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Abstract
Large Language Models (LLMs) are increasingly
deployed in user-facing applications worldwide,
necessitating handling multiple languages across
various tasks. We propose a metric called Com-
pression Parity (CP) that can predict an LLM’s
capabilities across multiple languages in a task-
agnostic manner. CP has a solid motivation from
an information theory perspective: it is associated
with the ability of the LLM to compress text in a
given language compared to the same ability in
a reference language. We evaluate CP and other
popular metrics such as Tokenization Parity (TP)
and Tokenizer Fertility (TF) on several variants of
open-sourced LLMs (Llama2, Gemma, Mistral).
Among all metrics known to us, CP is better corre-
lated with existing task-specific benchmark scores
from the literature and thus better predicts such
scores in a certain language. These findings show
that CP may be useful for ranking multilingual
LLMs’ capabilities regardless of the downstream
task.

1. Introduction
1.1. Background

LLMs have become ubiquitous, powering applications like
email generation, virtual assistants, and machine transla-
tion in our daily lives. Trained on massive datasets, they
can comprehend and generate human language across var-
ious domains and tasks. As LLMs become more widely
used globally, it is necessary to assess their capabilities in
processing and understanding a specific language.

Current evaluation methods for multilingual LLMs typically
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focus on specific tasks like cross-lingual question answering
(Artetxe et al., 2020), cross-lingual NLI (Conneau et al.,
2018), or machine translation. While informative, these
approaches have limitations. Task-specific datasets can be
limited or biased, the number of languages considered might
be restricted, and the metrics used can be difficult to com-
pare or interpret across different tasks and languages. Addi-
tionally, they often fail to capture the underlying linguistic
factors that influence multilingual ability, such as variations
in grammar, vocabulary, semantics, and pragmatics (Ra-
jaee & Monz, 2024). This is further complicated by the
observation that, unlike English metrics scores which often
correlate with model size, multilingual metrics can exhibit
performance drops with size and low correlation between
each other (Ali et al., 2024; Ahuja et al., 2024). To make
matters worse, existing benchmarks are often skewed by
data contamination (Ahuja et al., 2024), where models are
exposed to test data during training or fine-tuning, leading
to artificially magnified performance.

Another common problem with LLM evaluation bench-
marks is that most of them are prompt-based. Namely,
the LLM is given a natural language query or instruction
as the prompt, and expected to produce a natural language
response or answer. However, the way the prompt is phrased
can significantly impact performance, and different models
might require tailored prompts to showcase their strengths.
Finding these optimal prompts can be a laborious process
that typically depends on human expertise. This situation
may lead to irrelevant performance judgment, since in cer-
tain applications users may not have the required expertise
to craft optimal prompts. Additionally, prompts might only
assess a narrow aspect of its language understanding or
generation, overlooking its broader potential or limitations.

These issues escalate in multilingual performance evalua-
tions. Inefficient tokenization in a certain language can limit
the number of examples that can fit into the context win-
dow, hindering a model’s ability to showcase its strengths
(Ahia et al., 2023). Moreover, the need for cross-lingual
prompting strategies introduces additional evaluation varia-
tions (Lai et al., 2023a; Qin et al., 2023). These limitations
make prompt-based evaluations insufficient to assess the
multilingual capabilities of LLMs, and emphasize the need
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Table 1. Pearson correlation (absolute values) between metrics and downstream tasks performance under the LLM Llama 2 7B. Only
correlation values that are statistically significant at level 0.05 are shown.

Metric/Task MMLU ARC HellaSwag xnli pawsx xcopa xquad mlqa
CP Flores 200 0.95 0.93 0.96 0.93 0.91 0.89 0.84 0.82
CP Tatoeba 0.89 0.87 0.94 0.92 0.96 0.96 0.82 0.83
Training Lang Distribution - 0.62 0.68 - 0.88 - - -
Tokenizer Fertility 0.72 0.66 0.71 0.86 - - 0.83 0.84
Tokenizer Parity 0.80 0.76 0.79 0.69 0.94 - 0.81 -

for a more standardized evaluation method.

