically assumed that
the graph G is given [Delalleau et al., 2005, Wang et al.,
2016]. All algorithms have comparable performance pro-
vided the graph G encodes the problem well [Zhu and Gold-
berg, 2009]. Balcan and Sharma [2021] introduce a first
approach to learn the graph G with formal guarantees, and
show that the performance of all the algorithms depends
strongly on the graph hyperparameters. In this work, we
provide computationally efficient algorithms for learning
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the graph parameters. While we focus on the classical ap-
proaches, deep learning based approaches also typically
assume a graph is available Kipf and Welling [2017].

Data-driven algorithm design. Gupta and Roughgarden
[2017] define a formal learning framework for selecting
algorithms from a family of heuristics or setting hyperpa-
rameters. It is further developed by Balcan et al. [2017,
2018] and surveyed in Balcan [2020]. It has been success-
fully applied to several problems in machine learning like
clustering, linear regression and low rank approximation
[Balcan et al., 2017, 2022a, Bartlett et al., 2022] (to list
a few) and for giving powerful guarantees like differen-
tial privacy, adaptive learning and adversarial robustness
[Balcan et al., 2018, 2020b, 2023]. Balcan et al. [2018,
2020a] introduce general data-driven design techniques un-
der some smoothness assumptions, and Balcan et al. [2020c]
study learning with approximate losses. We extend the tech-
niques to broader problem settings (as noted in Section 1.1,
and detailed in Section 3), and investigate the structure of
graph-based label learning formulation to apply the new
techniques. Computational efficiency is an important con-
cern for practical applicability of data-driven design. This
includes recent and concurrent work which use fundamen-
tally different techniques like output-sensitive enumeration
from computational geometry Balcan et al. [2022b] and dis-
cretization for mechanism design applications Balcan and
Beyhaghi [2023]. In contrast, we study the effectiveness of
approximate loss estimation, as well as graph sparsification,
in data-driven graph selection for semi-supervised learning.

2 NOTATION AND FORMAL SETUP

We are given some labeled points L and unlabeled points U .
One constructs a graph G by placing (possibly weighted)
edges w(u, v) between pairs of data points u, v which are
‘similar’, and labels for the unlabeled examples are obtained
by optimizing some graph-based score. We have an oracle
O which on querying provides us the labeled and unlabeled
examples, and we need to pick G from some family G of
graphs. We commit to using some algorithm A(G,L,U) (or
AG,L,U ) which provides labels for examples in U , and we
should pick a G such that A(G,L,U) results in small error
in its predictions on U . To summarize more formally,

Problem statement: Given data space X , label space Y and
an oracle O which yields a number of labeled examples
∅ ≠ L ⊂ X ×Y and some unlabeled examples ∅ ≠ U ⊂ X
such that |L|+ |U | = n. We are further given a parameter-
ized family of graph construction procedures over parameter
space P , G : P → (X × X → R≥0), graph labeling al-
gorithm AG,L,U which takes a graph G with labeled nodes
L and unlabeled nodes U and provides labels for all unla-
beled examples in U , a loss function l : Y × Y → [0, 1]
and a target labeling τ : U → Y . We need to select
ρ ∈ P such that corresponding graph G(ρ) minimizes

1
|U |

∑
U l(AG(ρ),L,U (u), τ(u)) w.r.t. ρ.

We will now describe graph families G and algorithms
AG,L,U considered in this work. We restrict our attention
to binary classification, i.e. Y = {0, 1}, and note that all
proposed algorithms naturally extend to multiclass prob-
lems, using the standard one-vs-all trick. We assume there
is a feature based similarity function d : X × X → R≥0, a
metric which monotonically captures similarity between the
examples. In Definition 1 we formally introduce paramet-
ric families to build a graph using the similarity function,
which capture and interpolate well-known approaches such
as k-nearest neighbor graphs, r-neighborhood graphs and
Gaussian RBF kernels. In this work, we will consider three
parametric families of graph construction algorithms defined
below. I[·] is the indicator function taking values in {0, 1}.
Let Nk(v) denote the set of nodes of G which are the k-
nearest neighbors of node v under the metric d(·, ·). Define
k-mutual neighborhood as the set of edges for which each
end-point is a k-nearest neighbor of the other, i.e. N ′

k =
{(u, v) | u ∈ Nk(v) and v ∈ Nk(u)} [Ozaki et al., 2011].

Definition 1. Sparse graph families.
a) Thresholded nearest neighbors, G(k, r), (with k ∈
Z+, r ∈ R+): w(u, v) = I[d(u, v) ≤ r and (u, v) ∈ N ′

k] .
b) Gaussian nearest neighbors, G(k, σ), (with k ∈ [K] for

K ∈ Z+, σ ∈ R+): w(u, v) = e−
d(u,v)2

σ2 I[(u, v) ∈ N ′
k].

