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Abstract

The current state-of-the-art No-Reference Image
Quality Assessment (NR-IQA) methods typically
rely on feature extraction from upstream semantic
backbone networks, assuming that all extracted
features are relevant. However, we make a key
observation that not all features are beneficial, and
some may even be harmful, necessitating careful
selection. Empirically, we find that many im-
age pairs with small feature spatial distances can
have vastly different quality scores, indicating
that the extracted features may contain quality-
irrelevant noise. To address this issue, we pro-
pose a Quality-Aware Feature Matching IQA Met-
ric (QFM-IQM) that employs an adversarial per-
spective to remove harmful semantic noise fea-
tures from the upstream task. Specifically, QFM-
IQM enhances the semantic noise distinguish ca-
pabilities by matching image pairs with similar
quality scores but varying semantic features as ad-
versarial semantic noise and adaptively adjusting
the upstream task’s features by reducing sensitiv-
ity to adversarial noise perturbation. Furthermore,
we utilize a distillation framework to expand the
dataset and improve the model’s generalization
ability. Extensive experiments conducted on eight
standard IQA datasets have demonstrated the ef-
fectiveness of our proposed QFM-IQM.
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Figure 1. Images in the first column: the sample images in the
KonIQ dataset. Images in the medium column: DEIQT (Qin
et al., 2023) suffers from feature aliasing that focuses excessively
on semantic-level noise that is less relevant to quality percep-
tion (e.g., the human in the yellow box). Images in the last
column: Our QFM-IQAM is not sensitive to semantic noise and
can clearly distinguish between image pairs with similar semantic
content but different quality scores. As a result, our model’s pre-
dictions are more aligned with the Mean Opinion Scores (MOS).

1. Introduction
No-Reference Image Quality Assessment (NR-IQA) is a fun-
damental research area (Ding et al., 2020; Gu et al., 2020;
Zhang et al., 2015b; Hu et al., 2022; Liu et al., 2024), which
simulates the human subjective system to estimate distortion
of the given image. Current state-of-the-art methods (Zhang
et al., 2023; Song et al., 2023) generally leverage pre-trained
upstream backbone to extract semantic features, and then,
finetuning on NR-IQA datasets. This pipeline provides an
effective and efficient training procedure while reducing the
requirement of data volume. Since the semantic features
obtained from the pre-trained upstream backbone have no di-
rect correlation with the image quality representation (Yang
et al., 2020), many researchers focus on the optimization of
semantic features in IQA research. For instance, (Talebi &
Milanfar, 2018) proposed a model based on Deep Convolu-
tional Neural Networks pre-trained on the ImageNet (Deng
et al., 2009) and end-to-end training to optimize semantic
features. (Su et al., 2020) integrated NR-IQA tasks with se-

1



Adaptive Feature Selection for No-Reference Image Quality Assessment by Mitigating Semantic Noise Sensitivity

mantic recognition networks, enabling the network to assess
image quality after identifying content. (Qin et al., 2023)
refined the abstract semantic information obtained from the
pre-trained model by introducing a transformer decoder.

However, we empirically find that many image pairs with
small feature spatial distances have vastly different quality
scores (Sec. 4.6). We attribute this result to feature alias-
ing, where semantic noise unrelated to quality confuses the
quality-aware features. Specifically, due to the sensitivity
of upstream backbone networks to semantic features (Zhao
et al., 2023; Zhang et al., 2023), they tend to extract sim-
ilar features for semantically similar image pairs, despite
these pairs having distinctly different quality scores. This
may mislead the network to overly focus on semantic de-
tails rather than true indicators of image quality, resulting in
poor quality prediction. We provide an example in Fig.1(b)
to illustrate this issue. For a pair of images with obvious
quality differences, the baseline overly focuses on similar
semantic information in the distorted image (e.g., the person
in the yellow box), while ignoring some distorted areas in
the red box (e.g., the racket’s movement and the flower’s
overexposure), causing the model to be misled into making
a close quality predictions. These findings motivate us to
explore a critical problem: how to distinguish images with
similar semantic information but different quality scores.

We believe the key to addressing this challenge is to reduce
the model’s sensitivity to semantic noise. Inspired by adver-
sarial learning (Goodfellow et al., 2014; Madry et al., 2017),
which aims to learn adversarial noise that maximizes predic-
tion loss, and reduces the model’s sensitivity to this noise
by minimizing the model’s loss when facing noisy inputs.
In this paper, we treat samples with similar quality scores
but significantly different semantic features compared to the
input image as adversarial noise. This approach is based
on our hypothesis that the pre-trained upstream backbone
is highly sensitive to semantics. Therefore, introducing
appropriate semantic perturbation can significantly impact
its quality predictions, while similar quality scores ensure
that the misprediction is mainly influenced by the semantic
perturbation rather than the quality perturbation.

To achieve this, we propose a novel approach called Quality-
Aware Feature Matching Image Quality Metric (QFM-IQM),
as shown in Fig. 1(c). Concretely, our QFM-IQM comprises
three primary modules. Firstly, the Semantic Noise Feature
Matching (SNM) Module is developed to pair each distorted
sample with noise samples that have similar quality scores
but significantly different semantic features. The Quality
Consistency Constraint (QCC) Module uses noise samples
as the adversarial feature perturbation to maintain quality
information while disrupting semantics and ensures con-
sistent quality predictions for distorted samples before and
after semantic changes. The core objective is to enhance

the model’s robustness to semantic noise by minimizing
the loss of quality prediction when faced with semantic
noise perturbation. Lastly, the Distilled Label Expansion
(DLE) Module utilizes knowledge distillation to provide
pseudo-labels for unlabeled samples, enriching the dataset
for QCC’s adversarial learning. Our contributions include:

• We address a common challenge in IQA: how to dis-
tinguish between images that have similar semantic
information but different quality scores. To solve this
problem, we propose a novel model that can effectively
capture the subtle differences in quality among similar
images and make accurate judgments based on them.

