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Abstract

Although Nesterov’s accelerated gradient method
(AGM) has been studied from various perspec-
tives, it remains unclear why the most popular
forms of AGMs must handle convex and strongly
convex objective functions separately. To address
this inconsistency, we propose a novel unified
framework for Lagrangians, ordinary differential
equation (ODE) models, and algorithms. As a
special case, our new simple momentum algo-
rithm, which we call the unified AGM, seamlessly
bridges the gap between the two most popular
forms of Nesterov’s AGM and has a superior con-
vergence guarantee compared to existing algo-
rithms for non-strongly convex objective func-
tions. This property is beneficial in practice when
considering ill-conditioned µ-strongly convex ob-
jective functions (with small µ). Furthermore, we
generalize this algorithm and the corresponding
ODE model to the higher-order non-Euclidean
setting. Last but not least, our unified framework
is used to construct the unified AGM-G ODE, a
novel ODE model for minimizing the gradient
norm of strongly convex functions.

1. Introduction
We consider the optimization problem

min
x∈X

f(x),

where X ⊆ Rn is a convex set and f : X → R is a
continuously differentiable function whose gradient is L-
Lipschitz continuous. For the sake of simplicity, we assume
X = Rn and the objective function f has a minimizer x∗.
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Nesterov acceleration. Combining gradient descent with
momentum, Nesterov (1983) proposed the accelerated gradi-
ent method (AGM). In particular, the following two specific
schemes are the most popular versions of AGM: If f is
convex, then the scheme

yk = xk +
2

k + 1
(zk − xk)

xk+1 = yk − s∇f (yk)

zk+1 = zk − s(k + 1)

2
∇f (yk)

(AGM-C)

with s ≤ 1/L achieves an O
(
1/k2

)
convergence rate

(Tseng, 2008). If f is µ-strongly convex, then the scheme

yk = xk +

√
µs

1 +
√
µs

(zk − xk)

xk+1 = yk − s∇f (yk)

zk+1 = zk +
√
µs

(
yk − zk − 1

µ
∇f(yk)

) (AGM-SC)

with s ≤ 1/L exhibits an O((1−√
µs)k) convergence rate

(Nesterov, 2018). Here, we observe that

AGM-SC does not recover AGM-C as µ → 0,

which indicates the inconsistency between AGM-SC and
AGM-C. Furthermore, when µ is very small, the conver-
gence rate of AGM-SC is slower than AGM-C in the early
stage because (1−√

µs)k tends to zero very slowly. This
is unexpected, as AGM-SC exploits the strong convexity of
f , while AGM-C only relies on the convexity of f .

Recent studies on Nesterov acceleration, particularly in
the development of ODE models and Lagrangian formu-
lations, have primarily focused on the algorithms AGM-C
and AGM-SC due to their simplicity. As a result, the in-
consistency between these two algorithms is inherited in
the corresponding ODEs and Lagrangians (and this is fur-
ther discussed in Appendix A.1). The main goal of this
paper is to address such inconsistencies in the discrete-time
algorithms, continuous-time dynamics and Lagrangians.

Practical perspective. We now explain the importance
of designing efficient algorithms for minimizing µ-strongly
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convex functions which are ill-conditioned (i.e., having a
small strong convexity parameter µ). Many optimization
problems in machine learning can be formulated as

min
x∈Rn

f(x) =
1

m

( m∑
i=1

fi(x) + λR(x)

)
. (1)

Consider the problem (1) with L-smooth convex loss func-
tions fi and ℓ2-regularization term R(x) = ∥x∥2. Then, f
is L-smooth and 2λ

m -strongly convex. Since the strong con-
vexity parameter µ decreases as the sample size m increases
or the regularization parameter λ decreases, improving the
convergence rate for ill-conditioned strongly convex objec-
tive functions is significant, as emphasized in (Bubeck et al.,
2015, Section 3.6).

1.1. Contributions

In this paper, we propose a novel Lagrangian, continuous-
time models and discrete-time algorithms that handle convex
and strongly convex objective functions in a unified way.
The main contributions of this work can be summarized as
follows:

• We propose a novel Lagrangian, called the unified Breg-
man Lagrangian (4), that handles convex and strongly
convex cases simultaneously. By solving the Euler–
Lagrange equation, we obtain a family of momentum
dynamics for minimizing both convex and strongly
convex objective functions.

• As a special case of the unified Bregman Lagrangian
flow, we derive an ODE model that minimizes both
convex and strongly convex functions, called the uni-
fied AGM ODE (8). As a rate-matching discretization
of this ODE model, we devise a novel algorithm, called
the unified AGM (Algorithm 1). The proposed algo-
rithm always has a better convergence guarantee than
AGM-C and reduces to AGM-C when µ = 0.

• We extend the unified AGM ODE to the higher-order
non-Euclidean setting, resulting in a novel continuous-
time model called the unified ATM ODE (12). As a
rate-matching discretization of this ODE model, we
propose a novel higher-order method for minimizing
both convex and uniformly convex functions, called
the unified ATM (Algorithm 2).

• We strengthen the connection between our proposed
unified dynamics/methods and existing ones by analyz-
ing two limit cases: As µ → 0, our unified methods
directly reduce to the ones for the non-strongly convex
case. When µ > 0, our unified methods recover the
time-invariant methods for the strongly convex case as
the asymptotic limits.

The following byproducts and observations are not directly
related to our main goal but may be of independent interest:

• We develop a novel tool, called the differential kernel,
which allows us to derive the limiting ODEs of fixed-
step first-order methods (2). Our result recovers the
limiting ODEs of the three-sequence scheme and two-
sequence scheme, which are commonly found in the
literature.

• Taking inspiration from the anti-transpose relationship
between OGM ODE and OGM-G ODE, we propose
the unified AGM-G ODE (17), a novel ODE model
for minimizing the gradient norm of strongly convex
functions.

1.2. Related Work

Nesterov’s accelerated gradient methods are first proposed
in (1983; 2018). Su et al. (2014; 2016) derived the limit-
ing ODE of AGM-C, which has further been generalized
and investigated in (Krichene et al., 2015; Attouch et al.,
2018). Wibisono et al. (2016) developed the first Breg-
man Lagrangian, which systematically generates a family
of continuous-time flows including the limiting ODE of
AGM-C and its higher-order extensions. In the strongly con-
vex case, Wilson et al. (2021) developed the second Breg-
man Lagrangian, which generates a family of continuous-
time flows including the limiting ODE of AGM-SC. How-
ever, as discussed in Appendix A.1.2, their work is not
consistent with (Wibisono et al., 2016). Based on the La-
grangian and Hamiltonian formulations, Betancourt et al.
(2018); França et al. (2021); Muehlebach & Jordan (2021)
studied a symplectic integrator to achieve acceleration
in discrete-time settings. Shi et al. (2021) derived high-
resolution ODEs for AGM-C and AGM-SC, from which Shi
et al. (2019); Zhang et al. (2021) obtained accelerated meth-
ods by applying Euler methods. Diakonikolas & Orecchia
(2019) proposed the approximate duality gap technique to
understand AGM in both continuous-time and discrete-time
settings. Notably, the constant step scheme I presented in
(Nesterov, 2018, Equation 2.2.19) and the NAG flow pre-
sented in (Luo & Chen, 2021) are closely related to our
work, as they handle the convex case and the strongly con-
vex case simultaneously. In Appendices A.3 and D.8, we
show that the algorithm and ODE model can be recovered
from our unified framework.

Accelerated methods with higher-order tensor update step
have been studied in (Nesterov, 2008; Baes, 2009; Wibisono
et al., 2016; Gasnikov et al., 2019). Accelerated methods
for reducing the gradient norm of objective functions have
also been explored in several works (Nesterov, 2012; Ito
& Fukuda, 2021). In particular, Kim & Fessler (2021) pro-
posed the OGM-G, an optimal method for minimizing the
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gradient norm of convex objective functions, which is fur-
ther analyzed using Lyapunov arguments (Diakonikolas &
Wang, 2022; Lee et al., 2021), and ODE models (Suh et al.,
2022).

2. Preliminaries
In this section, we provide basic concepts and some novel
tools that will be used throughout the paper.

2.1. Higher-Order Hyperbolic Functions

In this subsection, we introduce a family of higher-order
hyperbolic functions, which are parametrized by the order
p = 2, 3, . . .. The definitions of these functions with p ≥ 3
are developed for the purpose of designing the unified ATM
ODE presented in Section 5.1. We define the sinhp function
as the solution to the problem

sinh′p(t) = coshp(t) := (1 + sinhpp(t))
1/p, sinhp(0) = 0.

We define the tanhp, cothp, sechp, and cschp functions as

tanhp(t) :=
sinhp(t)

coshp(t)
, cothp(t) :=

coshp(t)

sinhp(t)
,

sechp(t) :=
1

coshp(t)
, cschp(t) :=

1

sinhp(t)
.

When p = 2, these functions reduce to the standard hy-
perbolic functions, in which case we omit the subscript p.
Following ten Thije Boonkkamp et al. (2012), we define the
sinhcp, tanhcp, cothcp, and cschcp functions as

sinhcp(t) :=
sinhp(t)

t
, cschcp(t) :=

t

sinhp(t)
,

tanhcp(t) :=
sinhcp(t)

coshp(t)
, cothcp(t) :=

coshp(t)

sinhcp(t)
.