The thresholded nearest neighbor graph adds unweighted
edges to G(k, r) only when the examples are closer than
some r ∈ R≥0, and are mutual k-nearest neighbors. The
Gaussian (or RBF) kernel is more powerful and allows
weighted edges that depend on the metric distance and the
bandwidth parameter σ. We will use ρ to denote a general
graph parameter (e.g. ρ = (k, r) for thresholded nearest
neighbors) and denote the general parameterized graph
family by G(ρ). Once the graph is constructed using one of
the above families, we can assign labels using a suitable al-
gorithm AG,L,U . A popular and effective approach is by op-
timizing a quadratic objective 1

2

∑
u,v w(u, v)(fu− fv)

2 =

fT (D −W )f . Here f may either be discrete fv ∈ {0, 1}
which corresponds to finding a graph mincut separating the
oppositely labeled vertices Blum and Chawla [2001], or f
may be continuous, i.e. f ∈ [0, 1], and we can round f to
obtain the labels [Zhu et al., 2003].

In the distributional setting, we are presented with several
instances of the graph semi-supervised learning problem
assumed to be drawn from an unknown distribution D and
want to learn the best value of the graph parameter ρ. We
also assume we get all the labels for the ‘training’ problem
instances. A choice of ρ uniquely determines the graph G(ρ)
and we use some algorithm AG(ρ),L,U to make predictions
(e.g. minimizing the quadratic penalty score above) and
suffers loss lA(G(ρ),L,U) :=

1
|U |

∑
U l(AG(ρ),L,U (u), τ(u))

which we seek to minimize relative to smallest possible
loss by some graph in the hypothesis space, in expectation



over the data distribution D. We also define the family of
loss functions Hρ = {lA(G(ρ),L,U) | ρ ∈ P}. For exam-
ple, Hk,r = {lA(G(k,r),L,U) | (k, r) ∈ Z+ × R+}. As a
shorthand, we will often denote the loss on a fixed problem
instance as a function of the graph hyperparameter ρ as
simply l(ρ), and refer to it as the dual semi-supervised loss.

Finally we note definitions of some useful learning theoretic
complexity measures. First recall the definition of pseudodi-
mension [Pollard, 2012] which generalizes VC dimension
to real-valued functions, and is a well-known measure for
hypothesis-space complexity in statistical learning theory.

Definition 2 (Pseudo-dimension). Let H be a set of real
valued functions from input space X . We say that C =
(x1, . . . , xm) ∈ Xm is pseudo-shattered byH if there exists
a vector r = (r1, . . . , rm) ∈ Rm (called “witness”) such
that for all b = (b1, . . . , bm) ∈ {±1}m there exists hb ∈ H
such that sign(hb(xi)− ri) = bi. Pseudo-dimension of H
is the cardinality of the largest set pseudo-shattered byH.

We will also need the definition of dispersion [Balcan et al.,
2018] which, informally speaking, captures how amenable
a non-Lipschitz function is to online learning. As noted in
Balcan et al. [2018, 2020b], dispersion is necessary and
sufficient for learning piecewise Lipschitz functions online.

Definition 3 (Dispersion). The sequence of random
loss functions l1, . . . , lT is β-dispersed for the Lipschitz
constant L if, for all T and for all ϵ ≥ T−β , we have that,
in expectation, at most Õ(ϵT ) functions (here Õ suppresses
dependence on quantities beside ϵ, T and β, as well as
logarithmic terms) are not L-Lipschitz for any pair of points
at distance ϵ in the domain C. That is, for all T and ϵ ≥ T−β ,

E

[
max ρ,ρ′∈C

||ρ−ρ′||2≤ϵ

∣∣{t∈ [T ] | lt(ρ)−lt(ρ′) > L||ρ−ρ′||2}
∣∣] ≤

Õ(ϵT ).

3 APPROXIMATE DATA-DRIVEN
ALGORITHM DESIGN

Balcan and Sharma [2021] show that the dual loss l(ρ)
is a piecewise constant function of the graph hyperpa-
rameter ρ, for any fixed problem instance. Suppose the
problem instances arrive online in rounds t = 1, . . . , T ,
and the learner receives some feedback about her pre-
dicted parameter ρt. A standard performance metric
for the online learner is her expected regret, RT =

E
[∑T

t=1 lt(ρt)−minρ∈P
∑T

t=1 lt(ρ)
]
. Since the full in-

formation setting where all the labels are revealed is not
very practical (it assumes all labels of previous problem
instances are available), Balcan and Sharma [2021] also
consider the more realistic semi-bandit feedback setting of
Balcan et al. [2020a], where only the loss corresponding to
hyperparameter σt selected by the online learner in round t

Figure 1: A depiction of (ϵ, γ)-approximate feedback (Defi-
nition 4) for a one dimensional loss function. Here, the true
loss lt is given by the solid curve, and approximate loss l̃t is
piecewise constant.

is revealed, along with the end points of the piece At contain-
ing σt where lt is contant. We consider a generalization of
this setting where only an approximation to the loss value at
σt is revealed, along with an approximation to the piece At.

