Fair Surveillance Assignment Problem

Anonymous Author(s)

Abstract

Monitoring a specific set of locations serves multiple purposes in practice, such as infrastructure inspection and safety surveillance. We study a generalization of the surveillance problem, where the monitoring area, represented by a graph, is divided and assigned to a set of agents with customized cost functions. In this paper, each agent's patrolling cost towards receiving a subgraph is quantified by the weight of the minimum vertex cover therein, and our objective is to design algorithms to compute fair assignments of the surveillance tasks. The fairness is assessed using maximin share (MMS) fairness proposed by Budish [J. Political Econ., 2011]. Our main result is an algorithm which ensures a $\frac{5+\sqrt{17}}{2}(\approx 4.562)$-approximate MMS allocation for any number of agents with arbitrary vertex weights. We then prove that no algorithm can be better than 2-approximate MMS fair. For scenarios involving no more than four agents, we further improve the approximation ratio to 2 , which is thus the optimal achievable ratio.

KEYWORDS

Surveillance, Fair Division, Indivisible Chores, Vertex Cover

ACM Reference Format:

Anonymous Author(s). 2024. Fair Surveillance Assignment Problem. In Proceedings of The Web Conference 2024 (WWW'24). ACM, New York, NY, USA, 9 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

A wide range of patrolling and surveillance models have been investigated to ensure public safety, a pivotal aspect of everyday life. Given the daunting task of monitoring vast areas, a key challenge lies in effectively dividing the monitored area among multiple patrollers. There is a rich body of literature on designing optimal patrolling assignments, considering the capabilities of the patrollers. The primary objective typically revolves around global optimization, aiming to enhance overall performance or bolster the weakest link [$9,30,38$]. Importantly, when human agents are involved, it becomes imperative to ensure fairness in assignments, particularly for long-term monitoring undertakings, as it promotes sustainability. Thus, in this paper, we introduce a novel surveillance model from the perspective of the patrollers. Our objective is to develop individually fair patrolling assignments while guaranteeing comprehensive coverage of the entire area.

We cast the above fair surveillance assignment task as a graph partition $G=(V, E)$ problem, where the edges E represent the

[^0]streets on which the residents locate and the vertices V are the intersections of these streets. Our task is to allocate the streets E to a set of agents \mathcal{N} for surveillance. Each agent a_{i}, upon receiving a set of streets $S \subseteq E$, would set up monitors on the vertices in a vertex cover of $G[S]$, the induced subgraph of S on G, so that all the streets are safely monitored. We consider a general setting when different agents may have perspectives on the difficulties of monitoring the vertices, due to their personal familiarity of the neighborhoods and the number of incident streets. Formally, each agent a_{i} is associated with a vertex weight $w_{i, v}>0$ for each $v \in V$, which represents the difficulty of setting up a monitor at v surveilling the incident streets. Accordingly, a_{i} 's cost function $c_{i}: 2^{E} \rightarrow \mathbb{R}^{+}$can be measured by vertex covers, i.e., for any $S \subseteq E, c_{i}(S)$ equals the minimum weight of a vertex cover on $G[S]$. Consider a simple example of the graph shown in Figure 1. Suppose the agent has vertex weight as follows: $w_{i, a}=w_{i, c}=1$ and $w_{i, b}=w_{i, d}=10$. Then $c_{i}(\{a, b\},\{b, c\})=w_{i, a}+w_{i, c}=2$ and $c_{i}(\{a, b\},\{a, d\})=w_{i, a}=1$.

Figure 1: A simple example of the cost functions.

We adopt Budish's maximin share (MMS) definition [8] to evaluate the fairness of an allocation. Budish's original definition was proposed for allocating goods where agents want to receive items with higher value, but it naturally carries over chores. Intuitively, we define a best worst-case cost, called maximin share (MMS), for each agent: the agent partitions the edges E into $n=|\mathcal{N}|$ bundles but can only receive the largest bundle (i.e., the bundle with largest cost), and her MMS is the minimum cost of the largest bundles over all possible partitions. An allocation is regarded as MMS fair, if every agent's cost of her obtained edges is no greater than her MMS. It can be verified that the agents' cost functions in our model are subadditive, and thus our problems falls under the umbrella of [27] which studies approximate MMS allocations of indivisible chores under general subadditive functions. They proved that an arbitrary profile of subadditive functions may not admit a better than n-approximate MMS allocation, and in a sharp contrast, we prove in the current work that, if the agents' costs are measured by vertex covers, a constant approximate MMS allocation is guaranteed to exist. We summarize our main results in the following subsection.

1.1 Our Results

In this paper, we propose the Fair Surveillance Assignment Problem (FSAP), where the edges of a given graph $G=(V, E)$ need to be assigned to a set of n agents for surveillance. The agents' cost functions depend on the weight of the vertex covers of their received
subgraph using their own weight metric. We focus on the MMS fairness of the allocations

For the general FSAP, we first prove that no algorithm can guarantee approximation ratio of MMS better than 2 . This hardness result holds for arbitrary number of agents $n \geq 2$.
Main Result 1. For any $n \geq 2$ agents, there is a FSAP instance which does not admit a better than 2-approximate MMS allocation.

On the positive side, we show that we can always compute a $\frac{5+\sqrt{17}}{2}(\approx 4.562)$-approximate MMS allocation for any FSAP instance with $n \geq 2$ agents, which is regarded as the main technical contribution of this work. For each agent a_{i}, our algorithm first identifies the vertices M_{i} used in her MMS partition, and regards them as valid vertices to a_{i}. The algorithm ensures that every agent only receives the edges that can be covered by her valid vertices. The algorithm runs in rounds; in each round, one of the agents receives a bundle that satisfies the desired approximation ratio and exists the algorithm. The key ingredient of the algorithm is the pivotal vertices of each round which, informally, consists of the vertices that are valid to at least half of the remaining agents. The pivotal vertices are allocated to the agents one by one in a greedy way while ensuring the approximation ratio. The first time when the approximation ratio is broken by some agent, her allocation is fixed and the vertices allocated to the other agents are returned to the algorithm. The algorithm then updates the graph and the pivotal vertices, and moves to the next iteration. We prove the correctness of the algorithm via a cumulative counting approach: the agent who leaves the algorithm in each round takes away edges with sufficiently large weight to all the remaining agents. Our algorithm runs in polynomial time if the agents' valid vertices are given as oracle.

Main Result 2. For any FSAP instance with $n \geq 2$ agents, there always exists a 4.562 -approximate MMS allocation.

Finally, we show that for the scenario with no more than four agents, we can improve the approximation to 2 . Combining with Main Result 1, this is the best possible approximation ratio. The proof depends on an involved case analysis, and it is still now clear if these techniques can be extended to improve the approximations for more than four agents, which is left for future research.

Main Result 3. For any FSAP instance with $2 \leq n \leq 4$ agents, there always exists a 2 -approximate MMS allocation.

1.2 Related Work

More generally, extensive research has been conducted in operations research, computer science and Web economics regarding the partitioning of graphs into balanced subgraphs [9, 30]. Various objectives are commonly used to evaluate the balance of a partitioning. Among these objectives, the max-min (or min-max) objectives are particularly prominent, aiming to maximize (or minimize) the total weight of the minimum (or maximum) part. Our project is closely related to the vehicle routing problem (VRP) [25], which extends the well-known traveling salesperson problem (TSP). The VRP involves finding optimal routes for a fleet of vehicles to visit a set of customers. There exist several popular variants of the VRP, such as the heterogeneous vehicle routing problem [32, 33, 38]. The
graph partitioning problem encompasses various other combinatorial structures. For example, the min-max tree cover (also known as the nurse station location) problem focuses on using trees to cover an edge-weighted graph while minimizing the size of the largest tree [15, 24, 37]. This problem is a part of the broader graph covering problem, where a given graph is covered using a set of pairwise disjoint subgraphs known as templates. Examples of templates include paths [4, 16], cycles [28, 35], network flows [7], and matchings [23, 26].

Our model differs from the aforementioned research in several perspectives. Mostly importantly, we consider customized cost functions, where different agents possesses different weights on the vertices, and the fairness is measured by the MMS. Moreover, most surveillance models [1, 2] assume the costs are measured by TSP, while we focus on the minimum vertex cover.

