
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Fair Surveillance Assignment Problem
Anonymous Author(s)

ABSTRACT
Monitoring a specific set of locations serves multiple purposes in

practice, such as infrastructure inspection and safety surveillance.

We study a generalization of the surveillance problem, where the

monitoring area, represented by a graph, is divided and assigned to

a set of agents with customized cost functions. In this paper, each

agent’s patrolling cost towards receiving a subgraph is quantified by

theweight of theminimum vertex cover therein, and our objective is

to design algorithms to compute fair assignments of the surveillance

tasks. The fairness is assessed using maximin share (MMS) fairness

proposed by Budish [J. Political Econ., 2011]. Our main result is

an algorithm which ensures a
5+
√
17

2
(≈ 4.562)-approximate MMS

allocation for any number of agents with arbitrary vertex weights.

We then prove that no algorithm can be better than 2-approximate

MMS fair. For scenarios involving no more than four agents, we

further improve the approximation ratio to 2, which is thus the

optimal achievable ratio.

KEYWORDS
Surveillance, Fair Division, Indivisible Chores, Vertex Cover

ACM Reference Format:
Anonymous Author(s). 2024. Fair Surveillance Assignment Problem. In

Proceedings of The Web Conference 2024 (WWW’24). ACM, New York, NY,

USA, 9 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
A wide range of patrolling and surveillance models have been in-

vestigated to ensure public safety, a pivotal aspect of everyday

life. Given the daunting task of monitoring vast areas, a key chal-

lenge lies in effectively dividing the monitored area among multiple

patrollers. There is a rich body of literature on designing optimal

patrolling assignments, considering the capabilities of the patrollers.

The primary objective typically revolves around global optimiza-

tion, aiming to enhance overall performance or bolster the weakest

link [9, 30, 38]. Importantly, when human agents are involved, it

becomes imperative to ensure fairness in assignments, particularly

for long-term monitoring undertakings, as it promotes sustainabil-

ity. Thus, in this paper, we introduce a novel surveillance model

from the perspective of the patrollers. Our objective is to develop

individually fair patrolling assignments while guaranteeing com-

prehensive coverage of the entire area.

We cast the above fair surveillance assignment task as a graph

partition 𝐺 = (𝑉 , 𝐸) problem, where the edges 𝐸 represent the

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WWW’24, May 13–17, 2024, Singapore
© 2024 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

streets on which the residents locate and the vertices 𝑉 are the

intersections of these streets. Our task is to allocate the streets 𝐸 to

a set of agents N for surveillance. Each agent 𝑎𝑖 , upon receiving

a set of streets 𝑆 ⊆ 𝐸, would set up monitors on the vertices in

a vertex cover of 𝐺 [𝑆], the induced subgraph of 𝑆 on 𝐺 , so that

all the streets are safely monitored. We consider a general setting

when different agents may have perspectives on the difficulties

of monitoring the vertices, due to their personal familiarity of

the neighborhoods and the number of incident streets. Formally,

each agent 𝑎𝑖 is associated with a vertex weight𝑤𝑖,𝑣 > 0 for each

𝑣 ∈ 𝑉 , which represents the difficulty of setting up a monitor at

𝑣 surveilling the incident streets. Accordingly, 𝑎𝑖 ’s cost function

𝑐𝑖 : 2
𝐸 → R+ can be measured by vertex covers, i.e., for any

𝑆 ⊆ 𝐸, 𝑐𝑖 (𝑆) equals the minimum weight of a vertex cover on

𝐺 [𝑆]. Consider a simple example of the graph shown in Figure 1.

Suppose the agent has vertex weight as follows: 𝑤𝑖,𝑎 = 𝑤𝑖,𝑐 = 1

and 𝑤𝑖,𝑏 = 𝑤𝑖,𝑑 = 10. Then 𝑐𝑖 ({𝑎, 𝑏}, {𝑏, 𝑐}) = 𝑤𝑖,𝑎 +𝑤𝑖,𝑐 = 2 and

𝑐𝑖 ({𝑎, 𝑏}, {𝑎, 𝑑}) = 𝑤𝑖,𝑎 = 1.

Figure 1: A simple example of the cost functions.

We adopt Budish’s maximin share (MMS) definition [8] to evalu-

ate the fairness of an allocation. Budish’s original definition was

proposed for allocating goods where agents want to receive items

with higher value, but it naturally carries over chores. Intuitively,

we define a best worst-case cost, called maximin share (MMS), for

each agent: the agent partitions the edges 𝐸 into 𝑛 = |N | bundles
but can only receive the largest bundle (i.e., the bundle with largest

cost), and her MMS is the minimum cost of the largest bundles

over all possible partitions. An allocation is regarded as MMS fair,

if every agent’s cost of her obtained edges is no greater than her

MMS. It can be verified that the agents’ cost functions in our model

are subadditive, and thus our problems falls under the umbrella

of [27] which studies approximate MMS allocations of indivisible

chores under general subadditive functions. They proved that an

arbitrary profile of subadditive functions may not admit a better

than 𝑛-approximate MMS allocation, and in a sharp contrast, we

prove in the current work that, if the agents’ costs are measured

by vertex covers, a constant approximate MMS allocation is guar-

anteed to exist. We summarize our main results in the following

subsection.

1.1 Our Results
In this paper, we propose the Fair Surveillance Assignment Problem
(FSAP), where the edges of a given graph 𝐺 = (𝑉 , 𝐸) need to be

assigned to a set of 𝑛 agents for surveillance. The agents’ cost

functions depend on theweight of the vertex covers of their received

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW’24, May 13–17, 2024, Singapore Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

subgraph using their own weight metric. We focus on the MMS

fairness of the allocations.

For the general FSAP, we first prove that no algorithm can guar-

antee approximation ratio of MMS better than 2. This hardness

result holds for arbitrary number of agents 𝑛 ≥ 2.

Main Result 1. For any 𝑛 ≥ 2 agents, there is a FSAP instance

which does not admit a better than 2-approximate MMS allocation.

On the positive side, we show that we can always compute a

5+
√
17

2
(≈ 4.562)-approximate MMS allocation for any FSAP instance

with 𝑛 ≥ 2 agents, which is regarded as the main technical contri-

bution of this work. For each agent 𝑎𝑖 , our algorithm first identifies

the vertices 𝑀𝑖 used in her MMS partition, and regards them as

valid vertices to 𝑎𝑖 . The algorithm ensures that every agent only

receives the edges that can be covered by her valid vertices. The

algorithm runs in rounds; in each round, one of the agents receives

a bundle that satisfies the desired approximation ratio and exists

the algorithm. The key ingredient of the algorithm is the pivotal
vertices of each round which, informally, consists of the vertices

that are valid to at least half of the remaining agents. The pivotal

vertices are allocated to the agents one by one in a greedy way

while ensuring the approximation ratio. The first time when the

approximation ratio is broken by some agent, her allocation is fixed

and the vertices allocated to the other agents are returned to the

algorithm. The algorithm then updates the graph and the pivotal

vertices, and moves to the next iteration. We prove the correctness

of the algorithm via a cumulative counting approach: the agent

who leaves the algorithm in each round takes away edges with

sufficiently large weight to all the remaining agents. Our algorithm

runs in polynomial time if the agents’ valid vertices are given as

oracle.

Main Result 2. For any FSAP instance with 𝑛 ≥ 2 agents, there

always exists a 4.562-approximate MMS allocation.

Finally, we show that for the scenario with no more than four

agents, we can improve the approximation to 2. Combining with

Main Result 1, this is the best possible approximation ratio. The

proof depends on an involved case analysis, and it is still now clear

if these techniques can be extended to improve the approximations

for more than four agents, which is left for future research.

Main Result 3. For any FSAP instance with 2 ≤ 𝑛 ≤ 4 agents,

there always exists a 2-approximate MMS allocation.

1.2 Related Work
More generally, extensive research has been conducted in opera-

tions research, computer science and Web economics regarding

the partitioning of graphs into balanced subgraphs [9, 30]. Various

objectives are commonly used to evaluate the balance of a partition-

ing. Among these objectives, the max-min (or min-max) objectives

are particularly prominent, aiming to maximize (or minimize) the

total weight of the minimum (or maximum) part. Our project is

closely related to the vehicle routing problem (VRP) [25], which

extends the well-known traveling salesperson problem (TSP). The

VRP involves finding optimal routes for a fleet of vehicles to visit a

set of customers. There exist several popular variants of the VRP,

such as the heterogeneous vehicle routing problem [32, 33, 38]. The

graph partitioning problem encompasses various other combinato-

rial structures. For example, the min-max tree cover (also known

as the nurse station location) problem focuses on using trees to

cover an edge-weighted graph while minimizing the size of the

largest tree [15, 24, 37]. This problem is a part of the broader graph

covering problem, where a given graph is covered using a set of

pairwise disjoint subgraphs known as templates. Examples of tem-

plates include paths [4, 16], cycles [28, 35], network flows [7], and

matchings [23, 26].

Our model differs from the aforementioned research in several

perspectives. Mostly importantly, we consider customized cost func-

tions, where different agents possesses different weights on the

vertices, and the fairness is measured by the MMS. Moreover, most

surveillance models [1, 2] assume the costs are measured by TSP,

while we focus on the minimum vertex cover.

Another line of research that is closely related to our work is fair

division. The “fairness” of an allocation can be interpreted in several

ways [5, 12], where different people may have different opinions.

Two predominant classes of fairness criteria are the envy-based or

share-based. An envy-based criterion evaluates an agent’s demand

for fairness on an allocation through pair comparison between this

agent and each of her peers (e.g., envy-freeness) [17, 36], and a

share-based criterion evaluates that against the agent’s due share

(e.g., proportionality) [34]. When the resources are indivisible items,

the problem turns out to be inherently more challenging since

the ideal fairness notions cannot be always satisfied. A typical

remedy is to employ appropriate relaxations of envy-freeness and
proportionality, originating in the works of [8, 10, 19, 29], which

are geared to escape such adverse examples. Since then, works on

this topic have flourished, centered around fundamental questions

about the existence, approximations, and the efficient computation

of allocations satisfying these or other related fairness criteria; we

refer to recent surveys [3] for a more comprehensive introduction.