Although our formulation below is motivated by consid-
erations for graph parameter tuning for semi-supervised
learning, we provide very general definitions and results
that apply to approximate online data-driven parameter se-
lection more generally [Balcan, 2020].

Definition 4. An online optimization problem with loss
functions l1, l2, . . . is said to have (ϵ, γ)-approximate
semi-bandit feedback with system size M if for each time
t = 1, 2, . . . , there is a partition Ã

(1)
t , . . . , Ã

(M)
t of the

parameter space P ⊂ Rd, called an approximate feedback
system, such that if the learner plays point ρt ∈ Ã

(i)
t ,

she observes the approximate feedback set Ã
(i)
t , and

observes approximate loss l̃t(ρ) for all ρ ∈ Ã
(i)
t such

that sup
ρ∈Â

(i)
t
|l̃t(ρ) − lt(ρ)| ≤ γ, for some (unknown)

Â
(i)
t ⊆ Ã

(i)
t with

∣∣∣vol(Ã(i)
t \ Â

(i)
t

) ∣∣∣ ≤ ϵ. Here vol(A)

denotes the d-dimensional volume of set A. We let Ãt(ρ)
denote the approximate feedback set that contains ρ ∈ P .

For example, let the parameter space P be one-dimensional,
and in round t the learner plays point ρt ∈ P . Now suppose
the approximate loss functions are also piecewise constant
with pieces Ã

(1)
t , . . . , Ã

(M)
t that partition P , and she re-

ceives information about the constant piece Ãt(ρt) contain-
ing the played point by receiving the ends points of interval
Ãt and approximate loss value l̃t for the observed piece Ãt

with |l̃t−lt| ≤ γ for most of the interval Ãt, except possibly
finitely many small intervals with total length ϵ, where lt is
the true loss function. This satisfies the definition of (ϵ, γ)-
approximate semi-bandit feedback. See Figure 1 for an illus-
tration. This simple example captures the semi-supervised
loss lA(G(ρ),L,U) (where in fact the true loss function is also
piecewise constant [Balcan and Sharma, 2021]), but our
analysis in this section applies to more general piecewise-



Lipschitz loss functions, and for high dimensional Euclidean
action space. This approximate feedback model general-
izes the “exact” semibandit feedback model of Balcan et al.
[2020a] (which in turn generalizes the standard ‘full infor-
mation’ setting that corresponds to M = 1) and is useful
for cases where computing the exact feedback set or loss
function is infeasible or computationally expensive. Our
model also generalizes the approximate loss functions of
Balcan et al. [2020c] where positive results (data-dependent
generalization guarantees) are shown for (0, γ)-approximate
full-information (M = 1) feedback in the distributional set-
ting. This extension is crucial for applying our techniques
of efficient graph learning by computing approximate loss
values for the learned graph.

Algorithm 1 APPROXIMATE CONTINUOUS EXP3-SET(λ)

1: Input: step size λ ∈ [0, 1].
2: Initialize w1(ρ) = 1 for all ρ ∈ P .
3: for t = 1, . . . , T do
4: Sample ρt according to pt(ρ) =

wt(ρ)∫
P wt(ρ)dρ

.
5: Play ρt and suffer loss lt(ρt).
6: Observe (γ, ϵ)-approximate feedback l̃t(ρ) over set

Ãt with ρt ∈ Ãt

7: Update wt+1(ρ) = wt(ρ) exp(−λl̂t(ρ)), where
l̂t(ρ) =

I{ρ∈Ãt}∫
Ãt

pt(ρ)dρ
l̃t(ρ).

We give a general online learning algorithm in the presence
of approximate semi-bandit feedback, and we show that
our algorithm achieves sub-linear regret bounds. In particu-
lar, our results indicate how the approximation in the loss
function impacts the regret of our algorithm and provides
a way to quantify the accuracy-efficiency trade-off (better
loss approximation can improve regret in Theorem 3.1, but
at the cost of efficiency in Theorems 5.1, 5.2).

Theorem 3.1. Suppose l1, . . . , lT : P → [0, 1] is a
sequence of β-dispersed loss functions, and the domain
P ⊂ Rd is contained in a ball of radius R. The Approxi-
mate Continuous Exp3-Set algorithm (Algorithm 1) achieves
expected regret Õ(

√
dMT log(RT ) + T 1−min{β,β′}) with

access to (ϵ, γ)-approximate semi-bandit feedback with sys-
tem size M , provided γ ≤ T−β′

, ϵ ≤ vol(B(T−β))T−β′
,

where B(r) is a d-ball of radius r.