The graphs of these functions are shown in Figures 4 and 5.

2.2. Differential Kernel

In this subsection, we propose a novel tool, called the dif-
ferential kernel, for deriving limiting ODEs of general first-
order methods. For brevity, we only present the key results
here and refer the readers to Appendix B.2.3 for detailed
calculations. Most of the first-order momentum algorithms
can be formulated as the following fixed-step first-order
scheme (see Drori & Teboulle, 2014):

yi+1 = yi − s
i∑

j=0

hij∇f (yj) . (2)

To derive the limiting ODE of (2), we introduce the ansatzes
yk ≈ X(k

√
s) and hij ≈ H(i

√
s, j

√
s) for some smooth

curve X(t) and some smooth function H(t, τ). Then, taking
the limit s → 0 in (2) yields

Ẋ(t) = −
∫ t

0

H(t, τ)∇f(X(τ)) dτ, (3)

where H(t, τ) = lims→0 ht/
√
s,τ/

√
s. We call H(t, τ) the

differential kernel (or H-kernel) for the integro-differential
equation (3). Note that the form of (3) clearly shows the
momentum effect as it shows that the gradient ∇f(X(τ))
at time τ influences the velocity Ẋ(t) at all future times
t > τ .

Equivalence with second-order ODE. The equation (3)
may seem different from the typical ODE models found in
the literature, such as AGM-C ODE presented in (Su et al.,
2016). However, it is possible to convert the equation (3)
into a second-order ODE under certain conditions. If there
exists a function b(t) such that

∂H(t, τ)

∂t
= −b(t)H(t, τ),

then the equation (3) can be rewritten as the following
second-order ODE (see Appendix B.2.3):

Ẍ(t) + b(t)Ẋ +H(t, t)∇f(X(t)) = 0.

As concrete examples, we can readily verify that (3) with
the differential kernel HC(t, τ) = τ3/t3 is equivalent
to AGM-C ODE and that (3) with the differential kernel
HSC(t, τ) = e2

√
µ(τ−t) is equivalent to AGM-SC ODE.

3. Unified Lagrangian Formulation
In this section, we propose a novel Lagrangian framework
that can handle both non-strongly convex (µ = 0) and
strongly convex (µ > 0) cases, unlike the existing frame-
works in (Wibisono et al., 2016; Wilson et al., 2021), which
are limited to either µ = 0 or µ > 0. In Section 3.2, we
discuss that our novel framework is closely related to the
aforementioned existing frameworks.

3.1. Unified Bregman Lagrangian

For a differentiable, convex, and essentially smooth func-
tion h : Rn → R and continuously differentiable functions
α, β, γ : [0,∞) → R satisfying the ideal scaling condi-
tions γ̇(t) = eα(t) and β̇(t) ≤ eα(t), we define the unified
Bregman Lagrangian as1

L(X, Ẋ, t) = eα(t)+γ(t)((1 + µeβ(t))

×Dh(X + e−α(t)Ẋ,X)− eβ(t)f(X)), (4)

1This Lagrangian recovers the first Bregman Lagrangian (22)
when µ = 0 unlike the second Bregman Lagrangian (26).
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where Dh is the Bregman divergence of h defined as
Dh(y, x) = h(y)−h(x)−⟨∇h(x), y−x⟩. In Appendix C.1,
we show that the Euler–Lagrange equation d

dt
∂L
∂Ẋ

= ∂L
∂X for

the unified Bregman Lagrangian (4) reduces to the follow-
ing system of ODEs, which we call the unified Bregman
Lagrangian flow:

Ẋ = eα(Z −X)

d

dt
∇h(Z) =

µβ̇eβ

1 + µeβ
(∇h(X)−∇h(Z))

− eα+β

1 + µeβ
∇f(X).

(5)

The convergence rate of this ODE model is addressed in the
following theorem.

Theorem 3.1. Let f be a µ-uniformly (possibly with µ = 0)
convex function with respect to h.2 Then, any solution to the
system of ODEs (5) satisfies

f(X(t))− f(x∗) ≤ e−β(t)
(
(1 + µeβ(0))

×Dh(x
∗, Z(0)) + eβ(0)(f(X(0))− f(x∗))

)
. (6)

The proof of Theorem 3.1 can be found in Appendix C.3.

3.2. Limit Cases of Unified Bregman Lagrangian Flow

In this subsection, we analyze two limit cases of the unified
Bregman Lagrangian flow.3 First, when µ = 0, the flow (5)
reduces to the first Bregman Lagrangian flow (25), a known
ODE model for the non-strongly convex case. Second, when
µ > 0 and the limits α(∞) and β̇(∞) > 0 exist, we argue
that the flow (5) is closely related to the following system
of ODEs:

Ẋ = eα(∞)(Z −X)

d

dt
∇h(Z) = β̇(∞) (∇h(X)−∇h(Z))− eα(∞)

µ
∇f(X),

(7)
which is the second Bregman Lagrangian flow (27), a known
ODE model for the strongly convex case, with the param-
eters α2nd(t) :≡ α(∞) and β2nd(t) := β̇(∞)t. Consider
the dynamics (5) and (7) as systems whose inputs are the
initial point x0 = X(t0) = Z(t0) at the initial time t0 and
outputs are X(t0 + T ) at the final time t0 + T . Then, for
fixed x0, it can be shown that the output of the system (5)
converges to the output of the system (7) as t0 → ∞ (with
a formal statement and its proof found in Appendix C.4).
In light of this, the system (7) is regarded as the asymptotic

2We say that f is µ-uniformly convex with respect to h if the
inequality µDh(x, y) ≤ Df (x, y) holds for all x, y ∈ Rn.

3This analysis is inspired by the two limit cases of ITEM (a
discrete-time algorithm) in (Taylor & Drori, 2022, Section 2.2).
However, our analysis is more rigorous and detailed.

limit of the system (5). Furthermore, in Appendix C.5, we
show that the convergence rate of (7) can be recovered from
the convergence analysis of (5) via a limiting argument. The
system (7) is time-invariant.

4. Unified ODE Model and Algorithm
In this section, using the unified Lagrangian framework,
we propose a novel algorithm that unifies AGM-C and
AGM-SC, for minimizing both convex and strongly con-
vex functions. Throughout this section, we assume that the
objective function f is L-smooth and µ-strongly (possibly
with µ = 0) convex.

4.1. Proposed Dynamics: Unified AGM ODE

We consider the unified Bregman Lagrangian flow (5) with
h(x) = 1

2∥x∥2, α(t) = log
(
2
t cothc(

√
µ

2 t)
)
, and β(t) =

log
(
t2

4 sinhc2(
√
µ

2 t)
)
,4 which can be equivalently written

as the following second-order ODE (see Appendix D.2):

Ẍ +

(√
µ

2
tanh

(√µ

2
t
)

+
3

t
cothc

(√µ

2
t
))

Ẋ +∇f(X) = 0, (8)

which we call the unified AGM ODE. This ODE has a unique
solution as shown in Appendix D.3. The following theorem
describes the convergence rate of the dynamics (5).

Theorem 4.1. The solution to the unified AGM ODE (8)
with the initial conditions X(0) = x0 and Ẋ(0) = 0 satis-
fies

f(X(t))− f(x∗) ≤ 2

t2
cschc2

(√µ

2
t
)
∥x0 − x∗∥2

= O
(
min{1/t2, e−

√
µt}
)
.

(9)

The proof of Theorem 4.1 can be found in Appendix D.4.

4.2. Proposed Algorithm: Unified AGM

We present the unified AGM, which is a rate-matching dis-
cretization of the unified AGM ODE (8), in Algorithm 1.
This algorithm achieves an accelerated convergence rate as
shown in the following theorem.

Theorem 4.2. The iterates of the unified AGM (Algorithm 1)
with s ≤ 1/L satisfy

f(xk)− f(x∗) ≤ 2

ι2sk2
cschc2

(
ι
√
µs

2
k

)
∥x0 − x∗∥2

= O
(
min{1/k2, (1−√

µs)k}
)
. (10)

4These functions are chosen constructively as described in
Appendix D.1.

5Note that the parameter ι is continuous in µ, as limµ→0 ι = 1.
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Algorithm 1 Unified AGM
Input: Initial point x0 ∈ Rn, stepsize s
Initialize z0 = x0; q = µs

if µ = 0 then ι = 1 else ι = − log(1−√
µs)√

µs
5

for k = 0, 1, 2, . . . do
yk = xk+

1
1−q

(
2

ι(k+1) cothc(
k+1
2 ι

√
q)−q

)
(zk−xk)

xk+1 = yk − s∇f(yk)

zk+1 = zk + ιs(k+1)
2 tanhc(k+1

2 ι
√
q)

×(µyk − µzk −∇f(yk))
end for

The proof of Theroem 4.2 can be found in Appendix D.5.
The unified AGM exhibits the best of both polynomial
O(1/k2) and exponential O((1−√

µs)k) convergence rates,
while each of AGM-C and AGM-SC achieves only one of
these rates.

Unified AGM converges to unified AGM ODE. In Ap-
pendix D.6, we show that the iterates of the unified AGM
converge to the solution to the unified AGM ODE under
the identifications t ↔ tk, X(tk) ↔ xk, and Z(tk) ↔ zk,
where tk := ι

√
sk and Z(t) = X(t) + t

2Ẋ(t). Because
the convergence rates (9) and (10) are equivalent under
these identifications, the unified AGM is a rate-matching
discretization of the unified AGM ODE.