Previous work suggested assessing an LLM’s multilingual
capabilities via tokenization metrics such as Tokenizer Par-
ity (Petrov et al., 2023) and Tokenizer Fertility (Rust et al.,
2021). Such metrics might also be motivated by the intimate
connection between language modeling and data compres-
sion (Shannon, 1951). However, (Ali et al., 2024) found no
clear correlation between these metrics and downstream task
performance, and argued that they have limited explanatory
power for multilingual LLMs. Moreover, newer tokenizers
such as Gemma (Team et al., 2024) mitigate some of the
multilingual tokenization issues, potentially reducing the
relevance of tokenization-based metrics in some cases. This
motivates a more comprehensive approach that examines the
core information compression capabilities of multilingual
LLMs beyond tokenization.

1.2. Contribution

We propose a novel metric called Compression Parity (CP)
for assessing the multilingual capabilities of LLMs in a
task-independent manner. For a language L and some multi-
lingual text, CP is the ratio between the English text’s nega-
tive log-likelihood (NLL) and the L text’s NNL. This defini-
tion has a clear information-theoretic interpretation as the
efficiency relative to English of compressing the L text gen-
erated by the LLM. Therefore, we may motivate CP from
the concept of a language-agnostic compressor, a theoretical
ideal that encodes the same information with identical effi-
ciency regardless of the language. Since such a compressor
is not practically available, we use English as a proxy for
the most efficient encoding an LLM can achieve. Practi-
cally, the LLM’s ability to represent information in English
best approximates the theoretical ideal due to the prevalence
of English text in the training data. By measuring how
efficiently an LLM represents the same information in a
different language relative to English, we aim to capture its
performance potential in that different language.

Unlike other metrics, CP is prompt-agnostic, task invariant,
and resilient to language and tokenization biases (Ali et al.,
2024). This allows for a more direct comparison of multi-
lingual capabilities across different languages on the same
model.

We evaluate our metric on publicly available LLMs like
Llama2 (Touvron et al., 2023)1, Gemma (Team et al., 2024),
and Mistral (Jiang et al., 2023). We correlate CP with down-
stream tasks and benchmarks including MMLU (Hendrycks
et al., 2021), ARC (Clark et al., 2018) and HellaSwag
(Zellers et al., 2019), which exhibit a high correlation to hu-
man preference as seen on Chiang et al. (2024). In addition,
we compare our metric with existing tokenization-based
metrics of tokenizer parity and fertility.

Our results show that CP consistently exhibits strong cor-
relations with various downstream tasks and benchmarks,
especially those that require natural language understand-
ing and commonsense reasoning across multiple domains
and that align well with human preferences. These find-
ings suggest that CP captures an LLM’s multilingual capa-
bilities better than any single tokenization metric or task-
specific/benchmark scores. Consequently, CP emerges as a
direct and standardized approach for comparing the multi-
lingual capabilities of LLMs.

2. Method
For a given text w1:n = (w1, .., wn) where wi is the i-th
token, denote its negative log-likelihood under a LM by

I(w1:n) = − log2 PLM(w1, ..., wn) (1)

=

n∑
i=1

− log2 PLM(wi|w1:i−1)

where PLM(w1, ..., wn) is the probability the LM assigns
to w1:n. We use logarithm in base 2 so that I(x1:n) is mea-
sured in bits. In the context of data compression, I(w1:n)
is roughly the length of the binary string produced by a
compression scheme employing the language model prob-
abilities and an entropy encoder (Izacard et al., 2019; Bel-
lard, 2021; Mao et al., 2022; Levin & Kipnis, 2024); such
a scheme achieves state-of-the-art compression results on
large texts (Mahoney, 2023). When the text is seen as
a random vector of tokens sampled from the law PLM,
E [I(W1:n)] is Shannon’s entropy of the distribution the LM
induces on n-length sequences. In this case, E [I(W1:n)]
bounds from below the expected length of the binary string

1Training language distribution is taken from the Llama2 paper
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Table 2. Pearson correlation (absolute values) between metrics and downstream tasks performance under the LLM Gemma 2B. Compres-
sion Parity (CP) is our proposed metric. Xrisawoz refers to the dialogue action accuracy benchmark subset. Only statistically significant
values at level 0.05 are shown.