Proof Sketch. We adapt the CONTINUOUS-EXP3-SET
analysis of Alon et al. [2017], Balcan et al. [2020a]. Define
weights wt(ρ) over the parameter spaceP as w1(ρ) = 1 and
wt+1(ρ) = wt(ρ) exp(−ηl̂t(ρ)) and normalized weights
Wt =

∫
P wt(ρ)dρ. Note that pt(ρ) = wt(ρ)

Wt
. We give up-

per and lower bounds on the quantity E[logWT+1/W1], i.e.
the expected value of the log-ratio of normalized weights,
and bound the slackness induced in these bounds due to
(ϵ, γ)-approximate feedback. Our analysis shows that, pro-
vided the error terms ϵ, γ are sub-constant in T as stated, we
achieve sublinear expected regret. □

In Theorem 3.1. β′ measures the net impact of approximate
feedback on the regret of Algorithm 1. In particular, it
shows that approximation can affect regret when (γ, ϵ are
such that) β′ < β and β′ < 1

2 . The bound in Theorem
3.1 is good for sufficiently small γ, ϵ. However, very small
γ, ϵ can come at the expense of speed. In more detail, our
results in Section 5 discuss how approximate feedback can
be algorithmically implemented and useful to obtain faster
runtime (runtime bounds are weaker for smaller ϵ). Together,
the results quantify an accuracy-efficiency trade-off, and
indicate how to set the approximation parameters to
improve the efficiency (of graph hyperparameter tuning)
without sacrificing the accuracy.

4 LEARNING SPARSE GRAPH FAMILIES

Using (weighted) edges for the k-nearest neighbors to use a
sparse graph is well-known as an optimization for compu-
tational efficiency in semi-supervised learning [Delalleau
et al., 2005, Wang et al., 2016]. Here we will show that it
also formally reduces the learning theoretic complexity, for
the problem of graph hyperparameter tuning. Proofs from
this section appear in Appendix A.

We can upper bound the pseudodimension of the class of
loss functions for sparse graph families, where only k near-
est neighbors are connected, for tunable parameter k ≤ K.
This upper bound improves on the O(n) bound from [Balcan
and Sharma, 2021] since K ≤ n, and involves a more care-
ful argument to bound the number of possible label patterns.

Theorem 4.1. The pseudo-dimension of Hk,σ is O(K +
log n) when the labeling algorithm A is the mincut approach
of Blum and Chawla [2001].

The above argument gives a better sample complexity than
dense graphs, for which the pseudo-dimension is known to
be Θ(n) [Balcan and Sharma, 2021]. We can also give up-
per bounds on the pseudo-dimension for Hk,r, the k-nearest
neighbor graph that adds edges only in r-neighborhood,
which implies existence of sample and computationally ef-
ficient algorithms for learning the best graph parameter
ρ = (k, r) using standard results.

Theorem 4.2. The pseudo-dimension of Hk,r is O(log n)
for any labeling algorithm A.

Note that the lower bounds from Balcan and Sharma [2021]
imply that the above bound is asymptotically tight. Our
bounds in this section imply upper bounds on number of
problem instances needed for learning the best parameter
values for the respective graph families [Balcan, 2020] in the
distributional setting. More precisely, we can bound the sam-
ple complexity of (ϵ, δ)-uniformly learning (Appendix A.1).

Theorem 4.3 (Anthony and Bartlett [1999]). Suppose
H is a class of functions X → [0, 1] having pseudo-
dimension PDIM(H). For every ϵ > 0, δ ∈ (0, 1), the



(a) Gradient Descent Only (b) Newton’s Method Only (c) Our Method

Figure 2: An instance of a node u for graph G on a subset of the MNIST dataset, where finding local minima of gu(σ) =
(fu(σ)− 1

2 )
2 is challenging for both Gradient descent and Newton steps.

sample complexity of (ϵ, δ)-uniformly learning the class
H is O

(
1
ϵ2

(
PDIM(H) ln 1

ϵ + ln 1
δ

))
.

5 SCALABILITY WITH
APPROXIMATION GUARANTEES

We will now present and analyse an algorithm (Algorithm
3) for computing approximate semi-bandit feedback for the
dual semi-supervised loss l(σ) over σ ∈ [σmin, σmax] (we
assume number of nearest-neighbors k is a fixed constant
in the following), where σ is the Gaussian bandwidth pa-
rameter (Def. 1). Our algorithm is a scalable version of
Algorithm 4 of Balcan and Sharma [2021]. Our proposed
approach involves two main modifications noted below.