4.3. Limit Cases of Unified AGM ODE and Unified
AGM

We now examine the two limit cases of the proposed ODE
and algorithm. When µ = 0, the unified AGM ODE (8) is
simplified to

Ẍ +
3

t
Ẋ +∇f(X) = 0, (AGM-C ODE)

which is the limiting ODE of AGM-C (see Su et al., 2016).
When µ > 0, the asymptotic limit of the unified AGM ODE
is the system (7) with α(∞) = log

√
µ and β̇(∞) =

√
µ,

which can be equivalently written as

Ẍ + 2
√
µẊ +∇f(X) = 0. (AGM-SC ODE)

Note that this is the limiting ODE of AGM-SC (see Wilson
et al., 2021). The coefficient of Ẋ in the unified AGM ODE
converges pointwise to 3

t as µ → 0 and converges to 2
√
µ

as t → ∞ (see Figure 1). This observation is aligned with
the limiting arguments above.

When µ = 0, the unified AGM simply reduces to AGM-C.
When µ > 0, viewing the unified AGM and AGM-SC as
systems whose inputs are the initial point xk0

= zk0
at the

initial iteration k0 and the outputs are xk0+K at the final
iteration k0 +K, we can show that AGM-SC is the asymp-
totic limit of the unified AGM. This means that the output

t

2
√
µ

C
oe

ffi
ci

en
t

of
Ẋ

AGM-C ODE

AGM-SC ODE

Unified AGM ODE

Figure 1. Plots for the coefficient of Ẋ .

of the unified AGM converges to the output of AGM-SC as
k0 → ∞ (with a formal statement and its proof found in
Appendix D.7).

Unified AGM is always better than AGM-C. The conver-
gence rate (10) of the unified AGM improves as µ increases
and exactly recovers the convergence rate of AGM-C when
µ = 0. Thus, the unified AGM always has a better conver-
gence guarantee than AGM-C. In contrast, the convergence
guarantee of AGM-SC is no better than that of AGM-C
when µ is small.

Differential kernel of the unified AGM ODE. The differ-
ential kernel of the unified AGM ODE (8) can be computed
as (see Appendix D.2)

HU(t, τ) =
τ3 sinhc3

(√
µ

2 τ
)
cosh

(√
µ

2 τ
)

t3 sinhc3
(√

µ

2 t
)
cosh

(√
µ

2 t
) . (11)

When µ = 0, HU(t, τ) reduces to the differential ker-
nel of AGM-C ODE, HC(t, τ) = τ3/t3. When µ > 0,
HU(t, τ) is asymptotically equivalent to HSC(t, τ) =
e2

√
µ(τ−t), the differential kernel of AGM-SC ODE, that is,

HU(t, τ)/HSC(t, τ) → 1 as t, τ → ∞. This is consistent
with the fact that AGM-SC ODE is the asymptotic limit of
the unified AGM ODE.

5. Unified Higher-Order Method
Using the first Bregman Lagrangian (an existing Lagrangian
framework for the non-strongly convex case), Wibisono et al.
(2016) proposed the accelerated tensor method (ATM-C)
and its limiting ODE (ATM-C ODE) for convex objec-
tive functions, achieving O(1/kp) and O(1/tp) conver-
gence rates, respectively. The authors also attempted to
extend their results to the uniformly convex case within the
first Bregman Lagrangian framework, where the goal is to
achieve an exponential convergence rate. However, only an
ODE model was proposed, and its rate-matching discretiza-
tion was not identified. Instead, they showed that ATM-C
with a restart scheme achieves an accelerated exponential
convergence rate. Despite this progress, as they mentioned,
making the connection between discrete-time algorithms
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and continuous-time flows in the uniformly convex case
remains an open problem.

In this section, our unified Lagrangian framework is used
to seamlessly extend ATM-C and ATM-C ODE to the uni-
formly convex case. Our novel ODE model and algorithm
achieve exponential convergence rates without relying on
a restart scheme. Throughout this section, we assume that
the distance-generating function h is 1-uniformly convex
of order p,6 the objective function f is p-times continu-
ously differentiable and L-smooth of order p− 1,7 and that
f is µ-uniformly convex with respect to h (possibly with
µ = 0).8 These assumptions are standard in the litera-
ture about higher-order optimization in the mirror descent
setup (see Wibisono et al., 2016; Wilson et al., 2021) and re-
cover the setting in Section 4 when p = 2 and h(x) = ∥x∥2.

5.1. Proposed Dynamics: Unified ATM ODE

We consider the unified Bregman Lagrangian flow (5) with
the parameters α(t) = log(pt cothcp(

p
√
Cµt)) and β(t) =

log(Ctp sinhcpp(
p
√
Cµt)):

Ẋ =
p

t
cothcp(

p
√
Cµt)(Z −X)

d

dt
∇h(Z) = Cptp−1 tanhcp−1

p ( p
√

Cµt)

×
(
µ∇h(X)− µ∇h(Z)−∇f(X)

)
,

(12)

where C is a positive constant. We refer to this system of
ODEs as the unified ATM ODE. Note that this system is
equivalent to the unified AGM ODE (8) when p = 2, C =
1/4, and h(x) = 1

2∥x∥2. This system has a unique solution
as shown in Appendix E.1. We address the convergence rate
of this system in the following theorem.

Theorem 5.1. The solution to the unified ATM ODE (12)
with the initial conditions X(0) = Z(0) = x0 satisfies

f(X(t))− f(x∗) ≤ cschcpp(
p
√
Cµt)

Ctp
Dh(x

∗, x0)

= O
(
min{1/tp, e−p p

√
Cµt}

)
.

(13)

The proof of Theorem 5.1 can be found in Appendix E.2

5.2. Proposed Algorithm: Unified ATM

Recall that AGM is a combination of the gradient update
step xk+1 = yk − s∇f(yk) and the momentum steps. In
order to extend AGM to the higher-order setting, we replace
the gradient update step with its higher-order generalization,
the tensor update step. For p ≥ 2, s > 0, and N > 0, the

6h(y) ≥ h(x)+⟨∇h(x), y−x⟩+ 1
p
∥y−x∥p for all x, y ∈ Rn.

7∥∇p−1f(y)−∇p−1f(x)∥ ≤ L∥y − x∥ for all x, y ∈ Rn.
8µDh(x, y) ≤ Df (x, y) for all x, y ∈ Rn.

Algorithm 2 Unified ATM
Input: Initial point x0 ∈ Rn, stepsize s, positive con-
stants N and M satisfying (14)
Initialize z0 = x0 and A0 = 0; C = 1

p (
M
p−1 )

p−1

for k = 0, 1, 2, . . . do
if k = 0 then Ak+1 = Cpps

else Ak+1 = Ak + p p

√
CsAp−1

k (1 + µAk)

yk = xk + Ak+1−Ak

Ak+1
(zk − xk)

xk+1 = Gp,s,N (yk)

zk+1 = argminz
{Ak+1−Ak

1+µAk

(
⟨∇f(xk+1), z⟩

+µDh(z, xk+1)
)
+Dh(z, zk)

}
end for

tensor update operator Gp,s,N is defined on Rn as

Gp,s,N (y) = argmin
x

{
fp−1(x; y) +

N

ps
∥x− y∥p

}
,

where fp−1(x; y) =
∑p−1

i=0
1
i!∇if(y)(x − y)i. As an easy

consequence of (Wibisono et al., 2016, Lemma 2.2), we
have the following lemma.

Lemma 5.2. For any p ≥ 2 and N > 1, there exists a
positive constant M such that the inequality

⟨∇f (x) , y − x⟩ ≥ Ms
1

p−1 ∥∇f (x)∥
p

p−1 (14)

holds for all x, y ∈ Rn with x = Gp,s,N (y). In particular,
for any p ≥ 2 and N =

√
2, (14) holds with M = 1/3.

We now present the unified ATM, a rate-matching discretiza-
tion of the unified ATM ODE (12), in Algorithm 2. The
convergence rate of this algorithm is shown in the following
theorem.

Theorem 5.3. The iterates of the unified ATM (Algorithm 2)
with s ≤ (p− 1)!/L satisfy

f(xk)− f(x∗) ≤ 1

Ak
Dh(x

∗, x0)

= O
(
min{1/kp, (1 + p p

√
Cµs)−k}

)
. (15)

The proof of Theorem 5.3 can be found in Appendix E.3. In
particular, we can show that the unified ATM with N =

√
2,

M = 1/3, and s = (p−1)!
L has an O( p

√
L/µ log(1/ϵ)) iter-

ation complexity to find an ϵ-approximate solution,9 which
is equivalent to the iteration complexity of the restarted
ATM-C (Wibisono et al., 2016, Appendix H), a known
accelerated tensor method for uniformly convex objective
functions.