Another line of research that is closely related to our work is fair division. The "fairness" of an allocation can be interpreted in several ways [5,12], where different people may have different opinions. Two predominant classes of fairness criteria are the envy-based or share-based. An envy-based criterion evaluates an agent's demand for fairness on an allocation through pair comparison between this agent and each of her peers (e.g., envy-freeness) [17, 36], and a share-based criterion evaluates that against the agent's due share (e.g., proportionality) [34]. When the resources are indivisible items, the problem turns out to be inherently more challenging since the ideal fairness notions cannot be always satisfied. A typical remedy is to employ appropriate relaxations of envy-freeness and proportionality, originating in the works of $[8,10,19,29]$, which are geared to escape such adverse examples. Since then, works on this topic have flourished, centered around fundamental questions about the existence, approximations, and the efficient computation of allocations satisfying these or other related fairness criteria; we refer to recent surveys [3] for a more comprehensive introduction. Among the relaxations that were introduced in this literature, envyfreeness up to one or any good (EF1, EFX) $[11,31,39]$ and maximin share fairness (MMS) are among the most well-accepted and studied [14, 18, 22]. It is proved in [6] that an EF1 allocation always exists for any monotone combinatorial cost functions, which implies the existence of an EF1 allocation in our setting.

There are some recent works that combines fair division and graphs, see, e.g., $[13,20,21]$, surveillance models have not considered. While it is proved in [27] that for general submodular cost functions, no better than n-approximate MMS allocation can be guaranteed, our result shows that vertex cover costs serve an exception which allows interesting and non-trivial approximations.

2 PRELIMINARIES

2.1 Fair Surveillance Assignment Problem

We firstly introduce the definitions of our model. A Fair Surveillance Assignment Problem (FSAP) instance is denoted by $I=(\mathcal{N}, G, \mathrm{c})$, where $G=(V, E)$ is a graph whose edges $E=\left\{e_{1}, \ldots, e_{m}\right\}$ are to be allocated to a set $\mathcal{N}=\left\{a_{1}, \ldots, a_{n}\right\}$ of agents. Let $n=|\mathcal{N}|$ and $m=|E|$ be the numbers of agents and edges, respectively. Each agent $a_{i} \in \mathcal{N}$ has weight $w_{i, v} \in \mathbb{R}^{+}$for each vertex $v \in V$, and $\mathbf{w}_{i}=\left(w_{i, v}\right)_{v \in V}$. Agent a_{i} 's cost function $c_{i}: 2^{E} \rightarrow \mathbb{R}^{+}$is decided by solving a vertex cover problem, i.e., $c_{i}(S)$ equals the minimum
weight of a vertex cover of $G[S]$ for every $S \subseteq E$, where a vertex cover is a set of vertices T in $G[S]$ so that every edge in S has at least one endpoint in T. Supposing $G[S]=\left(V^{\prime}, S\right)$ and $T \subseteq V^{\prime}$ is a minimum weighted vertex cover of $G[S]$, we also denote $c_{i}(S)$ by $c_{i}(G[S])$ or $c_{i}(T)=\sum_{v \in T} w_{i, v}$, when there is no ambiguity. Denote by $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$. Without loss of generality, we assume there is no isolated vertices (i.e., with degree 0) in G.

It is not hard to see that the cost functions are (weakly) monotonically increasing and subadditive. To see the subadditivity, for any agent a_{i} and any $S_{1}, S_{2} \subseteq E$, suppose the minimum weighted vertex covers of $G\left[S_{1}\right]$ and $G\left[S_{2}\right]$ are T_{1} and T_{2}. Then $T_{1} \cup T_{2}$ is also a vertex cover of $G\left[S_{1} \cup S_{2}\right]$, and
$c_{i}\left(S_{1} \cup S_{2}\right) \leq \sum_{v \in T_{1} \cup T_{2}} w_{i, v} \leq \sum_{v \in T_{1}} w_{i, v}+\sum_{v \in T_{2}} w_{i, v}=c_{i}\left(T_{1}\right)+c_{i}\left(T_{2}\right)$.
An allocation of instance $I=(\mathcal{N}, G=(V, E), \mathbf{c})$ is an n-partition of E, denoted by $\mathrm{A}=\left(A_{1}, \ldots, A_{n}\right)$, where A_{i} is the allocation to agent a_{i} for all $a_{i} \in \mathcal{N}, \cup_{a_{i} \in \mathcal{N}} A_{i}=E$ and $A_{i} \cap A_{j}=\emptyset$ for all $a_{i} \neq a_{j}$. Note that when two adjacent edges $e_{1}=\left(v_{1}, v_{2}\right)$ and $e_{2}=\left(v_{1}, v_{3}\right)$ sharing the same vertex v_{1} are allocated to two different agents, say a_{i} and a_{j}, then v_{1} appears in both agents' induced subgraphs and thus both of them may use v_{1} in their vertex covers. In this work, for simplicity, we assume the weight of v_{1} is not changed to the two agents even if it is incident to fewer number of edges in their own subgraphs (although it may potentially reduce difficulty of monitoring at this vertex). Denoted by $\Pi_{n}(M)$ the set of all n-partitions of E.

2.2 MMS Fairness

Next, we introduce the definition of maximin share fairness [8]. For an agent $a_{i} \in \mathcal{N}$, her maximin share (MMS) is defined as

$$
\mu_{i}^{n}=\min _{\left(X_{1}, \ldots, X_{n}\right) \in \Pi_{n}(E)} \max _{j \in[n]} c_{i}\left(X_{j}\right) .
$$

When n is clear from the context, we also write μ_{i} for short. An n-partition $\left(X_{1}, \ldots, X_{n}\right)$ of E is called an MMS defining partition of agent a_{i} if

$$
c_{i}\left(X_{j}\right) \leq \mu_{i}, \text { for all } j=1, \ldots, n
$$

Definition 1 (Maximin Share Allocation). An allocation $\mathrm{A}=$ $\left(A_{1}, \ldots, A_{n}\right)$ is called α-approximate $M M S(\alpha-M M S)$ fair if

$$
c_{i}\left(A_{i}\right) \leq \alpha \cdot \mu_{i} \text { for all } a_{i} \in \mathcal{N}
$$

The allocation is called MMS fair if $\alpha=1$.
Since the cost functions are subadditive in our model, by [27], there always exists an allocation that is $\min \{n,\lceil\log m\rceil\}$-MMS allocation. In this paper, we improve this result to constant approximations. Before introducing our main results, we first prove that no algorithm can perform better than 2-MMS.

Theorem 1. For any $n \geq 2$, there is a FSAP instance with n agents which does not admit a better than 2-MMS allocation.

Proof. Given any $n \geq 2$, we construct a complete n-by- n bipartite graph $G=(L \cup R, E)$ as Fig. 2 shows, where $L=\left\{v_{1}, \ldots, v_{n}\right\}$, $R=\left\{u_{1}, \ldots, u_{n}\right\}$ and $E=\left\{\left(v_{i}, u_{j}\right) \mid\right.$ for all $v_{i} \in L$ and $\left.u_{j} \in R\right\}$. For any $v_{i} \in L$ and $u_{j} \in R$, denote by $E_{v_{i}}=\left\{\left(v_{i}, u_{l}\right) \mid\right.$ for all $\left.u_{l} \in R\right\}$
and $E_{u_{j}}=\left\{\left(v_{l}, u_{j}\right) \mid\right.$ for all $\left.v_{l} \in L\right\}$ the sets of all edges incident with v_{i} and u_{j}, respectively. Note that both ($E_{v_{1}}, \ldots, E_{v_{n}}$) and $\left(E_{u_{1}}, \ldots, E_{u_{n}}\right)$ are partitions of E.

Figure 2: The bipartite graph G.
Next, we design the cost functions of n agents $\mathcal{N}=\left\{a_{1}, \ldots, a_{n}\right\}$. For any agent a_{i}, where $i=1, \ldots, n-1$, let $w_{i, j}=1$ for any $v_{j} \in L$ and $w_{i, l}=n^{2}$ for any $u_{l} \in R$, and her cost function $c_{i}(\cdot)$ is defined accordingly. Then $\mu_{i}=1$, which is obtained by partitioning the edges E as $\left(E_{v_{1}}, \ldots, E_{v_{n}}\right)$ since $c_{i}\left(E_{v_{j}}\right)=1$ for all $j=1, \ldots, n$. For agent a_{n}, let $w_{n, j}=1$ for any $u_{j} \in R$ and $w_{n, l}=n^{2}$ for any $v_{l} \in L$, and her cost function $c_{n}(\cdot)$ is defined accordingly. Then $\mu_{n}=1$, which is obtained by partitioning the edges E as $\left(E_{u_{1}}, \ldots, E_{u_{n}}\right)$ since $c_{n}\left(E_{u_{j}}\right)=1$ for all $j=1, \ldots, n$.