Among the relaxations that were introduced in this literature, envy-
freeness up to one or any good (EF1, EFX) [11, 31, 39] and maximin
share fairness (MMS) are among the most well-accepted and studied

[14, 18, 22]. It is proved in [6] that an EF1 allocation always exists

for any monotone combinatorial cost functions, which implies the

existence of an EF1 allocation in our setting.

There are some recent works that combines fair division and

graphs, see, e.g., [13, 20, 21], surveillance models have not con-

sidered. While it is proved in [27] that for general submodular

cost functions, no better than 𝑛-approximate MMS allocation can

be guaranteed, our result shows that vertex cover costs serve an

exception which allows interesting and non-trivial approximations.

2 PRELIMINARIES
2.1 Fair Surveillance Assignment Problem
We firstly introduce the definitions of our model. A Fair Surveillance
Assignment Problem (FSAP) instance is denoted by I = (N ,𝐺, c),
where 𝐺 = (𝑉 , 𝐸) is a graph whose edges 𝐸 = {𝑒1, . . . , 𝑒𝑚} are to
be allocated to a set N = {𝑎1, . . . , 𝑎𝑛} of agents. Let 𝑛 = |N | and
𝑚 = |𝐸 | be the numbers of agents and edges, respectively. Each

agent 𝑎𝑖 ∈ N has weight 𝑤𝑖,𝑣 ∈ R+ for each vertex 𝑣 ∈ 𝑉 , and

w𝑖 = (𝑤𝑖,𝑣)𝑣∈𝑉 . Agent 𝑎𝑖 ’s cost function 𝑐𝑖 : 2
𝐸 → R+ is decided

by solving a vertex cover problem, i.e., 𝑐𝑖 (𝑆) equals the minimum

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Fair Surveillance Assignment Problem WWW’24, May 13–17, 2024, Singapore

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

weight of a vertex cover of 𝐺 [𝑆] for every 𝑆 ⊆ 𝐸, where a vertex

cover is a set of vertices 𝑇 in 𝐺 [𝑆] so that every edge in 𝑆 has at

least one endpoint in 𝑇 . Supposing 𝐺 [𝑆] = (𝑉 ′, 𝑆) and 𝑇 ⊆ 𝑉 ′ is a
minimum weighted vertex cover of 𝐺 [𝑆], we also denote 𝑐𝑖 (𝑆) by
𝑐𝑖 (𝐺 [𝑆]) or 𝑐𝑖 (𝑇) =

∑
𝑣∈𝑇 𝑤𝑖,𝑣 , when there is no ambiguity. Denote

by c = (𝑐1, . . . , 𝑐𝑛). Without loss of generality, we assume there is

no isolated vertices (i.e., with degree 0) in 𝐺 .

It is not hard to see that the cost functions are (weakly) mono-

tonically increasing and subadditive. To see the subadditivity, for

any agent 𝑎𝑖 and any 𝑆1, 𝑆2 ⊆ 𝐸, suppose the minimum weighted

vertex covers of𝐺 [𝑆1] and𝐺 [𝑆2] are𝑇1 and𝑇2. Then𝑇1 ∪𝑇2 is also
a vertex cover of 𝐺 [𝑆1 ∪ 𝑆2], and

𝑐𝑖 (𝑆1 ∪ 𝑆2) ≤
∑︁

𝑣∈𝑇1∪𝑇2
𝑤𝑖,𝑣 ≤

∑︁
𝑣∈𝑇1

𝑤𝑖,𝑣 +
∑︁
𝑣∈𝑇2

𝑤𝑖,𝑣 = 𝑐𝑖 (𝑇1) + 𝑐𝑖 (𝑇2) .

An allocation of instance I = (N ,𝐺 = (𝑉 , 𝐸), c) is an 𝑛-partition
of 𝐸, denoted by A = (𝐴1, . . . , 𝐴𝑛), where 𝐴𝑖 is the allocation to

agent𝑎𝑖 for all𝑎𝑖 ∈ N ,

⋃
𝑎𝑖 ∈N 𝐴𝑖 = 𝐸 and𝐴𝑖∩𝐴 𝑗 = ∅ for all𝑎𝑖 ≠ 𝑎 𝑗 .

Note that when two adjacent edges 𝑒1 = (𝑣1, 𝑣2) and 𝑒2 = (𝑣1, 𝑣3)
sharing the same vertex 𝑣1 are allocated to two different agents,

say 𝑎𝑖 and 𝑎 𝑗 , then 𝑣1 appears in both agents’ induced subgraphs

and thus both of them may use 𝑣1 in their vertex covers. In this

work, for simplicity, we assume the weight of 𝑣1 is not changed to

the two agents even if it is incident to fewer number of edges in

their own subgraphs (although it may potentially reduce difficulty

of monitoring at this vertex). Denoted by Π𝑛 (𝑀) the set of all

𝑛-partitions of 𝐸.

2.2 MMS Fairness
Next, we introduce the definition of maximin share fairness [8]. For

an agent 𝑎𝑖 ∈ N , her maximin share (MMS) is defined as

𝜇𝑛𝑖 = min

(𝑋1,...,𝑋𝑛) ∈Π𝑛 (𝐸)
max

𝑗∈[𝑛]
𝑐𝑖 (𝑋 𝑗) .

When 𝑛 is clear from the context, we also write 𝜇𝑖 for short. An

𝑛-partition (𝑋1, . . . , 𝑋𝑛) of 𝐸 is called an MMS defining partition of

agent 𝑎𝑖 if

𝑐𝑖 (𝑋 𝑗) ≤ 𝜇𝑖 , for all 𝑗 = 1, . . . , 𝑛.

Definition 1 (Maximin Share Allocation). An allocation A =

(𝐴1, . . . , 𝐴𝑛) is called 𝛼-approximate MMS (𝛼-MMS) fair if

𝑐𝑖 (𝐴𝑖) ≤ 𝛼 · 𝜇𝑖 for all 𝑎𝑖 ∈ N .

The allocation is called MMS fair if 𝛼 = 1.

Since the cost functions are subadditive in our model, by [27],

there always exists an allocation that is min{𝑛, ⌈log𝑚⌉}-MMS allo-

cation. In this paper, we improve this result to constant approxima-

tions. Before introducing our main results, we first prove that no

algorithm can perform better than 2-MMS.

Theorem 1. For any 𝑛 ≥ 2, there is a FSAP instance with 𝑛 agents
which does not admit a better than 2-MMS allocation.

Proof. Given any 𝑛 ≥ 2, we construct a complete 𝑛-by-𝑛 bipar-

tite graph 𝐺 = (𝐿 ∪ 𝑅, 𝐸) as Fig. 2 shows, where 𝐿 = {𝑣1, . . . , 𝑣𝑛},
𝑅 = {𝑢1, . . . , 𝑢𝑛} and 𝐸 = {(𝑣𝑖 , 𝑢 𝑗) | for all 𝑣𝑖 ∈ 𝐿 and 𝑢 𝑗 ∈ 𝑅}. For
any 𝑣𝑖 ∈ 𝐿 and 𝑢 𝑗 ∈ 𝑅, denote by 𝐸𝑣𝑖 = {(𝑣𝑖 , 𝑢𝑙) | for all 𝑢𝑙 ∈ 𝑅}

and 𝐸𝑢 𝑗
= {(𝑣𝑙 , 𝑢 𝑗) | for all 𝑣𝑙 ∈ 𝐿} the sets of all edges inci-

dent with 𝑣𝑖 and 𝑢 𝑗 , respectively. Note that both (𝐸𝑣1 , . . . , 𝐸𝑣𝑛)
and (𝐸𝑢1

, . . . , 𝐸𝑢𝑛) are partitions of 𝐸.

Figure 2: The bipartite graph 𝐺 .

Next, we design the cost functions of 𝑛 agents N = {𝑎1, . . . , 𝑎𝑛}.
For any agent 𝑎𝑖 , where 𝑖 = 1, . . . , 𝑛 − 1, let𝑤𝑖, 𝑗 = 1 for any 𝑣 𝑗 ∈ 𝐿
and𝑤𝑖,𝑙 = 𝑛2 for any 𝑢𝑙 ∈ 𝑅, and her cost function 𝑐𝑖 (·) is defined
accordingly. Then 𝜇𝑖 = 1, which is obtained by partitioning the

edges 𝐸 as (𝐸𝑣1 , . . . , 𝐸𝑣𝑛) since 𝑐𝑖 (𝐸𝑣𝑗) = 1 for all 𝑗 = 1, . . . , 𝑛. For

agent 𝑎𝑛 , let𝑤𝑛,𝑗 = 1 for any 𝑢 𝑗 ∈ 𝑅 and𝑤𝑛,𝑙 = 𝑛2 for any 𝑣𝑙 ∈ 𝐿,
and her cost function 𝑐𝑛 (·) is defined accordingly. Then 𝜇𝑛 = 1,

which is obtained by partitioning the edges 𝐸 as (𝐸𝑢1
, . . . , 𝐸𝑢𝑛)

since 𝑐𝑛 (𝐸𝑢 𝑗
) = 1 for all 𝑗 = 1, . . . , 𝑛.

For the sake of contradiction, suppose instance I = (N ,𝐺, c)
admits a better than 2-MMS allocation A = (𝐴1, . . . , 𝐴𝑛). By the

design of the instance, it must be that 𝑐𝑖 (𝐴𝑖) = 1 for all 𝑎𝑖 ∈ N .