9This follows from the fact that the inequality (1 +

p p
√
Cµs)−k ≤ exp(− 1

9
p
√
µsk) holds when N =

√
2 and

M = 1/3 (see Remark E.1).
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Algorithm 3 ATM-SC
Input: Initial point x0 ∈ Rn, stepsize s, positive con-
stants N and M satisfying (14)
Initialize z0 = x0; q = µs, C = 1

p (
M
p−1 )

p−1

for k = 0, 1, 2, . . . do
yk = xk + p p

√
Cµs

1+p p
√
Cµs

(zk − xk)

xk+1 = Gp,s,N (yk)

zk+1 = argminz
{

p p
√
Cµs
µ

(
⟨∇f(xk+1), z⟩

+µDh(z, xk+1)
)
+Dh(z, zk)

}
end for

Unified ATM converges to the unified ATM ODE. In
Appendix E.4, we show that the iterates of the unified
ATM converge to the solution to the unified ATM ODE
under the identifications t ↔ tk, X(tk) ↔ xk, and
Z(tk) ↔ zk, where tk := p

√
Ak/C if µ = 0 and

tk := sinh−1
p ( p

√
µAk)/

p
√
Cµ if µ > 0. Because the conver-

gence rates (13) and (15) are equivalent under these identifi-
cations, the unified ATM is a rate-matching discretization
of the unified ATM ODE.

5.3. Limit Cases of Unified ATM ODE and Unified ATM

We now examine two limit cases of the proposed dynamics
and algorithm. First, when µ = 0, the unified ATM ODE
and the (modified) unified ATM reduce to ATM-C ODE
and ATM-C in (Wibisono et al., 2016), respectively (see
Ramerk E.2). Second, when µ > 0, by taking the limits
t0 → ∞ and k0 → ∞, we obtain novel dynamics and
algorithm for minimizing uniformly convex functions. In
Appendix E.5, we show that the asymptotic limit of the
unified ATM ODE is given by

Ẋ = p p
√

Cµ(Z −X)

d

dt
∇h(Z) = p p

√
Cµ

(
∇h(X)−∇h(Z)− 1

µ
∇f(X)

)
and that the solution to this system achieves an O(e−p p

√
Cµt)

convergence rate. In Appendix E.6, we derive the asymp-
totic limit of the unified ATM, resulting in ATM-SC (Al-
gorithm 3), a time invariant method achieving an O((1 +
p p
√
Cµs)−k) convergence rate. As expected, these dynam-

ics and algorithm are only applicable to the uniformly con-
vex case (µ > 0).

6. ODE Model for Minimizing the Gradient
Norm of Strongly Convex Functions

Until now, we have focused on the dynamics that minimize
the objective function value f(X(t)). In certain cases, the
squared gradient norm ∥∇f(X(t))∥2 is also a reasonable
performance measure for both theoretical and practical pur-
poses (see Nesterov, 2012; Diakonikolas & Wang, 2022). In

this section, we propose a novel ODE model which reduces
the squared gradient norm of strongly convex functions with
an O

(
min{1/T 2, e−

√
µT }

)
convergence rate.

6.1. Motivation: Anti-Transpose Relationship Between
OGM ODE and OGM-G ODE

To guide the design of our novel ODE model, we first inves-
tigate a symmetric relationship between

Ẍ +
3

t
Ẋ + 2∇f(X) = 0, (OGM ODE)

an ODE that reduces the objective function value accuracy
of convex functions, and

Ẍ +
3

T − t
Ẋ + 2∇f(X) = 0, (OGM-G ODE)

an ODE that reduces the squared gradient norm of convex
functions (see Appendix F.1 for details about these dynam-
ics).

Based on the observation of a symmetric relationship be-
tween the coefficients of Ẋ in the two ODEs, one might
guess that “OGM-G ODE is the time-reversed dynamics of
OGM ODE.” However, this interpretation is misleading as
the solution to the two ODEs do not have a time-reversed
relationship. Instead, using the differential kernel (see Sec-
tion 2.2), we reveal a conceivably more accurate symmetric
relationship between these ODEs.

The differential kernels HF(t, τ) of OGM ODE and
HG(t, τ) of OGM-G ODE can be computed as follows:
HF(t, τ) = 2τ3/t3, and HG(t, τ) = 2(T − t)3/(T − τ)3,
respectively. Here, we can observe the following anti-
transpose relationship between the two differential ker-
nels:10

HF(t, τ) = HG(T − τ, T − t). (16)

6.2. Proposed Dynamics: Unified AGM-G ODE

Suh et al. (2022) showed that OGM-G ODE reduces the
squared gradient norm ∥∇f(X(T ))∥2 at the terminal time
T , with an O(1/T 2) convergence rate. However, as OGM-G
ODE exploits only the non-strong convexity of f , it cannot
attain an exponential convergence rate. To overcome this
limitation, we propose a novel ODE model that fully exploits
the strong convexity of f . Inspired by the anti-transpose
relationship between OGM ODE and OGM-G ODE, we

10In Appendix F.2, we show that this relationship can also be
derived from the anti-transpose relationship (111) between the
discrete-time algorithms OGM and OGM-G.
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Figure 2. Results for the ℓ2-regularized logistic regression problem.
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Figure 3. Results for the cubic-regularized linear regression problem.

propose the unified AGM-G ODE as

Ẍ +

(√
µ

2
tanh

(√µ

2
(T − t)

)
+

3

T − t

× cothc
(√µ

2
(T − t)

))
Ẋ +∇f(X) = 0, (17)

which is the anti-transposed dynamics of the unified AGM
ODE (see Appendix F.3). The following theorem shows
that this ODE model reduces the gradient norm of strongly
convex functions at both polynomial and exponential rates.

Theorem 6.1. The solution to the unified AGM-G ODE
(17) with the initial conditions X(0) = x0 and Ẋ(0) = 0
satisfies11

∥∇f(X(T ))∥2 ≤ 8

T 2
cschc2

(√µ

2
T
)

× sup
x

{
f(x0)− f(x) +

µ

2
∥x0 − x∥2

}
= O

(
min{1/T 2, e−

√
µT }

)
.

The proof of Theorem 6.1 can be found in Appendix F.4. In
Remark F.1, we discuss that our unified framework is crucial
for designing ODE models that reduces the gradient norm

11Here, we assume that supx{f(x0) − f(x) + µ
2
∥x0 − x∥2}

is finite. This assumption is quite mild because the function x 7→
f(x0) − f(x) + µ

2
∥x0 − x∥2 is concave when f is µ-strongly

convex.

of strongly convex functions, as the proof of Theorem 6.1
relies on the property Ẋ(T ) = 0, which does not hold for
the anti-transposed dynamics of AGM-SC ODE.

7. Numerical Experiments
In this section, we empirically test the performances of
our unified algorithms (the unified AGM and unified ATM)
against the specialized algorithms for non-strongly convex
objective functions (AGM-C and ATM-C) and the special-
ized algorithms for strongly convex objective functions
(AGM-SC and ATM-SC).

ℓ2-regularized logistic regression. Consider the problem
(1) with the convex functions fi(x) = −yia

T
i x + log(1 +

ea
T
i x) and the ℓ2-regularization term R(x) = ∥x∥2, that is,

min
x∈Rn

f(x) =
1

m

( m∑
i=1

(−yia
T
i x+log(1+ea

T
i x))+λ∥x∥2

)
,

where ai ∈ Rn and yi ∈ {0, 1}. Then, the function f is 2λ
m -

strongly convex. We set the parameters as s = 10−2 (step-
size), m = 100, and n = 20. The vectors ai and yi were
synthetically generated.12 As shown in Figure 2, AGM-SC
outperforms AGM-C when µ is large, but underperforms

12The entries of ai were sampled from N (0, 1), the labels yi ∈
{0, 1} were generated using the logistic model P (yi = 1) =

1/(1 + e−aT
i x0

), and the entries of x0 ∈ Rn were sampled from
N (0, 1/100).
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AGM-C when µ is small. In both cases, the performance of
the unified AGM (Algorithm 1) is comparable to the better
method among AGM-C and AGM-SC.

Cubic-regularized linear regression. To validate the per-
formance of higher-order methods, we consider the problem

min
x∈Rn

f(x) =
1

n

(
1

2
∥Ax− b∥2 + λ∥x∥3

)
,

where A ∈ Rn×n and b ∈ Rn. Then, because x 7→ ∥x∥3 is
6-smooth of order 2 and 3

2 -uniformly convex of order 3 (see
Nesterov, 2008), the function f is 6λ

n -smooth of order 2 and
3λ
2n -strongly convex with respect to h, where h(x) = 2

3∥x∥3,
which is an 1-uniformly convex function of order 3. We
set the parameters as s = 10−4 (stepsize), p = 2 (order),
N =

√
2, M = 1/3 (input constants), and n = 50. The

matrix A and the vector b were synthetically generated.13

Figure 3 shows that the performance of the unified ATM
(Algorithm 2) is comparable to the better method among
ATM-C (Wibisono et al., 2016) and ATM-SC (Algorithm 3).

8. Concluding Remarks
We have developed a unified framework for designing ac-
celerated continuous-time dynamics and discrete-time al-
gorithms that handle convex and strongly convex functions
simultaneously. Our unified framework has strong potential
for future research since it resolves the inconsistencies that
are commonly observed in the literature. On a different note,
the newly proposed differential kernel may be improved in
the future; for instance, it could be adapted to the mirror
descent setup. Moreover, a rate-matching discretization of
the unified AGM-G ODE could be further investigated.
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A. Related Work
A.1. Inconsistencies Between ODE Models and Lagrangian Formulations

In this section, we discuss the inconsistencies inherent in ODE models and Lagrangian formulations for the two algorithms
AGM-C and AGM-SC.