• We introduce a novel feature adversarial learning mech-
anism to isolate the quality-related attributes from the
semantic content of an image. This way, the model can
focus on the most relevant attributes for image quality
and avoid being distracted by irrelevant ones.

• Our model employs distillation learning to augment
the dataset with authentic images that have varying
quality levels. This not only improves the model’s
generalization ability but also reduces the need for
human annotation efforts, which are time-consuming.

2. Related Works
Image Quality Assessment (IQA) (Hu et al., 2021) is
broadly classified into Full-Reference (FR) (Cao et al.,
2022), Reduced-Reference (RR) (Tao et al., 2009), and
No-Reference (NR) methods. NR-IQA assesses quality
independently, offering significant application potential.

2.1. NR-IQA with Vision Transformer
Vision Transformer (ViT) (Dosovitskiy et al., 2021) showed
promising results on several downstream vision tasks. There
were mainly two types of ViT-based NR-IQA methods, in-
cluding hybrid Transformer (Golestaneh et al., 2022) and
pure ViT-based Transformer (Ke et al., 2021b; Yang et al.,
2022; You & Korhonen, 2021). The hybrid architecture
generally combined the CNNs with the Transformer, which
was responsible for the local and long-range feature char-
acterization, respectively. For instance, (Golestaneh et al.,
2022) proposed to use the multi-scale features extracted
from ResNet-50, which were fed to the transformer encoder
to produce a non-local representation of the image. (Ke
et al., 2021b) designed a multi-scale ViT-based IQA model
to handle the arbitrary size of input images. Such a fea-
ture was initially designed to describe the image content,
and thus the preserved features were mainly related to the
higher-level visual abstractions which were not adequate in
characterizing the quality-aware features(Qin et al., 2023).

2.2. NR-IQA with Contrastive Learning
A new learning paradigm, contrastive learning, has emerged
for learning discriminative representations among sam-
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Figure 2. The overview of our QFM-IQM.We begin by extracting image semantic-related features from the student network. Simultane-
ously, we indirectly augment our training set by introducing a distillation framework and storing the image features and labels in pairs in
temporary memory (Sec. 3.4). We use Semantic Noise Matching to select features in the temporary memory with similar quality scores
but different semantic features as noise disturbance (Sec. 3.5) and add them to our original features as decoder input to predict image
quality, forcing our model to learn to focus on quality-aware features (Sec. 3.6). During inference, scores are directly predicted using the
encoder and decoder, while the above three modules are discarded to avoid any additional computational overhead.

ples (Caron et al., 2020; He et al., 2020). This method aims
to learn an embedding space where similar samples are at-
tracted, and dissimilar ones are repelled (Jaiswal et al., 2020;
Zhao et al., 2023). Recently, contrastive learning in IQA has
primarily focused on unsupervised approaches, as seen in
key studies like QPT (Zhao et al., 2023), which introduced
a self-supervised method with quality-aware contrastive
learning for BIQA. Re-IQA (Saha et al., 2023) employed a
mixture of experts to train separate encoders for content and
quality features, and CONTRIQUE (Madhusudana et al.,
2022) used a deep CNN with a contrastive pairwise objective
for IQA. These methods have achieved promising results
by leveraging self-supervised training, but the cost of pre-
training models was often high. In contrast to contrastive
learning aimed at constructing discriminative embedding
spaces, we leverage adversarial learning (Goodfellow et al.,
2014; Madry et al., 2017) to reduce the model’s sensitivity
to semantic noise. This enhances the model’s ability to dis-
tinguish between images that are semantically similar but
have different quality scores.

3. Methodology
3.1. Preliminaries

In the context of No-Reference Image Quality Assessment
(NR-IQA), we define some common notations. We use
bold formatting to denote vectors (e.g., x, y) and matrices

(e.g., X , Y ). Specifically, F denotes the feature map of the
network output, which includes the VIT’s class (CLS) token
and patch embedding, and y denotes the quality score.

3.2. Overview

In this paper, we present Quality-Aware Feature Matching
Image Quality Metric (QFM-IQM), a novel framework that
can effectively distinguish between images with similar se-
mantic features but different quality scores. As depicted in
Fig. 2, QFM-IQM seamlessly integrates three main compo-
nents: Semantic Noise Matching (SNM), Quality Consis-
tency Constraint (QCC) and Distillation Label Extension
(DLE). Initially, the input distorted image is fed into a trans-
former encoder to obtain feature F o ∈ R(M+1)×D from the
final layer. Subsequently, the SNM module matches these
features with those that have similar quality scores but differ-
ent semantics (Sec. 3.5). Next, the matched semantic noise
F̂ o is introduced as feature perturbation into feature F o to
obtain feature Fo, and the QCC module constraints between
the quality prediction of the F o and Fo to remain consis-
tent, forcing the model to be robust to quality-unrelated
semantic noise during adversarial learning (Sec. 3.6). Ad-
ditionally, the DLE module uses knowledge distillation to
generate pseudo-labels for unlabeled samples, thereby en-
riching the adversarial learning dataset of QCC (Sec. 3.4).
These components collectively contribute to a more effective
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Figure 3. The Semantic Noise Matching (SNM) pipeline takes in
pairs of features and labels as input and returns matching features
from the dataset as output. Firstly, we flatten the input features and
then normalize both the features and labels using layer norm. We
then calculate the Feature Similarity Matrix and the Score Distance
Matrix using the cosine similarity function and the L2 norm. Next,
we obtain the final Feature-Score Matrix by element-wise multi-
plication of the computed matrices. We select the features that
correspond to the index of the minimum K values of the Feature-
Score Matrix in our memory as matched features.

and accurate NR-IQA process. It’s worth noting that during
the inference process, scores are predicted directly using the
encoder and decoder, discarding the above three modules,
and avoiding any additional computational overhead.

