
Workshop at the 6th Symposium on Advances in Approximate Bayesian Inference (non-archival), 2024 1–15

Gaussian Stochastic Weight Averaging
for Bayesian Low-rank Adaptation of Large Language Models

Anonymous Authors
Anonymous Institution

Abstract

Fine-tuned Large Language Models (LLMs) often suffer from overconfidence and poor
calibration, particularly when fine-tuned on small datasets. To address these challenges,
we propose a simple merging of Low-Rank Adaptation (LoRA) with Gaussian Stochastic
Weight Averaging (SWAG), facilitating approximate Bayesian inference in LLMs. Through
extensive testing across several Natural Language Processing (NLP) benchmarks, we demon-
strate that our straightforward and computationally efficient approach improves model gen-
eralization and calibration. We further show that our method exhibits greater robustness
against distribution shift, as reflected in its improved performance on out-of-distribution
tasks.

1. Introduction

In recent years, LLMs have demonstrated exceptionally strong performance across a wide
range of natural language processing tasks (Radford et al., 2019; Touvron et al., 2023a;
Brown et al., 2020). Due to extremely large numbers of parameters in state-of-the-art
foundation models like RoBERTa (Liu et al., 2019) or GPT (OpenAI, 2023), approximate
Bayesian inference has been difficult. Moreover, fine-tuning these models on the full number
of weights is inefficient and prohibitively expensive for practitioners without an abundance of
computational resources. In response to this problem, recent work has explored adapters for
parameter-efficient fine-tuning (PEFT; Ding et al., 2023) of LLMs on downstream tasks.
Our research focuses on utilizing these newly developed PEFT techniques for Bayesian
subspace inference in these tuning parameters. One of the currently most popular PEFT
methods is low-rank adaptation (LoRA; Hu et al., 2022), which fine-tunes a model indirectly
by freezing the pre-trained weights and introducing a set of low-rank matrices which are
injected into several layers throughout the model. While LoRA can help resolve the issue of
inefficiency in fine-tuning, the resulting LLMs still suffer from a significant limitation: they
have been shown to be overly confident in their predictions and exhibit poor calibration
(Jiang et al., 2021; Xiao et al., 2022; He et al., 2023). The predictive probabilities produced
by neural networks in classification settings are often incorrectly interpreted as the confi-
dence of the model. However, models may still be uncertain in their predictions, despite
yielding a high softmax output (Gal and Ghahramani, 2016). This phenomenon can be dan-
gerous, especially in safety-critical applications such as medical diagnoses (Singhal et al.,
2023), and has prompted the call for better Bayesian treatments of LLMs (Papamarkou
et al., 2024).

Many previous works have already proposed various approximate Bayesian inference
methods that can be applied in deep neural networks to address this issue (see Appendix
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A for related works). In this paper, we propose a simple alternative to these methods
which avoids any significant numerical and implementation challenges while also consistently
improving model generalization and calibration despite its simplicity. We integrate Gaussian
Stochastic Weight Averaging (SWAG; Maddox et al., 2019) with Low-Rank Adaptation
(LoRA) to inexpensively enable approximate Bayesian inference with LLMs.

We evaluate our method’s performance against those of standard methods such as stan-
dard (non-Bayesian) LoRA fine-tuning as well as Monte Carlo (MC) dropout (Gal and
Ghahramani, 2016) and LoRA ensembles (Wang et al., 2023) on a number of benchmark
commonsense reasoning NLU tasks. We find competitive performance both in terms of
accuracy and calibration.

We provide a description of our proposed method SWAG-LoRA in Section 2 and follow
this up with a discussion of our empirical results in Section 3. A detailed treatment of the
related work is deferred to Appendix A.

2. Methods

2.1. Low-Rank Adaptation

Low-Rank Adaptation (LoRA) is PEFT method which significantly reduces the number of
parameters needed for fine-tuning without significantly compromising performance. LoRA
adds low-rank adaptation matrices to certain layers (most commonly the query and value
projection matrices in attention layers and the classification head (Hu et al., 2022)). LoRA
enables efficient and effective fine-tuning with minimal computational resources. Equiva-
lently, it enables the fine-tuning of very large models using limited computational resources.
In our context, we leverage LoRA to greatly reduce the number of trainable parameters so
that we can feasibly use approximate Bayesian inference methods with LLMs with billions
of parameters. LoRA enables us to evaluate our method with LLama-2 with 7 billion
parameters.