For the sake of contradiction, suppose instance $I=(\mathcal{N}, G, \mathbf{c})$ admits a better than 2-MMS allocation $\mathbf{A}=\left(A_{1}, \ldots, A_{n}\right)$. By the design of the instance, it must be that $c_{i}\left(A_{i}\right)=1$ for all $a_{i} \in \mathcal{N}$. Thus, for $1 \leq i \leq n-1, A_{i}$ cannot contain edges from more than one $E_{v_{l}}$, i.e., $A_{i} \subseteq E_{v_{l}}$ for some $v_{l} \in L$. By the pigeon-hole principle, there exists $v_{l^{*}} \in L$ such that $E_{v_{l^{*}}} \cap\left(A_{1} \cup \cdots \cup A_{n-1}\right)=\emptyset$, which implies $E_{l_{l^{*}}} \subseteq A_{n}$. However, since $E_{v_{l^{*}}} \cap E_{u_{j}} \neq \emptyset$ for all $u_{j} \in R, c_{n}\left(A_{n}\right) \geq c_{n}\left(E_{v_{l^{*}}}\right)=\sum_{u_{j} \in R} w_{n, j}=n$, which contradicts $c_{n}\left(A_{n}\right)=1$ and completes the proof of Theorem 1.

3 THE MAIN ALGORITHM

3.1 More Notations

We first introduce more notations which will be used in the description of the algorithm. One of the difficulties in designing effective fair algorithms to allocate the edges is that the agents' costs actually depend on vertices of the induced subgraph and moreover only the weight of a subset of these vertices gives the cost of the agent. Therefore, the first step of our algorithm is to identify some critical vertices which can be used to approximate the agents' costs.

Consider an arbitrary agent $a_{i} \in \mathcal{N}$. Note that there may be multiple partitions of E that gives the MMS value of agent a_{i}. We arbitrarily fix one of such partitions and denote it by $\left(E_{i, 1}, \ldots, E_{i, n}\right)$, where $c_{i}\left(E_{i, j}\right) \leq \mu_{i}$ for $j=1, \ldots, n$ and there exists j^{*} such that $c_{i}\left(E_{i, j^{*}}\right)=\mu_{i}$. Suppose $G\left[E_{i, j}\right]=\left(V_{i, j}, E_{i, j}\right)$ and $M_{i, j} \subseteq V_{i, j}$ is one minimum weighted vertex cover of $G\left[E_{i, j}\right]$. Again, $M_{i, j}$ may not be the unique minimum vertex cover, in which case we arbitrarily fix one of them. Denote $M_{i}=M_{i, 1} \cup \cdots \cup M_{i, n}$, which are called valid vertices for agent a_{i}. Let $\overline{M_{i}}=V \backslash M_{i}$ be the set of invalid vertices for agent a_{i}.

Since every $M_{i, j}$ covers $G\left[E_{i, j}\right]$, it is easy to see that M_{i} covers the original graph G. However, M_{i} may not be a minimum vertex cover. Consider a star graph with one internal vertex and n leaves,
where the internal vertex weighs 2 to a_{i} and each leaf weighs 1 . Then the weight of a minimum vertex cover is 2 (the internal vertex suffices), while $\mu_{i}=1$ by partitioning all edges into isolated edges and thus all leaves form the valid vertices M_{i} for a_{i}. In general, we have the following property of the valid vertices.

Lemma 1. For any $a_{i} \in \mathcal{N}$ and $S \subseteq E$ with $G[S]=\left(V^{\prime}, S\right), V^{\prime} \cap M_{i}$ is a vertex cover of $G[S]$ and thus

$$
c_{i}(S) \leq \sum_{v \in V^{\prime} \cap M_{i}} w_{i, v}
$$

Proof. It suffice to see $V^{\prime} \cap M_{i}$ covers $G[S]$. This is straightforward, as otherwise, there is an edge $e \in S$ that is not covered by $V^{\prime} \cap M_{i}$ and thus not by any vertex in M_{i}, which contradicts M_{i} covers G.

Next, it is easy to observe the following property of MMS.
Lemma 2. For any $a_{i} \in \mathcal{N}$,

$$
\mu_{i} \geq \max \left\{\max _{v \in M_{i}} w_{i, v}, \frac{1}{n} \cdot \sum_{v \in M_{i}} w_{i, v}\right\}
$$

Proof. Suppose ($E_{i, 1}, \ldots, E_{i, n}$) is the MMS-defining partition that is used to define the valid vertices $M_{i}=M_{i, 1} \cup \cdots \cup M_{i, n}$ for agent a_{i}. To see $\mu_{i} \geq \max _{v \in M_{i}} w_{i, v}$ and $\mu_{i} \geq \frac{1}{n} \cdot \sum_{v \in M_{i}} w_{i, v}$, it suffices to recall the definition of μ_{i}, i.e.,

$$
\mu_{i}=\max _{j=1, \ldots, n} c_{i}\left(E_{i, j}\right)=\max _{j=1, \ldots, n} \sum_{v \in M_{i, j}} w_{i, j}
$$

Remark. We remark that although the selection of M_{i} in the previous discussion is not unique, any of them suffices to prove the approximation ratio of our algorithm.

By Lemma 1, we can use the valid vertices to upper bound the cost of any set of edges allocated to agent a_{i}. Furthermore, instead of allocation edges, we can also regard the problem as allocating the vertices in M_{i} and thus if a_{i} receives some vertices in M_{i}, she also receives all their incident edges. However, the difficulty is that different agents have different valid vertices. To overcome this difficulty, we introduce the definition of pivotal vertices, which will be formally defined in the algorithm.

The use of pivotal vertices relies on the following lemma. Given a graph $G=(V, E)$ and k vertex covers $\mathbf{C}=\left\{C_{1}, \ldots, C_{k}\right\}$ of G. For all $v \in V$, denote by $N_{v}=\left\{i \in[k] \mid v \in C_{i}\right\}$ the vertex covers that use v. Let

$$
P=\left\{v \in V| | N_{v} \left\lvert\, \geq \frac{k}{2}\right.\right\},
$$

be the vertices that for which at least half of \mathbf{C} use them in the vertex covers. Then we have the following property.

Lemma 3. P is a vertex cover of G.

Proof. We prove by contradiction. Suppose there is an edge $\left(v_{1}, v_{2}\right) \in E$ that is not covered by P. By the definition of $P,\left|N_{v_{1}}\right|<$ $\frac{k}{2}$ and $\left|N_{v_{2}}\right|<\frac{k}{2}$, and thus $\left|N_{v_{1}} \cup N_{v_{2}}\right|<k$. Therefore, there is at least one $i^{*} \in[k] \backslash\left(N_{v_{1}} \cup N_{v_{2}}\right)$ such that $v_{1} \notin C_{i^{*}}$ and $v_{2} \notin C_{i^{*}}$, which is a contradiction with $C_{i^{*}}$ being a vertex cover of G.

3.2 The Algorithm

In this section, we formally describe our algorithm and prove its approximation.

Theorem 2. For any SAP instance $I=(\mathcal{N}, G, \mathbf{c})$ with $n \geq 2$ agents, Algorithm 1 computes a $\frac{5+\sqrt{17}}{2}(\approx 4.562)$-MMS allocation.

We first note that without loss of generality, we can always focus on normalized instances where $\mu_{i}=1$ for all $a_{i} \in \mathcal{N}$. On way to achieve this is to divide $w_{i, v}$ by μ_{i} for all $v \in V$, which only affects the weights of vertex covers but not the selections of them.

The algorithm is shown in Algorithm 1. Basically, the algorithm runs in rounds with a parameter α which is defined in the proof of Theorem 2. In each round, it identifies a set of pivotal vertices P where each vertex is valid to at least half of all remaining agents. Note that P is updated in every round. Then we process the vertices in P in an arbitrary order. For each pivotal vertex $v \in P$, among all the agents for whom v is valid, we allocate it to the one with smallest weight. As soon as one agent i^{*} 's weight exceeds α, we stop allocating the vertices. Agent i^{*} 's allocation is finalized to be the edges that are covered by pivotal vertices allocated to her in the current round. Then the algorithm excludes i^{*}, returns all the vertices allocated to the other agents, and moves to the next round. If all vertices in P are allocated without making any agent's total weight exceed α, then each edge is allocated to (arbitrary) one of the agents whose obtained pivotal vertex covers it.

Proof of Theorem 2. We first see that Algorithm 1 is welldefined. Let M_{i} be the valid vertices M_{i} of every agent a_{i}, and by Lemma $1, M_{i}$ is a vertex cover of the input graph G and thus also a vertex cover of any subgraph of G. Through the run of the algorithm, $G=(V, E)$ and \mathcal{N} represent the remaining subgraph and the remaining agents. We call each iteration of the while loop at Step 2 a round of the algorithm. By Lemma 3, the set of pivotal vertices P computed in Step 4 is nonempty and covers G. During the execution of the for loop in Step 7, for every vertex $v \in P$, by the definition of P, it is valid to at least one agent. Then at the end of this for loop either one agent $a_{i^{*}}$'s weight exceeds α or all vertices in P are allocated. For the former case, agent $a_{i^{*}}$ obtains the edges covered by her allocated pivotal vertices, G and \mathcal{N} are updated, and the algorithm moves to the next round. For the later case, since P is a vertex cover, every edge must be incident to at least one vertex in P and thus is allocated to some agent in the for loop at Step 17, and the algorithm ends here.