Metric/Task MMLU ARC Hellaswag mlqa belebele ind-xnli xsotrycloze xrisawoz
CP Flores 200 0.96 0.82 0.73 0.94 0.52 0.87 0.94 0.97
CP Tatoeba 0.90 0.81 0.67 0.89 0.77 - 0.84 -
Tokenizer Fertility - 0.52 0.61 - - - 0.74 -
Tokenizer Parity 0.95 0.52 0.53 0.84 - 0.90 - -

representation of text sampled from the model under any
lossless compression scheme (Cover & Thomas, 2006). If
in addition PLM defines an ergodic information source, then
the Shannon-McMillan-Brieman theorem says that the en-
tropy rate of PLM is well-defined as the limit of I(W1:n)/n
as n → ∞ (Algoet & Cover, 1988). In this case, the entropy
rate bounds from below the number of bits per token in any
binary representation of the text (Cover & Thomas, 2006).
These well-known characterizations of (1) justify the inter-
pretation of I(w1:n) as the “information content” of the text
w1:n under the LM.

Compression Parity (CP): Computes the ratio between the
information content of the text in English and the informa-
tion content of the translated text in another language. It
aims to express the basic proportion of how well the LLM
compresses the same information in different languages. A
higher CP indicates a higher compression efficiency and
a closer alignment with the language-agnostic compressor
ideal. The CP is computed as follows:

CP(L) =
I(E)

I(L)
(2)

where I(E) and I(L) are the NLL of (1) of the text in
English and the translated text in language L, respectively.

3. Experimental Setup
3.1. Datasets

• Tatoeba (Tiedemann, 2020) a multilingual dataset of
MT benchmarks derived from user-contributed trans-
lations. Presents inherent variance and bias between
languages since the translation is not multi parallel
across all languages and the dataset is imbalanced be-
tween languages. We used a subset of 33 languages in
evaluations.

• Floress-200 (Team et al., 2022) a multilingual MT
dataset that covers 200 languages, contains the trans-
lated variants of a sentence across all languages, and
has the same number of samples across all languages.
We used a subset of 50 languages2.

2We used the test split of the datasets from huggingface:
Tatoeba, Floress.

Table 3. Pearson correlation (absolute values) between CP and
tokenization metrics computed on Flores 200 and training language
distribution of Llama2. Only statistically significant values at level
0.05 are shown.

Model/Metric TP TF TLD
Mistral 7B 0.72 0.47 -
Gemma 2B 0.81 0.61 -
Llama 2 7B 0.72 0.62 0.76
Llama 2 13B 0.72 0.62 0.67
Llama 2 70B 0.75 0.63 0.56

3.2. Models

We perform our analysis on five open-source LLMs: the
instruction-tuned variant of Mistral-7B v0.1 (Jiang et al.,
2023), Llama-2 7B,13B,70B chat variants (Touvron et al.,
2023), and Gemma-2B-it (Team et al., 2024), the smallest
open-sourced instruction-tuned model from Google, known
for low rates of tokenizer fertility across languages. We
used the default configuration of each model as provided in
the Huggingface platform (Wolf et al., 2020).

3.3. Evaluations

We evaluate the CP metric on the datasets in Section 3.1 and
report their mean values in A. To conduct further evalua-
tions of multilingual model performance, we use the mul-
tilingual variants of MMLU (Hendrycks et al., 2021), Hel-
laSwag (Zellers et al., 2019), and ARC (Clark et al., 2018),
which were translated by Lai et al. (2023b) in 26 languages3.
We use a 5-shot prompt on MMLU, a 25-shot prompt on
ARC, and a zero-shot prompt for HellaSwag.

