
∆ Attention: Fast and Accurate Sparse Attention
Inference by Delta Correction

Jeffrey Willette1, Heejun Lee1, Sung Ju Hwang1,2
KAIST1, DeepAuto.ai2

{jwillette, ainl, sjhwang82}@kaist.ac.kr

Abstract

The attention mechanism of a transformer has a quadratic complexity, leading to
high inference costs and latency for long sequences. However, attention matrices
are mostly sparse, which implies that many entries may be omitted from computa-
tion for efficient inference. Sparse attention inference methods aim to reduce this
computational burden; however, they also come with a troublesome performance
degradation. We discover that one reason for this degradation is that the sparse
calculation induces a distributional shift in the attention outputs. The distributional
shift causes decoding-time queries to fail to align well with the appropriate keys
from the prefill stage, leading to a drop in performance. We propose a simple,
novel, and effective procedure for correcting this distributional shift, bringing
the distribution of sparse attention outputs closer to that of quadratic attention.
Our method can be applied on top of any sparse attention method, and results in
an average 36%pt performance increase, recovering 88% of quadratic attention
accuracy on the 131K RULER benchmark when applied on top of sliding window
attention with sink tokens while only adding a small overhead. Our method can
maintain approximately 98.5% sparsity over full quadratic attention, making our
model 32 times faster than Flash Attention 2 when processing 1M token prefills.

1 Introduction

The main operation that powers modern transformers, self-attention [Vaswani et al., 2017], creates
causal pairwise comparisons for every item in a sequence. While powerful and expressive, this
operation comes with a quadratic complexity, leading to the need for large amounts of computation
during inference on long sequences. This increases direct costs for hardware and electricity as well
as negative externalities such as CO2 emissions. Training-free sparse attention modifications aim
to lower the quadratic complexity at inference time, but come with unwanted side effects such as
accuracy degradation due to the sparsification of the attention matrix.
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Figure 1: RULER 131K Subsets. At long context lengths, sparse attention can degrade performance
by a large margin. Our simple ∆ correction improves performance and only requires an additional
1.5% of the full quadratic attention computation.
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Recent works on sparse attention have found that a sparse sliding window can be added at inference
time without a total loss of model stability. This is accomplished by saving a small number of initial
tokens, and applying a sliding window on all subsequent tokens (Streaming LLM [Xiao et al., 2023]).
Subsequent works such as Star Attention [Acharya et al., 2024] have proposed a similar sparse prefill
strategy with a fully dense decoding procedure to generate new tokens. This strategy has the positive
attribute of a sparse prefill while still performing attention with all tokens during generation. This
should allow the model to accurately recall context buried deep within the prompt. However, we find
that this is not the case in practice. For example, there is a challenging subset of the RULER [Hsieh
et al., 2024] benchmark titled MultiKey-3, which consists entirely of unique UUID keys and values,
and the large language model (LLM) must be able to recall the proper value for a particular key in
order to get a correct answer. In this setting, a sliding window of 2048 tokens provides more than
adequate room for encoding individual key and value pairs together within the window. One would
then expect that a dense decode procedure would be able to retrieve the proper UUID given a user
query. However, we find that this is not the case and the dense decode achieves a surprisingly low
accuracy of 0% as opposed to 62% when using quadratic attention.
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Figure 2: Comparing RULER 131K
prefill attention latency and accu-
racy for sparse attention methods.

We find this drop in accuracy arises from a distributional shift
in the output tokens of each layer due to the sparse prefill. This
distributional shift causes problems with the query-key dot
products in long contexts and therefore results in an extreme
drop in performance as the queries no longer align with the
expected keys. We study this problem and found a surprisingly
simple fix which we dub ∆ Attention that improves the accu-
racy of sliding window attention from 0% to 44% (Figure 1,
NIAH MK3) on this challenging subset while maintaining
more than 11-fold speedup over plain Flash Attention 2 [Dao,
2023] for processing 131K context lengths (Figure 2). Through
evaluations on perplexity, natural language understanding, and
synthetic tasks, we demonstrate that our method consistently
results in better performance while maintaining the low latency of the sparse prefill.

Our contributions are as follows:

• We identify a distributional shift in tokens when applying an inference-time sparse attention
method to pretrained transformers, which interferes with query-key alignment on long
contexts and leads to a drop in performance.

• We introduce Delta (∆) Attention, a sparse post-processing correction that realigns sparse
outputs with full quadratic attention.

• Our method adds negligible latency overhead compared to plain sparse attention, while
drastically increasing performance over purely sparse methods.

• Our method is designed to work in the attention output space, so it can be seamlessly
integrated with existing sparse attention kernels and inference pipelines without major
modification.

2 Background & Related Work

The self attention mechanism of a transformer takes an input sequence X ∈ RN×d of individual
tokens xi ∈ Rd for i ∈ {1..N}. After applying linear projections WQ,WK,WV ∈ Rd×d to the
input X to achieve the respective Q,K,V matrices, positional encodings such as [Su et al., 2024]
are applied to Q and K. With σ representing the softmax operation over the last dimension, the
self-attention operation for an arbitrary layer in a transformer is the following,

AV = σ

(
QK⊤
√
d

)
V = σ

(
XWQ(XWK)⊤√

d

)
XWV (1)

We omit the output projections, attention heads, and post-attention multilayer perceptrons (MLPs).
For a deeper discussion of these topics in transformers, please see [Vaswani et al., 2017]. The most
expensive operation in Equation (1) that arises from the multiplication inside σ() which results in
the implicit construction of an attention matrix A ∈ RN×N which is computationally expensive for
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large N . Due to the causality condition of language, a token xi may only influence another token xj

where the index i ≤ j. In practice, this means that only the lower triangle of A is computed.

After traversing through the layers of the network, the next token in the sequence xN+1 is generated
(predicted) and added to the input sequence to generate the next token and so on until the sequence
terminates. In this generation phase, each iteration may use the previously computed tokens, which
are stored within a cache at each layer, so that we may avoid re-calculating the entire attention matrix
in Equation (1). With a union operator ∪ which concatenates matrices by adding new rows, and
considering that K,V contain tokens with indices {1..N}, and the newly generated token has index
i = N + 1, the generative process for the next token proceeds through the attention layers as,

(a⊤v)i = σ

(
q⊤
i

[
K ∪ k⊤

i

]⊤
√
d

)
(
V ∪ v⊤

i

)
(2)

Sparse attention prefill methods aim to reduce the quadratic computation in Equation (1) by computing
a subset of entries within A, forming a sparse matrix A∗ where the number of computed entries∑

i,j 1{A∗
i,j > 0} ≪ N2

2 with minimal information loss. However, in practice, large portions of
the attention matrix are ignored, which may cause unintended differences in the output tokens and
lead to unexpected behavior of future query-key dot products, which could degrade performance on
downstream tasks. Previous works have studied in-context learning (ICL) processes such as induction
heads [Olsson et al., 2022], which are responsible for copying relevant content from earlier tokens
into later tokens in the sequence [Musat, 2024]. Induction heads are known to be more prevalent
in the lower layers of the network [Yin and Steinhardt, 2025], which implies that a distributional
mismatch between queries and keys at the lower layers of the network will inhibit ICL processes.
Additionally, Wu et al. [2024] showed that these induction or retrieval heads are universal for all
transformer model types and further highlighted that interfering with these special attention heads
causes a catastrophic drop in performance on downstream tasks during inference.