Next, we prove the approximation ratio of the algorithm by setting $\alpha=\frac{3+\sqrt{17}}{2} \approx 3.562$. Recall that $\mu_{i}=1$ for all $a_{i} \in \mathcal{N}$. By the design of the algorithm, every agent a_{i} can only receive a bundle (1) from Step 13 or (2) from the for loop at Step 17. For case (1), there is one round such that all the vertices in P are allocated, which means that the for loop at Step 7 is not broken by any agent. Thus,

$$
c_{i}\left(A_{i}\right) \leq \sum_{v \in B_{i}} w_{i, v} \leq \alpha=\alpha \cdot \mu_{i},
$$

where the first inequality is by Lemma 1 , recalling that B_{i} is a vertex cover of $G\left[A_{i}\right]$. For case (2), agent a_{i} breaks the for loop at Step 7, which is the first time when her weight for B_{i} exceeds α. Suppose

```
Algorithm 1 Approximation Algorithm for General Instances.
Input: A normalized instance \(I=(\mathcal{N}, G=(V, E), \mathbf{c})\) with valid
    vertices \(M_{i}\) for all \(a_{i} \in \mathcal{N}\), and parameter \(\alpha>1\).
Output: An allocation \(\mathbf{A}=\left(A_{1}, \ldots, A_{n}\right)\).
    Initialize \(A_{i}=\emptyset\) for all \(a_{i} \in \mathcal{N}\).
    while \(\mathcal{N} \neq \emptyset\) and \(E \neq \emptyset\) do
        Set \(\mathcal{N}_{v} \leftarrow\left\{a_{i} \in \mathcal{N} \mid v \in M_{i}\right\}\) for all \(v \in V\).
        Set pivotal vertices
                \(P \leftarrow\left\{v \in V\left|\left|\mathcal{N}_{v}\right| \geq \frac{|\mathcal{N}|}{2}\right\}\right.\).
        Set \(B_{i} \leftarrow \emptyset\) for all \(a_{i} \in \mathcal{N}\).
        Let \(i^{*} \leftarrow \perp\).
        for \(v \in P\) do
            Let \(a_{i}\) be an agent for whom \(v\) is valid and the weight on
            \(v\) is smallest, i.e.
                    \(a_{i} \in \arg \min _{a_{j} \in \mathcal{N}_{v}} w_{j, v}\).
            Set \(B_{i} \leftarrow B_{i} \cup\{v\}\).
            If \(\sum_{v \in B_{i^{*}}} w_{i^{*}, v} \geq \alpha\), set \(i^{*} \leftarrow i\) and break the for loop.
        end for
        if \(i^{*} \neq \perp\) then
            Let \(S \subseteq E\) be the set of edges covered by \(B_{i^{*}}\).
            Set \(A_{i^{*}} \leftarrow S\).
            Set \(\mathcal{N} \leftarrow \mathcal{N} \backslash\left\{a_{i^{*}}\right\}, E \leftarrow E \backslash S\).
            Set \(G \leftarrow G[E]\) and disregard all isolated vertices.
        else
            for \(e=\left(v_{1}, v_{2}\right) \in E\) do
                Choose an arbitrary agent \(a_{i}\) such that \(B_{i} \cap\left\{v_{1}, v_{2}\right\} \neq \emptyset\).
                    Set \(A_{i} \leftarrow A_{i} \cup\{e\}\).
            end for
            return \(\mathrm{A}=\left(A_{1}, \ldots, A_{n}\right)\).
        end if
    end while
    return \(\mathbf{A}=\left(A_{1}, \ldots, A_{n}\right)\).
```

v^{*} is the last vertex added to B_{i}, then

$$
\begin{equation*}
c_{i}\left(A_{i}\right) \leq \sum_{v \in B_{i} \backslash\left\{v^{*}\right\}} w_{i, v}+w_{i, v^{*}}<\alpha+w_{i, v^{*}} \leq(\alpha+1) \cdot \mu_{i} \tag{1}
\end{equation*}
$$

where the first inequality is by Lemma 1 and the last inequality is by Lemma 2.

It remains to show all the edges can be allocated at the end of the algorithm, by setting $\alpha=\frac{3+\sqrt{17}}{2} \approx 3.562$. We prove by contradiction, and suppose there are edges left unallocated. Thus all agents obtain their allocations from Step 13 and the algorithm must run n rounds of while loop at Step 2, where n is the initial number of agents. Suppose the sets of the pivotal vertices used in each rounds are P_{1}, \ldots, P_{n}, and rename the agents so that agent a_{k} exists from the algorithm in round $k=1, \ldots, n$. We first define the following quantity Δ :

$$
\Delta=\sum_{k=1}^{n} \sum_{j=k}^{n} \sum_{v \in B_{k} \cap M_{j}} w_{k, v}
$$

where $\sum_{v \in B_{k} \cap M_{j}} w_{k, v}$ means when agent a_{k} exists, the total weight she takes way from every remaining agent a_{j} 's valid vertices, in a_{k} 's perspective.

On the one hand, we note that for each vertex $v \in B_{k} \subseteq P_{k}$, there are at least $\frac{n-k+1}{2}$ agents for whom v is valid, which means v appears in $B_{k} \cap M_{j}$ for at least $\frac{n-k+1}{2}$ terms. Thus, by rearranging the weights, we have

$$
\sum_{j=k}^{n} \sum_{v \in B_{k} \cap M_{j}} w_{k, v} \geq \frac{n-k+1}{2} \sum_{v \in B_{k}} w_{k, v} \geq \frac{n-k+1}{2} \cdot \alpha
$$

Therefore,

$$
\begin{equation*}
\Delta \geq \sum_{k=1}^{n} \frac{n-k+1}{2} \cdot \alpha \geq \frac{\alpha}{4} n(n+1) . \tag{2}
\end{equation*}
$$

On the other hand, exchanging the order of summations gives

$$
\begin{aligned}
\Delta & =\sum_{k=1}^{n} \sum_{j=k}^{n} \sum_{v \in B_{k} \cap M_{j}} w_{k, v}=\sum_{j=1}^{n} \sum_{k=1}^{j} \sum_{v \in B_{k} \cap M_{j}} w_{k, v} \\
& =\sum_{j=1}^{\lfloor n /(\alpha+1)\rfloor} \sum_{k=1}^{j} \sum_{v \in B_{k} \cap M_{j}} w_{k, v}+\sum_{j=\lfloor n /(\alpha+1)\rfloor+1}^{n} \sum_{k=1}^{j} \sum_{v \in B_{k} \cap M_{j}} w_{k, v},
\end{aligned}
$$

where the left and the right terms are denoted by Δ_{1} and Δ_{2}, respectively. For Δ_{1}, we have

$$
\begin{aligned}
\Delta_{1} & =\sum_{j=1}^{\lfloor n /(\alpha+1)\rfloor} \sum_{k=1}^{j} \sum_{v \in B_{k} \cap M_{j}} w_{k, v}<\sum_{j=1}^{\lfloor n /(\alpha+1)\rfloor} \sum_{k=1}^{j}(\alpha+1) \\
& =\sum_{j=1}^{\lfloor n /(\alpha+1)\rfloor} j \cdot(\alpha+1) \leq \frac{\alpha+1}{2} \frac{n}{\alpha}\left(\frac{n}{\alpha}+1\right),
\end{aligned}
$$

where the first inequality is because $\sum_{v \in B_{k} \cap M_{j}} w_{k, v}<\alpha+1$, similar as Inequality 1 . For Δ_{2}, we have

$$
\begin{aligned}
\Delta_{2} & =\sum_{j=\lfloor n /(\alpha+1)\rfloor+1}^{n} \sum_{k=1}^{j} \sum_{v \in B_{k} \cap M_{j}} w_{k, v} \\
& \leq \sum_{j=\lfloor n /(\alpha+1)\rfloor+1}^{n} \sum_{k=1}^{j} \sum_{v \in B_{k} \cap M_{j}} w_{j, v} \\
& \leq \sum_{j=\lfloor n /(\alpha+1)\rfloor+1}^{n} \sum_{v \in M_{j}} w_{j, v} \\
& \leq \sum_{j=\lfloor n /(\alpha+1)\rfloor+1}^{n} n=\left(n-\left\lfloor\frac{n}{\alpha+1}\right\rfloor\right) \cdot n
\end{aligned}
$$

where the first inequality is because a_{k} has the smallest weight among the agents for whom $v \in B_{k}$ is valid and the last inequality is because $\mu_{j}=1$. Combining the above two inequalities, we have

$$
\begin{equation*}
\Delta<n^{2}\left(1-\frac{1}{2(\alpha+1)}\right)+\frac{3 n}{2} \tag{3}
\end{equation*}
$$

However, when $\alpha=\frac{3+\sqrt{17}}{2}$, Inequality 2 contradicts Inequality 3 . Therefore, it must be that there is round the algorithm reaches the for loop in Step 17, and thus all the edges are allocated.