4. Results
To showcase the advantage of our proposed metric, we com-
pute Pearson’s correlation values with results of downstream
tasks reported in MEGAVERSE (Ahuja et al., 2024) and
from our results on the translated variants of MMLU ARC
and HellaSwag from (Lai et al., 2023b). We compare our

3Due to time and compute constraints we evaluate MMLU only
on a subset of zh, hi, ko, ar, de, es, ru, vi languages for Gemma,
and 13B Llama models.

3

https://huggingface.co/datasets/Helsinki-NLP/tatoeba_mt
https://huggingface.co/datasets/facebook/flores


Multilingual Compression Parity

Table 4. Pearson correlation (absolute values) between metrics and downstream tasks performance under the LLM Mistral 7B IT. Only
correlation values that are statistically significant at level 0.05 are shown. Our proposed Compression Parity (CP) typically better correlates
with downstream tasks/benchmarks than other metrics. CP Flores (respectively, Tatoeba) refer to CP evaluated on the multilingual dataset
Flores 200 (Tatoeba), gen enid, conv enid refer to IN22 dataset.

Metric/Task ARC HellaSwag MMLU gen enid belebele xcopa paws-x xnli conv enid
CP Flores 0.93 0.98 0.98 0.82 0.88 0.95 0.92 0.88 0.86
CP Tatoeba 0.87 0.95 0.97 0.98 0.83 0.92 0.97 0.79 -
Tokenizer Fertility 0.54 0.67 0.68 0.84 0.84 0.93 - 0.66 0.83
Tokenizer Parity 0.72 0.82 0.84 0.82 0.94 0.78 - 0.71 0.79

results to the tokenizer-based metrics as well, to see whether
CP is better suited to predict downstream task performance.
We compute the tokenizer parity values on the Flores-200
(Team et al., 2022) dataset and use the fertility values given
to us by the authors of Ahuja et al. (2024).

5. Discussion
The results in 1,2, 4 show that CP exhibits consistently
strong correlations with downstream tasks performance.4

This suggests that CP can be utilized to predict multilingual
model capabilities for missing languages on similar tasks or
the same datasets which often cover only a small subset of
languages.

A comparison of CP values across different languages and
models reveals variation in CP values across the models.
For instance, we find that Gemma, has consistently higher
CP values for non Latin languages than Llama or Mistral.
We contribute this phenomenon to the fact that Gemma
showed lower tokenization fertility and parity for non-Latin
language families. The relation between CP and tokenizer
parity is clearly evident via the high absolute correlation
values between them as shown in 3. This implies that tok-
enization parity plays a crucial role in LLMs effectiveness
at encoding information in these languages, and thus has an
aspect of contribution to higher compression parity.

Our findings suggest that tokenization parity and fertility
might be captured within the explained variance that ac-
counts for compression parity. This, in turn, could offer
insights into when specific aspects of tokenization signif-
icantly influence the model’s multilingual performance in
downstream tasks.

6. Limitations
Instruction tuning: Our metric is based on the assump-
tion that ideal multilingual LLMs can act as language-
agnostic compressors, encoding the same information with
the same efficiency across languages. However, we eval-

4Results for Llama Chat 13B showed similar conclusions to
7B and were omitted for brevity

uated instruction-tuned LLMs which went through RLHF
(Ouyang et al., 2022) and DPO (Rafailov et al., 2023) which
may affect their compression behavior to some extent. More-
over, Compression Parity does not account for the ability of
LLMs to follow instructions in different languages, which
may be relevant for some applications or tasks.

Dataset contamination: CP relies on parallel corpora that
contain the same information in different languages. How-
ever, some of these corpora may have been used in pre-
training some LLMs, which may inflate their compression
performance.

Machine Translation Artifacts: Some of the task-specific
metrics like MMLU, ARC, HellaSwag were machine trans-
lated by GPT3.5 in Lai et al. (2023b), which may add arti-
facts and biases to the translations which in turn might alter
the actual performance measurements on these benchmarks.