3.3. Architecture Design

Transformer Encoder. Our model uses a Transformer en-
coder to process input image patches. These patches are first
transformed into D-dimensional embeddings, including a
class token and position embeddings for spatial information.
Three linear projection layers transform patch embedding
into matrices Q,K,V ∈ R(M+1)×D for query, key, and
value. This operation, combined with Multi-Head Self-
Attention (MHSA), layer normalization, and a Multi-Layer
Perceptron (MLP), produces the output feature F o.

Transformer Decoder. Previous works (Qin et al., 2023)
found that CLS tokens cannot build an optimal representa-
tion for image quality. we utilize a quality-aware decoder
that further interprets the CLS token. The decoder uses
Multi-Head Cross-Attention (MHCA) with a set of queries
Qd, interacting with encoder outputs to calculate the final
quality score y. This method improves the learning and
generalization capabilities of our NR-IQA model.

3.4. Distillation Label Extension

Considering the challenges transformer-based models face
in learning sufficient downstream task knowledge with insuf-
ficient training data, leading to overfitting and performance
degradation, this paper proposes a new distillation strategy.
This strategy employs an extra unlabeled dataset B for fea-
ture adversarial learning during training, effectively using
information from samples in the expanded dataset with sim-
ilar quality scores but different features. Specifically, we
first use a teacher model generating pseudo labels for each
image in B and then store in a temporary memory B. Then,
labeled datasets A and B are input into the student model
together, identifying features with similar quality scores but
different semantics (Sec. 3.5). These features, treated as
noise, are added to the image features, enabling the model
to learn from both labeled and unlabeled data and improve
its generalization ability for images with different quality.

3.5. Semantic Noise Matching

The Semantic Noise Matching (SNM) Module, comprising
Temporary Memory and Semantic Noise Feature Matching
components, functions by aligning input image features
with Temporary Memory samples in each training batch,
efficiently matching noise samples.

Temporary Memory. The objective of the Temporary Mem-
ory is to store features and labels of each mini-batch of
data, serving as a queryable resource for the SNM module.
Specifically, the student feature extractor conducts forward
propagation to extract features of distorted images from
labeled dataset A and stores these features alongside the
ground truth of the distorted images in Temporary Memory
A. Concurrently, the student extracts features of distorted
images from unlabelled dataset B, storing them with the
pseudo labels of these images in Temporary Memory B. It
is important to note that during the training process, the orig-
inal memory data is overwritten in each iteration of every
mini-batch to reset the Temporary Memory.

Semantic Noise Feature Matching. This process involves
selecting images with similar quality but different semantics
to use as semantic noise features. Then, these noise features
are employed as feature perturbations to disrupt semantics
while largely preserving quality information. Finally, under
the constraint of quality consistency, this effectively reduces
sensitivity to semantic noise (referenced in Sec. 3.6). Fig.
3 overviews our Semantic Noise Matching (SNM) mod-
ule. For a mini-batch of distorted input images, Temporary
Memory A and B store collections of features and labels,
then QFM-IQM leverages the SNM module to select noise
samples that have similar quality scores but different se-
mantic features from both labeled and unlabeled datasets.
Specifically, the process begins by flattening the feature F o

of the input image, obtained from the encoder, into a fea-
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ture vector fo. Subsequently, another feature vector f̂o is
matched from the Temporary Memory A or B based on the
matching strategy. The evaluation metric for the matching
strategy is formulated as the product of feature similarity
and score distance. Feature similarity is calculated using
cosine distance, while score distance is determined using
the L2 norm. The mathematical expression is as follows:

S((fo, yo), (f̂o, ŷo)) =
fo · f̂o

∥fo∥ · ∥f̂o∥
· ∥yo − ŷo∥. (1)

Here, yo and ŷo represent the quality score of the sample,
· represents the dot product between the vectors, and ∥ · ∥
represents their L2 norms. This score is then used as a
criterion for the final selection strategy, choosing the top K
minimum score features selected as matching samples for
the following QCC module’s input.

3.6. Quality Consistency Constraint

Existing studies have not addressed the challenge of differ-
entiating between images with similar semantic features but
different quality scores and eliminating quality-irrelevant
features from high-level pre-trained features. To address
this, we introduce the Quality Consistency Constraint (QCC)
module to isolate quality-related attributes from an image’s
semantic content. In contrast to previous contrastive learn-
ing approaches, this paper introduces a straightforward yet
effective adversarial method to enhance a model’s robust-
ness to features unrelated to image quality. This is accom-
plished by strengthening the consistency of the model’s pre-
dictions for image quality before and after introducing noise
to distorted images. This method reduces the model’s sensi-
tivity to semantic noise and compels it to exhibit robustness
to subtle variations, ultimately increasing the separation be-
tween feature representations of noise samples. Concretely,
we first extract the K features with the smallest evaluation
metric calculated in the SNM module and incorporate them
as feature perturbations into the original features. Since we
perform feature selection twice in labeled dataset A and
unlabelled dataset B, the expression of this process is:

Fo = (1−λ1−λ2)F o+
λ1

K

K∑
j=1

F̂
A
o,j +

λ2

K

K∑
j=1

F̂
B
o,j , (2)

where the weight λ1 and λ2 controls the strength of the per-
turbation. F̂

A
o,j and F̂

B
o,j represent the jth smallest match-

ing feature from the datasets A and datasets B. After that,
we feed the feature Fo which is obtained by the Eq. 2 into
the decoder to estimate the quality score y. Notably, even
after adding noise, the predicted quality is still supervised
using the ground truth of the original image. By minimiz-
ing the prediction loss on samples with semantic noise, the
model’s robustness to the semantic noise is improved.