Recent works on sparse attention, such as Streaming LLM [Xiao et al., 2023], have shown that a
pretrained quadratic transformers can be modified on-the-fly at test time into a stable sparse attention
model by utilizing sink tokens and sliding windows. This has inspired a multitude of recent works
that utilize this knowledge for inference time adaptations that selectively prune the less important
‘middle’ tokens from the KV-cache during inference. Two approaches, H2O [Zhang et al., 2024b] and
SnapKV [Li et al., 2024] accomplish this by looking at historical attention scores to decide which
tokens to prune. However, these works still leave the quadratic prompt in place, which requires a
computation overhead of O(n2).
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Figure 3: Comparing sparse attention
methods to quadratic attention. Our
∆ correction results in outputs that are
more similar to quadratic attention.

Other recent works have therefore made efforts to lower
the complexity of the prompt as well. Big Bird [Zaheer
et al., 2020] studies the effect of randomly choosing keys
for every new query in the attention matrix. However,
random key selection has been shown to underperform a
more targeted selection of keys in HiP Attention [Lee et al.,
2024a,b], which applies a tree-based pruning mechanism
that masks out less important blocks of keys in order to
sparsify the computation of the attention matrix. MInfer-
ence [Jiang et al., 2024] studies reliably recurring patterns
in the attention matrix of specific attention heads, and
builds a set of sparse kernels which apply sparse attention
following these patterns. Star Attention [Acharya et al.,
2024] uses a sparse strategy akin to that of Streaming LLM
with a sliding window, initial tokens, and a fully dense
decode procedure which evaluates the dot product between
every past key for new queries during the decoding phase.
As we show in our experiments, this scheme does not work
for all tasks unless the sliding window represents a large
percentage of the total context length (see Table 1).

To illustrate how our findings integrate with these prior works, we provide an example in Figure 3.
In this experiment, we use quadratic attention and Streaming LLM to prefill a 131K length input
from the RULER benchmark. We then compute the cosine similarity cos([A∗V]i, [AV]i) of the
sparse and quadratic outputs, and also construct the last part of the full attention matrix using the
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Figure 4: Overview of ∆ Attention. (Top) Given an arbitrary sparse attention method we calculate
the difference between the sparse attention and full attention for a small subset of queries. The subset
size is controlled by a hyperparameter γ. (Bottom) We then repeat the calculated difference for all
output tokens and add the result to the full sparse attention output. The result is an approximation to
the original quadratic attention.

last 128 queries in order to compare the rank correlation coefficient ρ(A∗
i,Ai) in the final rows of

the attention matrix. If the sparse attention method does not cause a distributional shift, then the
attention outputs should have a high cosine similarity to quadratic attention, and sorting the rows of
the attention matrix should lead to the same sort order, which implies that the relative importance
(ranking) between queries and keys has been maintained. As seen in Figure 3, in both dimensions,
the sparse attention of Streaming LLM causes a drift in the distribution of tokens, which causes the
degradation in task performance seen in Figure 1. However, we find we can correct this distributional
shift with the addition of a ∆ term which we will describe in the following section.
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Figure 5: Intuition for ∆ Attention. The
difference of attention outputs approximates
the missing attention contribution.

Given the distributional shift shown in Figure 3, our
method answers the following question: How may
we shift the distribution of attention outputs such
that they are closer to the representation which is
expected during quadratic attention? Specifically,
we wish to add a term to the sparse attention output
A∗V such that we recover the attention contribution
A∆V from the places where sparse attention has
given zero weight. This region is usually located somewhere inside the lower triangle of the attention
matrix and resembles a delta shape. We propose to approximate this ∆ region by a simple difference
of attention outputs, as geometrically depicted in Figure 5. Specifically,

A∆V ≈ AV −A∗V (3)
Note that the softmax normalization of sparse attention methods generally only computes the normal-
ization constant over the nonzero values. Thus, A and A∗ have different normalization constants,
which makes the relation an approximation. We consider A and A∆ to share the same softmax
normalization constant. Let the full attention softmax normalization constant be T + H , and the
sparse attention normalization constant be T .

Lemma 1. w.l.o.g. Consider an arbitrary row in the attention matrix a and arbitrary column of the
values v, with both a and v being sorted according to rank of a such that a = (ar(1) ≤ ar(2) ≤
· · · ≤ ar(N)). For a top-k sparse attention matrix which only computes the top-k attention scores,
one only needs to compute a∗⊤v =

∑N
N−k+1 a

∗
ivi. With ∆ = a⊤v − a∗⊤v, we may bound the

error of our attention approximation as,
∣∣∣∣∣∆−

N−k∑

i=1

ai vi

∣∣∣∣∣ ≤
H

H + T
max

i>N−k
|vi|

Proof. See Section G.

We ultimately seek a shift in the attention outputs such that A∗V + ∆ ≈ AV. Trivially, if
we choose ∆ = AV − A∗V, we have exact equality; however, calculating A requires the full

4



quadratic attention procedure that we wish to avoid. As AV −A∗V ≈ A∆V, if we further
assume that (A∆V)i ≈ (A∆V)i+ν for ν ∈ {1, . . . , γ} and γ ∈ N, then we may approximate
(AV)i+ν ≈ (A∆V)i + (A∗V)i+ν . Under this approximation, one only needs to compute every γth

row of the attention matrix, which maintains a sparse computation by only computing a subset of
rows of A. To do this, we select a fixed fraction of row indices from Q, such that,

Q̃⌊ i
γ ⌋ = Qi =⇒ i mod γ = 0; ∀ i ∈ {1 .. N} (4)

and therefore ÃV = σ(Q̃K⊤)V which is sparse in the query dimension, but dense in the key
dimension. One possible approach would be to substitute this representation into the appropriate
rows of the sparse output A∗V such that the final representation Â, is the following,

(
ÂV

)
i
= (A∗V)i +

make a dense output row if i mod γ = 0︷ ︸︸ ︷
1{i mod γ = 0}

[
ÃV⌊ i

γ ⌋ − (A∗V)⌊ i
γ ⌋γ

]
; ∀ i ∈ {1 .. N} (5)