Thus, for 1 ≤ 𝑖 ≤ 𝑛 − 1, 𝐴𝑖 cannot contain edges from more

than one 𝐸𝑣𝑙 , i.e., 𝐴𝑖 ⊆ 𝐸𝑣𝑙 for some 𝑣𝑙 ∈ 𝐿. By the pigeon-hole

principle, there exists 𝑣𝑙∗ ∈ 𝐿 such that 𝐸𝑣𝑙∗ ∩ (𝐴1∪· · ·∪𝐴𝑛−1) = ∅,
which implies 𝐸𝑣𝑙∗ ⊆ 𝐴𝑛 . However, since 𝐸𝑣𝑙∗ ∩ 𝐸𝑢 𝑗

≠ ∅ for all
𝑢 𝑗 ∈ 𝑅, 𝑐𝑛 (𝐴𝑛) ≥ 𝑐𝑛 (𝐸𝑣𝑙∗) =

∑
𝑢 𝑗 ∈𝑅 𝑤𝑛,𝑗 = 𝑛, which contradicts

𝑐𝑛 (𝐴𝑛) = 1 and completes the proof of Theorem 1. □

3 THE MAIN ALGORITHM
3.1 More Notations
We first introduce more notations which will be used in the descrip-

tion of the algorithm. One of the difficulties in designing effective

fair algorithms to allocate the edges is that the agents’ costs actually

depend on vertices of the induced subgraph and moreover only

the weight of a subset of these vertices gives the cost of the agent.

Therefore, the first step of our algorithm is to identify some critical

vertices which can be used to approximate the agents’ costs.

Consider an arbitrary agent 𝑎𝑖 ∈ N . Note that there may be

multiple partitions of 𝐸 that gives the MMS value of agent 𝑎𝑖 . We

arbitrarily fix one of such partitions and denote it by (𝐸𝑖,1, . . . , 𝐸𝑖,𝑛),
where 𝑐𝑖 (𝐸𝑖, 𝑗) ≤ 𝜇𝑖 for 𝑗 = 1, . . . , 𝑛 and there exists 𝑗∗ such that

𝑐𝑖 (𝐸𝑖, 𝑗∗) = 𝜇𝑖 . Suppose 𝐺 [𝐸𝑖, 𝑗] = (𝑉𝑖, 𝑗 , 𝐸𝑖, 𝑗) and 𝑀𝑖, 𝑗 ⊆ 𝑉𝑖, 𝑗 is one

minimum weighted vertex cover of𝐺 [𝐸𝑖, 𝑗]. Again,𝑀𝑖, 𝑗 may not be

the unique minimum vertex cover, in which case we arbitrarily fix

one of them. Denote𝑀𝑖 = 𝑀𝑖,1 ∪ · · · ∪𝑀𝑖,𝑛 , which are called valid
vertices for agent 𝑎𝑖 . Let𝑀𝑖 = 𝑉 \𝑀𝑖 be the set of invalid vertices

for agent 𝑎𝑖 .

Since every𝑀𝑖, 𝑗 covers 𝐺 [𝐸𝑖, 𝑗], it is easy to see that𝑀𝑖 covers

the original graph 𝐺 . However,𝑀𝑖 may not be a minimum vertex

cover. Consider a star graph with one internal vertex and 𝑛 leaves,

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW’24, May 13–17, 2024, Singapore Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

where the internal vertex weighs 2 to 𝑎𝑖 and each leaf weighs 1.

Then the weight of a minimum vertex cover is 2 (the internal vertex

suffices), while 𝜇𝑖 = 1 by partitioning all edges into isolated edges

and thus all leaves form the valid vertices𝑀𝑖 for 𝑎𝑖 . In general, we

have the following property of the valid vertices.

Lemma 1. For any 𝑎𝑖 ∈ N and 𝑆 ⊆ 𝐸 with𝐺 [𝑆] = (𝑉 ′, 𝑆),𝑉 ′∩𝑀𝑖

is a vertex cover of 𝐺 [𝑆] and thus

𝑐𝑖 (𝑆) ≤
∑︁

𝑣∈𝑉 ′∩𝑀𝑖

𝑤𝑖,𝑣 .

Proof. It suffice to see𝑉 ′ ∩𝑀𝑖 covers𝐺 [𝑆]. This is straightfor-
ward, as otherwise, there is an edge 𝑒 ∈ 𝑆 that is not covered by

𝑉 ′ ∩𝑀𝑖 and thus not by any vertex in 𝑀𝑖 , which contradicts 𝑀𝑖

covers 𝐺 . □

Next, it is easy to observe the following property of MMS.

Lemma 2. For any 𝑎𝑖 ∈ N ,

𝜇𝑖 ≥ max

max

𝑣∈𝑀𝑖

𝑤𝑖,𝑣,
1

𝑛
·
∑︁
𝑣∈𝑀𝑖

𝑤𝑖,𝑣

 .

Proof. Suppose (𝐸𝑖,1, . . . , 𝐸𝑖,𝑛) is the MMS-defining partition

that is used to define the valid vertices 𝑀𝑖 = 𝑀𝑖,1 ∪ · · · ∪𝑀𝑖,𝑛 for

agent 𝑎𝑖 . To see 𝜇𝑖 ≥ max𝑣∈𝑀𝑖
𝑤𝑖,𝑣 and 𝜇𝑖 ≥ 1

𝑛 ·
∑

𝑣∈𝑀𝑖
𝑤𝑖,𝑣 , it

suffices to recall the definition of 𝜇𝑖 , i.e.,

𝜇𝑖 = max

𝑗=1,...,𝑛
𝑐𝑖 (𝐸𝑖, 𝑗) = max

𝑗=1,...,𝑛

∑︁
𝑣∈𝑀𝑖,𝑗

𝑤𝑖, 𝑗 .

□

Remark. We remark that although the selection of 𝑀𝑖 in the

previous discussion is not unique, any of them suffices to prove the

approximation ratio of our algorithm.

By Lemma 1, we can use the valid vertices to upper bound the

cost of any set of edges allocated to agent 𝑎𝑖 . Furthermore, instead

of allocation edges, we can also regard the problem as allocating

the vertices in𝑀𝑖 and thus if 𝑎𝑖 receives some vertices in𝑀𝑖 , she

also receives all their incident edges. However, the difficulty is

that different agents have different valid vertices. To overcome this

difficulty, we introduce the definition of pivotal vertices, which will

be formally defined in the algorithm.

The use of pivotal vertices relies on the following lemma. Given

a graph 𝐺 = (𝑉 , 𝐸) and 𝑘 vertex covers C = {𝐶1, . . . ,𝐶𝑘 } of 𝐺 . For
all 𝑣 ∈ 𝑉 , denote by 𝑁𝑣 = {𝑖 ∈ [𝑘] | 𝑣 ∈ 𝐶𝑖 } the vertex covers that
use 𝑣 . Let

𝑃 = {𝑣 ∈ 𝑉 | |𝑁𝑣 | ≥
𝑘

2

},

be the vertices that for which at least half of C use them in the

vertex covers. Then we have the following property.

Lemma 3. 𝑃 is a vertex cover of 𝐺 .

Proof. We prove by contradiction. Suppose there is an edge

(𝑣1, 𝑣2) ∈ 𝐸 that is not covered by 𝑃 . By the definition of 𝑃 , |𝑁𝑣1 | <
𝑘
2
and |𝑁𝑣2 | < 𝑘

2
, and thus |𝑁𝑣1 ∪ 𝑁𝑣2 | < 𝑘 . Therefore, there is at

least one 𝑖∗ ∈ [𝑘] \ (𝑁𝑣1 ∪ 𝑁𝑣2) such that 𝑣1 ∉ 𝐶𝑖∗ and 𝑣2 ∉ 𝐶𝑖∗ ,

which is a contradiction with 𝐶𝑖∗ being a vertex cover of 𝐺 . □

3.2 The Algorithm
In this section, we formally describe our algorithm and prove its

approximation.

Theorem 2. For any SAP instance I = (N ,𝐺, c) with 𝑛 ≥ 2

agents, Algorithm 1 computes a 5+
√
17

2
(≈ 4.562)-MMS allocation.

We first note that without loss of generality, we can always focus

on normalized instances where 𝜇𝑖 = 1 for all 𝑎𝑖 ∈ N . On way to

achieve this is to divide𝑤𝑖,𝑣 by 𝜇𝑖 for all 𝑣 ∈ 𝑉 , which only affects

the weights of vertex covers but not the selections of them.

The algorithm is shown in Algorithm 1. Basically, the algorithm

runs in rounds with a parameter 𝛼 which is defined in the proof

of Theorem 2. In each round, it identifies a set of pivotal vertices 𝑃

where each vertex is valid to at least half of all remaining agents.

Note that 𝑃 is updated in every round. Then we process the vertices

in 𝑃 in an arbitrary order. For each pivotal vertex 𝑣 ∈ 𝑃 , among

all the agents for whom 𝑣 is valid, we allocate it to the one with

smallest weight. As soon as one agent 𝑖∗’s weight exceeds 𝛼 , we
stop allocating the vertices. Agent 𝑖∗’s allocation is finalized to be

the edges that are covered by pivotal vertices allocated to her in

the current round. Then the algorithm excludes 𝑖∗, returns all the
vertices allocated to the other agents, and moves to the next round.

If all vertices in 𝑃 are allocated without making any agent’s total

weight exceed 𝛼 , then each edge is allocated to (arbitrary) one of

the agents whose obtained pivotal vertex covers it.

Proof of Theorem 2. We first see that Algorithm 1 is well-

defined. Let 𝑀𝑖 be the valid vertices 𝑀𝑖 of every agent 𝑎𝑖 , and

by Lemma 1, 𝑀𝑖 is a vertex cover of the input graph 𝐺 and thus

also a vertex cover of any subgraph of 𝐺 . Through the run of the

algorithm, 𝐺 = (𝑉 , 𝐸) and N represent the remaining subgraph

and the remaining agents. We call each iteration of the while loop
at Step 2 a round of the algorithm. By Lemma 3, the set of pivotal

vertices 𝑃 computed in Step 4 is nonempty and covers 𝐺 . During

the execution of the for loop in Step 7, for every vertex 𝑣 ∈ 𝑃 , by
the definition of 𝑃 , it is valid to at least one agent. Then at the end of

this for loop either one agent 𝑎𝑖∗ ’s weight exceeds 𝛼 or all vertices

in 𝑃 are allocated. For the former case, agent 𝑎𝑖∗ obtains the edges

covered by her allocated pivotal vertices,𝐺 andN are updated, and

the algorithm moves to the next round. For the later case, since 𝑃

is a vertex cover, every edge must be incident to at least one vertex

in 𝑃 and thus is allocated to some agent in the for loop at Step 17,

and the algorithm ends here.