4. Experiments
4.1. Benchmark Datasets and Evaluation Protocols

We evaluate the QFM-IQM on 8 standard NR-IQA datasets.
These include four synthetic datasets: LIVE (Sheikh et al.,
2006), CSIQ (Larson & Chandler, 2010), TID2013 (Pono-
marenko et al., 2015), and KADID (Lin et al., 2019); and
four authentic datasets: LIVEC (Ghadiyaram & Bovik,
2015), KonIQ (Hosu et al., 2020), LIVEFB (Ying et al.,
2020), and SPAQ (Fang et al., 2020). Synthetic datasets are
generated by applying distortions like JPEG compression
and Gaussian blur to original images. LIVE and CSIQ con-
tain 779 and 866 images with five and six distortion types,
respectively, while TID2013 and KADID have 3000 and
10,125 images with 24 and 25 distortion types. The authen-
tic datasets contain images captured by different photogra-
phers using various mobile devices, with LIVEC comprising
1162 images, SPAQ 11,125 images, and KonIQ 10,073 im-
ages sourced from public multimedia resources. LIVEFB is
the largest authentic dataset with 39,810 images. The per-
formance of the QFM-IQM model, in terms of prediction
accuracy and monotonicity, is assessed using Spearman’s
Order Correlation Coefficient (SRCC) and Pearson’s Linear
Correlation Coefficient (PLCC). Both SRCC and PLCC val-
ues range from -1 to 1, with values near 1 denoting higher
performance in both metrics.

4.2. Implementation Details

Pre-trained Teacher. Our teacher network, comprising a
VIT-S and a decoder, is pre-trained on the largest authentic
dataset LIVEFB for offline knowledge distillation on stu-
dents trained on the IQA dataset. The pre-trained strategy
follows the (Qin et al., 2023). Notably, when the student
model is trained on the LIVEFB dataset, the teacher model
is pre-trained on KonIQ to ensure fairness.

Student Training. To train the student network, we follow
the standard approach of cropping input images into ten
patches of 224 × 224 resolution, reshaped into smaller 16
× 16 patches with a 384-dimensional input token. Using a
Transformer encoder based on ViT-S from DeiT III (Tou-
vron et al., 2022), our model has 12 layers and 6 heads,
coupled with a single-layer decoder. Training is conducted
over 9 epochs with a learning rate of 2 × 10−4, reducing
by a factor of 10 every 3 epochs, using the Adamw opti-
mizer (Loshchilov & Hutter, 2019). The batch size depends
on the size of the dataset, which ranges from 16 to 128. For
each dataset, 80% of the images are used for training and
the remaining 20% of the images are used for testing. This
process is repeated ten times to minimize bias. For synthetic
distortion datasets, training and testing sets are divided by
reference images for content independence. The model’s
performance is quantified by the average SRCC and PLCC,
measuring prediction accuracy and monotonicity.
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Table 1. Performance comparison of average SRCC and PLCC, with bold indicating the best results and underlines for the second-best.

LIVE CSIQ TID2013 KADID LIVEC KonIQ LIVEFB SPAQ

Method PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

DIIVINE (Saad et al., 2012) 0.908 0.892 0.776 0.804 0.567 0.643 0.435 0.413 0.591 0.588 0.558 0.546 0.187 0.092 0.600 0.599
BRISQUE (Mittal et al., 2012) 0.944 0.929 0.748 0.812 0.571 0.626 0.567 0.528 0.629 0.629 0.685 0.681 0.341 0.303 0.817 0.809
ILNIQE (Zhang et al., 2015a) 0.906 0.902 0.865 0.822 0.648 0.521 0.558 0.534 0.508 0.508 0.537 0.523 0.332 0.294 0.712 0.713
BIECON (Kim & Lee, 2016) 0.961 0.958 0.823 0.815 0.762 0.717 0.648 0.623 0.613 0.613 0.654 0.651 0.428 0.407 - -
MEON (Ma et al., 2017) 0.955 0.951 0.864 0.852 0.824 0.808 0.691 0.604 0.710 0.697 0.628 0.611 0.394 0.365 - -
WaDIQaM (Bosse et al., 2017) 0.955 0.960 0.844 0.852 0.855 0.835 0.752 0.739 0.671 0.682 0.807 0.804 0.467 0.455 - -
DBCNN (Zhang et al., 2018) 0.971 0.968 0.959 0.946 0.865 0.816 0.856 0.851 0.869 0.851 0.884 0.875 0.551 0.545 0.915 0.911
MetaIQA (Zhu et al., 2020) 0.959 0.960 0.908 0.899 0.868 0.856 0.775 0.762 0.802 0.835 0.887 0.850 0.507 0.54 - -
P2P-BM (Ying et al., 2020) 0.958 0.959 0.902 0.899 0.856 0.862 0.849 0.84 0.842 0.844 0.885 0.872 0.598 0.526 - -
HyperIQA (Su et al., 2020) 0.966 0.962 0.942 0.923 0.858 0.840 0.845 0.852 0.882 0.859 0.917 0.906 0.602 0.544 0.915 0.911
TReS (Golestaneh et al., 2022) 0.968 0.969 0.942 0.922 0.883 0.863 0.858 0.859 0.877 0.846 0.928 0.915 0.625 0.554 - -
MUSIQ (Ke et al., 2021a) 0.911 0.940 0.893 0.871 0.815 0.773 0.872 0.875 0.746 0.702 0.928 0.916 0.661 0.566 0.921 0.918
DACNN (Pan et al., 2022) 0.980 0.978 0.957 0.943 0.889 0.871 0.905 0.905 0.884 0.866 0.912 0.901 - - 0.921 0.915
DEIQT (Qin et al., 2023) 0.982 0.980 0.963 0.946 0.908 0.892 0.887 0.889 0.894 0.875 0.934 0.921 0.663 0.571 0.923 0.919
Re-IQA (Saha et al., 2023) 0.971 0.970 0.960 0.947 0.861 0.804 0.885 0.872 0.854 0.840 0.923 0.914 0.733 0.645 0.925 0.918