We dub this approach as ‘recompute’, as we are essentially using the sparse representation with some
densely computed output tokens interwoven at regular intervals. However, we find that this approach
still does not shift the distribution of attention outputs far enough towards the expected representation
under quadratic attention (see Figure 9). Therefore, in order to apply a shift to all tokens in the output
of A∗V while maintaining a sparse computation, we instead apply the following correction to the
sparse attention output,

(
ÂV

)
i
= (A∗V)i + (A∆V)⌊ i

γ ⌋γ (6)

= (A∗V)i +
[
ÃV⌊ i

γ ⌋ − (A∗V)⌊ i
γ ⌋γ

]

︸ ︷︷ ︸
∆ correction term

(7)

Algorithm 1: ∆ Attention Algorithm

Require: f(), f∗()Q,K,V, γ
// sparse attention for all of Q
A∗V← f∗(Q,K,V)

Q̃← Equation 4
// dense attention every γ th query
ÃV← f(Q̃,K,V)
// collect proper indices for ∆ construction
δ ← {i | i mod γ = 0}
∆← ÃV − (A∗V)i∈δ

// repeat ∆ and apply correction
ÂV = A∗V + repeat(∆, γ)

return ÂV

Which is equivalent to swapping in a dense row of
the attention matrix at every γth row, and applying the
difference between the dense and sparse attention for
the previous γth row otherwise. A visual depiction of
this process can be seen in Figure 4, and pseudocode
in Algorithm 1. Since our method is applied directly
on the attention outputs, we may utilize existing sparse
attention kernels to compute A∗V and make use of a
minimally modified flash attention kernel to compute
our query-sparse attention ÃV.

Assuming that a row index j of the attention matrix is
not evenly divisible by γ, this means that an attention
differential from a previous row is being applied to
the current row j. The intuition from this operation
comes from prior works which have studied attention
locality [Lee et al., 2024a], finding that the difference
between attention scores for neighboring tokens is generally small. Likewise, our conjecture is that
the low attention score regions from neighboring rows of the attention matrix also have a negligible
difference, allowing for the less important part of the row of the attention matrix to be reused
multiple times. Specifically, as stated above Equation (4), we assume that (A∆V)i ≈ (A∆V)i+ν

for ν ∈ {1, . . . , γ} and γ ∈ N. To validate this assumption, we examine the average cosine similarity
of (A∆V)i within a γ window on an input from the RULER 131K task set for various values of γ
in Figure 6b. We find a high average cosine similarity within the window, implying that (A∆V)i
may be reused for multiple rows of the attention output.

4 Experiments
We evaluate our method in terms of perplexity (PPL) and long context perplexity using the
LongPPL [Fang et al., 2024] metric on a QA version of the PG19 [Rae et al., 2019] test set, which
was recently proposed as a long context understanding dataset [He et al., 2025]. We also provide
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Table 1: RULER (Llama 3.1 8B Instruct and Mistral NeMo 12B) for sparse attention methods.
Adding ∆ Attention results in better overall accuracy, with the largest improvement occurring at the
longest context length and on the most naive sparse method (Streaming LLM). Colors are relative to
each attention method group + Flash Attention 2.

Model Llama 3.1 8B Instruct Mistral NeMo 12B

Attn.
Method

Flash
A

ttn.

Str.
L

L
M

Str.
L

L
M

Str.
L

L
M

Str.
L

L
M

Str.
L

L
M

+∆

M
Inf.

M
Inf.+

∆
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Flash
A

ttn.

Str.
L

L
M

Str.
L

L
M

+∆

H
iP

H
iP+

∆

Wind. - 2K 4K 16K 32K 2K 3K 3K 3K 3K - 2K 2k 3K 3K

4K 96.74 90.52 96.71 96.71 96.71 96.54 96.74 96.71 96.80 96.31 90.60 71.01 90.42 90.36 90.55

8K 93.25 60.53 93.76 93.76 93.76 92.25 93.65 93.69 94.56 94.43 87.67 44.89 85.38 88.36 87.69

16K 90.99 38.13 68.07 91.15 91.15 88.66 92.32 91.34 94.10 93.86 81.82 33.28 78.07 78.07 81.08

32K 85.84 30.25 43.38 56.32 85.83 81.27 86.75 85.96 89.92 89.39 62.54 12.27 34.76 58.76 60.38

65K 85.25 18.59 34.08 41.28 58.35 75.22 84.43 83.67 82.51 84.89 46.89 03.28 16.22 35.87 41.56

131K 73.16 27.45 30.32 40.51 49.17 64.40 65.73 73.31 68.74 73.71 18.09 02.25 01.44 10.10 10.93

Avg. 87.54 44.25 61.05 69.96 79.16 83.06 86.60 87.44 87.77 88.76 64.60 27.83 51.05 60.25 62.03

evaluations of our method on the RULER [Hsieh et al., 2024] benchmark, which tests models’ perfor-
mance under a number of long context retrieval tasks. Additionally, we evaluate our ∆ Attention
on Infinite-Bench [Zhang et al., 2024a], and also provide analysis that evaluates the effect of our ∆
correction on the distribution of attention outputs and scores, and overall attention latency. Our work
considers that the decoding process shown in Equation (2) is dense along the key dimension and
should be able to successfully learn from previously encoded information during the sparse prefill.

We apply our method in conjunction with the sparse attention methods Streaming LLM [Xiao
et al., 2023], HiP [Lee et al., 2024a,b], and MInference [Jiang et al., 2024], on models from the
Llama [Dubey et al., 2024] (3.1 and 4), and Mistral [Jiang et al., 2023] model families. Unless
otherwise noted, our standard setting uses γ = 64 which means we calculate every 64th query row
(approximately 98.5% sparsity) in the attention computation required by ∆ Attention.

RULER. For baselines on needle-in-a-haystack type tasks, we compare our method in addition to
Streaming LLM, HiP, and MInference for both Llama and Mistral models. In all cases, ∆ Attention
shows a large improvement upon the given sparse methods, and especially at the longer context
lengths in Table 1. In particular, we note an improvement of nearly 37%pt over Streaming LLM
with the same 2K window size for 131K with Llama 3.1. For Streaming LLM, if we adjust for the
extra computation needed by our method, we find that the approximate window size of our method
is 3072 (see Section F for calculation). This is due to the fact that we also use a sliding window of
2048 and compute every 64th row of the lower triangle in the attention matrix. Therefore, even when
Streaming LLM is allowed a higher computational budget of a 4K window, ∆ Attention still results
in an increase of 34%pt, more than doubling the accuracy of Streaming LLM (+112%, relative).
Even when Streaming LLM is allowed a 32K window, Streaming LLM + ∆ with a 2K window still
delivers higher accuracy.

Table 2: Perplexity on PG19 Long QA [He et al.,
2025]. Our simple ∆ correction results in a signif-
icant drop in both PPL and Long PPL.