• Our Algorithm 3 uses approximate soft labels f(σ)ϵ and
gradients ∂f

∂σ ϵ
. We use the conjugate gradient method to

compute these approximations, and provide implementa-
tions for the harmonic objective minimization approach
of Zhu et al. [2003], as well as the efficient algorithm
of Delalleau et al. [2005] with time complexity bounds
(Algorithm 2 and DBLR05APPROX resp. below).

• We use the approximate gradients to locate points where
f(σ∗) = 1

2 , corresponding to σ value where the predicted
label flips. We use these points to find (ϵ, ϵ)-approximate
feedback sets. We propose the use of smaller of Newton’s
step and gradient descent for better convergence to these
points (line 10 in Algorithm 3; Balcan and Sharma [2021]
use only Newton’s method). We motivate this step by giv-
ing an example (from a real dataset) where the gradients
are both too small and too large near the minima (Figure
2). This makes convergence challenging for both gradi-
ent descent and Newton’s method, but the combination is
effective even in this setting. We also give convergence
guarantees and runtime bounds for Algorithm 3 in the
presence of approximate gradients (Theorems 5.1, 5.2).

We first describe how to instantiate the sub-routine A to
compute approximate soft labels in Algorithm 3 (full details
in Appendix B for the interested reader).

Algorithm 2 computes the soft label that optimizes the har-
monic function objective Zhu et al. [2003] and gradient for a
given value of graph parameter σ for a fixed unlabeled node
u. This is accomplished by running the conjugate gradient
for given number of iterations to solve systems correspond-
ing to the harmonic function objective and its gradient.

Algorithm 2 HARMONICAPPROXIMATION(G, fL, u, σ, ϵ)

1: Input: Graph G with labeled nodes fL, unlabeled node
u, query parameter σ, error tolerance ϵ.

2: Output: approximate soft label fu,ϵ and approximate
gradient ∂fu

∂σ ϵ
.

3: Let CG(A, b, t) represent running the conjugate gradi-
ent method for t iterations to solve Ax = b.

4: Let tϵ indicate the number of iterations sufficient for
ϵ-approximation of fu(σ)∂fu∂σ (Theorem B.2, appendix).

5: Let fU,ϵ(σ) = CG ((I − PUU ), PULfL, tϵ), where
Dij := I[i = j]

∑
k Wik, P = D−1W .

6: Let ∂f
∂σ ϵ

= CG
(
(I − PUU ),

(
∂PUU

∂σ fU,ϵ +
∂PUL

∂σ fL
)
, tϵ

)
,

where

∂Pij

∂σ
=

∂w(i,j)
∂σ − Pij

∑
k∈L+U

∂w(i,k)
∂σ∑

k∈L+U w(i, k)
,

∂w(i, j)

∂σ
=

2w(i, j)d(i, j)2

σ3
.

7: return fu,ϵ(σ),
∂fu
∂σ ϵ

.

(Informal) DBLR05APPROX(G, fL, i, σ, ϵ)[Ũ , λ]: This al-
gorithm computes the soft label and gradient corresponding
to the efficient algorithm of Delalleau et al. [2005] for a
graph G with parameter σ for a fixed unlabeled node i ∈ U .
Unlike Algorithm 2, a matrix inverse is approximated via
iterations of the CG method for the Laplacian of a small
subset of unlabeled ’training’ nodes Ũ ⊂ U along with a
set of labeled nodes L. The labels of i ∈ U \ Ũ (’testing’
nodes) are determined by summing the labels of each
x ∈ Ũ ∪ L, weighted by Wij(x, i). The full algorithm is



presented as Algorithm 1 in section B.3 of the appendix.
The algorithm finds an ϵ approximation of f̃u(σ) · ∂f̃u∂σ using

O
(√

κ(A) log
(

λ(|LLabels|+|ŨLabels|)
ϵσminλmin(A)

))
conjugate gradient

iterations, where κ is the condition number, Ũ ⊂ U is a
small subset, and λ is a hyperparameter. Formal statement
and proof is in the appendix (Theorem B.3).

Algorithm 3 APPROXFEEDBACKSET(G, fL, σ0, ϵ, η,A)
1: Input: Graph G with unlabeled nodes U , labels fL,

query parameter σ0, error tolerance ϵ, learning rate η,
algorithm A to estimate soft labels and derivatives at
any σ (e.g. Algorithm 2).

2: Output: Estimates for piecewise constant interval con-
taining σ0, and function value at σ.

3: Initialize σl = σh = σ0.
4: for all u ∈ U do
5: Initialize n = 0, λ0 = 1, y0 = σ0.
6: while |σn+1 − σn| ≥ ϵ do
7: Compute fu,ϵ(σ),

∂fu
∂σ ϵ

as A(G, fL, u, σn, ϵ)

8: Set gu(σn) = (fu,ϵ(σn) − 1
2 )

2, g′u(σn) =

2
(
fu,ϵ(σn)− 1

2

) (
∂fu
∂σ ϵ

)
.