QFM-IQM (Ours) 0.983 0.981 0.965 0.954 0.932 0.916 0.906 0.906 0.913 0.891 0.936 0.922 0.667 0.567 0.924 0.920

Table 2. SRCC on the cross datasets validation. The best perfor-
mances are highlighted in boldface.

Training LIVEFB LIVEC KonIQ LIVE CSIQ

Testing KonIQ LIVEC KonIQ LIVEC CSIQ LIVE

DBCNN 0.716 0.724 0.754 0.755 0.758 0.877
P2P-BM 0.755 0.738 0.74 0.77 0.712 -

HyperIQA 0.758 0.735 0.772 0.785 0.744 0.926
TReS 0.713 0.74 0.733 0.786 0.761 -

Re-IQA - - 0.769 0.791 0.808 0.929
DEIQT 0.733 0.781 0.744 0.794 0.781 0.932

QFM-IQM 0.768 0.791 0.775 0.796 0.820 0.941

4.3. Overall Prediction Performance Comparison

The results of the comparison between QFM-IQM and
15 classical or state-of-the-art (SOTA) NR-IQA methods,
which include hand-crafted feature-based NR-IQA methods
like ILNIQE (Zhang et al., 2015a) and BRISQUE (Mit-
tal et al., 2012), as well as deep learning-based methods
such as MUSIQ (Ke et al., 2021a) and DEIQT (Qin et al.,
2023), are presented in Table 1. It can be observed on six
of the eight datasets that QFM-IQM outperforms all other
methods in terms of performance. Achieving competitive
performance on all of these datasets is a challenging task
due to the wide range of image content and distortion types.
Therefore, these observations confirm the effectiveness of
QFM-IQM in accurately characterizing image quality.

4.4. Generalization Capability Validation

To assess the generalization capabilities of QFM-IQM, we
conduct a series of cross-dataset validation experiments. In
these tests, QFM-IQM trains on one dataset and then evalu-
ates it on different datasets without adjustments to its param-

eters. The results, presented in Table 2, demonstrate QFM-
IQM’s superior performance over SOTA models across six
datasets. This includes notable gains on the LIVEC dataset
and strong results on the KonIQ dataset. These results, bene-
fiting from the noise-resistant training provided by the SNM
and QCC, as well as the extensive semantic noise of various
distortions provided by the DLE, underscore QFM-IQM’s
exceptional ability to generalize.

4.5. Ablation Study

The core idea of our QFM-IQM is to improve the model’s
ability to distinguish subtle quality differences by enhancing
its robustness to semantic noise. Therefore, we explore the
impact of Quality Consistency Constraint (QCC) operation
on the model when compared with different datasets in Ta-
ble 3. Let AQCC denotes the QCC operation only compare
with the labeled dataset A, and BQCC denotes the QCC
operation only compare with the unlabeled dataset B. In
the ablation experiments on QCC, we use Semantic Noise
Matching (SNM) by default.

Effective of QCC on labeled dataset A. We explore the
effectiveness of the QCC module on the original training
dataset. After using QCC for training, performance on three
datasets improves to varying degrees. Particularly on the
LIVEC authentic dataset, there is a significant improve-
ment of 2.1 points, and the variance is significantly reduced.
However, we find that on the TID2013 synthetic dataset,
although there is a significant improvement of 2 points, the
stability of the model decreases. We analyze this as due to
the synthetic dataset having less rich semantic information
than the authentic dataset, causing our QCC module to force
the model to ignore the quality-related semantic information,
thereby weakening its stability.
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Figure 4. Qualitative analysis on image pairs have similar semantic features but different quality scores. The bar charts in (a) and (b)
display the number of image pairs with the most similar features within a specific label distance range. For TReS, there are many image
pairs with similar features but large differences in quality scores (even with label distance greater than 30, TReS considers 52 samples as
feature-similar). Our model greatly alleviates this issue and achieves a lead in accuracy (a large number of light yellow areas represent
smaller prediction errors). In bar char (c), we integrate the statistical results of (a) and (b) to make the above conclusions clearer.

Table 3. Ablation experiments on TID2013, LIVEC and KonIQ datasets. Here, AQCC and BQCC refer to the Quality Consistency
Constraint without and with the Distillation Label Extension module, where bold entries indicate the best result.