2.2. SWA & SWAG

Stochastic weight averaging (SWA) consists of a simple averaging of model weights from
the trajectory of Stochastic Gradient Descent (SGD). SGD iterates to average are obtained
using a cyclical or large constant learning rate, which explores the region around the MAP
estimate in the loss landscape. SWA has been shown to find flatter solutions than SGD, im-
proving robustness and generalization performance (Izmailov et al., 2018). SWA-Gaussian
is a simple extension of SWA, which treats SGD iterates around the MAP as samples from a
Gaussian distribution. SWAG estimates this Gaussian distribution using the results of SWA
as its first moment wSWA and a low-rank plus diagonal covariance Σ, also derived from the
SGD iterates, as its second moment, thus creating an approximate posterior distribution
over the weights of the network:

p(w|D) ≈ N
(
wSWA ,

1

2
· (Σdiag +Σlow-rank )

)
.

The Bayesian Model Average (BMA) can be approximated by sampling from this distri-
bution. This approach is particularly attractive for obtaining uncertainties for deep learning
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models, as it often improves generalization, calibration, and uncertainty quantification with
virtually no computational overhead (Maddox et al., 2019). MultiSWAG is a natural exten-
sion of SWAG that leverages an ensemble of SWAG models, enabling an effective mechanism
for Bayesian marginalization within multiple basins in the loss landscape to further improve
model generalization and calibration (Wilson and Izmailov, 2020).

Our implementations of SWAG and MultiSWAG estimate the posterior distribution only
over the parameters in the LoRA modules in our network, thereby avoiding the significantly
more computationally expensive task of estimating a posterior distribution over all network
parameters.

3. Experiments

3.1. Experimental Setup

Implementation Details All of the experiments reported in this paper are conducted
using Llama-2-7B (Touvron et al., 2023b) (finetuned in 16-bit and evaluated in 32-bit). We
leverage the PEFT library (Mangrulkar et al., 2022) implementation of LoRA to adapt the
queries, values, and the causal language modeling head of Llama-7B, using the LoRA rank
r = 8, alpha α = 16 and a LoRA dropout probability of 0.1.

We adapted the official implementation of SWAG (Zellers et al., 2018) to work seamlessly
with PEFT’s LoRA adapters. We experimented with many schedulers for SWAG and
ultimately used a constant learning rate schedule for which we determined the constant
learning rate by dividing the fine-tuning optimizer’s maximum learning rate by 2. We
also implement MultiSWAG, whose performance we evaluate against ensembles of standard
LoRA-finetuned Llama-7B models for a fairer comparison. All ensemble or MultiSWAG
models consist of five individual members in the ensemble. When evaluating (Multi)SWAG
and MC Dropout, we always sample 15 models from our approximate posterior distributions.
Furthermore, for SWAG sampling we use a sample scale of 1.0.

Datasets We evaluate our models on several well-known multiple-choice question answer-
ing (MCQA) benchmarks. We evaluate our methods on Open Book Question Answering
(OBQA; Mihaylov et al., 2018), Commonsense QA (CQA; Talmor et al., 2019), AI2 Reason-
ing Challenge Easy and Challenge (ARC-E & ARC-C; Clark et al., 2018), and Measuring
Massive Multitask Language Understanding (MMLU; Hendrycks et al., 2021).

The CQA dataset does not have public test labels. We therefore randomly split the
training data into new train and validation sets and use the original validation set to report
test set performance. For the remainder of the paper, when speaking of results on the CQA
test set, this is the split we will be referring to.