7. Conclusion
We introduced the Compression Parity (CP) metric to pro-
vide a task-agnostic evaluation of the multilingual capabil-
ities of LLMs. CP is easy to evaluate and has a natural
information-theoretic interpretation as the efficiency of an
LLM in representing the same information across different
languages. Evaluations with publicly available LLMs re-
veal a strong correlation between Compression Parity and
a diverse set of downstream tasks, particularly those in-
volving natural language understanding and commonsense
reasoning. These properties suggest that CP could enable
researchers and practitioners to assess model performance
even for low-resource languages, leading to a better under-
standing of LLM behavior across all languages.

Impact Statement
This paper contributes to the advancement of Machine
Learning by focusing on one key area: improving multi-
lingual language models. Our work has the potential to sig-
nificantly impact society by enabling the development and
evaluation of more capable models for under-represented
groups and populations. Which will ultimately lead to more
inclusive and effective language technology for everyone.
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Rust, P., Pfeiffer, J., Vulić, I., Ruder, S., and Gurevych,
I. How good is your tokenizer? on the monolingual
performance of multilingual language models, 2021.

Shannon, C. E. Prediction and entropy of printed english.
Bell system technical journal, 30(1):50–64, 1951.

Team, G., Mesnard, T., Hardin, C., Dadashi, R., Bhupatiraju,
S., Pathak, S., Sifre, L., Rivière, M., Kale, M. S., Love,
J., Tafti, P., Hussenot, L., Sessa, P. G., Chowdhery, A.,
Roberts, A., Barua, A., Botev, A., Castro-Ros, A., Slone,
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Table 5. Compression Parity (CP) - mean values evaluated on the Flores 200 dataset.
Code Llama2 70B Llama2 13B Llama2 7B Gemma 2B Mistral 7B
ru 0.73 0.74 0.74 0.72 0.75
fr 0.76 0.77 0.77 0.77 0.79
ko 0.57 0.57 0.57 0.71 0.56
ja 0.65 0.65 0.66 0.74 0.55
he 0.44 0.44 0.44 0.66 0.39
hu 0.63 0.62 0.61 0.54 0.61
no 0.65 0.64 0.64 0.63 0.53
hi 0.47 0.46 0.46 0.61 0.38
fi 0.67 0.64 0.62 0.55 0.4
es 0.7 0.7 0.72 0.73 0.74
de 0.75 0.75 0.75 0.74 0.75
it 0.72 0.72 0.72 0.69 0.73
nl 0.72 0.72 0.7 0.69 0.71
zh 0.64 0.63 0.65 0.79 0.65
vi 0.64 0.64 0.64 0.72 0.44
id 0.69 0.69 0.68 0.7 0.58
ro 0.66 0.65 0.64 0.63 0.61
uk 0.68 0.69 0.68 0.66 0.66
sr 0.65 0.64 0.63 0.57 0.58
hr 0.65 0.63 0.62 0.62 0.63
da 0.69 0.67 0.66 0.65 0.65
ca 0.68 0.68 0.68 0.59 0.68
ar 0.45 0.44 0.44 0.64 0.4
tr 0.52 0.51 0.5 0.64 0.49
cs 0.69 0.66 0.65 0.65 0.65
th 0.38 0.39 0.39 0.64 0.32
bn 0.35 0.36 0.35 0.51 0.28
bg 0.66 0.65 0.63 0.63 0.61
el 0.45 0.42 0.42 0.55 0.33
ur 0.37 0.36 0.36 0.49 0.31
mr 0.35 0.35 0.35 0.46 0.28
eu 0.37 0.34 0.34 0.47 0.3
et 0.42 0.4 0.39 0.43 0.34
ms 0.6 0.59 0.58 0.64 0.53
as 0.27 0.28 0.28 0.42 0.18
gu 0.33 0.33 0.32 0.4 0.27
ka 0.37 0.35 0.36 0.4 0.24
kn 0.32 0.32 0.32 0.44 0.28
ml 0.33 0.33 0.34 0.45 0.24
np 0.37 0.37 0.37 0.52 0.3
or 0.29 0.28 0.28 0.21 0.21
pa 0.31 0.3 0.29 0.4 0.25
ta 0.37 0.36 0.38 0.53 0.29
te 0.33 0.33 0.33 0.42 0.26
my 0.27 0.27 0.26 0.36 0.17
sw 0.42 0.41 0.4 0.5 0.36
pt 0.73 0.72 0.72 0.73 0.73
ht 0.38 0.36 0.36 0.41 0.31
qu 0.31 0.3 0.3 0.39 0.3
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Table 6. Tokenization Parity evaluated on the Flores 200 dataset
Language Llama2 Gemma 2B Mistral 7B
ru 1.62 1.37 1.85
fr 1.47 1.36 1.6
ko 3.14 1.64 2.44
ja 2.24 1.19 2.15
he 3.26 1.62 3.38
hu 1.78 1.66 2.0
no 1.5 1.34 1.59
hi 4.53 1.85 4.5
fi 1.9 1.61 2.0
es 1.46 1.27 1.58
de 1.41 1.25 1.58
it 1.47 1.35 1.62
nl 1.47 1.33 1.6
zh 1.96 1.08 1.6
vi 2.9 1.37 2.9
id 1.75 1.11 1.84
ro 1.69 1.55 1.81
uk 1.71 1.64 1.93
sr 1.72 1.74 1.89
hr 1.65 1.59 1.77
da 1.53 1.37 1.62
ca 1.51 1.52 1.62
ar 3.37 1.49 3.43
tr 2.09 1.4 2.21
cs 1.69 1.5 1.86
th 4.31 1.83 4.18
bn 5.28 2.65 4.84
bg 1.77 1.62 1.92
el 4.93 2.27 5.19
ur 4.31 1.91 4.26
mr 4.52 2.23 4.6
eu 1.79 1.68 1.89
et 1.76 1.62 1.84
ms 1.82 1.18 1.9
as 6.04 3.19 5.61
gu 9.83 2.98 8.52
ka 4.79 3.62 4.79
kn 10.66 3.26 6.19
ml 5.46 3.2 10.67
np 4.44 2.11 4.4
or 11.39 4.91 11.82
pa 9.3 3.19 10.25
ta 5.8 2.58 5.78
te 10.55 2.84 7.11
my 8.26 4.75 8.09
sw 1.85 1.61 1.94
pt 1.42 1.23 1.55
ht 1.58 1.54 1.67
qu 1.97 1.83 2.06
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Table 7. MMLU accuracy evaluated on Llama2 7B, Llama2 13B, Gemma 2B and Mistral 7B using Okapi Evaluation Framework for
Multilingual LLMs