Index AQCC BQCC TID2013 LIVEC KonIQ

PLCC SRCC PLCC SRCC PLCC SRCC

a) 0.899 (±0.017) 0.891 (±0.028) 0.883 (±0.012) 0.865 (±0.021) 0.926 (±0.003) 0.913 (±0.003)
b) " 0.919 (±0.022) 0.901 (±0.026) 0.904 (±0.009) 0.885 (±0.011) 0.934 (±0.001) 0.922 (±0.002)
c) " 0.925 (±0.016) 0.910 (±0.022) 0.907 (±0.006) 0.882 (±0.010) 0.935 (±0.002) 0.921 (±0.002)
d) " " 0.932 (±0.015) 0.916 (±0.017) 0.913 (±0.007) 0.891 (±0.009) 0.936 (±0.002) 0.922 (±0.003)

Effective of QCC on unlabeled dataset B. We further ex-
plore the effectiveness of the QCC module on the expanded
unlabeled training dataset. Compared to AQCC , BQCC

achieves more significant performance improvements. Ad-
ditionally, the issue of decreased stability on the TID2013
dataset is rectified, ensuring stability across all datasets.
This indicates that using additional pseudo-labels to expand
our dataset allows our QFM-IQM to learn from images with
different quality levels and feature distributions. Conse-
quently, our model can distinguish quality-related features
through more extensive data comparisons. The combination
of AQCC and BQCC leads to a superior model for IQA.

Effective on SNM and QCC. We broaden our investigation
to include ablation studies on SNM and QCC mechanisms.
Specifically, we undertake two sets of SNM ablation ex-
periments: the first set, SNMF , matches pairs of samples
dissimilar in features, while the second set, SNMQ, matches
pairs similar in quality. Additionally, an extra ablation study
without using the QCC involves matching noise samples
(x1,y1) and (x2,y2) to a given pair (x,y), where y is the
quality label, adjusting the quality labels by a specific ra-
tio (β1 = β2 = 0.1) to incorporate noise sample labels,
formulated as y = (1− β1 − β2)y + β1y1 + β2y2.

Our findings underscore the critical role of QCC’s con-
straints because even slight changes in mixing ratios may
significantly alter the perceived quality category, potentially

Table 4. Ablation experiments on LIVEC and TID2013 datasets.
Here, SNMQ and SNMF refer to the SNM module only matching
pairs with similar quality and dissimilar features, respectively.

Component LIVEC TID2013

SNMQ SNMF QCC PLCC SRCC PLCC SRCC
0.883 0.865 0.899 0.891

" 0.897 0.880 0.918 0.899
" 0.898 0.879 0.916 0.897

" " 0.901 0.882 0.921 0.907
" " 0.906 0.885 0.922 0.902

" " 0.904 0.884 0.920 0.900

" " " 0.913 0.891 0.932 0.916

misleading the model during the supervision process. More-
over, the SNM mechanism emphasizes the importance of
matching samples with similar quality but significantly dif-
ferent features because matching such noise samples can
lead to the model making the largest errors in quality predic-
tion. Therefore, considering only one aspect in the matching
process may result in suboptimal solutions and fail to ef-
fectively improve the model’s robustness to noise samples.

Ablation study of unlabeled dataset selection. We explore
using the synthetic dataset KADID (10,125 images) and
the authentic datasets KonIQ (10,073 images) and LIVEFB
(39,810 images) as unlabeled data sources, as summarized
in Table 4. The results indicate more significant improve-
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Figure 5. Activation maps of DEIQT (Qin et al., 2023) and QFM-IQM using Grad-CAM (Selvaraju et al., 2017) on authentic dataset
LIVEC. The scores below the first row of images represent Mean Opinion Scores (MOS). Our model pays more attention to image
distortion regions (red boxes) and is less sensitive to semantic noise (yellow boxes), and correspondingly our image quality prediction
ability is closer to the true value. Rows 1-3 represent input images, CAMs from DEIQT, and CAMs from QFM-IQM, respectively.

Table 5. Ablation experiments on the LIVEC and TID2013 datasets
for unlabeled data selection in the DLE module.

Unlabeled Dataset LIVEC TID2013

PLCC SRCC PLCC SRCC

- 0.904 0.885 0.919 0.901
KADID 0.904 0.887 0.921 0.899
KonIQ 0.912 0.889 0.928 0.913

LIVEFB 0.913 0.891 0.932 0.916

ments with richer unlabeled datasets (e.g., on the TID2013
dataset, LIVEFB improves by 1.3%, whereas KADID and
KonIQ improve by 0.2% and 0.9%, respectively). We draw
two conclusions: (1) Increasing the volume of unlabeled
data enhances performance. As data becomes more diverse,
unlabeled datasets provide a wider variety of adversarial
noise samples, compelling the model to improve its robust-
ness against a broader range of noise features. (2) Authen-
tic datasets offer more significant benefits than synthetic
datasets. Specifically, synthetic datasets are often generated
by applying various degrees of distortion to a single origi-
nal image. For instance, the KADID dataset, with 10,125
distorted images, contains only 81 unique content images,
implying that synthetic datasets offer limited semantic infor-
mation. Consequently, models struggle to effectively learn
robustness against semantic noise from synthetic datasets.

4.6. Qualitative Analysis

Analyze similar features that have different quality. In
this section, we illustrate our motivation by counting the

Table 6. Analysis of the K in memory searching on both authentic
and synthetic datasets. Bold entries indicate the best performance.

LIVE LIVEC
K-NN PLCC SRCC PLCC SRCC

K=1 0.983 0.981 0.910 0.887
K=2 0.981 0.978 0.905 0.887
K=3 0.982 0.979 0.900 0.880
K=4 0.982 0.980 0.904 0.885
K=6 0.981 0.978 0.913 0.891
K=8 0.978 0.976 0.903 0.877

number of most similar features extracted by the TReS and
QFM-IQM models from image pairs with different quality
score differences. As shown in Fig. 4, the vertical axis rep-
resents quantity, and the horizontal axis represents the range
of label differences. According to Fig. 4(a), we observe that
SOTA pre-trained models like TReS struggle to distinguish
feature distances between image pairs with different quality
scores. Specifically, in Fig. 4(a), TReS incorrectly identifies
52 image pairs with a quality score difference greater than
30 as having very similar features. In this paper, We believe
this is due to feature confusion, where the model is misled
by similar semantics, causing it to perceive similar features
in images with different quality scores. This leads to incor-
rect quality predictions. Our approach mitigates this issue
by reducing the model’s sensitivity to semantic noise. Fig.
4(c) summarizes (a) and (b), showing our model’s effective-
ness. Compared to TReS, the QFM-IQM model reduces
the number of image pairs with similar features but differ-
ent scores by approximately 56%, while increasing pairs
with close scores and similar features by about 16%. This

8
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Table 7. Sensitivity study of hyperparameters λ1 on LIVE, LIVEC,
and KonIQ datasets. Bold entries indicate the best performance.