Calibration and uncertainty quantification. Another challenge that comes along
with integrating uncertainty estimation into neural network models is the measurement
of the quality of these uncertainties. One of the most common metrics in this regard is
the expected calibration error (ECE), which is used to measure the discrepancy between a
model’s predicted probabilities and the true frequencies of the outcomes. However, Gruber
and Buettner (2022) show that most commonly used calibration errors are actually lower
bounds on the true error and provide a taxonomy of a number of these metrics used in
practice. They find that the ECE lower bound (which suffers from shortcomings such as
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sensitivity to the size of datasets) is the least tight of all the considered metrics, while the
Brier score is the tightest. For this reason, in addition to the more common evaluation met-
rics negative log-likelihood (NLL) and ECE, we also include the Brier score, which gives a
better estimate of the true calibration error.

We also evaluate our methods’ calibration across both in-distribution (ID) and out-of-
distribution (OOD) tasks. In addition to OOD evaluation, we test our methods’ uncertainty
quantification performance by evaluating whether our uncertainty metrics can reliably de-
tect OOD samples. We investigated several different uncertainty metrics across our exper-
iments and ultimately found that those most effective at detecting OOD samples were the
standard entropy calculated over class probabilities (here referred to as entropy or cross-
prediction entropy), as well as (only for our ensemble/SWAG/MultiSWAG/MC dropout
methods) an entropy-adjacent metric we refer to as cross-model entropy which calculates
the average per-class uncertainties between the models of the ensemble.

While entropy is the more common method of uncertainty quantification, it has been
argued that it is not maximally informative, as it does not actually capture the disentan-
glement of epistemic and aleatoric uncertainty (Malinin et al., 2020). Entropy uses the
average prediction in the BMA, meaning it cannot distinguish between a scenario in which
all hypotheses confidently disagree (epistemic uncertainty) and a scenario in which all hy-
potheses agree on being highly uncertain (aleatoric uncertainty). Cross-model disagreement
on the other hand considers the variance in hypotheses ouput by each ensemble member,
thus measuring epistemic uncertainty alone.

In 3.2.2 we present OOD evalutaion and detection using the aforementioned metrics in
combination with the area under the ROC curve (AUROC; Liang et al., 2018).

3.2. Results

3.2.1. Baseline results

In Table 1, we present the test set accuracy (ACC), negative log-likelihood (NLL), expected
calibration error (ECE), and Brier score for Llama-7B fine-tuned on each of our benchmark
datasets. We compare (Multi)SWAG against the MAP, MC Dropout, Ensemble and SWA.

We find several interesting results from our experiments. MC Dropout and Ensembles
do not appear to have a significant effect on either the performance or the calibration
of the MAP model. This is surprising as other works have focused demonstrated such
improvements from ensembling deep networks (Wang et al., 2023; D’Angelo and Fortuin,
2021).

We further notice that SWA significantly improves the generalization performance over
the MAP, albeit at the cost of calibration. SWAG offers a middle ground between SWA and
the MAP, by improving both generalization and calibration over the MAP model. Moreover,
MultiSWAG yields the same improvements at a slightly larger scale (albeit an additional
computational cost). It’s important to note that the benefit from MultiSWAG appears to
arise from both the ensembling as well as the exploration of basins of attraction in the loss
landscape. MultiSWAG consistently outperforms all other methods in both accuracy and
calibration.
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3.2.2. OOD results

Our results for OOD evaluation and detection are shown in Table 2. We find that while
SWAG and MultiSWAG have lower AUROC scores than non-SWAG methods, the OOD
evaluation accuracy is systematically higher for the SWAG methods. This is consistent
with the findings of (Wang et al., 2023), who posit that “we suspect the models would fail
to detect OOD samples if they can generalize to them, as the accuracy increases throughout
fine-tuning”.

Interestingly, when comparing AUROC results on the two selected metrics, cross-prediction
entropy and cross-model entropy, we find that while the choice of entropy does not affect
the AUROC scores for non-SWAG methods, cross-model entropy consistently yields bet-
ter results for SWAG by up to 4 percentage points, allowing us to almost match AUROC
performance of the non-SWAG counterparts.