Next, we prove the approximation ratio of the algorithm by

setting 𝛼 =
3+
√
17

2
≈ 3.562. Recall that 𝜇𝑖 = 1 for all 𝑎𝑖 ∈ N . By the

design of the algorithm, every agent 𝑎𝑖 can only receive a bundle (1)

from Step 13 or (2) from the for loop at Step 17. For case (1), there is
one round such that all the vertices in 𝑃 are allocated, which means

that the for loop at Step 7 is not broken by any agent. Thus,

𝑐𝑖 (𝐴𝑖) ≤
∑︁
𝑣∈𝐵𝑖

𝑤𝑖,𝑣 ≤ 𝛼 = 𝛼 · 𝜇𝑖 ,

where the first inequality is by Lemma 1, recalling that 𝐵𝑖 is a vertex

cover of 𝐺 [𝐴𝑖]. For case (2), agent 𝑎𝑖 breaks the for loop at Step 7,

which is the first time when her weight for 𝐵𝑖 exceeds 𝛼 . Suppose

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Fair Surveillance Assignment Problem WWW’24, May 13–17, 2024, Singapore

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Algorithm 1 Approximation Algorithm for General Instances.

Input: A normalized instance I = (N ,𝐺 = (𝑉 , 𝐸), c) with valid

vertices𝑀𝑖 for all 𝑎𝑖 ∈ N , and parameter 𝛼 > 1.

Output: An allocation A = (𝐴1, . . . , 𝐴𝑛).
1: Initialize 𝐴𝑖 = ∅ for all 𝑎𝑖 ∈ N .

2: while N ≠ ∅ and 𝐸 ≠ ∅ do
3: Set N𝑣 ← {𝑎𝑖 ∈ N | 𝑣 ∈ 𝑀𝑖 } for all 𝑣 ∈ 𝑉 .

4: Set pivotal vertices

𝑃 ← {𝑣 ∈ 𝑉 | |N𝑣 | ≥
|N |
2

}.

5: Set 𝐵𝑖 ← ∅ for all 𝑎𝑖 ∈ N .

6: Let 𝑖∗ ← ⊥.
7: for 𝑣 ∈ 𝑃 do
8: Let 𝑎𝑖 be an agent for whom 𝑣 is valid and the weight on

𝑣 is smallest, i.e.

𝑎𝑖 ∈ arg min

𝑎 𝑗 ∈N𝑣

𝑤 𝑗,𝑣 .

Set 𝐵𝑖 ← 𝐵𝑖 ∪ {𝑣}.
9: If

∑
𝑣∈𝐵𝑖∗ 𝑤𝑖∗,𝑣 ≥ 𝛼 , set 𝑖∗ ← 𝑖 and break the for loop.

10: end for
11: if 𝑖∗ ≠ ⊥ then
12: Let 𝑆 ⊆ 𝐸 be the set of edges covered by 𝐵𝑖∗ .

13: Set 𝐴𝑖∗ ← 𝑆 .

14: Set N ← N \ {𝑎𝑖∗ }, 𝐸 ← 𝐸 \ 𝑆 .
15: Set 𝐺 ← 𝐺 [𝐸] and disregard all isolated vertices.

16: else
17: for 𝑒 = (𝑣1, 𝑣2) ∈ 𝐸 do
18: Choose an arbitrary agent 𝑎𝑖 such that 𝐵𝑖 ∩{𝑣1, 𝑣2} ≠ ∅.
19: Set 𝐴𝑖 ← 𝐴𝑖 ∪ {𝑒}.
20: end for
21: return A = (𝐴1, . . . , 𝐴𝑛).
22: end if
23: end while
24: return A = (𝐴1, . . . , 𝐴𝑛).

𝑣∗ is the last vertex added to 𝐵𝑖 , then

𝑐𝑖 (𝐴𝑖) ≤
∑︁

𝑣∈𝐵𝑖\{𝑣∗ }
𝑤𝑖,𝑣 +𝑤𝑖,𝑣∗ < 𝛼 +𝑤𝑖,𝑣∗ ≤ (𝛼 + 1) · 𝜇𝑖 , (1)

where the first inequality is by Lemma 1 and the last inequality is

by Lemma 2.

It remains to show all the edges can be allocated at the end

of the algorithm, by setting 𝛼 =
3+
√
17

2
≈ 3.562. We prove by

contradiction, and suppose there are edges left unallocated. Thus

all agents obtain their allocations from Step 13 and the algorithm

must run 𝑛 rounds of while loop at Step 2, where 𝑛 is the initial

number of agents. Suppose the sets of the pivotal vertices used in

each rounds are 𝑃1, . . . , 𝑃𝑛 , and rename the agents so that agent 𝑎𝑘
exists from the algorithm in round 𝑘 = 1, . . . , 𝑛. We first define the

following quantity Δ:

Δ =

𝑛∑︁
𝑘=1

𝑛∑︁
𝑗=𝑘

∑︁
𝑣∈𝐵𝑘∩𝑀𝑗

𝑤𝑘,𝑣,

where

∑
𝑣∈𝐵𝑘∩𝑀𝑗

𝑤𝑘,𝑣 means when agent 𝑎𝑘 exists, the total weight

she takes way from every remaining agent 𝑎 𝑗 ’s valid vertices, in

𝑎𝑘 ’s perspective.

On the one hand, we note that for each vertex 𝑣 ∈ 𝐵𝑘 ⊆ 𝑃𝑘 ,

there are at least
𝑛−𝑘+1

2
agents for whom 𝑣 is valid, which means 𝑣

appears in 𝐵𝑘 ∩𝑀𝑗 for at least
𝑛−𝑘+1

2
terms. Thus, by rearranging

the weights, we have

𝑛∑︁
𝑗=𝑘

∑︁
𝑣∈𝐵𝑘∩𝑀𝑗

𝑤𝑘,𝑣 ≥
𝑛 − 𝑘 + 1

2

∑︁
𝑣∈𝐵𝑘

𝑤𝑘,𝑣 ≥
𝑛 − 𝑘 + 1

2

· 𝛼.

Therefore,

Δ ≥
𝑛∑︁

𝑘=1

𝑛 − 𝑘 + 1
2

· 𝛼 ≥ 𝛼

4

𝑛(𝑛 + 1). (2)

On the other hand, exchanging the order of summations gives

Δ =

𝑛∑︁
𝑘=1

𝑛∑︁
𝑗=𝑘

∑︁
𝑣∈𝐵𝑘∩𝑀𝑗

𝑤𝑘,𝑣 =

𝑛∑︁
𝑗=1

𝑗∑︁
𝑘=1

∑︁
𝑣∈𝐵𝑘∩𝑀𝑗

𝑤𝑘,𝑣

=

⌊𝑛/(𝛼+1) ⌋∑︁
𝑗=1

𝑗∑︁
𝑘=1

∑︁
𝑣∈𝐵𝑘∩𝑀𝑗

𝑤𝑘,𝑣 +
𝑛∑︁

𝑗=⌊𝑛/(𝛼+1) ⌋+1

𝑗∑︁
𝑘=1

∑︁
𝑣∈𝐵𝑘∩𝑀𝑗

𝑤𝑘,𝑣,

where the left and the right terms are denoted by Δ1 and Δ2, re-

spectively. For Δ1, we have

Δ1 =

⌊𝑛/(𝛼+1) ⌋∑︁
𝑗=1

𝑗∑︁
𝑘=1

∑︁
𝑣∈𝐵𝑘∩𝑀𝑗

𝑤𝑘,𝑣 <

⌊𝑛/(𝛼+1) ⌋∑︁
𝑗=1

𝑗∑︁
𝑘=1

(𝛼 + 1)

=

⌊𝑛/(𝛼+1) ⌋∑︁
𝑗=1

𝑗 · (𝛼 + 1) ≤ 𝛼 + 1
2

𝑛

𝛼

(𝑛
𝛼
+ 1

)
,

where the first inequality is because

∑
𝑣∈𝐵𝑘∩𝑀𝑗

𝑤𝑘,𝑣 < 𝛼 +1, similar

as Inequality 1. For Δ2, we have

Δ2 =

𝑛∑︁
𝑗=⌊𝑛/(𝛼+1) ⌋+1

𝑗∑︁
𝑘=1

∑︁
𝑣∈𝐵𝑘∩𝑀𝑗

𝑤𝑘,𝑣

≤
𝑛∑︁

𝑗=⌊𝑛/(𝛼+1) ⌋+1

𝑗∑︁
𝑘=1

∑︁
𝑣∈𝐵𝑘∩𝑀𝑗

𝑤 𝑗,𝑣

≤
𝑛∑︁

𝑗=⌊𝑛/(𝛼+1) ⌋+1

∑︁
𝑣∈𝑀𝑗

𝑤 𝑗,𝑣

≤
𝑛∑︁

𝑗=⌊𝑛/(𝛼+1) ⌋+1
𝑛 =

(
𝑛 − ⌊ 𝑛

𝛼 + 1 ⌋
)
· 𝑛,

where the first inequality is because 𝑎𝑘 has the smallest weight

among the agents for whom 𝑣 ∈ 𝐵𝑘 is valid and the last inequality

is because 𝜇 𝑗 = 1. Combining the above two inequalities, we have

Δ < 𝑛2 (1 − 1

2(𝛼 + 1)) +
3𝑛

2

(3)

However, when 𝛼 =
3+
√
17

2
, Inequality 2 contradicts Inequality 3.