Language Llama2 7B Llama2 13B Gemma 2B Mistral 7B
ar 0.2724 0.2908 0.292 0.2778
de 0.371 0.4238 0.3046 0.4049
es 0.3928 0.4339 0.3133 0.4183
hi 0.273 0.281 0.2817 0.2714
ru 0.3423 0.3978 0.304 0.3775
vi 0.3178 0.3478 0.3078 0.3052
zh 0.3256 0.3732 0.3221 0.3771
bn 0.2562 - - 0.2535
ca 0.3721 - - 0.3997
da 0.3572 - - 0.3817
fr 0.3814 - - 0.4153
hr 0.3359 - - 0.3635
hu 0.3207 - - 0.3423
id 0.3456 - - 0.3352
it 0.3696 - - 0.4005
kn 0.2634 - - 0.2548
ml 0.2563 - - 0.2477
mr 0.2628 - - 0.266
ne 0.2566 - - 0.2669
nl 0.3643 - - 0.3981
ro 0.3499 - - 0.3735
sk 0.32 - - 0.34
sr 0.3282 - - 0.3553
ta 0.2564 - - 0.2524
te 0.2531 - - 0.2476
uk 0.3348 - - 0.3629

10

https://github.com/nlp-uoregon/mlmm-evaluation
https://github.com/nlp-uoregon/mlmm-evaluation


Multilingual Compression Parity

Table 8. ARC accuracy evaluated on Llama2 7B, Llama2 13B, Gemma 2B and Mistral 7B using Okapi Evaluation Framework for
Multilingual LLMs