A.1.1. INCONSISTENCY BETWEEN ODE MODELS

Limiting ODE of AGM-C. Recall that AGM-C is the three-sequence scheme (41) with τk = 2
k+1 and δk = s(k+1)

2 . With
the sequence tk = k

√
s, we have

τ(t) = lim
s→0

τk(t)√
s

= lim
s→0

2√
s (t/

√
s+ 1)

=
2

t

δ(t) = lim
s→0

δk(t)√
s

= lim
s→0

√
s (t/

√
s+ 1)

2
=

t

2
.

Thus, as s → 0, AGM-C converges to the following ODE system, which we call AGM-C system:

Ẋ =
2

t
(Z −X)

Ż = − t

2
∇f(X)

(18)

with X(0) = Z(0) = x0. This system can be written in the following second-order ODE, which we call AGM-C ODE:

Ẍ +
3

t
Ẋ +∇f(X) = 0 (19)

with X(0) = x0 and Ẋ(0) = 0. Su et al. (2014) first derived this ODE and showed that the solution to AGM-C ODE
satisfies an O(∥x0 − x∗∥2/t2) convergence rate.

Limiting ODE of AGM-SC. Recall that AGM-SC is the three-sequence scheme (41) with τk =
√
µs

1+
√
µs and δk =

√
s
µ .

With the sequence tk = −k
log(1−√

µs)√
µ ,14 we have

τ(t) = lim
s→0

τk(t)√
s

= lim
s→0

√
µ

1 +
√
µs

=
√
µ

δ(t) = lim
s→0

δk(t)√
s

= lim
s→0

1√
µ

=
1√
µ
.

Thus, as s → 0, AGM-SC converges to the following ODE system, which we call AGM-SC system:

Ẋ =
√
µ(Z −X)

Ż =
1√
µ
(µX − µZ −∇f(X))

(20)

with X(0) = Z(0) = x0, or equivalently, the following AGM-SC ODE:

Ẍ + 2
√
µẊ +∇f(X) = 0 (21)

with X(0) = x0 and Ẋ(0) = 0. Wilson et al. (2021) showed that the solution to this ODE satisfies an O(e−
√
µt(f(x0)−

f(x∗) + µ
2 ∥x0 − x∗∥2)) convergence rate. Just like in the discrete-time case, AGM-C ODE and AGM-SC ODE should be

handled as separate cases because AGM-SC ODE does not recover AGM-C ODE as µ → 0.

AGM-SC ODE does not recover AGM-C ODE as µ → 0.
14Although the sequence tk = k

√
s leads to the same limiting dynamics, this particular sequence makes a clear connection between the

convergence rates of AGM-SC and its limiting ODE, as both rates are equivalent if we identify t ↔ tk, X(tk) ↔ xk, and Z(tk) ↔ zk.
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A.1.2. INCONSISTENCY BETWEEN LAGRANGIAN FORMULATIONS

To systematically study the acceleration phenomenon of momentum methods, Wibisono et al. (2016) introduced the
following first Bregman Lagrangian:

L1st

(
X, Ẋ, t

)
= eα+γ

(
Dh

(
X + e−αẊ,X

)
− eβf(X)

)
, (22)

where α, β, γ : [0,∞) → R are continuously differentiable functions, h is a continuously differentiable strictly convex
function, and Dh is the Bregman divergence. In order to obtain accelerated convergence rates, the following ideal scaling
conditions are introduced:

γ̇ = eα (23a)

β̇ ≤ eα. (23b)

Under the ideal scaling condition (23a), the Euler–Lagrange equation

d

dt

{
∂L
∂Ẋ

(
X, Ẋ, t

)}
=

∂L
∂X

(
X, Ẋ, t

)
(24)

for the first Bregman Lagrangian (22) reduces to the following system of first-order equations:

Ẋ = eα(Z −X) (25a)
d

dt
∇h(Z) = −eα+β∇f(X). (25b)

When f is convex, any solution to the system of ODEs (25) reduces the objective function value accuracy at an O(e−β(t))

convergence rate. In particular, setting α(t) = log 2
t and β(t) = log t2

4 , we recover AGM-C system (18) and its convergence
rate.

Although the first Bregman Lagrangian (22) generates a large family of momentum dynamics, it does not include AGM-SC
system (20). To handle strongly convex cases, Wilson et al. (2021) introduced the second Bregman Lagrangian, defined as

L2nd

(
X, Ẋ, t

)
= eα+β+γ

(
µDh

(
X + e−αẊ,X

)
− f(X)

)
. (26)

Under the ideal scaling condition (23a), the Euler–Lagrange equation (24) for the second Bregman Lagrangian (26) reduces
to the following system of first-order equations:

Ẋ = eα(Z −X) (27a)
d

dt
∇h(Z) = β̇ (∇h(X)−∇h(Z))− eα

µ
∇f(X). (27b)

When f is µ-uniformly convex with respect to h, any solution to the system of ODEs (27) satisfies an O(e−β(t)) convergence
rate. In particular, letting α(t) = log

√
µ and β(t) =

√
µt, we recover AGM-SC system (20) and its convergence rate. Here,

we observe an inconsistency between the two Bregman Lagrangians.

The second Bregman Lagrangian does not recover the first Bregman Lagrangian as µ → 0.

A.2. Lyapunov Arguments for Convergence Analyses

A popular method for proving the convergence rates of momentum dynamics and algorithms is constructing an energy
function non-increasing over time, called the Lyapunov function (Lyapunov, 1992). The particular analyses presented in this
section handle discrete-time algorithms and the corresponding continuous-time dynamics using a single Lyapunov function,
as in (Krichene et al., 2015). To prove the convergence rates of the given algorithm and associated dynamics, we take the
following steps:

1. Define a time-dependent Lyapunov function V : Rn × Rn × [0,∞) → [0,∞).

12



Unified Nesterov’s Accelerated Gradient Methods

2. Show that the continuous-time energy functional E(t) = V (X(t), Z(t), t) is monotonically non-increasing along the
solution trajectory (X,Z) : [0,∞) → Rn × Rn of the ODE system.

3. Show that the discrete-time energy functional Ek = V (xk, zk, tk) is monotonically non-increasing along the iterates
(xk, zk) : {0, 1, 2, . . .} → Rn × Rn of the algorithm.

The remainder of this subsection shows how we can apply this strategy to known algorithms.

AGM-C and AGM-C ODE. We define a time-dependent Lyapunov function as

V (X,Z, t) :=
1

2
∥Z − x∗∥2 + t2

4
(f(X)− f (x∗)) . (28)

Then, the continuous-time energy functional

E(t) = V (X(t), Z(t), t) =
1

2
∥Z(t)− x∗∥2 + t2

4
(f(X(t))− f (x∗))

is monotonically non-increasing along the solution trajectory of AGM-C ODE (18) (see Su et al., 2016). Writing E(t) ≤ E(0)
explicitly, we obtain an O(1/t2) convergence rate as

f(X(t))− f(x∗) ≤ 4

t2
E(t) ≤ 4

t2
E(0) = 2

t2
∥x0 − x∗∥2 .

For the iterates of AGM-C, the discrete-time energy function

Ek = V (xk, zk, tk) =
1

2
∥zk − x∗∥2 + sk2

4
(f(xk)− f (x∗)) , (29)

where tk = k
√
s, is monotonically non-increasing (see Ryu & Yin, 2022, Chapter 12). Hence, we obtain an O(1/k2)

convergence rate.

AGM-SC and AGM-SC ODE. We define a time-dependent Lyapunov function as

V (X,Z, t) := e
√
µt
(µ
2
∥Z − x∗∥2 + f(X)− f (x∗)

)
. (30)

Then we can show that AGM-SC ODE (20) achieves an O(e−
√
µt) convergence rate by showing that the energy functional

E(t) = V (X(t), Z(t), t) = e
√
µt
(µ
2
∥Z(t)− x∗∥2 + f(X(t))− f (x∗)

)
is monotonically non-increasing along the solution trajectory of AGM-SC ODE (see Wilson et al., 2021). Similarly, we can
show that AGM-SC achieves an O((1−√

µs)k) convergence rate by showing that the energy functional

Ek = V (xk, zk, tk) = (1−√
µs)

−k
(µ
2
∥zk − x∗∥2 + f(xk)− f (x∗)

)
,

where tk = −k
log(1−√

µs)√
µ , is non-increasing along the iterates of AGM-SC (see d’Aspremont et al., 2021, Section 4.5).

Bregman Lagrangians. We can show that the first Bregman Lagrangian flow (25) and the second Bregman Lagrangian
flow (27) achieve an O(e−β(t)) convergence rate by showing that the energy functional E(t) = V (X(t), Z(t), t) is
monotonically non-increasing. For the first Bregman Lagrangian flow, the Lyapunov function V is defined as

V1st(X,Z, t) := Dh (x
∗, Z) + eβ(t) (f(X)− f (x∗)) . (31)

Thus, we have the energy function

E1st(t) := Dh (x
∗, Z(t)) + eβ(t) (f(X(t))− f (x∗)) . (32)

For the second Bregman Lagrangian flow, the Lyapunov function V is defined as

V2nd(X,Z, t) := eβ(t) (µDh (x
∗, Z) + f(X)− f (x∗)) . (33)

Thus, we have the energy function

E2nd(t) := eβ(t) (µDh (x
∗, Z(t)) + f(X(t))− f (x∗)) . (34)

See (Wibisono et al., 2016; Wilson et al., 2021) for the proofs.