Method Long PPL ↓ PPL ↓
Flash Attention 2 5.11 (-) 3.33 (-)

Streaming LLM 7.02 (+1.91) 3.54 (+0.21)
Streaming LLM + ∆ 5.96 (+0.85) 3.41 (+0.08)
HiP Attention 6.29 (+1.18) 3.48 (+0.15)
HiP Attention + ∆ 5.45 (+0.34) 3.37 (+0.04)

Perplexity (PPL) and Long Perplexity
(LongPPL). We generated a QA dataset based
on the PG19 test set according to the procedure
outlined by He et al. [2025]. This results in a
long context task where an entire book is used as
context, along with a series of LLM-generated
questions and answer pairs with total context
lengths of approximately 100K. In order to ex-
cel at this task, a model must be able to retain
all information and facts from the text, which
may be asked in the follow-up QA session. We
evaluate both PPL and LongPPL, where the latter metric selects a subset of tokens that are found
to rely heavily on long context for the final loss calculation. LongPPL has been shown to have a
stronger correlation with long context performance over PPL [Fang et al., 2024]. We use Llama 3.1
8B instruction-tuned models for this experiment. Results can be seen in Table 2 and Figure 6. When
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Table 3: ∞-bench results. Colors are made relative to the best and worst metrics within each
model group, with Flash Attention being part of every group. Our ∆ correction improves overall
performance in every case. En.QAR displays recall for the En.QA subset.

Model Method Ctx Len. En.MC En.QA En.QAR En.Sum Passkey Number KV Math.F Avg.

Llama 3.1
8B Instruct

Flash Attention 126K 64.19 35.89 44.69 31.59 99.13 99.83 92.40 24.86 61.57

HiP 126K 54.15 31.49 38.12 31.06 75.08 96.10 30.60 18.86 46.93
HiP + ∆ 126K 61.14 33.70 43.54 31.30 100.0 97.97 69.60 25.71 57.87

Str. LLM 126K 27.95 07.25 14.67 20.57 02.71 01.36 01.20 25.14 12.51
Str. LLM + ∆ 126K 56.33 24.93 33.35 26.95 96.27 68.81 00.40 25.43 41.66

Llama 4
Scout 109B

Flash Attention 384K 82.10 44.34 48.82 35.30 100.0 100.0 99.20 43.14 69.11

HiP 384K 74.67 43.19 48.29 34.28 100.0 99.83 99.40 41.14 67.60
HiP + ∆ 384K 78.60 42.84 48.14 34.06 100.0 99.66 97.20 44.29 68.10

Str. LLM 384K 49.78 15.23 26.11 31.50 52.88 08.31 03.40 40.57 28.47
Str. LLM + ∆ 384K 73.80 37.82 43.03 30.62 94.75 91.36 46.60 40.86 57.35

Flash Attention HiP Streaming LLM HiP + ∆ Streaming LLM + ∆
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Figure 6: (a) Perplexity metrics for increasing γ ∈ {23, . . . , 28} . For PPL and LongPPL, increasing
the query stride shows a slight trend towards higher PPL with higher sparsity. (b) Measures the
average cosine similarity between the approximate (A∆V)i and (A∆V)i+ν for ν ∈ {1, . . . , γ}
for Streaming LLM and finds a high similarity within a γ neighborhood of attention outputs. High
similarity implies (A∆V)i can be reused within the γ neighborhood.

our ∆ Attention is applied on top of both HiP and Streaming LLM, we achieve between a 50-75%
reduction in the PPL performance gap between quadratic attention. This trend holds true for both PPL
and LongPPL. Figure 6 shows the effect of varying the γ parameter form 8-256. As γ also controls
the sparsity, we find that as the sparsity increases, both perplexity metrics tend to rise.

Infinite Bench. [Zhang et al., 2024a] For both LLama 3.1 8B and Llama 4 Scout 109B, results are
displayed in Table 3. The display colors are encoded to show the performance difference within each
model group, and including flash attention in all groups. For Llama 4 (Streaming LLM), the addition
of ∆ resulted in an increase of 40%pt, which leads to recapturing 82% of quadratic attention accuracy
(up from 41%). Similarly, for Llama 3.1, the addition of ∆ increased overall performance by 29%pt,
which moves from 20% of full attention accuracy to recovering 67%. The realized performance gains
when applying our method to HiP result in a 10%pt increase for Llama 3.1 and a 0.5%pt increase for
Llama 4. Note that HiP with Llama 4 only shows a total of 1.5%pt gap in performance, which means
that ∆ Attention was able to recapture 33% of the total performance gap.

4.1 Ablation & Analysis

Latency. For a single attention layer, our method shows a large reduction in latency when compared
to Flash Attention 2 benchmarked at 1M tokens. In Figure 7, HiP + ∆ runs more than 8 times
faster. For Streaming LLM + ∆ this factor increases to over 32, which means that ∆ Attention
may perform more than 32 attention operations for a single quadratic Flash Attention 2 operation.
While our method does require more computation than the standalone sparse methods in Figure 7b,
the relative increase is modest in comparison to the latency of quadratic attention. MInference has
been excluded from these latency results due to the current public implementation not fully utilizing
hardware parallelization in this experiment. For further details, please see Section E.
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Figure 7: (a) shows latency comparisons against flash attention at 1M tokens. Our method maintains
most of the large latency reductions of sparse methods. (b) compares latency against plain sparse
methods. Our method introduces a slight overhead due to requiring computation equivalent to 1.5%
of the whole attention matrix. (c) evaluates the effect of different γ parameters on latency. We find
that increasing the stride between queries leads to an expected decrease in latency.

How does the ∆ affect attention outputs and scores? To study the effect of the ∆ correction on
the attention outputs and scores, we evaluate both attention output cosine similarity and the Spearman
rank correlation coefficient [Spearman, 1904] of the attention rows for the last 128 queries of the
prefill. For this, we used a sample from the MultiKey-3 RULER (131K) benchmark with the Llama3.1
8B instruction tuned model. A subset of layers is depicted in Figure 9, where each point in the plot
and histogram is a random sample from one of the 32× 128 (attention heads and queries). Additional
plots for all layers in the network can be seen in Figures 13 to 15 in the appendix. At the key lower
layers where the induction heads are known to be most prevalent, we find that the ∆ correction results
in a large corrective shift in both the rank correlation and cosine similarity, making both metrics
much closer to the ground truth distributions of quadratic attention. Notably, only using ‘Recompute’,
which densely recomputes some rows of the attention matrix, is not enough to shift the distribution,
as it is indistinguishable from the plain Streaming LLM model in Figure 9.