Table 1: Baseline evaluation of accuracy and calibration of SWAG-LoRA and other
uncertainty-aware LoRA methods with Llama-2-7B across benchmark datasets.
MultiSWAG consistently outperforms the other methods, improving test set ac-
curacy and calibration across benchmark datasets. SWAG demonstrates similar
improvements to a lesser degree. Results presented are averaged over three sepa-
rate training runs, with standard errors shown as subscripts 2. Each best result is
bolded and the second best is underlined.

Metrics Methods OBQA CQA ARC-E ARC-C

ACC ↑

MAP 77.90.2 76.20.3 78.30.5 57.80.5
MC Dropout 77.70.1 75.80.3 77.80.7 55.42.0
Ensemble 77.6 77.1 77.7 57.6
SWA 81.20.4 77.00.4 82.70.2 63.50.5
SWAG 81.90.3 77.00.5 80.91.1 62.30.4

MultiSWAG 83.2 78.9 83.8 66.4

NLL ↓

MAP 0.680.00 0.690.01 0.680.00 1.140.01
MC Dropout 0.680.01 0.690.01 0.68 1.200.07
Ensemble 0.68 0.65 0.670.02 1.070.03
SWA 1.000.03 0.890.01 1.060.02 1.870.03
SWAG 0.600.02 0.790.05 0.620.02 1.120.04

MultiSWAG 0.50 0.58 0.53 0.91

ECE ↓

MAP 9.10.2 6.40.4 8.30.3 30.319.4
MC Dropout 8.70.2 6.60.1 7.50.9 7.81.4
Ensemble 9.0 4.6 6.5 4.0
SWA 14.90.5 14.20.4 014.20.3 27.90.6
SWAG 4.80.4 11.03.2 6.50.7 10.91.5

MultiSWAG 5.5 4.3 6.3 4.3

Brier ↓

MAP 0.330.00 0.350.00 0.320.00 0.580.00
MC Dropout 0.330.00 0.350.01 0.330.01 0.620.00
Ensemble 0.33 0.33 0.32 0.56
SWA 0.340.01 0.370.01 0.310.01 0.630.01
SWAG 0.280.01 0.360.01 0.290.01 0.530.01

MultiSWAG 0.25 0.30 0.25 0.47

5



Authors

Table 2: Comparison of OOD evaluation and detection performance of SWAG-LoRA with
other uncertainty-aware LoRA methods. SWA and SWAG systematically outper-
form the other methods in OOD accuracy, while suffering from worse calibration.
All models were trained on OBQA as the ID dataset. Results presented are aver-
aged over three separate training runs, with standard errors shown as subscripts.

Metrics Methods ARC-E ARC-C MMLU law MMLU cs

ACC ↑

MAP 60.20.2 50.70.3 34.40.5 42.80.7
MC Dropout 60.10.2 50.80.3 34.40.5 42.60.7

SWA 66.50.11 56.00.13 40.40.10 46.22.1
SWAG 64.60.11 53.50.1 40.10.23 44.10.9

NLL ↓

MAP 0.960.00 1.150.01 1.400.01 1.290.00
MC Dropout 0.960.00 1.150.01 1.400.01 1.290.00

SWA 1.430.04 1.840.05 2.390.24 2.560.30
SWAG 1.020.03 1.280.02 1.640.10 1.600.07

ECE ↓

MAP 4.90.3 10.90.5 15.20.9 11.40.2
MC Dropout 5.00.2 10.80.5 15.11.0 11.60.5

SWA 19.61.1 27.81.5 33.14.1 35.33.7
SWAG 7.41.3 15.50.4 20.13.6 20.70.4

Brier ↓

MAP 0.510.00 0.620.00 0.750.01 0.690.00
MC Dropout 0.510.00 0.620.00 0.750.01 0.690.00

SWA 0.530.02 0.690.02 0.890.04 0.880.03
SWAG 0.480.01 0.620.01 0.790.03 0.750.01

AUROC(HPred) ↑

MAP 0.780.00 0.810.00 0.920.00 0.890.00
MC Dropout 0.780.00 0.810.00 0.920.00 0.890.00