9: ξGD ← ηg′u(σn); ξNewton ← 2 gu(σn)
g′
u(σn)

.
10: yn+1 = σn −min{ξGD, ξNewton}.
11: if ξGD < ξNewton then

12: λn+1 =
1+
√

1+4λ2
n

2 , γn = 1−λn

λn+1
, σn+1 = (1−

γn)yn+1 + γnyn
13: else
14: σn+1 = yn+1

15: n← n+ 1
16: σl = min{σl, σn+1}, σh = max{σh, σn+1}.
17: return [σl, σh], fϵ(σ0).

Our main result is the following guarantee on the perfor-
mance of Algorithm 3, which captures the approximation-
efficiency trade-off for the algorithm. Compared to the
Õ(n4) running time of the approach in Balcan and Sharma
[2021], our algorithm runs in time Õ(n2) for sparse kNN
graphs (i.e. k-nearest neighbors with small constant k). To
achieve this speedup, we replace an O(n3) matrix inverse
for a given unlabeled point with a fixed number of Conjugate
Gradient iterations taking time O(|EG|), where |EG| is the
number of edges for graph G corresponding to the matrix
being inverted. Combined with our general algorithm for
approximate data-driven algorithm design (Theorem 3.1),
we obtain Õ(

√
T ) expected regret for online graph parame-

ter tuning with approximate semi-bandit feedback, provided
we run Algorithm 3 with ϵ ≤ 1√

T
. For our proof, we will

assume that the soft label function fu(σ) is convex and
smooth (i.e. derivative w.r.t. σ is Lipschitz continuous) for
estimating the convergence rates. In Section 6, we observe
that our algorithm works well in practice even when these
assumptions on f are not satisfied, and it would be interest-

ing to extend our analysis to weaker assumptions on the soft
label.

Theorem 5.1. Using Algorithm 2 for computing ϵ-
approximate soft labels and gradients for the harmonic
objective of Zhu et al. [2003], if fu(σ) is convex and
smooth, Algorithm 3 computes (ϵ, ϵ)-approximate semi-
bandit feedback for the semi-supervised loss l(σ) in time

O
(
|EG|n

√
κ(LUU ) log

(
n∆

ϵλmin(LUU )

)
log log 1

ϵ

)
, where

|EG| is the number of edges in graph G, LUU = I − PUU

is the normalized grounded graph Laplacian (with labeled
nodes grounded), ∆ = σmax − σmin is the size of the
parameter range and κ(M) = λmax(M)

λmin(M) denotes the
condition number of matrix M .

Proof Sketch. As noted in Balcan and Sharma [2021], the
loss l(σ) is discontinuous at σ∗ only if fu(σ∗) = 1

2 . Algo-
rithm 3 finds these critical points by finding roots/zeros
of

(
fu(σ)− 1

2

)2
. We show (Theorem C.1 in the ap-

pendix) that if f is convex and smooth, Nesterov’s accel-
erated descent [Nesterov, 1983] quadratically converges
to within ϵ of such roots, given an O( ϵ

∆ )-approximations

of f ∂f
∂σ and

∣∣∣ ∂f∂σ ∣∣∣ < 1
ϵλmin(GA) . Newton’s method con-

verges quadratically to within ϵ, given ϵ-approximations
of f ∂f

∂σ (Theorem C.2 in the appendix). We use Algo-
rithm 2 to find suitable ϵ-approximations of f ∂f

∂σ in time

O
(√

κ(LUU ) log
(

n∆
ϵλmin(LUU )

))
(Theorem B.2). We ar-

gue that if the derivative ∂f
∂σ is large (i.e. the condition on

∂f
∂σ for Theorem C.2 does not hold), then the Newton step
will be less than ϵ. Since the algorithm uses the smaller of
the Newton and Nesterov updates, Algorithm 3 will termi-
nate for given u ∈ U . By quadratic convergence, we need
O(log log 1

ϵ ) iterations in Algorithm 3 for each of the O(n)
unlabeled elements. Finally, noting that the Conjugate Gra-
dient method takes O(|EG|) time per iteration, we obtain
the claimed bound on runtime. □

Above analysis can be adapted to obtain the following guar-
antee for tuning σ in the efficient algorithm of Delalleau
et al. [2005]. While the above result guarantees a running
time of Õ(n2) for kNN graphs, learning the graph can be
done even more efficiently for the scalable approach of De-
lalleau et al. [2005]. Their algorithm minimizes a proxy for
the harmonic objective given by
1
2

∑
u,v∈Ũ w(u, v)(f(u)−f(v))2+λ

∑
w∈L(f(w)−yw)2,

where Ũ ⊂ U and λ are hyperparameters. In particular, one
chooses a small set Ũ with |Ũ | ≪ n and efficiently extrap-
olates the harmonic labels on Ũ to the rest of U using a
Parzen windows based extrapolation. As before, the success
of this more efficient approach also depends on the choice of
the graph G used. Our Algorithm 3 obtains good theoretical
guarantees in this case as well, with appropriate choice of
algorithm A (namely DBLR05APPROX).