13
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A.3. Original NAG Flow

Luo & Chen (2021) designed the following ODE model for the constant step scheme I (Nesterov, 2018, Equation 2.2.19),
which we call the original NAG system:

γ̇ = µ− γ

Ẋ = Z −X

Ż =
1

γ
(µX − µZ −∇f(X))

(35)

with X(0) = Z(0) = x0 and γ(0) = γ0 > 0. Luo & Chen (2021, Section 6.2) showed that the constant step scheme I
(Nesterov, 2018, Equation 2.2.19) can be viewed as a discretization of this ODE system with the timestep αi, which is
inductively defined in (94).

Using time rescaling technique, Luo & Chen (2021) also proposed the following system of ODEs (although most of their
results directly deal with Equation (35)):

Ẋ(t) = a(t)(Z(t)−X(t))

b(t)Ż(t) = a(t)(µX(t)− µZ(t)−∇f(X(t))),
(36)

where a : [0,∞) → [0,∞) is an arbitrary function and

b(t) = γ

(∫ t

0

a(s) ds

)
.

In Appendix A.3.1, we show that the original NAG flow (35) is a special case of the unified Bregman Lagrnagian flow (5).
In Appendix A.3.2, we show that the rescaled original NAG flow (36) can be expressed as the unified Bregman Lagrangian
flow. Conversely, the unified Bregman Lagrangian flow can be expressed as the rescaled original NAG flow if the ideal
scaling condition (23b) holds with equality and the distance-generating function h is Euclidean (h(x) = 1

2∥x∥2). Therefore,
our unified Bregman Lagrangian generates a strictly larger family compared to (36). To emphasize, only our family can deal
with the non-Euclidean setup (mirror descent setup). In addition, the derivation of our unified family (5) is more constructive
because it comes from a Lagrangian formulation, whereas Luo & Chen (2021) designed the family (36) through a heuristic
speculation. In Appendix A.3.3, we observe that the rescaled original NAG flow with specific parameters is closely related
to the unified AGM ODE (8).

A.3.1. ORIGINAL NAG FLOW IS A SPECIAL CASE OF UNIFIED BREGMAN LAGRANGIAN FLOW

Solving γ̇ = µ− γ gives γ(t) = µ+ (γ0 − µ)e−t. Thus, the original NAG system (35) can be written as

Ẋ = Z −X

Ż =
et−log(γ0−µ)

1 + µet−log(γ0−µ)
(µX − µZ −∇f(X)).

This ODE system is equivalent to the unified Bregman Lagrangian flow (5) with α(t) = 0, β(t) = t− log (γ0 − µ), and
h(x) = 1

2∥x∥2. Therefore, the original NAG flow (35) is a special case of the unified Bregman Lagrangian flow.

A.3.2. TIME RESCALING APPLIED TO ORIGINAL NAG FLOW GIVES A SUBFAMILY OF UNIFIED BREGMAN
LAGRANGIAN FLOW

Because the uified Bregman Lagrangian flow is closed under time-dilation (see Appendix C.2), the rescaled original NAG
flow (36) is a subfamily of the unified Bregman Lagrangian flow, by construction. In this subsubsection, we confirm this
fact again. In addition, we show that the rescaled original NAG flow corresponds to the unified Bregman Lagrangian flow
with the condition β̇ = eα (ideal scaling condition (23b) with equality) and the Euclidean distance-genrerating function
h(x) = 1

2∥x∥2.

First, we show that the rescaled original NAG flow (36) can be expressed as the unified Bregman Lagrangian flow (5). Given
the parameter function a(t) and the constant γ0 of the rescaled original NAG flow, we can write the functions γ(t) and b(t)
involved in (35) and (36) as

γ(t) = µ+ (γ0 − µ) e−t

14
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b(t) = µ+ (γ0 − µ) e−
∫ t
0
a(s) ds.

We define the functions α(t) and β(t) as

α(t) = log a(t)

β(t) = log

(
1

γ0 − µ

)
+

∫ t

0

a(s) ds.
(37)

Then, we have
β̇eβ

1 + µeβ
=

eα+β

1 + µeβ
=

eα

µ+ e−β
=

a(t)

µ+ (γ0 − µ) e−
∫ t
0
a(s) ds

=
a(t)

b(t)
.

Thus, the rescaled original NAG flow is equivalent to the unified Bregman Lagrangian flow with the parameter functions
(37) and the Euclidean distance-generating function h(x) = 1

2∥x∥2.

Conversely, we show that if the ideal scaling conditon (23b) holds with equality and the distance-generating function h is
Euclidean, then the unified Bregman Lagrangian flow can be written as the rescaled original NAG flow. Given the parameter
functions α(t) and β(t) of the unified Bregman Lagrangian flow, we define the function a(t) and the constant γ0 as

a(t) = eα(t)

γ0 = µ+ e−β(0).

Then, because
b(t) = µ+ (γ0 − µ) e−

∫ t
0
a(s) ds = µ+ e−β(t),

we can write the rescaled original NAG flow as

Ẋ(t) = eα(t)(Z(t)−X(t))(
µ+ e−β(t)

)
Ż(t) = eα(t)(µX(t)− µZ(t)−∇f(X(t))),

which is equivalent to the unified Bregman Lagrangian flow if the ideal scaling conditon (23b) holds with equality and
h(x) = 1

2∥x∥2.

A.3.3. RELATIONSHIP BETWEEN ORIGINAL NAG FLOW WITH SPECIFIC PARAMETERS AND UNIFIED AGM ODE

As Luo & Chen (2021, Equation 70) mentioned, given γ0 > 0, one can choose the function a(t) in the rescaled original
NAG flow as

a(t) =


2
√
γ0√

γ0t+2 , if µ = 0,

√
µ · e

√
µt−

√
µ−√

γ0√
µ+

√
γ0

e
√

µt+
√

µ−√
γ0√

µ+
√

γ0

, if µ > 0.
(38)

In this case, we have b(t) = (a(t))2. Thus, the rescaled original flow with these functions can be written as

Ẋ(t) =
2
√
γ0√

γ0t+ 2
(Z(t)−X(t))

Ż(t) = −
√
γ0t+ 2

2
√
γ0

−∇f(X(t))

when µ = 0, and

Ẋ(t) =
√
µ ·

e
√
µt −

√
µ−√

γ0√
µ+

√
γ0

e
√
µt +

√
µ−√

γ0√
µ+

√
γ0

(Z(t)−X(t))

Ż(t) =
1√
µ
·
e
√
µt +

√
µ−√

γ0√
µ+

√
γ0

e
√
µt −

√
µ−√

γ0√
µ+

√
γ0

(µX(t)− µZ(t)−∇f(X(t)))

when µ > 0. Because
√
µ−√

γ0√
µ+

√
γ0

→ −1 as γ0 → ∞ and e
√

µt+1
e
√

µt−1
= coth(

√
µ

2 t), the rescaled original NAG flow with (38)
converges to the unified AGM system (69) as γ0 → ∞.
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B. Preliminaries
B.1. Higher-Order Hyperbolic Functions
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Figure 4. Hyperbolic functions and their variants.
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Figure 5. Higher-order hyperbolic functions.

The following proposition indicates that the sinhp function grows exponentially.

Proposition B.1. There exists a constant Cp > 0 such that sinhp(t) ∼ Cpe
t as t → ∞. In particular, we have Cp = 1/2

for p = 2.

The proof of Proposition B.1 can be found in Appendix B.1.1. Using the definition of the sinhp function and Proposition B.1,
it is straightforward to check the following asymptotic properties:

sinhp x ∼ x as x → 0, sinhp x ∼ Cpe
x as x → ∞

coshp x ∼ 1 as x → 0, coshp x ∼ Cpe
x as x → ∞

tanhp x ∼ x as x → 0, tanhp x ∼ 1 as x → ∞.

B.1.1. PROOF OF PROPOSITION B.1

Fix T > 0. We will show that
log (sinhp(T + t))− t (39)

16
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converges to some constant as t → ∞. We can bound the derivative of (39) as

d

dt
{log (sinhp(T + t))− t} =

sinh′p(T + t)

sinhp(T + t)
− 1

=
coshp(T + t)

sinhp(T + t)
− 1

=

(
1 +

1

sinhpp(T + t)

)1/p

− 1

∈
[
0,

1

sinhp(T + t)

]
,

where the last line follows from the fact that 1 ≤ (1 + x)1/p ≤ 1 + x1/p holds for x ≥ 0.15 Thus, if the integral∫ ∞

0

1

sinhp(T + t)
dt (40)

is finite, then (39) converges to some constant because it is monotonically increasing and bounded above, and thus this
completes the proof. To show that the integral (40) is finite, it is enough to show that the inequality

sinhp(T + t) ≥ sinhp(T )e
t

holds for all t ≥ 0. This can be shown by the following calculation:

log (sinhp(T + t)) = log (sinhp(T )) +

∫ t

0

d

ds
{log (sinhp(T + s))} ds

= log (sinhp(T )) +

∫ t

0

sinh′p(T + s)

sinhp(T + s)
ds

= log (sinhp(T )) +

∫ t

0

(
1 + sinhpp(T + s)

)1/p
sinhp(T + s)

ds

≥ log (sinhp(T )) +

∫ t

0

1 ds

= log (sinhp(T )) + t

= log
(
sinhp(T )e

t
)
.