SWA 0.730.02 0.760.02 0.840.05 0.800.08
SWAG 0.720.02 0.750.01 0.840.02 0.810.01

AUROC(HModel) ↑
MC Dropout 0.780.00 0.810.00 0.920.00 0.870.00

SWAG 0.750.00 0.780.01 0.880.02 0.850.00

4. Conclusion

In this work, we demonstrated that the popular and simple SWAG method can be applied
with low-rank adaptation to achieve a competitive performance with more sophisticated
and computationally expensive methods that have recently been proposed for Bayesian
LoRA. We show our approach’s ability to both improve model generalization and calibra-
tion on a variety of widely used natural language understanding benchmarks. We show
that our approach is also robust to domain shift and can generalize to OOD data better
than a conventionally fine-tuned LLM. We hope that this exploration can serve to further
the endeavor to enable uncertainty awareness in foundation models without introducing
prohibitive computational overhead.

2. Due to computational and time constraints, we were unable to finalize the repeat runs for Ensemble and
MultiSWAG, and as such only the single run metrics are reported.
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Appendix A. Related Work

LLM Fine-tuning. In recent years, a number of methods for making more efficient use
of fine-tuning have emerged. Two notable mentions are transfer learning (Houlsby et al.,
2019), where a pre-trained LLM is adapted to new tasks or domains, enabling models to
leverage vast, pre-learned knowledge bases for a wide range of applications, and zero-shot
learning (Wei et al., 2022), where models infer correct responses without prior exposure to
specific task examples, which showcases the impressive generalization capabilities of LLMs.
While the aforementioned methods use traditional fine-tuning to efficiently generalize and
transfer knowledge, Parameter Efficient Fine-Tuning (PEFT; Ding et al., 2022, 2023; He
et al., 2023) targets the computational efficiency of the underlying fine-tuning methods.

One particularly noteworthy PEFT method (and the one that we focus on in our exper-
iments) is low-rank adaptation (LoRA; Hu et al., 2022). LoRA introduces a set of low-rank
matrices whose outputs are concatenated with several layers throughout the model and
optimizes only this comparatively small number of fine-tuning parameters. Consequently,
LoRA reduces the number of trainable parameters by three to four orders of magnitude
from full model fine-tuning, despite achieving comparable or even superior performance.
A key advantage of LoRA is that the low-rank matrices can simply be added to the pre-
trained weights, thereby not inducing any increased inference time. As the number of
trainable parameters is drastically reduced compared to traditional fine-tuning, the mem-
ory requirements of the optimizer states experience the same reduction, which allows for
the fine-tuning of much larger models given identical hardware constraints. For instance,
a recent study (Chen et al., 2023) has illustrated that fine-tuning LLMs with LoRA can
significantly enhance their capacity to handle larger context windows with only a minimal
increase in computational costs. Furthermore, LoRA modules trained on different tasks can
be stored and used to efficiently switch between models optimized for different downstream
tasks, significantly reducing the storage required for the usage of several different fine-tuned
LLMs. Recently, a number of other works around LoRA have been published, attempting to
further improve its efficiency and flexibility, among others, QLoRA (Dettmers et al., 2023)
and GLoRA (Chavan et al., 2023).

Uncertainty estimation for LLMs. The bulk of previous work on Bayesian inference
for LLMs has focused on pre-training (Tran et al., 2019; Xue et al., 2021; Cinquin et al.,
2022; Zhang et al., 2020; Chen and Li, 2023), which is quite computationally expensive
and additionally does not improve these models much, as large pre-trained models typically
already have reasonably good calibration (Kadavath et al., 2022). Additionally, it has
been shown that approximate Bayesian inference on posteriors over subspaces of the full
parameter space actually produces accurate predictions as well as well-calibrated predictive
uncertainty in both regression and classification settings (Izmailov et al., 2020). Therefore,
subspace inference is a particularly interesting approach to making LLMs Bayesian.

Recent works that combined language model fine-tuning with ensembles consider either
full fine-tuning (Gleave and Irving, 2022; Sun et al., 2022) or introduce ensembles consisting
of two members: one trained with full fine-tuning, and the other fine-tuned with LoRA
adapters (Hewitt et al., 2021). The first of these methods requires the storage of M sets of
model parameters, one for each of the M ensemble members, which can become impractical
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for the larger LLMs. While the latter method requires fewer parameters to be stored, it is
limited by the small ensemble size.