(a) MNIST (b) Fashion-MNIST (c) USPS

Figure 3: Loss intervals calculated with approximate soft-labels via Algorithm 2, kNN = 6, |U | = 300. Blue line corresponds
to true loss, black intervals are estimated constant loss intervals.

Theorem 5.2. (Informal) Given an algorithm for
computing ϵ-approximate soft labels and gradients
for the efficient semi-supervised learning algorithm
of Delalleau et al. [2005] (DBLR05APPROX), Al-
gorithm 3 computes (ϵ, ϵ)-approximate semi-bandit
feedback for the semi-supervised loss l(σ) in time

O
(
|EGŨ

|n
√
κ(LA)log

(
λ(|LLabels|+|ŨLabels|)∆

ϵσminλmin(LA)

)
log log 1

ϵ

)
,

where all values are defined as in DBLR05APPROX

Proof Sketch. The proof follows in the same manner as The-
orem 5.1, except we now use DBLR05APPROX to bound
the number of iterations of the CG method. □

We empirically observe (Figure 5, Appendix E) that sparsity
(using only kNN edges, and nodes in Ũ ) results in well-
conditioned matrices (bounded

√
κ(A)) in the considered

parameter range [σmin, σmax].

Remark 1. In this work we have focused on efficient graph
learning for the harmonic objective approach of Zhu et al.
[2003] and the efficient algorithm of Delalleau et al. [2005].
Developing approaches that work for other efficient algo-
rithms from the literature [Sinha and Belkin, 2009, Wang
et al., 2016] constitutes interesting future work.

6 EXPERIMENTS

In this section we evaluate computational speedups as a
result of using the conjugate gradient method and implement
Algorithm 3 to compute pieces of the loss function under
different labeling techniques.

Setup: We consider the task of semi-supervised binary classi-
fication (classes 0 and 1) on image datasets. As in Delalleau
et al. [2005], we pre-process data instances via Principal
Component Analysis, keeping the first 45 principal compo-
nents. We measure distance between any pairs of images by
L2 distance between principal components, and set weights
via Gaussian Kernel parameterized by σ. When testing com-
putational speedup using the CG method, we draw random
subsets of the full dataset at varying sizes of n, with labeled

set size L = n
10 . When computing approximate matrix in-

verses, we use t = 20 conjugate gradient iterations.

Datasets: We use three established benchmark image
datasets – MNIST, Fashion-MNIST, and USPS. Both the
MNIST dataset (handwritten digits, Lecun et al. [1998])
and the FashionMNIST dataset (mock fashion items, Xiao
et al. [2017]) consist of 28 by 28 grayscale images with 10
classes, and 6000 images per class. The US Postal Service
(USPS) dataset [Hull, 1994] has 7291 handwritten digits
downscaled to 16 by 16 grayscale images. For MNIST
and USPS, binary classification between classes 0 and 1
corresonds to classifying between handwritten 0s and 1s.
For FashionMNIST, it corresponds to classifying between
classes T_shirt and Trouser.

6.1 EFFICIENT FEEDBACK SET COMPUTATION
(ALGORITHM 3)

We consider the problem of finding approximate intervals
of the piecewise constant loss l(σ) using Algorithm 2 with
the number of unlabeled points n ∈ {100, 300, 500}. By
finding a set of these piecewise constant componenets, we
are able to search the continuous paramter space exhaus-
tively, with an optimal hyperparameter being any parameter
in the loss interval with lowest loss. We do this for both
the complete graph, as well as kNN with k = 6, setting
number of labeled examples |L| = 10. We do the same
with DBLR05APPROX as algorithm A, with (uniformly
random) subset Ũ size 50 and hyperparameter λ = 1.4.

We motivate design choices in Algorithm 3 by examin-
ing (ϵ, ϵ)-approximate semi-bandit feedback for the semi-
supervised loss l(σ) produced by the algorithm. For full
implementation details, see Appendix E.1.