Therefore, it must be that there is round the algorithm reaches the

for loop in Step 17, and thus all the edges are allocated. □

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW’24, May 13–17, 2024, Singapore Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Remark. Note that given the valid vertices𝑀𝑖 for every agent as

an oracle, Algorithm 1 runs in polynomial time. There are at most

𝑛 rounds of the outer while loop. Within each round, computing

the pivotal vertices (Step 4) and finding the largest weight on these

vertices (the for loop at Step 7) need 𝑂 (𝑛 |𝑉 |) time. The for loop at

Step 17 is only executed once, which requires𝑂 (|𝐸 |) time. However,

the computation of 𝑀𝑖 is NP-hard, and it is still not clear how to

efficiently approximate them, which is left as an open problem of

this paper.

4 IMPROVED APPROXIMATIONS FOR SMALL
NUMBER OF AGENTS

In this section, we prove that when the instance contains no more

than four agents, there is always a 2-MMS allocation. Combining

with Theorem 1, it is the optimal approximation ratio for these

cases.

Theorem 3. For any FSAP instance I = (N ,𝐺 = (𝑉 , 𝐸), c) with
|N | ≤ 4, there exists a 2-MMS allocation.

It is observed in [27] that for subadditive cost functions, an

arbitrary allocation, including the one that allocates all items to a

single agent, is 𝑛-MMS. Thus, when 𝑛 = 2, we can simply allocate

all edges to an arbitrary agent, which gives a 2-MMS allocation.

When 𝑛 > 2, the problem becomes tricky. We show how to find

a 2-MMS allocation for 𝑛 = 2, 3 in Subsections 4.1 and 4.2 (see

Lemmas 4 and 5 respectively). It is not clear if a 2-MMS allocation

is guaranteed to exist or not, which is left for future study.

4.1 Three Agents
In this subsection, we show how to find a 2-MMS allocation for

any FSAP instance I = (N ,𝐺 = (𝑉 , 𝐸), c) with 3 agents, i.e., N =

{𝑎1, 𝑎2, 𝑎3}. Arbitrarily fix two agents 𝑎𝑖 and 𝑎 𝑗 , we partition the

vertices 𝑉 into four parts: (1) 𝑋𝑖, 𝑗 = 𝑀𝑖 ∩𝑀𝑗 which contains the

vertices that are valid to both agents 𝑎𝑖 and 𝑎 𝑗 ; (2) 𝑋𝑖 = 𝑀𝑖 \𝑀𝑗

which contains the vertices that is only valid to agent 𝑎𝑖 but invalid

to agent 𝑎 𝑗 ; (3)𝑋 𝑗 = 𝑀𝑗 \𝑀𝑖 which contains the vertices that is only

valid to agent 𝑎 𝑗 but invalid to agent 𝑎𝑖 ; (4)𝑋0 = 𝐸\(𝑀𝑖∪𝑀𝑗) which
contains the vertices that invalid to both 𝑎𝑖 and 𝑎 𝑗 . We illustrate

the partition in Figure 3.

Figure 3: The illustration of 𝑋𝑖, 𝑗 , 𝑋𝑖 , 𝑋 𝑗 and 𝑋0.

We have the following property for 𝑋0. Note that Claim 1 holds

for any number of agents.

Claim 1. 𝑋𝑖 , 𝑋 𝑗 and 𝑋0 are independent sets, i.e., for any edge
(𝑢, 𝑣) ∈ 𝐸, |{𝑢, 𝑣} ∩ 𝑋𝑖 | ≤ 1, |{𝑢, 𝑣} ∩ 𝑋 𝑗 | ≤ 1 and |{𝑢, 𝑣} ∩ 𝑋0 | ≤ 1.
Moreover, the vertices in 𝑋0 are only adjacent to vertices in 𝑋𝑖, 𝑗 .

Proof. To see |{𝑢, 𝑣} ∩ 𝑋0 | ≤ 1, for the sake of contradiction,

suppose there exists an edge (𝑢, 𝑣) ∈ 𝐸 such that has both 𝑢, 𝑣 ∈
𝑋0. Since 𝑀𝑖 and 𝑀𝑗 are vertex covers, then {𝑢, 𝑣} ∩𝑀𝑖 ≠ ∅ and
{𝑢, 𝑣} ∩𝑀𝑗 ≠ ∅, which contradicts 𝑋0 = 𝐸 \ (𝑀𝑖 ∪𝑀𝑗). Similarly, if

there is an edge (𝑢, 𝑣) ∈ 𝐸 such that has both 𝑢, 𝑣 ∈ 𝑋𝑖 = 𝑀𝑖 \𝑀𝑗 ,

then {𝑢, 𝑣} ∩𝑀𝑗 = ∅, which contradicts 𝑀𝑗 being a vertex cover.

Since 𝑋𝑖 and 𝑋 𝑗 are symmetric, this also holds for 𝑋 𝑗 .

To see the second claim, it suffices to note that for any edge

(𝑢, 𝑣) ∈ 𝐸, if 𝑢 ∈ 𝑋0, then 𝑢 ∉ 𝑀𝑖 and 𝑢 ∉ 𝑀𝑗 , and thus 𝑣 must be

valid to both agents, i.e., 𝑣 ∈ 𝑀𝑖 ∩𝑀𝑗 . □

Lemma 4. For any FSAP instance I = (N ,𝐺 = (𝑉 , 𝐸), c) with
|N | = 3, there exists a 2-MMS allocation.

Proof. For the ease of presentation of this section, we normalize

the weight of each vertex such that

∑
𝑣∈𝑀𝑖

𝑤𝑖,𝑣 = 1 for 𝑎𝑖 ∈ N .

Thus, by Lemma 2, 𝜇𝑖 ≤ 1/3 for 𝑎𝑖 ∈ N . Similar as the main

algorithm in the previous section, our idea is to allocate the agents

the edges covered by their valid vertices. Depending on whether

there are two agents who share many valid vertices, we consider

the following three cases.

Case (1). There exist two agents 𝑎𝑖 , 𝑎 𝑗 ∈ N such that

∑︁
𝑣∈𝑋𝑖,𝑗

𝑤𝑖,𝑣 ≥
1

3

,

∑︁
𝑣∈𝑋𝑖,𝑗

𝑤 𝑗,𝑣 ≥
1

3

.

For this case, 𝑋𝑖, 𝑗 contains sufficiently large vertices to the two

agents, and we can show that there must be a bundle 𝑆 ⊆ 𝑋𝑖, 𝑗 that

is no more than twice MMS to one of them and at least
1

3
to the

other agent. This can be proved via a bag-filling algorithm. We

maintain a bag 𝐵, which is initially empty. We add vertices in 𝑋𝑖, 𝑗
one by one in an arbitrary order to 𝐵 until the first time after a

vertex 𝑣∗ is added both agents have weight at least
1

3
on the bag

and we stop. Since

∑
𝑣∈𝑋𝑖,𝑗

𝑤𝑖,𝑣 ≥ 1

3
and

∑
𝑣∈𝑋𝑖,𝑗

𝑤 𝑗,𝑣 ≥ 1

3
, there

must exist such a vertex. Without loss of generality, suppose 𝑎𝑖
is the later agent whose weight on 𝐵 exceeds

1

3
. Thus we have∑

𝑣∈𝐵\{𝑣} 𝑤𝑖,𝑣 < 1

3
,

∑
𝑣∈𝐵 𝑤𝑖,𝑣 ≥ 1

3
, and

∑
𝑣∈𝐵 𝑤 𝑗,𝑣 ≥ 1

3
. Suppose

𝑆 ⊆ 𝐸 is the edges that are covered by 𝐵. Let𝐴𝑖 = 𝑆 ,𝐴 𝑗 = 𝐸 \𝑆 , and
𝐴6−𝑖− 𝑗 = ∅. Next, we prove that A = (𝐴𝑖 , 𝐴 𝑗 , 𝐴6−𝑖− 𝑗) is a 2-MMS

allocation, and it suffices to consider 𝑎𝑖 and 𝑎 𝑗 .

For agent 𝑎𝑖 , we have

𝑐𝑖 (𝐴𝑖) ≤
∑︁
𝑣∈𝐵

𝑤𝑖,𝑣 =
∑︁

𝑣∈𝐵\{𝑣∗ }
𝑤𝑖,𝑣 +𝑤𝑖,𝑣∗ ≤ 2 · 𝜇,

where the first inequality is by Lemma 1, and the second inequality

is by Lemma 2 combining

∑
𝑣∈𝐵\{𝑣} 𝑤𝑖,𝑣 < 1

3
.

For agent 𝑎 𝑗 , we first note that as 𝐵 ⊆ 𝑋𝑖, 𝑗 ⊆ 𝑀𝑗 ,𝑀𝑗 \𝐵 must be

able to cover 𝐸 \ 𝑆 . Since ∑𝑣∈𝐵 𝑤 𝑗,𝑣 ≥ 1

3
and 𝐵 ⊆ 𝑋𝑖, 𝑗 ⊆ 𝑀𝑗 , thus

we have

𝑐 𝑗 (𝐴 𝑗) ≤
∑︁

𝑣∈𝑀𝑗 \𝐵
≤ 2

3

≤ 2 · 𝜇 𝑗 ,

where the two inequalities are again by Lemmas 1 and 2.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Fair Surveillance Assignment Problem WWW’24, May 13–17, 2024, Singapore

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Case (2). There exist two agents 𝑎𝑖 and 𝑎 𝑗 that

∑︁
𝑣∈𝑋𝑖,𝑗

𝑤𝑖,𝑣 <
1

3

,

∑︁
𝑣∈𝑋𝑖,𝑗

𝑤 𝑗,𝑣 ≥
1

3

.