More recently, methods for combining uncertainties with LoRA were proposed, which
are Laplace-LoRA (Yang et al., 2023), LoRA Ensembles (Balabanov and Linander, 2024;
Wang et al., 2023), MC-Dropout, and Bayes by Backprop (Andersen and Maalej, 2022).
Moreover, non-Bayesian methods of quantifying uncertainties such as conformal prediction
(Ye et al., 2024) have also been applied in this context. Laplace-LoRA imposes a Laplace
approximation on the posterior over the LoRA parameters, while LoRA ensembles construct
an ensemble over the LoRA adapters.

In contrast to these existing works, we show that it is possible to achieve similar results
with the use of a simple and inexpensive stochastic weight averaging approach.

Out-of-distribution (OOD) detection. Detecting out-of-distribution (OOD) data is
crucial for ensuring the reliability and safety of machine learning systems. In open-world
scenarios, many models may encounter test samples that are out-of-distribution (OOD),
requiring careful handling. Such distributional shifts may arise from semantic changes
(Hendrycks and Gimpel, 2017), where OOD samples belong to different classes, or from
covariate shifts (Ben-David et al., 2010), where OOD samples come from a different domain.

The integration of Bayesian components into Large Language Models (LLMs) and the
resulting uncertainty estimates naturally equip Bayesian LLMs with the capability to detect
out-of-distribution (OOD) samples. Given the diverse landscape of Bayesian Deep Learning
(BDL) methods and settings, direct comparisons are challenging. However, a recent review
by Seligmann et al. (2023), covering a range of BDL approaches in realistic OOD scenar-
ios, found that fine-tuning just the final layers of pre-trained models with BDL algorithms
significantly improves both generalization accuracy and calibration on data with realistic
distribution shifts, while only slightly increasing runtime overhead. Moreover, these models
are often comparable to or even exceed the performance of specialized OOD generaliza-
tion methods. This finding is supported by the notable enhancements reported by recent
Bayesian LoRA-based methodologies (Yang et al., 2023; Balabanov and Linander, 2024;
Wang et al., 2023).

Particularly, the post-hoc implementation of Laplace approximation and LoRA fine-
tuning, as demonstrated in Yang et al. (2023), has improved calibration and uncertainty
estimation. Our work shares the same intuition, drawing on the premise that Bayesian
approaches, as they have employed, are instrumental in improving model calibration. This
is particularly relevant for LLMs in fine-tuning contexts, where available data is scarce com-
pared to the pre-training phase, highlighting the efficacy of Bayesian methods in navigating
uncertainty with limited datasets.

Drawing on the empirical results and insights of the work by Wang et al. (2023), our work
is motivated by the findings that LoRA ensembles significantly enhance both the accuracy
and calibration of these models, surpassing the outcomes of basic LoRA fine-tuning and
other methods like last-layer fine-tuning or Monte Carlo dropout. This evidence lends
strong support to the efficacy of ensembling techniques, to which SWAG presented in this
work belongs, in not just boosting model performance but also in fine-tuning calibration.
Wang et al. (2023) also explore the realm of regularized LoRA ensembles, echoing the
classical notion (Breiman, 2001) that diversity among ensemble components is pivotal for
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generalization. Recent works (Lakshminarayanan et al., 2017; Kumar et al., 2022; Fort et al.,
2019) suggest that these ensembling principles hold true for deep learning architectures as
well.

To evaluate how well our models are calibrated and their effectiveness in OOD detection,
we utilize established metrics such as negative log-likelihood (NLL), expected calibration
error (ECE), and the Brier score (Guo et al., 2017; Osawa et al., 2019). We also report
on entropy and cross-model uncertainty metrics, following the argument by Malinin et al.
(2020) that the entropy score alone cannot distinguish between epistemic (related to the
methodology or model) and aleatoric (inherent to the data) uncertainties, while cross-model
uncertainty like model disagreement offers an estimate of epistemic uncertainty only (i.e.,
model-based). Further discussions are presented in Subsection 3.1.
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