Remark. Note that given the valid vertices M_{i} for every agent as an oracle, Algorithm 1 runs in polynomial time. There are at most n rounds of the outer while loop. Within each round, computing the pivotal vertices (Step 4) and finding the largest weight on these vertices (the for loop at Step 7) need $O(n|V|)$ time. The for loop at Step 17 is only executed once, which requires $O(|E|)$ time. However, the computation of M_{i} is NP-hard, and it is still not clear how to efficiently approximate them, which is left as an open problem of this paper.

4 IMPROVED APPROXIMATIONS FOR SMALL NUMBER OF AGENTS

In this section, we prove that when the instance contains no more than four agents, there is always a 2 -MMS allocation. Combining with Theorem 1, it is the optimal approximation ratio for these cases.

Theorem 3. For any FSAP instance $I=(\mathcal{N}, G=(V, E), \mathbf{c})$ with $|\mathcal{N}| \leq 4$, there exists a 2 -MMS allocation.

It is observed in [27] that for subadditive cost functions, an arbitrary allocation, including the one that allocates all items to a single agent, is n-MMS. Thus, when $n=2$, we can simply allocate all edges to an arbitrary agent, which gives a 2-MMS allocation.

When $n>2$, the problem becomes tricky. We show how to find a 2-MMS allocation for $n=2,3$ in Subsections 4.1 and 4.2 (see Lemmas 4 and 5 respectively). It is not clear if a 2-MMS allocation is guaranteed to exist or not, which is left for future study.

4.1 Three Agents

In this subsection, we show how to find a 2 -MMS allocation for any FSAP instance $\mathcal{I}=(\mathcal{N}, G=(V, E)$, c) with 3 agents, i.e., $\mathcal{N}=$ $\left\{a_{1}, a_{2}, a_{3}\right\}$. Arbitrarily fix two agents a_{i} and a_{j}, we partition the vertices V into four parts: (1) $X_{i, j}=M_{i} \cap M_{j}$ which contains the vertices that are valid to both agents a_{i} and a_{j}; (2) $X_{i}=M_{i} \backslash M_{j}$ which contains the vertices that is only valid to agent a_{i} but invalid to agent a_{j}; (3) $X_{j}=M_{j} \backslash M_{i}$ which contains the vertices that is only valid to agent a_{j} but invalid to agent a_{i}; (4) $X_{0}=E \backslash\left(M_{i} \cup M_{j}\right)$ which contains the vertices that invalid to both a_{i} and a_{j}. We illustrate the partition in Figure 3.

Figure 3: The illustration of $X_{i, j}, X_{i}, X_{j}$ and X_{0}.

We have the following property for X_{0}. Note that Claim 1 holds for any number of agents.

Claim 1. X_{i}, X_{j} and X_{0} are independent sets, i.e., for any edge $(u, v) \in E,\left|\{u, v\} \cap X_{i}\right| \leq 1,\left|\{u, v\} \cap X_{j}\right| \leq 1$ and $\left|\{u, v\} \cap X_{0}\right| \leq 1$. Moreover, the vertices in X_{0} are only adjacent to vertices in $X_{i, j}$.

Proof. To see $\left|\{u, v\} \cap X_{0}\right| \leq 1$, for the sake of contradiction, suppose there exists an edge $(u, v) \in E$ such that has both $u, v \in$ X_{0}. Since M_{i} and M_{j} are vertex covers, then $\{u, v\} \cap M_{i} \neq \emptyset$ and $\{u, v\} \cap M_{j} \neq \emptyset$, which contradicts $X_{0}=E \backslash\left(M_{i} \cup M_{j}\right)$. Similarly, if there is an edge $(u, v) \in E$ such that has both $u, v \in X_{i}=M_{i} \backslash M_{j}$, then $\{u, v\} \cap M_{j}=\emptyset$, which contradicts M_{j} being a vertex cover. Since X_{i} and X_{j} are symmetric, this also holds for X_{j}.
To see the second claim, it suffices to note that for any edge $(u, v) \in E$, if $u \in X_{0}$, then $u \notin M_{i}$ and $u \notin M_{j}$, and thus v must be valid to both agents, i.e., $v \in M_{i} \cap M_{j}$.

Lemma 4. For any FSAP instance $\mathcal{I}=(\mathcal{N}, G=(V, E), \mathrm{c})$ with $|\mathcal{N}|=3$, there exists a $2-M M S$ allocation.

Proof. For the ease of presentation of this section, we normalize the weight of each vertex such that $\sum_{v \in M_{i}} w_{i, v}=1$ for $a_{i} \in \mathcal{N}$. Thus, by Lemma 2 , $\mu_{i} \leq 1 / 3$ for $a_{i} \in \mathcal{N}$. Similar as the main algorithm in the previous section, our idea is to allocate the agents the edges covered by their valid vertices. Depending on whether there are two agents who share many valid vertices, we consider the following three cases.

Case (1). There exist two agents $a_{i}, a_{j} \in \mathcal{N}$ such that

$$
\left\{\begin{aligned}
\sum_{v \in X_{i, j}} w_{i, v} & \geq \frac{1}{3} \\
\sum_{v \in X_{i, j}} w_{j, v} & \geq \frac{1}{3} .
\end{aligned}\right.
$$

For this case, $X_{i, j}$ contains sufficiently large vertices to the two agents, and we can show that there must be a bundle $S \subseteq X_{i, j}$ that is no more than twice MMS to one of them and at least $\frac{1}{3}$ to the other agent. This can be proved via a bag-filling algorithm. We maintain a bag B, which is initially empty. We add vertices in $X_{i, j}$ one by one in an arbitrary order to B until the first time after a vertex v^{*} is added both agents have weight at least $\frac{1}{3}$ on the bag and we stop. Since $\sum_{v \in X_{i, j}} w_{i, v} \geq \frac{1}{3}$ and $\sum_{v \in X_{i, j}} w_{j, v} \geq \frac{1}{3}$, there must exist such a vertex. Without loss of generality, suppose a_{i} is the later agent whose weight on B exceeds $\frac{1}{3}$. Thus we have $\sum_{v \in B \backslash\{v\}} w_{i, v}<\frac{1}{3}, \sum_{v \in B} w_{i, v} \geq \frac{1}{3}$, and $\sum_{v \in B} w_{j, v} \geq \frac{1}{3}$. Suppose $S \subseteq E$ is the edges that are covered by B. Let $A_{i}=S, A_{j}=E \backslash S$, and $A_{6-i-j}=\emptyset$. Next, we prove that $\mathbf{A}=\left(A_{i}, A_{j}, A_{6-i-j}\right)$ is a 2 -MMS allocation, and it suffices to consider a_{i} and a_{j}.
For agent a_{i}, we have

$$
c_{i}\left(A_{i}\right) \leq \sum_{v \in B} w_{i, v}=\sum_{v \in B \backslash\left\{v^{*}\right\}} w_{i, v}+w_{i, v^{*}} \leq 2 \cdot \mu
$$

where the first inequality is by Lemma 1 , and the second inequality is by Lemma 2 combining $\sum_{v \in B \backslash\{v\}} w_{i, v}<\frac{1}{3}$.

For agent a_{j}, we first note that as $B \subseteq X_{i, j} \subseteq M_{j}, M_{j} \backslash B$ must be able to cover $E \backslash S$. Since $\sum_{v \in B} w_{j, v} \geq \frac{1}{3}$ and $B \subseteq X_{i, j} \subseteq M_{j}$, thus we have

$$
c_{j}\left(A_{j}\right) \leq \sum_{v \in M_{j} \backslash B} \leq \frac{2}{3} \leq 2 \cdot \mu_{j},
$$

where the two inequalities are again by Lemmas 1 and 2.