This case is simple, and can be analyzed in a similar way as Case

(1). In fact, 𝑋𝑖, 𝑗 directly satisfies the requirement of the bag 𝐵 found

by the bag-filling algorithm: For 𝑎𝑖 , 𝑋𝑖, 𝑗 is not too large, and for 𝑎 𝑗 ,

𝑋𝑖, 𝑗 is sufficiently large. Denote by 𝑆 ⊆ 𝐸 the set of edges covered

by the entire 𝑋𝑖, 𝑗 . Then let 𝐴𝑖 = 𝑆 , 𝐴 𝑗 = 𝐸 \ 𝐴𝑖 , and 𝐴6−𝑖− 𝑗 = ∅.
Thus 𝑐𝑖 (𝐴𝑖) ≤ 𝜇𝑖 and 𝑐𝑖 (𝐴 𝑗) ≤ 2𝜇 𝑗 .

Case (3). For any two agents 𝑎𝑖 ≠ 𝑎 𝑗 , we have

∑︁
𝑣∈𝑋𝑖,𝑗

𝑤𝑖,𝑣 <
1

3

,

∑︁
𝑣∈𝑋𝑖,𝑗

𝑤 𝑗,𝑣 <
1

3

.

Let 𝑆 ⊆ 𝐸 be the set of edges covered by 𝑋2,3 and 𝐴2 ← 𝑆 . Let

𝐴1 = 𝐸 \ 𝐴2, 𝐴2 = 𝑆 , and 𝐴3 = ∅. In the following, we show

A = (𝐴1, 𝐴2, 𝐴3) is a 2-MMS allocation. Again, we only need to

check agents 𝑎1 and 𝑎2.

For agent 𝑎2, it is straightforward that

𝑐2 (𝐴2) ≤
∑︁

𝑣∈𝑋2,3

𝑤2,𝑣 ≤
1

3

.

For agent 𝑎 𝑗 , we first observe that the vertices in 𝑀1 can be

divided into two parts𝑀1 = (𝑀1 ∩ (𝑀2 ∪𝑀3)) ∪ (𝑀1 \ (𝑀2 ∪𝑀3)).
The vertices in𝑀1 \ (𝑀2 ∪𝑀3) are invalid for agent 𝑎2 and 𝑎3. By

Claim 1, any edge (𝑣,𝑢) ∈ 𝐸 \𝑆 must satisfy that 𝑣 ∈ 𝑋2 and 𝑢 ∈ 𝑋3

or the other way round. That is, the vertices in𝑀1 ∩ (𝑀2 ∪𝑀3) can
cover all the edges 𝐸 \ 𝑆 . Therefore, we have

𝑐1 (𝐴1) ≤
∑︁

𝑣∈𝑀1∩(𝑀2∪𝑀3)
𝑤1,𝑣

≤
∑︁

𝑣∈𝑀1∩𝑀2

𝑤1,𝑣 +
∑︁

𝑣∈𝑀1∩𝑀3

𝑤1,𝑣

=
∑︁

𝑣∈𝑋1,2

𝑤1,𝑣 +
∑︁

𝑣∈𝑋1,3

𝑤1,𝑣 <
1

3

+ 1

3

< 2𝜇1 .

Combing the above three cases, Lemma 4 is proved. □

From the proof of Lemma 4, we can see that if the valid vertices

𝑀1, 𝑀2 and𝑀3 are given as an oracle, a 2-MMS allocation can be

found in polynomial time.

4.2 Four Agents
Finally, in this subsection, we show how to find a 2-MMS allocation

for any FSAP instance I = (N ,𝐺 = (𝑉 , 𝐸), c) with 4 agents, i.e.,

N = {𝑎1, 𝑎2, 𝑎3, 𝑎4}. For every three agents 𝑎𝑖 , 𝑎 𝑗 , 𝑎𝑘 , we divide

the valid vertices of every agent into 4 parts. For agent 𝑎𝑖 , the

valid vertices 𝑀𝑖 are divided into four parts as Figure 4 shows:

𝑋𝑖, 𝑗,𝑘 = 𝑀𝑖 ∩ 𝑀𝑗 ∩ 𝑀𝑘 denotes the set of vertices that are valid

to all three agents 𝑎𝑖 , 𝑎 𝑗 and 𝑎𝑘 ; 𝑋𝑖, 𝑗 = (𝑀𝑖 ∩ 𝑀𝑗) \ 𝑀𝑘 denotes

the set of vertices that are valid to agents 𝑎𝑖 and 𝑎 𝑗 but not to 𝑎𝑘 ;

𝑋𝑖,𝑘 = (𝑀𝑖 ∩𝑀𝑘) \𝑀𝑗 denotes the set of vertices that are valid to

agents 𝑎𝑖 and 𝑎𝑘 but not to 𝑎 𝑗 ; 𝑋𝑖,0 = 𝑀𝑖 \ (𝑀𝑗 ∪𝑀𝑘) denotes the
set of vertices that are only valid to agent 𝑎𝑖 but not to agents 𝑎 𝑗
and 𝑎𝑘 . For simplicity, we denote 𝑋𝑖 = 𝑋𝑖, 𝑗,𝑘 ∪ 𝑋𝑖, 𝑗 ∪ 𝑋𝑖,𝑘 as the

vertices in𝑀𝑖 that are valid to at least two agents.

Figure 4: The division of valid vertices𝑀𝑖 for agent 𝑎𝑖 .

By the definition, we have 𝑋𝑖, 𝑗,𝑘 = 𝑋 𝑗,𝑖,𝑘 = 𝑋𝑘,𝑖, 𝑗 , 𝑋𝑖, 𝑗 = 𝑋 𝑗,𝑖 ,

𝑋𝑖,𝑘 = 𝑋𝑘,𝑖 and 𝑋 𝑗,𝑘 = 𝑋𝑘,𝑗 . For the ease of presentation, we only

use 𝑋𝑖, 𝑗,𝑘 , 𝑋𝑖, 𝑗 , 𝑋𝑖,𝑘 and 𝑋 𝑗,𝑘 . We have the following property for

any three agents 𝑎𝑖 , 𝑎 𝑗 , 𝑎𝑘 .

Claim 2. 𝑋𝑖,0 is an independent set, i.e., for any edge (𝑢, 𝑣) ∈ 𝐸,
|{𝑢, 𝑣} ∩ 𝑋𝑖,0 | ≤ 1. Moreover, the vertices in 𝑋𝑖,0 are only adjacent to
vertices in 𝑋𝑖, 𝑗,𝑘 .

Proof. We first focus on the agents 𝑎𝑖 and 𝑎 𝑗 . By Claim 1, it is

known that no edge has two endpoints in 𝑋𝑖,0 ∪ 𝑋𝑖,𝑘 and the edge

which has an endpoint in 𝑋𝑖,0 ∪ 𝑋𝑖,𝑘 must have the other endpoint

in 𝑋𝑖, 𝑗 ∪ 𝑋𝑖, 𝑗,𝑘 . So there is no edge that has two endpoints in 𝑋𝑖,0.

Then we focus on the agents 𝑎𝑖 and 𝑎𝑘 . By Claim 1, it is known

that the edge which has an endpoint in 𝑋𝑖,0 ∪ 𝑋𝑖, 𝑗 must have the

other endpoint in 𝑋𝑖,𝑘 ∪ 𝑋𝑖, 𝑗,𝑘 . So we have the edge which has an

endpoint in 𝑋𝑖,0 must have the other endpoint in the intersection

of 𝑋𝑖, 𝑗 ∪ 𝑋𝑖, 𝑗,𝑘 and 𝑋𝑖,𝑘 ∪ 𝑋𝑖, 𝑗,𝑘 , which is 𝑋𝑖, 𝑗,𝑘 . □

Lemma 5. For any FSAP instance I = (N ,𝐺 = (𝑉 , 𝐸), c) with
|N | = 4, there exists a 2-MMS allocation.

Proof. We first also normalize the weight of each vertex such

that

∑
𝑣∈𝑀𝑖

𝑤𝑖,𝑣 = 1 for 𝑎𝑖 ∈ N . So for any agent inN , her maximin

share is no less than
1

4
by Lemma 2. Here we consider three cases.

Case (1). There exists a group of 3 agents {𝑎𝑖 , 𝑎 𝑗 , 𝑎𝑘 } that∑︁
𝑣∈𝑋𝑙

𝑤𝑙,𝑣 ≤
1

2

, for 𝑙 ∈ {𝑎𝑖 , 𝑎 𝑗 }.

Find the set 𝑆 of edges covered by 𝑋 𝑗 and allocate the edges in

𝑆 to agent 𝑎 𝑗 such that 𝐴 𝑗 ← 𝑆 . For the remaining edges in 𝐸,

allocate them to agent 𝑎𝑖 𝐴𝑖 ← 𝐸\𝑆 . So the other two agents 𝑎𝑘 and

𝑎
10−𝑖− 𝑗−𝑘 , there is no edge to allocate𝐴𝑘 ← ∅ and𝐴10−𝑖− 𝑗−𝑘 ← ∅.
For agent 𝑎 𝑗 , the cost of her allocation bundle is

𝑐 𝑗 (𝐴 𝑗) ≤
∑︁
𝑣∈𝑋 𝑗

𝑤 𝑗,𝑣 ≤
1

2

≤ 2𝜇 𝑗 .

By Claim 2, after allocating 𝐴 𝑗 to agent 𝑎 𝑗 , any edge covered by

𝑋𝑖,0 is removed since the edge must be covered by 𝑋𝑖, 𝑗,𝑘 ⊆ 𝑋 𝑗 .𝑀𝑖

can cover 𝐸, so 𝑋𝑖 can cover the remaining edges 𝐸 \𝐴 𝑗 . For agent

𝑎𝑖 , the cost of her allocation bundle is

𝑐𝑖 (𝐴𝑖) ≤
∑︁
𝑣∈𝑋𝑖

𝑤𝑖,𝑣 ≤
1

2

≤ 2𝜇𝑖 .

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW’24, May 13–17, 2024, Singapore Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Case (2). There exists a group of agents {𝑎𝑖 , 𝑎 𝑗 , 𝑎𝑘 } that
∑︁
𝑣∈𝑋𝑙

𝑤𝑙,𝑣 >
1

2

, for 𝑙 ∈ {𝑎𝑖 , 𝑎 𝑗 }∑︁
𝑣∈𝑋𝑘

𝑤𝑘,𝑣 ≤
1

2

.