In Section 1, we stated that ∆ Attention shifts the distribution of attention outputs towards the
distribution which would be seen under fully quadratic attention. Figure 9 provides three more
examples of lower layers which show the same shift as shown in Figure 3. It is notable, however,
that this strong shift towards the distribution of quadratic attention is not present in all layers of
the network. Figures 13 to 15 together show all layers. ∆ Attention appears to maintain a strong
similarity to quadratic attention at the lower layers, which gradually dissipates until layer 10, when
the three methods become indistinguishable. However, there is a sudden rise in attention output
cosine similarity again towards the last layers of the network

While both the output cosine similarity and the rank correlation are important, the high rank correlation
coefficient provides a crucial insight as to how the ∆ correction aids in improving performance.
For sparse methods, the last 128 queries from a 131K context have undergone a distributional shift
induced by the sparse method, which means that they no longer correctly align with the appropriate
key tokens during dot-product attention. A high rank correlation, however, implies that the ranking
(importance order) of dot products across an entire row of the attention matrix remains largely intact
and therefore, should result in outputs with higher similarity to quadratic attention outputs. This
suggests that dense decoding can now effectively access information buried deep in the prompt, which
is something our experiments show sparse attention methods struggle to do.

Table 4: RULER ablation for Equation (5)
‘recompute’ and Equation (6) ∆.

Model 131K 65K 32K . . . Avg.

Str. LLM 27.45 18.59 30.25 . . . 44.25

Str. LLM + Recompute 52.67 72.71 78.39 . . . 79.99
Str. LLM + ∆ 64.40 75.22 81.27 . . . 83.06

Does Equation (5) or Equation (6) Perform Bet-
ter? In the previous paragraph we gave qualitative
examples of the difference between Equation (5) and
Equation (6) on the attention output cosine similar-
ity. Now we ask, how does this observed difference
affect the performance of the model? Table 4 shows
the effect of ‘recompute’ from Equation (5), which
recomputes a selected number of queries with dense attention and does not apply the difference to
subsequent tokens in the γ neighborhood. Only recomputing tokens results in a 37%pt increase over
all context lengths and is only 3%pt short of matching ∆. However, at the longest context length, ∆
still delivers a more than 11%pt increase in accuracy.

Figure 8 shows ‘recompute’ compared to ∆ Attention for individual subsets of the RULER-131K
context length. We find that the only case where ‘recompute’ outperforms our method is on the
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Figure 9: For RULER with a context length of 131K, we look at the final 128 tokens in the attention
output and the final 128 queries in the attention matrix. We compare the cosine similarity of the
outputs and the rank correlation of the attention rows to quadratic attention. We find that for both
measures, ∆ Attention is more similar to quadratic attention.

variable tracking subset (VT). We are unsure of the cause of this anomaly, although it is important
to note that ‘recompute’ even outperformed flash attention by approximately 15%pt, which implies
that there is some structure within this task that happened to benefit from ‘recompute’. In general,
flash attention should represent an upper bound to sparse attention, which is what we observe in
general. Note that the CWE subset of RULER is removed from this plot, as all methods (including
flash attention) score 0% on the 131K context length.

5 Discussion & Limitations
Flash Attention
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Figure 8: Comparing the effects of Equa-
tion (5) ‘recompute’ and Equation (6) ∆
on RULER 131K subsets.

Our method presented thus far has been a simple extension
to existing sparse attention methods, which can be applied
with a minimal addition of overhead and a very simple
modification to the attention layer. The common way of
computing sparse attention in prior work is to compute an
attention output that is dense in the queries and sparse in
the keys, so that there is at least one output for every input
query token. One way to view our ∆ Attention extension
is that we are mixing a key-sparse (and query-dense) atten-
tion output with a query-sparse (and key-dense) attention
output in order to arrive at a representation which is closer
to the quadratic attention output that is dense in both the
queries and keys.

The idea of viewing attention sparsity from both dimen-
sions holds the potential for future works to explore novel
ways of combining various combinations of sparse meth-
ods in order to approximate the full attention operation.
With Lemma 1, we were able to show that the difference of attention outputs approximates the missing
attention output, however, we only have empirical evidence of the secondary approximation that
(A∆V)i ≈ (A∆V)i+ν for ν ∈ {1, . . . , γ}. While this is empirically validated in our experiments
and by the high cosine similarity in Figure 6b, future works may study this approximation further,
which could lead to creating a smarter selection criteria for the query sparse attention, as our method
uses only a fixed hyperparameter to set the size of the gap between query tokens.

6 Conclusion

In this work, we first diagnose a harmful distributional shift induced by sparse attention prefill
methods. We then propose a remedy with our lightweight, sparse-kernel agnostic ∆ Attention
procedure. ∆ Attention corrects sparse outputs to align better with full quadratic attention outputs,
requiring only a small post-processing step that can be integrated seamlessly into existing inference
pipelines. Across all benchmarks, and especially at the longest context lengths, our method delivers
significant accuracy gains while maintaining high sparsity and low latency.
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A Appendix Contents

• Section B Discusses the broader impact of our work.

• Figures 13 to 15 shows individual plots comparing cosine similarities and rank correlation
coefficients against quadratic attention for all layers, analogous to Figure 9.

• Figure 10 shows an additional study on the γ parameter and latency for HiP, analogous
to Figure 7c.

• Section C discusses details about the implementation of our method.

• Section E discusses details regarding latency for MInference.

• Figure 12 shows bar charts for the full set of datasets for the RULER 131K context length.

• Section D states the computing resources that were used for the experiments in this work.

• Section H discusses additional related works and comparisons.

• Section I shows the performance of our method on code understanding.

• Section J discusses and shows results for interpolation/inputation between delta terms.

• Section K contains a paired permutation statistical significance test corresponding to the
RULER results in Table 1.

B Broader Impact

We are not aware of any negative potential impacts of our work beyond impacts that are general to all
machine learning models. However, lowering the computational cost for inference has the potential
to lower costs such as electricity consumption, hardware requirements, and latency for end users. If
this can effectively be done with minimal degradation in the performance of the underlying model, it
will likely be beneficial to both producers and consumers of AI models.

C Implementation Details

In addition to the index selection in Equation (4), in practice, we also select a block of queries for
dense recomputation at the end of the prefill sequence, which makes the part of the prefill which
requires a delta correction evenly divisible by γ. We do this for both ease of implementation and also
to provide the decoding tokens with the most accurate block of recent context. The block of queries
at the end of the sequence allows us to simply reshape a tensor and project the ∆ correction onto
every element in the block, as the tensor that needs a delta correction will have a regular size that is
divisible by γ.