LIVE LIVEC KonIQ

λ1 PLCC SRCC PLCC SRCC PLCC SRCC

E-1 0.978 0.976 0.884 0.857 0.925 0.911
E-2 0.979 0.976 0.877 0.865 0.934 0.919
E-4 0.979 0.979 0.897 0.875 0.931 0.916
E-5 0.980 0.978 0.904 0.884 0.932 0.917
E-7 0.983 0.981 0.910 0.887 0.936 0.922
E-8 0.981 0.979 0.902 0.886 0.933 0.917

indicates a better positive correlation between features and
quality scores, enhancing overall prediction performance.
Additionally, QFM-IQM shows fewer high prediction errors
(fewer instances in red), further proving its effectiveness.
In conclusion, our model emphasizes quality-related fea-
tures more than TReS, enhancing quality-aware features
and significantly reducing quality estimation bias.

Visualization of attention map. We utilize GradCAM
(Selvaraju et al., 2017) to visualize the feature attention
maps in Fig. 5. The results show that our model accu-
rately and comprehensively focuses on the distorted regions
(including both quality-related semantic degradations and
low-level artifacts), while DEIQT (Qin et al., 2023) fails
to accurately pinpoint the true areas of quality degradation.
This indicates that our model excels in learning the subtle
differences between semantic structures and quality-aware
features. We achieve this by filtering out features irrelevant
to quality from the pre-trained model, focusing on learn-
ing those quality-aware features. It is worth noting that for
overall blurry images, such as those in the third column, our
model tends to focus on subject areas that are inherently
more prone to becoming blurry, such as floating balloons.

4.7. Analysis of the K in Memory Searching
In this analysis, we examine the effect of the memory search-
ing operation’s searching number, K. We conduct experi-
ments on both synthetic and authentic datasets, LIVE and
LIVEC, with K values of 1, 2, 3, 4, 6, and 8. The results,
as shown in Table 6, demonstrate that the performance on
holistic IQA datasets remains stable with various K values,
with only a slight fluctuation within 1%. Specifically, in the
synthetic dataset LIVE, which comprises only 30 distinct
content images, the types of distortions (like Gaussian blur
and JPEG) are generally uniform across the whole image.
Thus, the model receives relatively less contamination at
the semantic level, and setting K to 1 achieves the best re-
sults. On the other hand, in the authentic dataset LIVEC,
all the training data contain different contents, leading to
various semantic level degradations. Therefore, effectively
utilizing quality perception features from pre-trained seman-
tic features is particularly important, and we find that the

Table 8. Sensitivity study of hyperparameters λ2 on LIVEC and
TID2013 datasets. Bold entries indicate the best performance.

LIVEC TID2013

λ2 PLCC SRCC PLCC SRCC

E-1 0.909 0.890 0.914 0.893
E-2 0.902 0.884 0.918 0.906
E-4 0.911 0.893 0.927 0.911
E-5 0.912 0.893 0.932 0.914
E-7 0.913 0.891 0.932 0.916
E-8 0.905 0.885 0.918 0.900

best performance is achieved by setting the K value to 6.
However, setting the K value too high can be detrimental.
Excessive noise can distort the original features of the image
that the model has learned.

4.8. Sensitivity study of hyperparameters
In this paper, we use λ1 and λ2 in Eq. 2 to balance the
contrastive learning and distillation, respectively. To this
end, we conduct a sensitivity study on different feature
perturbation weights λ1 and λ2 to explore the effect of QCC,
maintaining the search number K at 1. As shown in Table
7 and Table 8, our findings reveal that the QCC module
has relative sensitivity to the hyperparameters. Specifically,
small values of λ weaken our QCC’s impact, whereas large
values of λ cause significant changes in the feature space
and result in performance degradation.

5. Conclusion
In this paper, we introduce QFM-IQM, which tackles the
challenge of differentiating images with similar semantics
but varying quality scores. This is accomplished through
the SNM module, which selects images with similar qual-
ity scores but notable feature differences as perturbations.
The QCC module reduces the model’s sensitivity to these
perturbations, enabling the model to isolate quality-related
attributes from an image’s semantic content. Additionally,
QFM-IQM uses distillation learning to enhance the dataset
with authentic images, improving the model’s generalization
across different scenarios. Experiments on eight benchmark
IQA datasets demonstrate the effectiveness of this approach.
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A. Appendix Overview
The supplementary material is organized as follows: Quali-
tative Analysis provides more analysis of the effectiveness
of the QFM-IQM and is further illustrated in conjunction
with our motivation. Training and Evaluation Details:
shows more training and evaluation details. Comparison
with CONTRIQUE: provides more analysis of existing
methods CONTRIQUE (Madhusudana et al., 2022) based
on contrastive learning.