Find the set 𝑆 of edges covered by𝑋𝑘 and allocate agent 𝑎𝑘 the edges

in 𝑆 : 𝐴𝑘 ← 𝑆 . Let agent 𝑎𝑖 divide the vertices in 𝑋𝑖, 𝑗 into two parts

𝑋 1

𝑖, 𝑗
and 𝑋 2

𝑖, 𝑗
based on the sum weight as equal as possible. Assume

that

∑
𝑣∈𝑋 1

𝑖,𝑗
𝑤 𝑗,𝑣 ≤

∑
𝑣∈𝑋 2

𝑖,𝑗
𝑤 𝑗,𝑣 . Find the set 𝑆

′
of edge covered by

𝑋 1

𝑖, 𝑗
in 𝐸 \𝐴𝑖 and allocate to agent 𝑎 𝑗 : 𝐴 𝑗 ← 𝑆 ′. For the remaining

edges, allocate them to agent 𝑎𝑖 such that 𝐴𝑖 ← 𝐸 \ 𝐴𝑘 \ 𝐴 𝑗 and

𝐴
10−𝑖− 𝑗−𝑘 = ∅. For agents 𝑎𝑘 and 𝑎 𝑗 , we have

𝑐 𝑗 (𝐴 𝑗) ≤
∑︁

𝑣∈𝑋 1

𝑖,𝑗

𝑤 𝑗,𝑣 ≤
1

2

∑︁
𝑣∈𝑋𝑖,𝑗

𝑤 𝑗,𝑣 ≤
1

2

≤ 2𝜇 𝑗 ,

𝑐𝑘 (𝐴𝑘) ≤
∑︁
𝑣∈𝑋𝑘

𝑤𝑘,𝑣 ≤
1

2

≤ 2𝜇𝑘 .

Based on the discussion of situation 1, the edges covered by𝑋𝑖,0 are

allocated to agent 𝑎𝑘 . The edges covered by (𝑋𝑖,𝑘 ∪𝑋𝑖, 𝑗,𝑘) ⊆ 𝑋𝑘 are

also allocated to agent 𝑎𝑘 . So the edges in𝐴𝑖 and𝐴 𝑗 can be covered

by 𝑋𝑖, 𝑗 . For one agent 𝑎𝑖 ’s MMS defining partition {𝐵1, 𝐵2, 𝐵3, 𝐵4},
the sum weights of 𝑋𝑖, 𝑗 ∩ (𝐵1 ∪ 𝐵2) and 𝑋𝑖, 𝑗 ∩ (𝐵3 ∪ 𝐵4) are both
less than 2𝜇𝑖 . So the sum weights of 𝑋 1

𝑖, 𝑗
and 𝑋 2

𝑖, 𝑗
are both less than

2𝜇𝑖 . The edges covered by 𝑋 1

𝑖, 𝑗
are allocated to agent 𝑎 𝑗 , so the

remaining edges can be covered by 𝑋 2

𝑖, 𝑗
. For agent 𝑎𝑖 , we also have

𝑐𝑖 (𝐴𝑖) ≤
∑︁

𝑒∈𝑋 2

𝑖,𝑗

𝑤𝑖,𝑒 ≤ 2𝜇𝑖 .

Case (3). For any three agents {𝑎𝑖 , 𝑎 𝑗 , 𝑎𝑘 }, we have∑︁
𝑣∈𝑋𝑙

𝑤𝑙,𝑣 >
1

2

, for 𝑙 ∈ {𝑖, 𝑗, 𝑘}.

We first find three agents 𝑎1, 𝑎𝑝 , and 𝑎𝑞 , and allocate the edges

in 𝐸 to these three agents.

Claim 3. For agent 𝑎1, there must be at least two agents 𝑎𝑝 and
𝑎𝑞 from 𝑎2, 𝑎3, 𝑎4 satisfies that

∑
𝑣∈𝑀1∩𝑀𝑙

𝑤1,𝑣 ≥ 1

4
.

Proof. For any group of three agents {𝑎1, 𝑎 𝑗 , 𝑎𝑘 } with 𝑎 𝑗 ∈
{𝑎2, 𝑎3, 𝑎4}, 𝑎𝑘 ∈ {𝑎2, 𝑎3, 𝑎4} and 𝑎 𝑗 ≠ 𝑎𝑘 ,

∑
𝑣∈𝑋1

𝑤1,𝑣 > 1

2
. In

this group, at least one agent between 𝑎𝑖 and 𝑎 𝑗 satisfies that∑
𝑣∈𝑀1∩𝑀𝑙

𝑤1,𝑣 ≥ 1

2
. Otherwise, we have∑︁

𝑣∈𝑋1

≤
∑︁

𝑣∈𝑀1∩𝑀𝑗

+
∑︁

𝑣∈𝑀1∩𝑀𝑘

<
1

4

+ 1

4

=
1

2

,

which is a contradiction. So we can find such an agent as 𝑎𝑝 . Simi-

larly, for the group {𝑎1, 𝑎2, 𝑎3, 𝑎4} \ {𝑎𝑝 }, we can also find such an

agent as 𝑎𝑝 . □

Nowwe have a group of agents {𝑎1, 𝑎𝑝 , 𝑎𝑞}. Let the agent 𝑎9−𝑝−𝑞
which does not belong to the group get no edge such that𝐴9−𝑝−𝑞 ←
∅. We first keep adding the vertices from 𝑋1,𝑝 into a bag 𝐵 until∑
𝑣∈𝐵 𝑤1,𝑣 ≥ 1/4 or there is no vertex in 𝑋1,𝑝 . If there is no vertex

in 𝑋1,𝑝 but

∑
𝑣∈𝐵 𝑤1,𝑣 < 1

4
, we keep adding the vertices from 𝑋1,𝑝,𝑞

into the bag 𝐵 until

∑
𝑣∈𝐵 𝑤1,𝑣 ≥ 1

4
. We have proved there are

enough vertices in 𝑋1,𝑝 ∪ 𝑋1,𝑝,𝑞 . Find the set of edges 𝑆 covered by

𝐵. If
∑

𝑣∈𝐵 𝑤𝑝,𝑣 > 1

2
, let 𝐴1 ← 𝑆 , 𝐴𝑝 ← 𝐸 \ 𝑆 and 𝐴𝑞 ← ∅. Since

for agent 𝑎1, the last vertex added to 𝐵 is valid, the weight of the

vertex is less than 𝜇𝑖 . The sum weight of B before adding the last

vertex is less than
1

4
. So we have

𝑐1 (𝐴1) ≤
∑︁
𝑣∈𝐵

𝑤𝑖,𝑣 ≤
1

4

+ 𝜇1 ≤ 2𝜇1 .

𝑐𝑝 (𝐴𝑝) ≤ 1 −
∑︁
𝑣∈𝐵

𝑤𝑖,𝑣 <
1

2

≤ 2𝜇𝑝 .

If

∑
𝑣∈𝐵 𝑤𝑝,𝑣 < 1

2
, let 𝐴𝑝 ← 𝑆 and 𝑐𝑝 (𝐴𝑝) ≤

∑
𝑣∈𝐵 𝑤𝑝,𝑣 < 2𝜇𝑝 .

Next, we start with a new bag 𝐵′ and keep adding the vertices

from 𝑋1,𝑞 until

∑
𝑣∈𝐵′ 𝑤1,𝑣 ≥ 1

4
or there is no vertex in 𝑋1,𝑞 . If∑

𝑣∈𝐵′ 𝑤1,𝑣 < 1

4
, we keep adding the vertices from 𝑋1,𝑝,𝑞 − 𝐵 until∑

𝑣∈𝐵′ 𝑤1,𝑣 ≥ 1

4
or there is no vertex in 𝑋1,𝑝,𝑞 − 𝐵. Find the set of

vertices 𝑆 ′ covered by 𝐵′. If
∑

𝑣∈𝐵′ 𝑤𝑞,𝑣 > 1

2
, let 𝐴1 ← 𝑆 ′, 𝐴𝑞 ←

𝐸 \ (𝐴1 ∪ 𝐴𝑝). Like the allocation above, this is also a 2-MMS

allocation. If

∑
𝑣∈𝐵′ 𝑤𝑞,𝑣 < 1

2
, let 𝐴𝑞 ← 𝑆 ′, 𝐴1 ← 𝐸 \ (𝐴𝑝 ∪ 𝐴𝑞).

If

∑
𝑣∈𝐵′ 𝑤1,𝑣 < 1

4
, it means there is no vertex in 𝑋1,𝑝,𝑞 − 𝐵 and

𝑋1,𝑝,𝑞 ∩ 𝐵 ≠ ∅. So the vertices in 𝑋1 are all allocate to 𝐵 or 𝐵′ and∑
𝑣∈ (𝐵∪𝐵′) 𝑤1,𝑣 =

∑
𝑣∈𝑋1

> 1

2
. Otherwise if

∑
𝑣∈𝐵′ 𝑤1,𝑣 ≥ 1

4
, it is

known that

∑
𝑣∈𝐵 𝑤1,𝑣 ≥ 1

4
, so

∑
𝑣∈ (𝐵∪𝐵′) 𝑤1,𝑣 ≥ 1

2
. We have

𝑐1 (𝐴1) ≤
∑︁

𝑣∈𝑀1\(𝐵∪𝐵′)
𝑤1,𝑣 = 1 −

∑︁
𝑣∈𝐵∪𝐵′

𝑤1,𝑣 ≤
1

2

≤ 2𝜇1 .

𝑐𝑞 (𝐴𝑞) ≤
∑︁
𝑣∈𝐵′

𝑤𝑞,𝑣 ≤
1

2

≤ 2𝜇𝑞 .