Language Llama2 7B Llama2 13B Gemma 2B Mistral 7B
ar 0.2156 0.2181 0.2275 0.2019
bn 0.1805 - - 0.1942
ca 0.3834 0.4142 0.2333 0.3602
da 0.3102 0.3573 0.2279 0.3222
de 0.3507 0.4089 0.2515 0.3576
es 0.3744 0.441 0.2897 0.3923
fr 0.3781 0.4183 0.2789 0.3867
hi 0.2286 0.2269 0.2337 0.1978
hr 0.302 0.3182 0.2062 0.3182
hu 0.2834 0.3048 0.1986 0.2688
id 0.3043 0.3316 0.2308 0.2376
it 0.3824 0.4303 0.2429 0.3944
kn 0.2178 - - 0.2117
ml 0.2215 - - 0.2172
mr 0.2346 - - 0.2242
ne 0.2104 - - 0.2156
nl 0.3584 0.4106 0.2258 0.3447
ro 0.3256 0.3582 0.2099 0.3299
ru 0.349 0.3841 0.2686 0.355
sk 0.2763 0.2806 0.2335 0.2695
sr 0.2917 0.3311 0.2216 0.3131
ta 0.2215 - - 0.2189
te 0.2088 - - 0.2096
uk 0.3199 0.3918 0.2618 0.3576
vi 0.2812 0.312 0.2538 0.2427
zh 0.3316 0.3744 0.2821 0.3291
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Table 9. HellaSwag accuracy evaluated on Llama2 7B, Llama2 13B, Gemma 2B and Mistral 7B using Okapi Evaluation Framework for
Multilingual LLMs

Language Llama2 7B Llama2 13B Gemma 2B Mistral 7B
ar 0.2867 0.3007 0.2634 0.2793
bn 0.2587 - - 0.2624
ca 0.389 0.4239 0.2801 0.3848
da 0.3784 0.4135 0.2794 0.3718
de 0.4021 0.431 0.2859 0.3952
es 0.4396 0.4742 0.291 0.4334
fr 0.4263 0.4599 0.2913 0.4261
hi 0.2825 0.289 0.2743 0.2759
hr 0.3438 0.3727 0.2712 0.3444
hu 0.3282 0.3467 0.2672 0.3246
id 0.3546 0.3794 0.2713 0.3268
it 0.4059 0.4394 0.2846 0.402
kn 0.2589 - - 0.2558
ml 0.2538 - - 0.2485
mr 0.2593 - - 0.2579
ne 0.2635 - - 0.2583
nl 0.3849 0.4195 0.2757 0.3855
ro 0.3653 0.3936 0.282 0.3581
ru 0.3776 0.4111 0.2764 0.3904
sk 0.3068 0.3231 0.2714 0.3026
sr 0.3408 0.3698 0.2739 0.3455
ta 0.2572 - - 0.2502
te 0.2584 - - 0.2552
uk 0.3664 0.3909 0.2764 0.3672
vi 0.3457 0.3647 0.2875 0.3107
zh 0.3601 0.3893 0.2954 0.3736
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Table 10. Compression Parity (CP) evaluated on the Tatoeba dataset.
Language Llama2 7B Llama2 13B Gemma 2B Mistral 7B
de 0.74 0.75 0.77 0.7
ru 0.75 0.76 0.75 0.69
it 0.69 0.7 0.75 0.68
nl 0.66 0.68 0.73 0.66
da 0.63 0.65 0.7 0.62
zh 0.58 0.55 0.78 0.62
ca 0.59 0.6 0.64 0.59
hr 0.56 0.58 0.69 0.59
cs 0.58 - 0.67 0.58
ko 0.53 0.51 0.72 0.58
no 0.61 0.63 0.68 0.57
uk 0.67 0.67 0.7 0.57
id 0.6 0.62 0.75 0.57
ja 0.58 0.56 0.74 0.57
hu 0.55 0.56 0.62 0.55
ro 0.58 0.61 0.67 0.54
tr 0.52 - 0.67 0.52
bg 0.57 - - 0.51
sr 0.57 0.57 0.64 0.51
vi 0.56 0.56 0.74 0.49
he 0.47 0.48 0.71 0.48
hi 0.49 0.49 0.69 0.48
th 0.47 - 0.73 0.47
fi 0.54 0.56 0.62 0.46
el 0.45 - - 0.44
ar 0.46 0.46 0.69 0.44
et 0.43 - - 0.42
eu 0.35 - - 0.37
ur 0.4 - - 0.36
mr 0.39 - - 0.35
bn 0.42 - - 0.33