B.1.2. THE FUNCTION sinhcp IS NON-DECREASING

It is easy to see that sinhp and coshp are increasing. Since

tanh′p(t) =
d

dt

{
sinhp(t)

coshp(t)

}
=

sinh′p(t) coshp(t)− cosh′p(t) sinhp(t)

cosh2p(t)

≤ sinh′p(t) coshp(t)

cosh2p(t)

= 1,

we have tanhp(t) ≤ t for all t ≥ 0. Now, we deduce that

sinhc′p(t) =
d

dt

{
sinhp(t)

t

}
15To check this basic inequality, one can consider the p-th power of each side.
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=
t sinh′p(t)− sinhp(t)

t2

=
t coshp(t)− sinhp(t)

t2

=
coshp(t)

t2
(t− tanhp(t))

≥ 0,

and thus sinhc is non-decreasing.

B.2. Limiting Arguments

In this subsection, we investigate the limiting ODE of two-sequence scheme and the limiting ODE of the fixed-step first-order
scheme (2). The first approach is to write the algorithm as a two-sequence scheme and then derive the limiting ODE via
the second-order Taylor series expansion. This argument frequently appears in the literature (see Su et al., 2016; Shi et al.,
2021). The second approach, which is novel, is to express the algorithm using the difference matrix H = (hij) and then
derive the differential kernel H(t, τ) corresponding to the matrix (hij).

Furthermore, we show that the limiting ODE of two-sequence scheme recovers the limiting ODE of three-sequence scheme
and that the limiting ODE of the fixed-step first-order scheme recovers the limiting ODE of the two-sequence scheme.

B.2.1. LIMITING ARGUMENT FOR THREE-SEQUENCE SCHEME

We informally derive the limiting ODE of the following three-sequence scheme:

yk = xk + τk (zk − xk) (41a)
xk+1 = yk − s∇f (yk) (41b)
zk+1 = zk + δk (µyk − µzk −∇f (yk)) . (41c)

To identify a discrete-time sequence (xk)
∞
k=0 with a continuous-time curve X : [0,∞) → Rn, given the algorithmic stepsize

s, we introduce a strictly increasing sequence (tk)
∞
k=0 (depending on s) in [0,∞) and make the identification X(tk) = xk.

We denote the inverse of the sequence t : {0, 1, 2, . . .} → R as k, that is, k(tk) = k for all k ≥ 0. For convenience, we
extend the function k to a piecewise linear function defined on [0,∞).

We assume that
lim
s→0

t0 = 0 (42)

and that the timesteps are asymptotically equivalent to
√
s as s → 0 in the sense that

lim
s→0

tk(t)+1 − t√
s

= 1 ∀t ∈ (0,∞) . (43)

Note that the popular choice tk = tk := k
√
s (we will use the notation tk for this specific sequence throughout the paper)

used in (Su et al., 2014; Wibisono et al., 2016; Shi et al., 2021) satisfies these conditions.

For the iterates of three-sequence scheme (41), we have

xk+1 − xk√
s

=
τk√
s
(zk − xk)−

√
s∇f (yk)

zk+1 − zk√
s

=
δk√
s
(µyk − µzk −∇f (yk)) .

We introduce two sufficiently smooth curves X,Z : [0,∞) → Rn (possibly depending on s now) such that X(t) = xk(t)

and Z(t) = zk(t). Since ∥xk+1 − yk∥ = o(
√
s) and ∇f is Lipschitz continuous, we have

Ẋ(t) = lim
s→0

xk(t)+1 − xk(t)

tk(t)+1 − t
= lim

s→0

xk(t)+1 − xk(t)√
s

= lim
s→0

{
τk(t)√

s

}
(Z(t)−X(t))

18



Unified Nesterov’s Accelerated Gradient Methods

Ż(t) = lim
s→0

zk(t)+1 − zk(t)

tk(t)+1 − t
= lim

s→0

zk(t)+1 − zk(t)√
s

= lim
s→0

{
δk(t)√

s

}
(µX(t)− µZ(t)−∇f(X(t)))

for all t > 0. Thus, if the limits
τ(t) = lim

s→0

τk(t)√
s

δ(t) = lim
s→0

δk(t)√
s

(44)

exist for all t ∈ (0,∞), then as s → 0, the iterates generated by the three-sequence scheme (41) converge to a solution to
the following system of ODEs:

Ẋ(t) = τ(t)(Z(t)−X(t))

Ż(t) = δ(t)(µX(t)− µZ(t)−∇f(X(t)))
(45)

with the initial conditions X(0) = Z(0) = x0. We can equivalently write this as the following second-order ODE:

Ẍ +

(
τ(t)− τ̇(t)

τ(t)
+ µδ(t)

)
Ẋ + τ(t)δ(t)∇f(X) = 0. (46)

Furthermore, when the collinearity condition16

1− µδk − (1/s− µ)τkδk = 0. (47)

holds, we have

δ(t) = lim
s→0

δk√
s
= lim

s→0

1√
s (µ+ (1/s− µ)τk)

= lim
s→0

√
s

µs+ (1− µs)τk
=

1

τ(t)
. (48)

B.2.2. LIMITING ARGUMENT FOR TWO-SEQUENCE SCHEME

We consider the following two-sequence scheme:

xk+1 = yk − s∇f (yk)

yk+1 = xk+1 + βk (xk+1 − xk) + γk (xk+1 − yk) .
(49)

If we have

lim
s→0

1− βt/
√
s√

s
= b(t) and lim

s→0
γt/

√
s = c(t) ∀t > 0 (50)

for some smooth functions b, c : (0,∞) → R, then we will see that under the identification X(tk) = xk with tk = k
√
s,

the two-sequence scheme (49) converges to the ODE

Ẍ(t) + b(t)Ẋ(t) + (1 + c(t))∇f(X(t)) = 0 (51)

as s → 0. For the iterates of the two-sequence scheme (49), we have

xk+1 − xk√
s

=
1√
s
(yk − s∇f (yk)− xk)

=
1√
s
(βk−1 (xk − xk−1) + γk (xk − yk−1)− s∇f (yk))

=
1√
s
(βk−1 (xk − xk−1)− sγk∇f (yk−1)− s∇f (yk))

= βk−1
xk − xk−1√

s
−√

sγk∇f (yk−1)−
√
s∇f (yk) .

16This condition ensures that the points xk, xk+1, zk+1 are collinear. Thus, one can write the updating rule for yk as yk+1 =
xk+1 + βk(xk+1 − xk) for some βk ∈ R. This property provides a clear momentum effect: The point yk+1 is defined by adding
a momentum term βk (xk+1 − xk) to the previous point xk+1. This property is useful when generalizing AGM methods to handle
non-smooth terms (see d’Aspremont et al., 2021, Algorithm 20).
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Using the Taylor expansions

xk+1 − xk√
s

= Ẋ(tk) +
1

2
Ẍ(tk)

√
s+ o

(√
s
)

xk − xk−1√
s

= Ẋ(tk)−
1

2
Ẍ(tk)

√
s+ o

(√
s
)
,

we obtain

Ẋ(tk) +
1

2
Ẍ(tk)

√
s+ o

(√
s
)
= βk−1

(
Ẋ(tk)−

1

2
Ẍ(tk)

√
s+ o

(√
s
))

−√
sγk∇f (yk−1)−

√
s∇f (yk) .

It follows from ∥xk − yk−1∥ = o(
√
s) and the Lipschitz continuity of ∇f that

√
s∇f (yk−1) =

√
s∇f(X(tk)) + o

(√
s
)

√
s∇f (yk) =

√
s∇f (yk−1) + o

(√
s
)
=

√
s∇f(X(tk)) + o

(√
s
)
.

Substituting these into the ODE yields

1 + βk−1

2
Ẍ(tk)

√
s+ (1− βk−1) Ẋ(tk) + (1 + γk)∇f(X(tk))

√
s+ o

(√
s
)
= 0.

Dividing both sides by
√
s, substituting k = t/

√
s and the limits (50), and then letting s → 0, we obtain (note that

βt/
√
s−1 → 1 by Equation (50))

Ẍ(t) + b(t)Ẋ(t) + (1 + c(t))∇f(X(t)) = 0.

Recovering the limiting ODE of three-sequence scheme. We can write the three-sequence scheme (41) as the two-
sequence scheme (49) with the following parameters (see Lee et al., 2021, Appendix B):

βk =
(1− τk) τk+1 (1− µδk)

τk

γk =
τk+1 ((1/s− µ)δkτk − 1 + µδk)

τk
.

(52)

Assume that the limits (44) with tk = k
√
s exist. Then, it follows from the Taylor expansion that

τk = τ (tk)
√
s

τk+1 = τ (tk)
√
s+ τ̇ (tk) s+

√
so
(√

s
)

δk = δ (tk)
√
s.

Thus, for the sequences (βk) and (γk) in (52), we have

1− βk√
s

=
1√
s

(
1− (1− τk) (1− µδk)

τk+1

τk

)
=

1√
s

(
1−

(
1−√

sτ (tk)
) (

1− µ
√
sδ (tk)

)(
1 +

τ̇ (tk) s+
√
so (

√
s)

τ (tk)
√
s

))
=

1√
s

(√
sτ (tk) + µ

√
sδ (tk)−

√
s
τ̇ (tk)

τ (tk)
+ o

(√
s
))

= τ (tk) + µδ (tk)−
τ̇ (tk)

τ (tk)
+

o (
√
s)√
s

and

γk =
τk+1

τk
((1/s− µ)δkτk − 1 + µδk)
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=

(
1 +

τ̇ (tk)
√
s+ o (

√
s)

τ (tk)

)(
(1− µs)δ (tk) τ (tk)− 1 + µ

√
sδ (tk)

)
= δ (tk) τ (tk)− 1 + o (1) .