Combing the above three cases, Lemma 5 is proved. □

5 CONCLUSION
This paper introduces the Fair Surveillance Assignment Problem

(FSAP), which involves assigning edges of a given graph to a set

of agents for surveillance purposes. The agents’ cost functions are

determined by the weight of the vertex covers within their assigned

subgraphs, using their own weight metric. Our primary focus is on

achieving MMS fairness in the allocations. For the general FSAP

with an arbitrary number of agents, we prove that the optimal

approximation ratio lies between 2 and 4.562. Bridging this gap

presents an intriguing open problem. Furthermore, we show that

the tight approximation ratio bound for scenarios involving no

more than four agents is 2. However, it remains uncertain whether

these approaches can be extended to the general case.

Our paper uncovers other future research directions as well.

Firstly, while our main algorithm computes 4.562-MMS allocations

in polynomial time when provided with valid vertices as an ora-

cle, it would be intriguing to enhance this outcome by developing

polynomial-time algorithms. Secondly, our paper solely focuses on

vertex-cover cost functions, but it would be worthwhile to explore

other types of surveillance costs. Thirdly, as general subadditive

cost functions do not admit algorithms better than 𝑛-MMS, it is

crucial to identify a class of cost functions, potentially a subset of

subadditive functions and a superset of vertex cover functions, that

guarantees the existence of constant-approximate MMS allocations.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Fair Surveillance Assignment Problem WWW’24, May 13–17, 2024, Singapore

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Peyman Afshani, Mark de Berg, Kevin Buchin, Jie Gao, Maarten Löffler, Amir

Nayyeri, Benjamin Raichel, Rik Sarkar, HaotianWang, and Hao-Tsung Yang. 2022.

On Cyclic Solutions to the Min-Max Latency Multi-Robot Patrolling Problem.

In SoCG (LIPIcs, Vol. 224). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

2:1–2:14.

[2] SoroushAlamdari, Elaheh Fata, and Stephen L. Smith. 2014. Persistentmonitoring

in discrete environments: Minimizing the maximum weighted latency between

observations. Int. J. Robotics Res. 33, 1 (2014), 138–154.
[3] Georgios Amanatidis, Haris Aziz, Georgios Birmpas, Aris Filos-Ratsikas, Bo Li,

Hervé Moulin, Alexandros A. Voudouris, and Xiaowei Wu. 2023. Fair division of

indivisible goods: Recent progress and open questions. Artif. Intell. 322 (2023),
103965.

[4] Esther M. Arkin, Refael Hassin, and Asaf Levin. 2006. Approximations for

minimum and min-max vehicle routing problems. J. Algorithms 59, 1 (2006),

1–18.

[5] Haris Aziz and Simon Mackenzie. 2016. A Discrete and Bounded Envy-Free Cake

Cutting Protocol for Any Number of Agents. In Proceedings of the 57th Annual
Symposium on Foundations of Computer Science (FOCS). 416–427.

[6] Umang Bhaskar, A. R. Sricharan, and Rohit Vaish. 2021. On Approximate Envy-

Freeness for Indivisible Chores and Mixed Resources. In APPROX-RANDOM
(LIPIcs, Vol. 207). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 1:1–1:23.

[7] Glencora Borradaile, Philip N. Klein, ShayMozes, Yahav Nussbaum, and Christian

Wulff-Nilsen. 2017. Multiple-Source Multiple-Sink Maximum Flow in Directed

Planar Graphs in Near-Linear Time. SIAM J. Comput. 46, 4 (2017), 1280–1303.
[8] Eric Budish. 2011. The combinatorial assignment problem: Approximate compet-

itive equilibrium from equal incomes. Journal of Political Economy 119, 6 (2011),

1061–1103.

[9] Aydin Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian

Schulz. 2016. Recent Advances in Graph Partitioning. In Algorithm Engineering.
Lecture Notes in Computer Science, Vol. 9220. 117–158.

[10] Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D. Procaccia, Nisarg

Shah, and Junxing Wang. 2019. The Unreasonable Fairness of Maximum Nash

Welfare. ACM Trans. Economics and Comput. 7, 3 (2019), 12:1–12:32.
[11] Bhaskar Ray Chaudhury, Telikepalli Kavitha, Kurt Mehlhorn, and Alkmini

Sgouritsa. 2021. A Little Charity Guarantees Almost Envy-Freeness. SIAM
J. Comput. 50, 4 (2021), 1336–1358.

[12] Yiling Chen, John K. Lai, David C. Parkes, and Ariel D. Procaccia. 2013. Truth,

justice, and cake cutting. Games Econ. Behav. 77, 1 (2013), 284–297.
[13] Zheng Chen, Bo Li, Minming Li, and Guochuan Zhang. 2022. Fair Graphical

Resource Allocation with Matching-Induced Utilities. CoRR abs/2212.01031

(2022).

[14] Edith Elkind, Erel Segal-Halevi, and Warut Suksompong. 2021. Keep Your Dis-

tance: Land Division With Separation. In IJCAI. ijcai.org, 168–174.
[15] Guy Even, Naveen Garg, Jochen Könemann, R. Ravi, and Amitabh Sinha. 2004.

Min-max tree covers of graphs. Oper. Res. Lett. 32, 4 (2004), 309–315.
[16] Boaz Farbstein and Asaf Levin. 2015. Min-max cover of a graph with a small

number of parts. Discret. Optim. 16 (2015), 51–61.
[17] George Gamow and Marvin Stern. 1958. Puzzle-Math. Viking press.
[18] Jugal Garg and Setareh Taki. 2021. An improved approximation algorithm for

maximin shares. Artif. Intell. 300 (2021), 103547.
[19] Laurent Gourvès, Jérôme Monnot, and Lydia Tlilane. 2014. Near Fairness in

Matroids. In Proceedings of the 21st European Conference on Artificial Intelligence
(ECAI). 393–398.

[20] Hadi Hosseini, Andrew McGregor, Rik Sengupta, Rohit Vaish, and Vignesh

Viswanathan. 2023. Tight Approximations for Graphical House Allocation.

CoRR abs/2307.12482 (2023).

[21] Hadi Hosseini, Shivika Narang, and Tomasz Was. 2023. Fair Distribution of

Delivery Orders. CoRR abs/2305.00040 (2023).

[22] Xin Huang and Pinyan Lu. 2021. An Algorithmic Framework for Approximating

Maximin Share Allocation of Chores. In EC. ACM, 630–631.

[23] Satoru Iwata and R. Ravi. 2013. Approximating max-min weighted T-joins. Oper.
Res. Lett. 41, 4 (2013), 321–324.

[24] M. Reza Khani and Mohammad R. Salavatipour. 2014. Improved Approximation

Algorithms for the Min-max Tree Cover and Bounded Tree Cover Problems.

Algorithmica 69, 2 (2014), 443–460.
[25] Çagri Koç, Tolga Bektas, Ola Jabali, and Gilbert Laporte. 2016. Thirty years of

heterogeneous vehicle routing. Eur. J. Oper. Res. 249, 1 (2016), 1–21.
[26] Dominik Kress, Sebastian Meiswinkel, and Erwin Pesch. 2015. The Partitioning

Min-Max Weighted Matching Problem. Eur. J. Oper. Res. 247, 3 (2015), 745–754.
[27] Bo Li, Fangxiao Wang, and Yu Zhou. 2023. Fair Allocation of Indivisible Chores:

Beyond Additive Valuations. In NeurIPS 2023. (to appear).

[28] Michael Lin and Richard J. La. 2020. Miniature Robot Path Planning for Bridge

Inspection: Min-Max Cycle Cover-Based Approach. In CASE. IEEE, 365–371.
[29] Richard J. Lipton, Evangelos Markakis, Elchanan Mossel, and Amin Saberi. 2004.

On approximately fair allocations of indivisible goods. In EC. ACM, 125–131.

[30] Flávio Keidi Miyazawa, Phablo F. S. Moura, Matheus J. Ota, and Yoshiko Wak-

abayashi. 2021. Partitioning a graph into balanced connected classes: Formula-

tions, separation and experiments. Eur. J. Oper. Res. 293, 3 (2021), 826–836.
[31] Benjamin Plaut and Tim Roughgarden. 2020. Almost Envy-Freeness with General

Valuations. SIAM J. Discret. Math. 34, 2 (2020), 1039–1068.
[32] Sivakumar Rathinam, R. Ravi, J. Bae, and Kaarthik Sundar. 2020. Primal-Dual

2-Approximation Algorithm for the Monotonic Multiple Depot Heterogeneous

Traveling Salesman Problem. In SWAT (LIPIcs, Vol. 162). 33:1–33:13.
[33] Saïd Salhi, Arif Imran, and Niaz A. Wassan. 2014. The multi-depot vehicle

routing problem with heterogeneous vehicle fleet: Formulation and a variable

neighborhood search implementation. Comput. Oper. Res. 52 (2014), 315–325.
[34] Hugo Steinhaus. 1949. Sur la division pragmatique. Econometrica 17 (Supplement)

(1949), 315–319.

[35] Vera Traub and Thorben Tröbst. 2020. A Fast (2 + 2/7)-Approximation Algorithm

for Capacitated Cycle Covering. In IPCO. Springer, 391–404.
[36] Hal R. Varian. 1974. Equity, Envy and Efficiency. Journal of Economic Theory 9

(1974), 63–91.

[37] Zhou Xu and Qi Wen. 2010. Approximation hardness of min-max tree covers.

Oper. Res. Lett. 38, 3 (2010), 169–173.
[38] Hande Yaman. 2006. Formulations and Valid Inequalities for the Heterogeneous

Vehicle Routing Problem. Math. Program. 106, 2 (2006), 365–390.
[39] Shengwei Zhou and Xiaowei Wu. 2022. Approximately EFX Allocations for

Indivisible Chores. In IJCAI. ijcai.org, 783–789.

9

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	2.1 Fair Surveillance Assignment Problem
	2.2 MMS Fairness

	3 The Main Algorithm
	3.1 More Notations
	3.2 The Algorithm

	4 Improved Approximations for Small Number of Agents
	4.1 Three Agents
	4.2 Four Agents

	5 Conclusion
	References