D Compute Resources

For LLM inference on benchmark datasets, we use Google Cloud Platform’s 8x NVIDIA H100 node.
For latency measurements, we use a standalone machine with an NVIDIA RTX 4090 in order to
have a controlled environment. Here, we show the detailed specification of the latency benchmarking
machine:

CPU AMD Ryzen 7950X, 16 Core, 32 Thread
RAM 128GB, DDR5 5600 Mhz
GPU Nvidia RTX 4090, VRAM 24GB
PCIe Gen 4.0 x8
OS Ubuntu 22.04.4 LTS
GPU Driver 535.171.04

E Latency of MInference with Delta Attention

We did not report the latency of MInference in the main paper, because MInference shows unusually
slower latency than other tested methods, including Flash Attention. We think this is due to (1)
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Figure 10: Latency measurements for different settings of γ which controls the gap size between
queries and also the overall sparsity of the calculation. This figure accompanies the latency ablation
for Streaming LLM in the main text, Figure 7c.

insufficient optimization of the publicly available kernel 1 and (2) MInference uses a for-loop across
the head dimension that prevents the head dimension from being parallelized within the GPU. This
limitation of the publicly available implementation will cause the latency to suffer if the attention
calculation for each head does not fully utilize the hardware. This for-loop structure was likely
implemented in this way because MInference uses different sparse attention strategies for each head.
Therefore, as MInference is algorithmically faster than flash attention, we do not report the latency
in Figure 7, as this would be misleading to readers who are not familiar with the low-level details of
the implementations.

We capture the kernel latencies and hardware utilization for MInference. In our analysis with Nsight
Systems, their vertical slash pattern kernel ‘_triton_mixed_sparse_attn_fwd_kernel’, shows
around 32 milliseconds latency for a single head, while flash attention shows only 462 milliseconds
for 32 heads. The MInference kernel shows noticeably low utilization of streaming multiprocessor
warps, which is around 9%.

However, for completeness, we put the latency measurements of MInference in Table 5. In our
measurement using their official codebase without meaningful modification, with pre-compiled
model configuration for head-wise sparse method settings, Minference is about 1.377 times slower
than Flash Attention. We believe this is only due to the lack of a fully parallelized kernel and not the
design of the method.

Table 5: Prefill latency measurements (ms) that include MInference on RTX 4090 up to 256K context
length.

32K 64K 128K 256K

FA 34.27 119.77 462.39 1858.60
HiP 53.61 118.53 255.05 562.24
HiP + ∆ 55.44 123.49 268.02 602.74
Minference 135.28 395.92 1083.66 2559.47

F Approx Window Size Calculation

When comparing out method to Streaming LLM, we would like to know how much computation
overhead is increased in order to estimate the approximate window size of our method due to
the fact that ∆ Attention computes extra tokens. We can calculate this as follows with C as the
context size, and w as the window size in a single row of the attention matrix, our method will

1https://github.com/microsoft/MInference
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compute every γth row of the attention matrix which would be equivalent to C
2γ when amortized

into each row calculation. This brings the total calculation per row to w + C
2γ . In the case of

131K context, a window size of 2048, and γ = 64 (our standard setting) this would be evaluated as
2048 + 217

2(26) = 2048 + 210 = 2048 + 1024 = 3072.

G Restatement and proof of Lemma 1

We want to show that the difference of A∆V ≈ AV −A
∗
V is approximately equal to the missing

delta-shaped attention output, which is pictured in Figure 5. w.l.o.g., we will consider a single
arbitrary row of the attention matrix a and a single column vector from the values v. The following
is true regardless of the selected entries in a, however, in order to create a tighter error bound, we
assume the existence of a sparse attention method which chooses the largest attention values in a
when calculating the sparse dot product v⊤a∗. Specifically,
Lemma (Lemma 1). Let ā = (ā1, . . . , ād) ∈ Rd be the pre-softmax vector which is sorted and
satisfies,

ā1 ≤ ā2 ≤ · · · ≤ āN ,

then any exact top-k sparse attention method which selects the top-k attention scores should select
the last k elements of a. Fix an integer 1 ≤ k ≤ N . Define the head-sum H , tail-sum T , and
normalization constant Z to be the following:

H =

N−k∑

i=1

eāi , (8)

T =

N∑

i=N−k+1

eāi , (9)

Z = H + T. (10)

Set

ai =
eāi

Z
, a∗i =





0, i ≤ N − k,

eāi

T
, i > N − k.

For any v = (v1, . . . , vd) ∈ Rd which is sorted according to the rank of elements in a, define the
tail-max as,

Mtail = max
i>N−k

∣∣vi
∣∣.

write
∆ = a⊤v − a∗⊤v,

we have the exact decomposition

∆ =

N−k∑

i=1

ai vi + R,

where the “remainder” term

R =

N∑

i=N−k+1

[
ai − a∗i

]
vi

is upper bounded by
∣∣R
∣∣ ≤ H

H + T
Mtail.

Therefore,
∣∣∣∣∣∆−

N−k∑

i=1

ai vi

∣∣∣∣∣ = |R| (11)

≤ H

H + T
Mtail (12)
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Proof. Split

∆ =

N−k∑

i=1

ai vi +

N∑

i=N−k+1

[
ai − a∗i

]
vi (13)

=

N−k∑

i=1

ai vi +R. (14)

For i > N − k,

ai =
eāi

H + T
=

eāi

T

T

H + T
= a∗i

T

H + T
,

so

ai − a∗i = a∗i
T

H + T
− a∗i (15)

= a∗i

(
T

H + T
− 1

)
(16)

= −a∗i
H

H + T
. (17)

Thus

R = − H

H + T

N∑

i=N−k+1

a∗i vi,

and since
∑N

i=N−k+1 a
∗
i = 1 and |vi| ≤Mtail on the tail,

|R| = H

H + T

∣∣∣∣∣
N∑

i=N−k+1

a∗i vi

∣∣∣∣∣ (18)

≤ H

H + T

N∑

i=N−k+1

a∗i |vi| (19)

≤ H

H + T
Mtail. (20)

completing the proof.

If we assume that T ≫ H as is the expected outcome with sparse attention, then the bound becomes
tighter, as the denominator H + T ≫ H . This implies that better sparse top-k approximations will
result in a lower error bound. We empirically verified this difference in Figure 11, which analyzes
both the error bound and the empirical error on a real input from the RULER-131K subset. Figure 11a
measures the bound and empirical error of an oracle top-k attention while Figure 11b measures the
same bound and empirical error for Streaming LLM, which chooses a sliding window and attention
sink. We find that the bound is generally tighter for the oracle top-k attention, but in both cases, the
overall empirical approximation error remains low.
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Figure 11: Empirically analyzing the approximation and bound from Lemma 1. A more precise
sparse top-k attention method, such as an oracle (a) maintains a tighter bound on the approximation
error. Streaming LLM (b) results in a looser bound, however the empirical approximation error (solid
lines) remains low in both methods.
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Figure 12: All RULER 131K subsets. This is a companion to Figure 1. The CWE subset is excluded,
as all models, including quadratic attention, scored 0%.
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H Extended Related Work

In addition to the related work cited in Section 2, there are a number of additional works which deal
with related topics that we wish to highlight.

LESS [Dong et al., 2024] requires training a low rank cache compressor. LESS mentions differences
in attention distributions between dense and sparse attention, however, the authors make no mention
of the critical insight of our work, namely that a dense decode fails to properly align with the tokens
resulting from a sparse prefill due to the distributional shift of the keys that is induced by the sparse
prefill.