Table 11. Pearson correlation (absolute values) between metrics and downstream tasks/benchmarks performance under the LLM Llama 2
13B. Only correlation values that are statistically significant at level 0.05 are shown. TIAYN refers to results from (Liu et al., 2024)

Task/Metric CP Floress TP TF
HellaSwag 0.89 0.82 0.88
ARC 0.90 0.82 0.86
MMLU 0.95 0.95 0.90
xnli-TIAYN 0.93 0.72 0.80
pawsx-TIAYN 0.98 0.94 0.84
xnli 0.75 0.90 0.94
xquad 0.82 0.70 0.78
mgsm-TIAYN 0.96 0.69 0.73
xcopa-TIAYN 0.83 - 0.77
pawsx - 0.83 -
xcopa - 0.91 0.87
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Table 12. Pearson correlation (absolute values) between metrics and downstream tasks/benchmarks performance under the LLM Llama
2 70B. Only correlation values that are statistically significant at level 0.05 are shown.Xrisawoz refers to the success rate accuracy
benchmark subset, gen-enid,gen-iden, conv-enid refer to IN22 dataset. TIAYN refers to results from (Liu et al., 2024), MMLU values are
the reported results of MMLU on the 70B model in (Bendale et al., 2024).

Task/Metric CP-Flores Tokenizer P TF
MMLU 0.89 0.76 -
xnli 0.89 0.81 0.86
pawsx 0.91 0.99 0.93
xquad 0.77 0.68 0.76
mlqa 0.87 - -
belebele 0.98 0.91 0.78
conv-iden 0.77 0.64 -
gen-enid 0.78 0.61 -
gen-iden 0.78 0.67 0.71
xriawoz 0.96 - -
MGSM 0.96 0.69 0.73
xnli-TIAYN 0.86 0.59 0.74
pawsx-TIAYN 0.85 0.91 -
xcopa-TIAYN 0.85 - -
xcopa - 0.87 0.87

14



Multilingual Compression Parity

Table 13. Flores 200 used languages - language Names to codes
Language Name Code

English en
Hungarian hu

Russian ru
Norwegian no

Hindi hi
French fr
Korean ko

Japanese ja
Hebrew he
Finnish fi
Spanish es
German de
Italian it
Dutch nl

Chinese zh
Vietnamese vi
Indonesian id
Romanian ro
Ukrainian uk
Serbian sr
Croatian hr
Danish da
Catalan ca
Arabic ar
Turkish tr
Czech cs
Thai th

Bengali bn
Bulgarian bg

Greek el
Urdu ur

Marathi mr
Basque eu

Estonian et
Malay ms

Assamese as
Gujarati gu
Georgian ka
Kannada kn

Malayalam ml
Nepali np
Odia or

Punjabi pa
Tamil ta
Telugu te

Burmese my
Swahili sw

Portuguese pt
Haitian Creole ht

Quechua qu
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Table 14. Tatoeba used languages - language Names to codes
Language Code Language Name

ru Russian
fr French
ko Korean
jp Japanese
he Hebrew
hu Hungarian
no Norwegian
hi Hindi
fi Finnish
es Spanish
de German
it Italian
nl Dutch
zh Chinese
vi Vietnamese
id Indonesian
ro Romanian
uk Ukrainian
sr Serbian
hr Croatian
da Danish
ca Catalan
ar Arabic
tr Turkish
cs Czech
th Thai
bn Bengali
bg Bulgarian
el Greek
ur Urdu
mr Marathi
eu Basque
et Estonian
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