CASE (2). There exist two agents a_{i} and a_{j} that

$$
\left\{\begin{array}{l}
\sum_{v \in X_{i, j}} w_{i, v}<\frac{1}{3}, \\
\sum_{v \in X_{i, j}} w_{j, v} \geq \frac{1}{3} .
\end{array}\right.
$$

This case is simple, and can be analyzed in a similar way as Case (1). In fact, $X_{i, j}$ directly satisfies the requirement of the bag B found by the bag-filling algorithm: For $a_{i}, X_{i, j}$ is not too large, and for a_{j}, $X_{i, j}$ is sufficiently large. Denote by $S \subseteq E$ the set of edges covered by the entire $X_{i, j}$. Then let $A_{i}=S, A_{j}=E \backslash A_{i}$, and $A_{6-i-j}=\emptyset$. Thus $c_{i}\left(A_{i}\right) \leq \mu_{i}$ and $c_{i}\left(A_{j}\right) \leq 2 \mu_{j}$.
CASE (3). For any two agents $a_{i} \neq a_{j}$, we have

$$
\left\{\begin{array}{l}
\sum_{v \in X_{i, j}} w_{i, v}<\frac{1}{3} \\
\sum_{v \in X_{i, j}} w_{j, v}<\frac{1}{3} .
\end{array}\right.
$$

Let $S \subseteq E$ be the set of edges covered by $X_{2,3}$ and $A_{2} \leftarrow S$. Let $A_{1}=E \backslash A_{2}, A_{2}=S$, and $A_{3}=\emptyset$. In the following, we show $\mathrm{A}=\left(A_{1}, A_{2}, A_{3}\right)$ is a 2 -MMS allocation. Again, we only need to check agents a_{1} and a_{2}.

For agent a_{2}, it is straightforward that

$$
c_{2}\left(A_{2}\right) \leq \sum_{v \in X_{2,3}} w_{2, v} \leq \frac{1}{3}
$$

For agent a_{j}, we first observe that the vertices in M_{1} can be divided into two parts $M_{1}=\left(M_{1} \cap\left(M_{2} \cup M_{3}\right)\right) \cup\left(M_{1} \backslash\left(M_{2} \cup M_{3}\right)\right)$. The vertices in $M_{1} \backslash\left(M_{2} \cup M_{3}\right)$ are invalid for agent a_{2} and a_{3}. By Claim 1, any edge $(v, u) \in E \backslash S$ must satisfy that $v \in X_{2}$ and $u \in X_{3}$ or the other way round. That is, the vertices in $M_{1} \cap\left(M_{2} \cup M_{3}\right)$ can cover all the edges $E \backslash S$. Therefore, we have

$$
\begin{aligned}
c_{1}\left(A_{1}\right) & \leq \sum_{v \in M_{1} \cap\left(M_{2} \cup M_{3}\right)} w_{1, v} \\
& \leq \sum_{v \in M_{1} \cap M_{2}} w_{1, v}+\sum_{v \in M_{1} \cap M_{3}} w_{1, v} \\
& =\sum_{v \in X_{1,2}} w_{1, v}+\sum_{v \in X_{1,3}} w_{1, v}<\frac{1}{3}+\frac{1}{3}<2 \mu_{1} .
\end{aligned}
$$

Combing the above three cases, Lemma 4 is proved.
From the proof of Lemma 4, we can see that if the valid vertices M_{1}, M_{2} and M_{3} are given as an oracle, a 2-MMS allocation can be found in polynomial time.

4.2 Four Agents

Finally, in this subsection, we show how to find a 2-MMS allocation for any FSAP instance $I=(\mathcal{N}, G=(V, E), \mathbf{c})$ with 4 agents, i.e., $\mathcal{N}=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. For every three agents a_{i}, a_{j}, a_{k}, we divide the valid vertices of every agent into 4 parts. For agent a_{i}, the valid vertices M_{i} are divided into four parts as Figure 4 shows: $X_{i, j, k}=M_{i} \cap M_{j} \cap M_{k}$ denotes the set of vertices that are valid to all three agents a_{i}, a_{j} and $a_{k} ; X_{i, j}=\left(M_{i} \cap M_{j}\right) \backslash M_{k}$ denotes the set of vertices that are valid to agents a_{i} and a_{j} but not to a_{k};
$X_{i, k}=\left(M_{i} \cap M_{k}\right) \backslash M_{j}$ denotes the set of vertices that are valid to agents a_{i} and a_{k} but not to $a_{j} ; X_{i, 0}=M_{i} \backslash\left(M_{j} \cup M_{k}\right)$ denotes the set of vertices that are only valid to agent a_{i} but not to agents a_{j} and a_{k}. For simplicity, we denote $X_{i}=X_{i, j, k} \cup X_{i, j} \cup X_{i, k}$ as the vertices in M_{i} that are valid to at least two agents.

Figure 4: The division of valid vertices M_{i} for agent a_{i}.
By the definition, we have $X_{i, j, k}=X_{j, i, k}=X_{k, i, j}, X_{i, j}=X_{j, i}$, $X_{i, k}=X_{k, i}$ and $X_{j, k}=X_{k, j}$. For the ease of presentation, we only use $X_{i, j, k}, X_{i, j}, X_{i, k}$ and $X_{j, k}$. We have the following property for any three agents a_{i}, a_{j}, a_{k}.

Claim 2. $X_{i, 0}$ is an independent set, i.e., for any edge $(u, v) \in E$, $\left|\{u, v\} \cap X_{i, 0}\right| \leq 1$. Moreover, the vertices in $X_{i, 0}$ are only adjacent to vertices in $X_{i, j, k}$.
Proof. We first focus on the agents a_{i} and a_{j}. By Claim 1, it is known that no edge has two endpoints in $X_{i, 0} \cup X_{i, k}$ and the edge which has an endpoint in $X_{i, 0} \cup X_{i, k}$ must have the other endpoint in $X_{i, j} \cup X_{i, j, k}$. So there is no edge that has two endpoints in $X_{i, 0}$.

Then we focus on the agents a_{i} and a_{k}. By Claim 1, it is known that the edge which has an endpoint in $X_{i, 0} \cup X_{i, j}$ must have the other endpoint in $X_{i, k} \cup X_{i, j, k}$. So we have the edge which has an endpoint in $X_{i, 0}$ must have the other endpoint in the intersection of $X_{i, j} \cup X_{i, j, k}$ and $X_{i, k} \cup X_{i, j, k}$, which is $X_{i, j, k}$.

Lemma 5. For any FSAP instance $I=(\mathcal{N}, G=(V, E)$, c) with $|\mathcal{N}|=4$, there exists a $2-M M S$ allocation.

Proof. We first also normalize the weight of each vertex such that $\sum_{v \in M_{i}} w_{i, v}=1$ for $a_{i} \in \mathcal{N}$. So for any agent in \mathcal{N}, her maximin share is no less than $\frac{1}{4}$ by Lemma 2 . Here we consider three cases.
CASE (1). There exists a group of 3 agents $\left\{a_{i}, a_{j}, a_{k}\right\}$ that

$$
\sum_{v \in X_{l}} w_{l, v} \leq \frac{1}{2}, \text { for } l \in\left\{a_{i}, a_{j}\right\} .
$$

Find the set S of edges covered by X_{j} and allocate the edges in S to agent a_{j} such that $A_{j} \leftarrow S$. For the remaining edges in E, allocate them to agent $a_{i} A_{i} \leftarrow E \backslash S$. So the other two agents a_{k} and $a_{10-i-j-k}$, there is no edge to allocate $A_{k} \leftarrow \emptyset$ and $A_{10-i-j-k} \leftarrow \emptyset$.

For agent a_{j}, the cost of her allocation bundle is

$$
c_{j}\left(A_{j}\right) \leq \sum_{v \in X_{j}} w_{j, v} \leq \frac{1}{2} \leq 2 \mu_{j} .
$$

By Claim 2, after allocating A_{j} to agent a_{j}, any edge covered by $X_{i, 0}$ is removed since the edge must be covered by $X_{i, j, k} \subseteq X_{j} . M_{i}$ can cover E, so X_{i} can cover the remaining edges $E \backslash A_{j}$. For agent a_{i}, the cost of her allocation bundle is

$$
c_{i}\left(A_{i}\right) \leq \sum_{v \in X_{i}} w_{i, v} \leq \frac{1}{2} \leq 2 \mu_{i} .
$$

CASE (2). There exists a group of agents $\left\{a_{i}, a_{j}, a_{k}\right\}$ that

$$
\left\{\begin{array}{l}
\sum_{v \in X_{l}} w_{l, v}>\frac{1}{2}, \text { for } l \in\left\{a_{i}, a_{j}\right\} \\
\sum_{v \in X_{k}} w_{k, v} \leq \frac{1}{2}
\end{array}\right.
$$