B. Qualitative Analysis
In this section, we provide an additional explanation about
the content of Fig. 4 to help readers understand our mo-
tivation. Our motivation stems from a phenomenon we
discovered through experimentation: existing state-of-the-
art (SOTA) models based on pre-training, such as TReS,
struggle to adequately distinguish the feature distances be-
tween image pairs with different quality scores. This results
in inaccurate quality predictions. As shown in Fig. 4(a),
TReS mistakenly identifies image pairs with a quality score
difference greater than 30 as having very similar features.
We believe this may be due to feature confusion, where cur-
rent models are misled by the similar semantics of the image
pairs, leading them to perceive similar features in images
with different quality scores, thereby failing to adequately
separate their features. This results in erroneous quality
predictions. Our method addresses this feature confusion by
specifically designing for it. We select noisy samples with
different semantic features but similar quality scores, and
through noise perturbation, force the model to reduce its
sensitivity to semantic noise. This effectively increases the
feature distance between image pairs with similar semantics
but different quality scores. As illustrated in Fig. 4(b), our
QFM-IQM significantly mitigates the aforementioned issue.
Specifically, it alleviates the situation where image pairs
with a quality score difference greater than 30 still share
very similar features, and the correlation between features
and quality scores is more positively aligned, meaning simi-
lar quality scores have similar quality features. Additionally,
the error in our quality predictions is smaller, further demon-
strating the effectiveness of our approach.

C. Training and Evaluation Details
Efficacy of subcomponents in the training phase: Our
Distilled Label Expansion augments the dataset using au-
thentic images of different quality levels on LIVEFB and
KonIQ to overcome the lack of sufficient training data in
IQA. Our Semantic Noise Feature Matching compares the
features of input with other features to match similar quality
features but different semantics (Fig.3 of the main paper).
These matched features are considered noises to be added to

the original features in the process of Quality Consistency
Constraint. Our Quality Consistency Constraint constrains
the model to still be supervised by the ground truth for the
quality prediction of the noise-added samples. This enables
the model to emphasize the subtle differences among distor-
tion images, while concurrently reducing the significance
placed on semantic aspects.

Unlabeled data: Our unlabeled data comes from the
LIVEFB and KonIQ datasets, but we do not use the label
information provided by these datasets during training. Dur-
ing training, we randomly sample a mini-batch of unlabeled
images for training. Implement details of training phrase:

Table 9. Training preprocessing details of selected BIQA datasets.

Dataset Resolution Resize Batch Size Label Range

LIVE 768× 512 512× 384 12 DMOS [0,100]
CSIQ 512× 512 512× 512 12 DMOS [0,1]
TID2013 512× 384 512× 384 48 MOS [0,9]
KADID 512× 384 512× 384 128 MOS [1,5]

LIVEC 500P ∼ 640P 500P ∼ 640P 16 MOS [1,100]
KonIQ 768P 512× 384 128 MOS [0,5]
LIVEFB 160P ∼ 700P 512× 512 128 MOS [0,100]
SPAQ 1080P ∼ 4368P 512× 384 128 MOS [0,100]

To train the student network, we adopt a standard approach
of randomly cropping input images into ten patches, each
with a 224 × 224 resolution. Subsequently, we reshape
these patches into a sequence of smaller patches with a
patch size of p = 16 and an input token dimension of D =
384. Furthermore, we present additional training prepro-
cessing details for various datasets, which are not included
in the main paper, in Table 9. For different benchmarks,
we employ different training settings for a fair comparison.
Teacher performance: We ensured the high accuracy of the

Table 10. Performance comparison measured by averages of SRCC
and PLCC, where bold entries indicate the best results.

KonIQ LIVEFB

Method PLCC SRCC PLCC SRCC

QFM-IQM 0.936 0.922 0.667 0.567
Teacher 0.930 0.914 0.667 0.566

pre-trained teacher model on the dataset to provide reliable
pseudo-labels, as shown in Table 10.

Inference phrase: During the inference process, we only
employ a trained encoder-decoder architecture to directly
assess the image’s quality which benefits from the QFM-
IQM to precisely isolate quality-aware features within the
pre-trained semantic feature space, thereby enhancing the
accuracy of our quality predictions.
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Table 11. Performance comparison measured by averages of SRCC and PLCC, where bold entries indicate the best results.

LIVE CSIQ TID2013 KADID LIVEC KonIQ LIVEFB SPAQ

Method PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

CONTRIQUE 0.961 0.960 0.955 0.942 0.857 0.843 0.937 0.934 0.857 0.845 0.906 0.894 0.641 0.580 0.919 0.914

QFM-IQM(ours) 0.983 0.981 0.965 0.954 0.932 0.916 0.906 0.906 0.913 0.891 0.936 0.922 0.667 0.567 0.924 0.920

Table 12. SRCC on the cross datasets validation. The best results
are highlighted in bold.

Training Testing CONTRIQUE QFM-IQM

LIVEC KonIQ 0.676 0.775
KonIQ LIVEC 0.731 0.796
LIVE CSIQ 0.823 0.820
CSIQ LIVE 0.925 0.941

D. Comparison with CONTRIQUE
In CONTRIQUE, the approach revolves around treating
the IQA representation learning problem as a classification
task. In this framework, images are categorized into various
classes based on distortion types, and contrastive loss is
utilized to learn distinctive features that can discriminate be-
tween these classes. However, a limitation of this approach
is that each real image is treated as a separate class, which
limits the effective mining of information from distorted
images with similar quality. In contrast, our QFM-IQM is
not confined to a specific type of distortion. Instead, we ap-
proach learning quality-aware features from a different per-
spective, aiming to reduce the sensitivity of the pre-trained
network to semantic content through adversarial learning.
This technique effectively separates the attributes related
to image quality from the semantic features. As shown in
Table 12 and Table 11, QFM-IQM exhibits excellent per-
formance in both comparative and cross-dataset validation
experiments.
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