Cacheblend [Yao et al., 2024] proposes using one dense attention layer to identify important tokens,
and then selectively recomputing these tokens in later layers to add missing parts of the sparse
attention to cached KV pairs. Cacheblend proposed this as a way to augment and consolidate
independently processed chunks of a RAG pipeline. In practice, however, this would effectively be
similar to a "smart" sparse prefill method like HiP or MInference which fills in some of the missing
tokens in the attention matrix which are outside of the local window context. As out experiments
show, this is not always sufficient to fix the distributional shift between sparse and dense prefills.

APE [Yang et al., 2025] proposes temperature scaling and rescaling the attention post-hoc in order
to correct any error introduced. However, APE misses the crucial insight of our work, namely that
sparse and dense attention result in completely different token distributions which means that there is
a problem of query-key matching during decoding. APE only considers query and key geometry as a
function of a) position and b) input. They deduce that because they key states of the first few keys
(sink tokens) are relatively stable, then the geometry of all other keys are also stable.

Rectified Sparse Attention [Sun et al., 2025] (a concurrent work) considers dense prefills and a sparse
decoding procedure. Their sparse decoding procedure is similar to what we call “recompute” in
Table 4 and Figures 8, 9 and 13 to 15 where we showed that this “recomptue” method is insufficient
to mitigate the distributional shift in the outputs.

Comparisons to these extended related works, and to Star Attention [Acharya et al., 2024] can be
seen in Table 6.

Table 6: RULER comaprison to related works on sparse attention and sparse RAG works.
Method 131K 65K 32K 16K 8K 4K Avg.

Str.LLM 27.45 18.59 30.25 38.13 60.53 90.52 44.25
Cachblend 0.00 0.21 0.31 1.49 24.42 96.27 20.45
APE 26.76 43.03 53.13 67.50 77.25 93.76 60.24
Str.LLM + Delta 64.40 75.22 81.27 88.66 92.25 96.54 83.06

Star Attention Mask 12.00 14.86 20.43 31.66 51.60 78.62 34.86
Star Attention Mask + Delta 58.84 70.12 74.77 82.69 89.12 93.28 78.13

I RepoQA

We evaluate ∆ Attention on code understanding by using the RepoQA [Liu et al., 2024] dataset that
asks the model to retrieve a function from a long block of input text. In this dataset, the long input
text contains the code from many functions and the query contains a plain language description of
what the function does. The model is then supposed to return back the correct function as output. We
compare Streaming LLM with and without our delta correction in Table 7

J Interpolation

The method presented in Section 3 proposes to use a single delta correction at index i to influence
the next i + γ − 1 attention outputs. This causes a discrete jump in the delta correction at every
γth output. It may be the case that a better strategy would be to smooth out the transition or impute
the delta corrections within the window by some imputation function. In Table 8, we look at three
different possible imputation functions and evaluate the overall effect on RULER.
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Table 7: RepoQA results for Streaming LLM and Streaming LLM + Delta. Plain FA3 is included for
reference.

Threshold 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Avg

Vanilla (FA3) 94.8 92.2 90.6 89.4 88.8 88.4 86.8 85.4 84.4 83.2 76 87.27

Str.LLM 73.6 64.0 60.6 58.8 57.6 56.8 55.0 53.0 50.4 44.2 35.6 55.42
Str.LLM + Delta 85.8 78.0 73.8 72.0 70.6 67.0 64.8 61.2 57.2 50.4 42.6 65.76

Algorithm 2: α, β, γ Filter

Require: α, β, γ and ∆ vectors
o← zero vector like ∆
p← ∆0

v ← zero vector like p
a← zero vector like p
o← ∆0

for i in [1, ..., len(∆)] do
y ← ∆i

// update approx position and velocity
p̂← p+ v + 0.5a
v̂ ← v + a
// calculate difference between real and predicted position
r ← y − p̂
// update position, velocity, and acceleration.
p← p̂+ αr
v ← v̂ + βr
a← a+ γr
oi ← p

end for
return o

Linear Interpolation. For linear interpolation, we first compute all delta corrections, and then
produce mixing coefficients β ∈ [0, 1] which linearly increase from [0, ..., 1]. Interpolation is then
performed between consecutive delta correction terms by the function ∆̂k = (1− βk)∆i + βk∆i+1.
Each ∆ term will therefore expand into |k| = γ terms, such that the number of delta corrections now
matches the sparse attention output size. These expanded, and smoothed delta corrections will be
treated as the new correction term, providing a smoother transition between terms.

EMA. Instead of linear interpolation, which technically violates the causality of the attention mecha-
nism by incorporating information from the future into the past, we may instead expand the delta
correction term by repeating each vector γ times, and then perform an exponential moving aver-
age (EMA) over the full set of vectors using a coefficient β ∈ [0, 1] and computing the EMA as
∆i = (1− β)∆i−1 + β∆i. The EMA acts as a smoothing mechanism which smooths the transition
between delta terms.

α, β, γ Filter. A third option is to use a Kalman style filter. We chose to use an α, β, γ filter where
α is a position coefficient, β is a velocity coefficient, and γ is an acceleration coefficient. At each
step, position, velocity, and acceleration are updated based on a mixture of the real position and the
accumulated statistics for position, velocity, and acceleration. We consider every operation to be an
elementwise scalar operation. The algorithm for the α, β, γ filter can be seen in Algorithm 2

Although there are slight improvements using these imputation methods in Table 8, no method shows
conclusive improvements over our original method. However, we think delta smoothing or imputation
shows a promising direction for future research.
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Table 8: Interpolation Experiments.
Method 131K 65K 32K 16K 8K 4K Avg.

Str.LLM + Delta + Linear Interpolation 65.15 75.65 81.26 88.26 92.34 96.66 83.22
Str. LLM + Delta + EMA (β = 0.5) 63.21 75.22 81.27 88.66 92.25 96.54 82.85
Str. LLM + Delta + EMA (β = 0.75) 63.40 74.60 80.76 88.52 92.29 96.62 82.69
Str. LLM + Delta + EMA (β = 0.95) 63.16 75.87 81.03 88.27 92.26 96.59 82.86
Str. LLM + Delta + (α = 0.05, β = 1.25× 10−4, γ = 2.08× 10−5) Filter 58.35 73.48 80.54 88.15 92.03 96.48 81.50
Str. LLM + Delta + (α = 0.1, β = 5× 10−3, γ = 1.66× 10−4) Filter 57.99 72.70 79.64 88.58 92.42 96.57 81.31
Str. LLM + Delta + (α = 0.2, β = 5× 10−2, γ = 3.5× 10−3) Filter 61.47 74.31 80.29 88.47 92.32 96.58 82.24

Str.LLM + Delta 64.40 75.22 81.27 88.66 92.25 96.54 83.06

K Statistical Significance Tests

We assess the statistical significance of the results presented in Table 1. For this, we use a one-sided
paired permutation test to test the significance of the difference between the versions of Streaming
LLM, HiP and MInference with and without our delta correct applied. The results are shown
in Table 9. We split RULER tasks according to QA vs. non-QA retrieval tasks. The statistical
significance shows a high correlation with the displayed colors in Table 1 and verifies that our results
are statistically significant.