Find the set S of edges covered by X_{k} and allocate agent a_{k} the edges in $S: A_{k} \leftarrow S$. Let agent a_{i} divide the vertices in $X_{i, j}$ into two parts $X_{i, j}^{1}$ and $X_{i, j}^{2}$ based on the sum weight as equal as possible. Assume that $\sum_{v \in X_{i, j}^{1}} w_{j, v} \leq \sum_{v \in X_{i, j}^{2}} w_{j, v}$. Find the set S^{\prime} of edge covered by $X_{i, j}^{1}$ in $E \backslash A_{i}$ and allocate to agent $a_{j}: A_{j} \leftarrow S^{\prime}$. For the remaining edges, allocate them to agent a_{i} such that $A_{i} \leftarrow E \backslash A_{k} \backslash A_{j}$ and $A_{10-i-j-k}=\emptyset$. For agents a_{k} and a_{j}, we have

$$
\begin{aligned}
& c_{j}\left(A_{j}\right) \leq \sum_{v \in X_{i, j}^{1}} w_{j, v} \leq \frac{1}{2} \sum_{v \in X_{i, j}} w_{j, v} \leq \frac{1}{2} \leq 2 \mu_{j}, \\
& c_{k}\left(A_{k}\right) \leq \sum_{v \in X_{k}} w_{k, v} \leq \frac{1}{2} \leq 2 \mu_{k} .
\end{aligned}
$$

Based on the discussion of situation 1 , the edges covered by $X_{i, 0}$ are allocated to agent a_{k}. The edges covered by $\left(X_{i, k} \cup X_{i, j, k}\right) \subseteq X_{k}$ are also allocated to agent a_{k}. So the edges in A_{i} and A_{j} can be covered by $X_{i, j}$. For one agent a_{i} 's MMS defining partition $\left\{B_{1}, B_{2}, B_{3}, B_{4}\right\}$, the sum weights of $X_{i, j} \cap\left(B_{1} \cup B_{2}\right)$ and $X_{i, j} \cap\left(B_{3} \cup B_{4}\right)$ are both less than $2 \mu_{i}$. So the sum weights of $X_{i, j}^{1}$ and $X_{i, j}^{2}$ are both less than $2 \mu_{i}$. The edges covered by $X_{i, j}^{1}$ are allocated to agent a_{j}, so the remaining edges can be covered by $X_{i, j}^{2}$. For agent a_{i}, we also have

$$
c_{i}\left(A_{i}\right) \leq \sum_{e \in X_{i, j}^{2}} w_{i, e} \leq 2 \mu_{i} .
$$

CASE (3). For any three agents $\left\{a_{i}, a_{j}, a_{k}\right\}$, we have

$$
\sum_{v \in X_{l}} w_{l, v}>\frac{1}{2}, \text { for } l \in\{i, j, k\} .
$$

We first find three agents a_{1}, a_{p}, and a_{q}, and allocate the edges in E to these three agents.

Claim 3. For agent a_{1}, there must be at least two agents a_{p} and a_{q} from a_{2}, a_{3}, a_{4} satisfies that $\sum_{v \in M_{1} \cap M_{l}} w_{1, v} \geq \frac{1}{4}$.

Proof. For any group of three agents $\left\{a_{1}, a_{j}, a_{k}\right\}$ with $a_{j} \in$ $\left\{a_{2}, a_{3}, a_{4}\right\}, a_{k} \in\left\{a_{2}, a_{3}, a_{4}\right\}$ and $a_{j} \neq a_{k}, \sum_{v \in X_{1}} w_{1, v}>\frac{1}{2}$. In this group, at least one agent between a_{i} and a_{j} satisfies that $\sum_{v \in M_{1} \cap M_{l}} w_{1, v} \geq \frac{1}{2}$. Otherwise, we have

$$
\sum_{v \in X_{1}} \leq \sum_{v \in M_{1} \cap M_{j}}+\sum_{v \in M_{1} \cap M_{k}}<\frac{1}{4}+\frac{1}{4}=\frac{1}{2},
$$

which is a contradiction. So we can find such an agent as a_{p}. Similarly, for the group $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\} \backslash\left\{a_{p}\right\}$, we can also find such an agent as a_{p}.

Now we have a group of agents $\left\{a_{1}, a_{p}, a_{q}\right\}$. Let the agent a_{9-p-q} which does not belong to the group get no edge such that $A_{9-p-q} \leftarrow$ \emptyset. We first keep adding the vertices from $X_{1, p}$ into a bag B until $\sum_{v \in B} w_{1, v} \geq 1 / 4$ or there is no vertex in $X_{1, p}$. If there is no vertex in $X_{1, p}$ but $\sum_{v \in B} w_{1, v}<\frac{1}{4}$, we keep adding the vertices from $X_{1, p, q}$
into the bag B until $\sum_{v \in B} w_{1, v} \geq \frac{1}{4}$. We have proved there are enough vertices in $X_{1, p} \cup X_{1, p, q}$. Find the set of edges S covered by B. If $\sum_{v \in B} w_{p, v}>\frac{1}{2}$, let $A_{1} \leftarrow S, A_{p} \leftarrow E \backslash S$ and $A_{q} \leftarrow \emptyset$. Since for agent a_{1}, the last vertex added to B is valid, the weight of the vertex is less than μ_{i}. The sum weight of B before adding the last vertex is less than $\frac{1}{4}$. So we have

$$
\begin{aligned}
& c_{1}\left(A_{1}\right) \leq \sum_{v \in B} w_{i, v} \leq \frac{1}{4}+\mu_{1} \leq 2 \mu_{1} . \\
& c_{p}\left(A_{p}\right) \leq 1-\sum_{v \in B} w_{i, v}<\frac{1}{2} \leq 2 \mu_{p} .
\end{aligned}
$$

If $\sum_{v \in B} w_{p, v}<\frac{1}{2}$, let $A_{p} \leftarrow S$ and $c_{p}\left(A_{p}\right) \leq \sum_{v \in B} w_{p, v}<2 \mu_{p}$. Next, we start with a new bag B^{\prime} and keep adding the vertices from $X_{1, q}$ until $\sum_{v \in B^{\prime}} w_{1, v} \geq \frac{1}{4}$ or there is no vertex in $X_{1, q}$. If $\sum_{v \in B^{\prime}} w_{1, v}<\frac{1}{4}$, we keep adding the vertices from $X_{1, p, q}-B$ until $\sum_{v \in B^{\prime}} w_{1, v} \geq \frac{1}{4}$ or there is no vertex in $X_{1, p, q}-B$. Find the set of vertices S^{\prime} covered by B^{\prime}. If $\sum_{v \in B^{\prime}} w_{q, v}>\frac{1}{2}$, let $A_{1} \leftarrow S^{\prime}, A_{q} \leftarrow$ $E \backslash\left(A_{1} \cup A_{p}\right)$. Like the allocation above, this is also a 2-MMS allocation. If $\sum_{v \in B^{\prime}} w_{q, v}<\frac{1}{2}$, let $A_{q} \leftarrow S^{\prime}, A_{1} \leftarrow E \backslash\left(A_{p} \cup A_{q}\right)$. If $\sum_{v \in B^{\prime}} w_{1, v}<\frac{1}{4}$, it means there is no vertex in $X_{1, p, q}-B$ and $X_{1, p, q} \cap B \neq \emptyset$. So the vertices in X_{1} are all allocate to B or B^{\prime} and $\sum_{v \in\left(B \cup B^{\prime}\right)} w_{1, v}=\sum_{v \in X_{1}}>\frac{1}{2}$. Otherwise if $\sum_{v \in B^{\prime}} w_{1, v} \geq \frac{1}{4}$, it is known that $\sum_{v \in B} w_{1, v} \geq \frac{1}{4}$, so $\sum_{v \in\left(B \cup B^{\prime}\right)} w_{1, v} \geq \frac{1}{2}$. We have

$$
\begin{aligned}
& c_{1}\left(A_{1}\right) \leq \sum_{v \in M_{1} \backslash\left(B \cup B^{\prime}\right)} w_{1, v}=1-\sum_{v \in B \cup B^{\prime}} w_{1, v} \leq \frac{1}{2} \leq 2 \mu_{1} . \\
& c_{q}\left(A_{q}\right) \leq \sum_{v \in B^{\prime}} w_{q, v} \leq \frac{1}{2} \leq 2 \mu_{q} .
\end{aligned}
$$

Combing the above three cases, Lemma 5 is proved.

5 CONCLUSION

This paper introduces the Fair Surveillance Assignment Problem (FSAP), which involves assigning edges of a given graph to a set of agents for surveillance purposes. The agents' cost functions are determined by the weight of the vertex covers within their assigned subgraphs, using their own weight metric. Our primary focus is on achieving MMS fairness in the allocations. For the general FSAP with an arbitrary number of agents, we prove that the optimal approximation ratio lies between 2 and 4.562 . Bridging this gap presents an intriguing open problem. Furthermore, we show that the tight approximation ratio bound for scenarios involving no more than four agents is 2 . However, it remains uncertain whether these approaches can be extended to the general case.

Our paper uncovers other future research directions as well. Firstly, while our main algorithm computes 4.562-MMS allocations in polynomial time when provided with valid vertices as an oracle, it would be intriguing to enhance this outcome by developing polynomial-time algorithms. Secondly, our paper solely focuses on vertex-cover cost functions, but it would be worthwhile to explore other types of surveillance costs. Thirdly, as general subadditive cost functions do not admit algorithms better than n-MMS, it is crucial to identify a class of cost functions, potentially a subset of subadditive functions and a superset of vertex cover functions, that guarantees the existence of constant-approximate MMS allocations.