Results: Figure 3 (as well as Fig. 2, 3, and 4 in Appendix)
indicates that the CG method can be used to find accurate
piecewise intervals on real loss functions. We see over 10x
speedup for using the CG method as opposed to using matrix
inversion for computing soft labels via Algorithm 2 (Table
1). This is due to the speedup in inversion time between a



Table 1: Time (in seconds) per Interval (TpI) and Number of Intervals (M ) using both the Conjugate Gradient method (CG,
t = 20 iterations) and Matrix Inverse (MI) on full graphs or kNN, k = 6 graphs using Algorithm 3. Approximate soft labels
are computed using one of Algorithm 2, DBLR05APPROX.

Dataset Size
Algorithm 2 Algorithm 2 (kNN) DBLR05APPROX (kNN)

TpI M TpI M TpI M
CG MI CG MI CG MI CG MI CG

MNIST

100 1.50 3.22 38.9 26.0 6.33 10.11 17.36 5.7 2.22 11.5
300 15.87 346.46 22.1 26.8 19.98 2405.70 22.1 7.9 5.98 26.2
500 57.90 818.11 26.6 23.6 20.99 6791.79 26.6 7.9 7.60 36.1

12615 - - - - - - - - 46.36 -

Fashion-
MNIST

100 1.79 3.56 39.0 23.9 11.79 12.49 18.55 8.3 2.91 12.7
300 11.73 268.20 45.6 38.9 21.08 1447.56 35.9 21.2 7.24 33.6
500 39.98 766.73 50.9 37.6 35.91 6311.03 38.7 29.0 9.21 44.6

11950 - - - - - - - - 32.3 -

USPS

100 1.58 3.47 25.4 18.6 6.91 12.53 4.7 1.3 2.12 6.67
300 16.63 238.16 30.1 18.8 29.86 68.70 5.6 1.2 6.34 16.14
500 57.50 755.94 39.1 17.8 63.18 31.54 6.1 1.0 12.37 20.4
2149 - - - - - - - - 27.28 -

full matrix inverse and the CG method. For specific times for
these two inversion techniques, see Tables 1-4 in Appendix.
When using DBLR05APPROX to compute labels, we see a
speedup of 100x with slower asymptotic increase over time
in comparison to the full inverse using Algorithm 2. Here the
speedup is due to the fact that the CG method is only run for
size 50 subsets of U , with O(|Ũ |) algebraic steps afterwards
to find soft labels/gradients for a given unlabeled point in U .
We find that the calculation of feedback sets in kNN graphs
takes longer to find a single interval on smaller data subsets,
but the runtime asymptotically grows slower than for com-
plete graphs. This is likely due to longer piecewise constant
intervals for kNN graphs, leading to a larger amount of ma-
trix inverse calculations performed per interval (consistent
with M values in Table 1). We also find that the CG method
is more robust to higher condition number than the full in-
verse for low σ values, indicating that the CG method is
not only faster, but also can be more stable than full matrix
inversion for ill-conditioned grounded Laplacians.

CG Method Details. We run t iterations of the CG
method to approximate grounded Laplacian inverses for
finding soft labels in Algorithm 2. We consider t ∈
{5, 10, 20}, σ′ ∈ [1, 7] when finding optimal values in terms
of unlabeled classification accuracy. We use SciPy [Virtanen
et al., 2020] for performing the conjugate gradient method
as well as storing nearest-neighbor matrices sparsely for
time speedup. For all three datasets, we find parameters
to closely match/surpass the performance of the harmonic
solution with matrix inverse (i.e. prior work) for optimal σ
in both the complete graph and kNN setting with an order
of magnitude or more speedup (Tables 1 and 2 in the ap-
pendix). We find that there is little time difference between
t = 5, 15 and 20 conjugate gradient iterations. We also find
slight speedup for kNN graphs.

7 CONCLUSION

We provide a general analysis for approximate data-driven
parameter tuning in the presence of approximate feedback.
We show how this approximate feedback may be efficiently
implemented for learning the graph in semi-supervised learn-
ing using the conjugate gradient method, specifically when
learning the ‘bandwidth’ parameter in popularly used Gaus-
sian RBF kernels. We further show the significance of using
sparse nearest neighborhood graphs for semi-supervised
learning – formally they need provably fewer samples for
learning compared to using dense or complete graphs, and
moreover, in practice, they lead to better conditioned matri-
ces for which our approach converges faster.

We quantify the efficiency versus accuracy trade-off for
our approach, and empirically demonstrate its usefulness
in more efficiently learning the graph for classic harmonic
objective based algorithms [Zhu et al., 2003, Delalleau
et al., 2005]. We believe this is an important step in making
the data-driven approach practical for semi-supervised
learning, and would potentially be useful for making
data-driven algorithm design more useful for other
problems. Interesting future directions include extending
this approach to learning the graph for modern graph neural
network based methods (which still assume a given graph)
for semi-supervised learning, and applications to other
parameter tuning problems where exact feedback may be
computationally expensive to obtain.
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