Table 9: Interpolation Experiments. Each entry is a p-value assessing whether or not our delta
correction results in a significant improvement (significance level is p < 0.05).

Method 131K 65K 32K 16K 8K 4K

Str.LLM (all non qa tasks) 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
Str.LLM (all qa tasks) 0.0001 0.0001 0.0001 0.0001 0.0001 0.4958
HiP (all non qa tasks) 0.0001 0.0018 0.7112 0.5018 0.8331 0.5747
HiP (all qa tasks) 0.4918 0.7252 0.9245 0.8076 0.5009 1
MInference (all non qa tasks) 0.0001 0.858 0.6485 0.5116 0.8774 1
MInference (all qa tasks) 0.0004 0.8813 0.9848 0.8777 0.499 1

19



Str. LLM Str. LLM + Recompute Str. LLM + ∆

0.950 0.975 1.000 1.025 1.050
Rank Correlation of Attn. Rows

0.850

0.875

0.900

0.925

0.950

0.975

1.000

A
tt

n
.

O
u

tp
u

t
C

os
S

im

Layer:1

0

100

0 50 0.980 0.985 0.990 0.995
Rank Correlation of Attn. Rows

0.6

0.7

0.8

0.9

A
tt

n
.

O
u

tp
u

t
C

os
S

im

Layer:2

0

25

0 50 0.90 0.95
Rank Correlation of Attn. Rows

0.2

0.4

0.6

0.8

A
tt

n
.

O
u

tp
u

t
C

os
S

im

Layer:3

0

50

0 50

Str. LLM Str. LLM + Recompute Str. LLM + ∆

0.80 0.85 0.90 0.95
Rank Correlation of Attn. Rows

0.4

0.5

0.6

0.7

0.8

0.9

A
tt

n
.

O
u

tp
u

t
C

os
S

im

Layer:4

0

25

0 25 0.80 0.85 0.90 0.95
Rank Correlation of Attn. Rows

0.4

0.5

0.6

0.7

0.8

0.9

A
tt

n
.

O
u

tp
u

t
C

os
S

im

Layer:5

0

20

0 25 0.8 0.9
Rank Correlation of Attn. Rows

0.7

0.8

0.9

A
tt

n
.

O
u

tp
u

t
C

os
S

im

Layer:6

0

20

0 10

Str. LLM Str. LLM + Recompute Str. LLM + ∆

0.8 0.9
Rank Correlation of Attn. Rows

0.4

0.5

0.6

0.7

0.8

0.9

A
tt

n
.

O
u

tp
u

t
C

os
S

im

Layer:7

0

25

0 10 0.8 0.9
Rank Correlation of Attn. Rows

0.5

0.6

0.7

0.8

0.9

A
tt

n
.

O
u

tp
u

t
C

os
S

im

Layer:8

0

10

0 5 0.6 0.7 0.8 0.9
Rank Correlation of Attn. Rows

0.6

0.7

0.8

0.9

A
tt

n
.

O
u

tp
u

t
C

os
S

im

Layer:9

0

10

0 10

Str. LLM Str. LLM + Recompute Str. LLM + ∆

0.5 0.6 0.7 0.8 0.9
Rank Correlation of Attn. Rows

0.4

0.5

0.6

0.7

0.8

0.9

A
tt

n
.

O
u

tp
u

t
C

os
S

im

Layer:10

0

10

0 10 0.7 0.8 0.9
Rank Correlation of Attn. Rows

0.2

0.4

0.6

0.8

A
tt

n
.

O
u

tp
u

t
C

os
S

im

Layer:11

0

5

0 5 0.7 0.8 0.9
Rank Correlation of Attn. Rows

0.4

0.6

0.8

A
tt

n
.

O
u

tp
u

t
C

os
S

im

Layer:12

0

5

0 5

Figure 13: Attention output cosine similarity (compared to full attention) for Streaming LLM with
our method. Figures 13 to 15 show the results from every layer, and are a counterpart to Figure 9
in the main text. For the lower layers where induction heads are most prevalent, our method shows
higher cosine similarity and attention row rank correlation as compared to quadratic attention.
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Figure 14: Attention output cosine similarity (compared to full attention) for Streaming LLM with
our method. Figures 13 to 15 show the results from every layer, and are a counterpart to Figure 9
in the main text. For the lower layers where induction heads are most prevalent, our method shows
higher cosine similarity and attention row rank correlation as compared to quadratic attention.
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Figure 15: Attention output cosine similarity (compared to full attention) for Streaming LLM with
our method. Figures 13 to 15 show the results from every layer, and are a counterpart to Figure 9
in the main text. For the lower layers where induction heads are most prevalent, our method shows
higher cosine similarity and attention row rank correlation as compared to quadratic attention.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and introduction are verified in our experiments
conducted in Section 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed limitations of our method in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We have one theoretical result in Lemma 1, which was stated briefly in the
main text. We have included a more detailed derivation and statement in Section G. This
section was also referenced under the lemma in the main text.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided all necessary information to reproduce our results. Our
method only relies on publicly available pretrained models. We have included experimental
code as well.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

24



5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The datasets we use are publicly available and cited. We generated one
dataset according to a previous paper (PG19 Long QA), which has been included in our
supplementary materials. The code for our experiments is included in the supplementary
material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have one hyperparameter which is specified in Section 4. We have also
provided Algorithm 1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Our method is deterministic and works on pretrained models. Therefore,
there is no stochasticity present in order to report error bars. Instead we conduct a range
of experiments on different datasets in Section 4 in order to verify that the results do not
randomly favor our method for a particular experiment. However, we do provide a paired
permutation test for the RULER experiments in Section K.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have stated the full range of compute resources in Section D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the ethics guidelines, and we believe our paper conforms to
them.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: In Section 1 we discuss the enormous costs and negative externalities caused
by inference compute requirements. We also discuss the broader impacts in Section B.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We create no new data or models to release, as our method proposes a
modification to existing pretrained models for inference efficiency.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The datasets we use are publicly available and cited or included in the supple-
mentary material. The dataset included in the supplementary material is a derivation of a
publicly available dataset, and the method for constructing it has been cited in Section 4.
Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We are releasing a QA test set which was specified by a previous work, but not
released by those authors directly. We have generated the dataset according to their code,
and are releasing it with our supplementary materials.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Not applicable
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Not applicable
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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