REFERENCES

1] Peyman Afshani, Mark de Berg, Kevin Buchin, Jie Gao, Maarten Löffler, Amir Nayyeri, Benjamin Raichel, Rik Sarkar, Haotian Wang, and Hao-Tsung Yang. 2022. On Cyclic Solutions to the Min-Max Latency Multi-Robot Patrolling Problem. In SoCG (LIPIcs, Vol. 224). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2:1-2:14.
[2] Soroush Alamdari, Elaheh Fata, and Stephen L. Smith. 2014. Persistent monitoring in discrete environments: Minimizing the maximum weighted latency between observations. Int. 7. Robotics Res. 33, 1 (2014), 138-154.
[3] Georgios Amanatidis, Haris Aziz, Georgios Birmpas, Aris Filos-Ratsikas, Bo Li, Hervé Moulin, Alexandros A. Voudouris, and Xiaowei Wu. 2023. Fair division of indivisible goods: Recent progress and open questions. Artif. Intell. 322 (2023), 103965.
[4] Esther M. Arkin, Refael Hassin, and Asaf Levin. 2006. Approximations for minimum and min-max vehicle routing problems. 7. Algorithms 59, 1 (2006), 1-18.
[5] Haris Aziz and Simon Mackenzie. 2016. A Discrete and Bounded Envy-Free Cake Cutting Protocol for Any Number of Agents. In Proceedings of the 57th Annual Symposium on Foundations of Computer Science (FOCS). 416-427.
[6] Umang Bhaskar, A. R. Sricharan, and Rohit Vaish. 2021. On Approximate EnvyFreeness for Indivisible Chores and Mixed Resources. In APPROX-RANDOM (LIPIcs, Vol. 207). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 1:1-1:23.
[7] Glencora Borradaile, Philip N. Klein, Shay Mozes, Yahav Nussbaum, and Christian Wulff-Nilsen. 2017. Multiple-Source Multiple-Sink Maximum Flow in Directed Planar Graphs in Near-Linear Time. SIAM 7. Comput. 46, 4 (2017), 1280-1303.
[8] Eric Budish. 2011. The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes. Fournal of Political Economy 119, 6 (2011), 1061-1103.
[9] Aydin Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian Schulz. 2016. Recent Advances in Graph Partitioning. In Algorithm Engineering. Lecture Notes in Computer Science, Vol. 9220. 117-158.
[10] Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D. Procaccia, Nisarg Shah, and Junxing Wang. 2019. The Unreasonable Fairness of Maximum Nash Welfare. ACM Trans. Economics and Comput. 7, 3 (2019), 12:1-12:32.
[11] Bhaskar Ray Chaudhury, Telikepalli Kavitha, Kurt Mehlhorn, and Alkmini Sgouritsa. 2021. A Little Charity Guarantees Almost Envy-Freeness. SIAM 7. Comput. 50, 4 (2021), 1336-1358.
[12] Yiling Chen, John K. Lai, David C. Parkes, and Ariel D. Procaccia. 2013. Truth, justice, and cake cutting. Games Econ. Behav. 77, 1 (2013), 284-297.
[13] Zheng Chen, Bo Li, Minming Li, and Guochuan Zhang. 2022. Fair Graphical Resource Allocation with Matching-Induced Utilities. CoRR abs/2212.01031 (2022).
[14] Edith Elkind, Erel Segal-Halevi, and Warut Suksompong. 2021. Keep Your Distance: Land Division With Separation. In IFCAI. ijcai.org, 168-174.
[15] Guy Even, Naveen Garg, Jochen Könemann, R. Ravi, and Amitabh Sinha. 2004. Min-max tree covers of graphs. Oper. Res. Lett. 32, 4 (2004), 309-315.
[16] Boaz Farbstein and Asaf Levin. 2015. Min-max cover of a graph with a small number of parts. Discret. Optim. 16 (2015), 51-61.
[17] George Gamow and Marvin Stern. 1958. Puzzle-Math. Viking press.
[18] Jugal Garg and Setareh Taki. 2021. An improved approximation algorithm for maximin shares. Artif. Intell. 300 (2021), 103547.
[19] Laurent Gourvès, Jérôme Monnot, and Lydia Tlilane. 2014. Near Fairness in Matroids. In Proceedings of the 21st European Conference on Artificial Intelligence (ECAI). 393-398.
[20] Hadi Hosseini, Andrew McGregor, Rik Sengupta, Rohit Vaish, and Vignesh Viswanathan. 2023. Tight Approximations for Graphical House Allocation. CoRR abs/2307.12482 (2023).
[21] Hadi Hosseini, Shivika Narang, and Tomasz Was. 2023. Fair Distribution of Delivery Orders. CoRR abs/2305.00040 (2023).
[22] Xin Huang and Pinyan Lu. 2021. An Algorithmic Framework for Approximating Maximin Share Allocation of Chores. In EC. ACM, 630-631.
[23] Satoru Iwata and R. Ravi. 2013. Approximating max-min weighted T-joins. Oper. Res. Lett. 41, 4 (2013), 321-324.
[24] M. Reza Khani and Mohammad R. Salavatipour. 2014. Improved Approximation Algorithms for the Min-max Tree Cover and Bounded Tree Cover Problems. Algorithmica 69, 2 (2014), 443-460.
[25] Çagri Koç, Tolga Bektas, Ola Jabali, and Gilbert Laporte. 2016. Thirty years of heterogeneous vehicle routing. Eur. 7. Oper. Res. 249, 1 (2016), 1-21.
[26] Dominik Kress, Sebastian Meiswinkel, and Erwin Pesch. 2015. The Partitioning Min-Max Weighted Matching Problem. Eur. 7. Oper. Res. 247, 3 (2015), 745-754.
[27] Bo Li, Fangxiao Wang, and Yu Zhou. 2023. Fair Allocation of Indivisible Chores: Beyond Additive Valuations. In NeurIPS 2023. (to appear).
[28] Michael Lin and Richard J. La. 2020. Miniature Robot Path Planning for Bridge Inspection: Min-Max Cycle Cover-Based Approach. In CASE. IEEE, 365-371.
[29] Richard J. Lipton, Evangelos Markakis, Elchanan Mossel, and Amin Saberi. 2004. On approximately fair allocations of indivisible goods. In EC. ACM, 125-131.
[30] Flávio Keidi Miyazawa, Phablo F. S. Moura, Matheus J. Ota, and Yoshiko Wakabayashi. 2021. Partitioning a graph into balanced connected classes: Formulations, separation and experiments. Eur. 7. Oper. Res. 293, 3 (2021), 826-836.
[31] Benjamin Plaut and Tim Roughgarden. 2020. Almost Envy-Freeness with General Valuations. SIAM 7. Discret. Math. 34, 2 (2020), 1039-1068.
[32] Sivakumar Rathinam, R. Ravi, J. Bae, and Kaarthik Sundar. 2020. Primal-Dual 2-Approximation Algorithm for the Monotonic Multiple Depot Heterogeneous Traveling Salesman Problem. In SWAT (LIPIcs, Vol. 162). 33:1-33:13.
[33] Saïd Salhi, Arif Imran, and Niaz A. Wassan. 2014. The multi-depot vehicle routing problem with heterogeneous vehicle fleet: Formulation and a variable neighborhood search implementation. Comput. Oper. Res. 52 (2014), 315-325.
[34] Hugo Steinhaus. 1949. Sur la division pragmatique. Econometrica 17 (Supplement) (1949), 315-319.
[35] Vera Traub and Thorben Tröbst. 2020. A Fast $(2+2 / 7)$-Approximation Algorithm for Capacitated Cycle Covering. In IPCO. Springer, 391-404.
[36] Hal R. Varian. 1974. Equity, Envy and Efficiency. Journal of Economic Theory 9 (1974), 63-91.
[37] Zhou Xu and Qi Wen. 2010. Approximation hardness of min-max tree covers. Oper. Res. Lett. 38, 3 (2010), 169-173.
[38] Hande Yaman. 2006. Formulations and Valid Inequalities for the Heterogeneous Vehicle Routing Problem. Math. Program. 106, 2 (2006), 365-390.
[39] Shengwei Zhou and Xiaowei Wu. 2022. Approximately EFX Allocations for Indivisible Chores. In I7CAI. ijcai.org, 783-789.

[^0]: Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
 WWW'24, May 13-17, 2024, Singapore
 © 2024 Association for Computing Machinery.
 ACM ISBN 978-1-4503-XXXX-X/18/06...\$15.00
 https://doi.org/XXXXXXX.XXXXXXX