Thus, we have

lim
s→0

1− βt/
√
s√

s
= τ(t) + µδ(t)− τ̇(t)

τ(t)

lim
s→0

γt/
√
s = τ(t)δ(t)− 1.

Therefore, we recover the limiting ODE (46) of the three-sequence scheme. In particular, if the algorithmic parameters (τk)
and (δk) satisfy the collinearity condition (47), then we have γk = 0 for all k ≥ 0, and thus c(t) = 0.

Two-sequence form of AGM-C. Because AGM-C is the three-sequence scheme (41) with τk = 2
k+1 , δk = s(k+1)

2 , and
µ = 0, we can rewrite it as the two-sequence scheme (49) with

βk =

(
1− 2

k+1

)
2

k+2

2
k+1

=
k − 1

k + 2

γk =
2

k+2 · s(k+1)
2

s
−

2
k+2
2

k+1

= 0.

Thus, AGM-C converges to the ODE (51) with

b(t) = lim
s→0

1− t/
√
s−1

t/
√
s+2√

s
=

3

t

c(t) = 0,

which recovers AGM-C ODE.

Two-sequence form of AGM-SC. Because AGM-SC is the three-sequence scheme (41) with τk =
√
µs

1+
√
µs and δk =

√
s
µ ,

it can be written as the two-sequence scheme (49) with

βk =

(
1−

√
µs

1+
√
µs

) √
µs

1+
√
µs

(
1− µ

√
s
µ

)
√
µs

1+
√
µs

=
1−√

µs

1 +
√
µs

γk =

√
µs

1+
√
µs

√
s
µ

s
−
(
1− µ

√
s

µ
+ µ

√
µs

1 +
√
µs

√
s

µ

)
= 0.

Thus, AGM-SC converges to the ODE (51) with

b(t) = lim
s→0

1− 1−√
µs

1+
√
µs√

s
= 2

√
µ

c(t) = 0,

which recovers AGM-SC ODE.

B.2.3. DIFFERENCE MATRIX AND DIFFERENTIAL KERNEL

The fixed-step first-order scheme (2) with the number of iterations N can be written equivalently as
y1 − y0
y2 − y1

...
yN − yN−1

 = −s


h0,0 0 · · · 0
h1,0 h1,1 · · · 0

...
...

. . .
...

hN−1,0 hN−1,2 · · · hN−1,N−1




∇f (y0)
∇f (y1)

...
∇f (yN−1)


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Here, we call the lower triangular matrix H = (hij) the difference matrix for the algorithm (2).

To derive the limiting ODE of the algorithm (2), we introduce a smooth curve X : [0, T ] → Rn with the identifications
X(k

√
s) = yk and T = N

√
s. As a continuous-time analog of the difference matrix (hij), we intoduce a continuously

differentiable function H (possibly depending on s now) defined on {(t, τ) ∈ R2 : 0 < τ ≤ t < T} with the identification
H(ti, τj) = hij , where ti = i

√
s and τj = j

√
s. Substituting X(ti) = yi in (2) yields

X (ti+1)−X (ti)√
s

= − (τj+1 − τj)

i∑
j=0

H (ti, τj)∇f (X (τj)) . (53)

Then, we can observe that the right-hand side of (53) is a Riemann sum of the function τ 7→ −H(ti, τ)∇f(X(τ)) over
[0, ti+1]. Thus, taking the limit s → 0 yields

Ẋ(t) = −
∫ t

0

H(t, τ)∇f(X(τ)) dτ, where H(t, τ) = lim
s→0

h t√
s
, τ√

s
(54)

as the limiting ODE of the fixed-step first-order scheme (2). Therefore, we obtain the ODE (3). Inspired by the observation
that the function H(t, τ) plays a role similar to the kernel function in the integral transform, we call it the differential kernel
(or the H-kernel) corresponding to the difference matrix (hij).

From differential kernels to second-order ODEs. Differentiating both sides of (3) and applying the Leibniz integral
rule, we obtain

Ẍ(t) = −H(t, t)∇f(X(t))−
∫ t

0

∂H(t, τ)

∂t
∇f(X(τ)) dτ. (55)

If there exists a function b(t) such that
∂H(t, τ)

∂t
= −b(t)H(t, τ),

then it follows from (3) that the equation (55) is expressed as the following second-order ODE:

Ẍ(t) + b(t)Ẋ +H(t, t)∇f(X(t)) = 0. (56)

From second-order ODEs to differential kernels. For the second-order ODE

Ẍ(t) + b(t)Ẋ(t) + (1 + c(t))∇f(X(t)) = 0,

define the differential kernel H(t, τ) as

H(t, τ) = (1 + c(τ)) e−
∫ t
τ
b(s) ds. (57)

Then, because we have ∂H(t,τ)
∂t = −b(t)H(t, τ) and H(t, t) = 1 + c(t), the ODE (3) with the differential kernel (57)

recovers the given second-order ODE.

Recovering the limiting ODE of two-sequence scheme. We first write the two-sequence scheme (49) as the fixed-step
first-order scheme. The iterates of the two-sequence scheme (49) satisfy

yk+1 − yk = xk+1 − yk + βk (xk+1 − xk)− sγk∇f (yk)

= βk (yk − yk−1) + sβk∇f (yk−1)− s (1 + βk + γk)∇f (yk) .
(58)

Substituting

yk+1 − yk = −s

k∑
i=0

hk,i∇f (yi) ,

yk − yk−1 = −s

k−1∑
i=0

hk−1,i∇f (yi)

22



Unified Nesterov’s Accelerated Gradient Methods

into (58) and comparing the coefficients of each ∇f(yi), we obtain

hk,j =


1 + βk + γk, if j = k

βk (hk−1,k−1 − 1) , if j = k − 1

βkhk−1,i, if j ≤ k − 2.

Using mathematical induction, it is straightforward to show that

hij = (βj + γj)

i∏
ν=j+1

βν + δij ,

where δij is the Kronecker delta funciton. For i > j,17 we have

hi+1,j − hi,j = (βi+1 − 1)hij .

Under the identification H(ti, τj) = hij , we have

hi+1,j − hi,j = H (ti+1, τj)−H (ti, τj) =
∂H (ti, τj)

∂t

√
s+ o

(√
s
)
.

Thus, when the limits (50) exist, taking the limit s → 0 yields

∂H (t, τ)

∂t
= −b(t)H (t, τ) . (59)

Also, because hk+1,k = βk+1+γk and lims→0 βt/
√
s = 1 by (50), we have H(t, t) = 1+ c(t) for all t ∈ (0, T ). Therefore,

the ODE (56) recovers the limiting ODE (51) of the two-sequence scheme. Moreover, we show that we can explicitly write
the differential kernel H as

H(t, τ) = (1 + c(τ)) e−
∫ t
τ
b(s) ds. (60)

By (59), we have
∂

∂s
log(H(s, t)) =

∂H(s, τ)

∂s

1

H(s, τ)
= −b(s).

Integrating over s, we obtain

log (H(t, τ))− log (H(τ, τ)) = −
∫ t

τ

b(s) ds.

Thus, we have
H(t, τ) = H(τ, τ)e−

∫ t
τ
b(s) ds = (1 + c(τ)) e−

∫ t
τ
b(s) ds.

Difference matrix for AGM-C. Because we can write AGM-C as the two-sequence scheme (49) with βk = k−1
k+2 and

γk = 0, we can rewrite it as the fixed-step first-order scheme (2) with

hij =

i∏
ν=j

ν − 1

ν + 2
+ δij =

(j − 1)j(j + 1)

i(i+ 1)(i+ 2)
+ δij .

By definition, the differential kernel corresponding to this matrix (hij) is

H(t, τ) = lim
s→0

(
τ√
s
− 1
)

τ√
s

(
τ√
s
+ 1
)

t√
s

(
t√
s
+ 1
)(

t√
s
+ 2
) =

τ3

t3
. (61)

This can be also obtained by substituting b(t) = 3/t and c(t) = 0 into (60):

H(t, τ) = e−
∫ t
τ

3
s ds = e−3(log(t)−log(τ)) =

τ3

t3
.

Because we have
∂H(t, τ)

∂t
= −3τ3

t4
= −3

t
H(t, τ),

the ODE (55) with the differential kernel (61) recovers AGM-C ODE.
17We exclude the case i = j because the difference matrix hij has singularities at these points due to the Kronecker delta function.
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Difference matrix for AGM-SC. Because we can write AGM-SC as the two-sequence scheme (49) with βk =
1−√

µs

1+
√
µs

and γk = 0, we can rewrite it as the fixed-step first-order scheme (2) with

hij =

i∏
ν=j

1−√
µs

1 +
√
µs

+ δij =

(
1−√

µs

1 +
√
µs

)i−j+1

+ δij .

By definition, the differential kernel corresponding to this matrix (hij) is

H(t, τ) = lim
s→0

(
1−√

µs

1 +
√
µs

) t√
s
− τ√

s
+1

=
e2

√
µτ

e2
√
µt

. (62)

This can be also obtained by substituting b(t) = 2
√
µ and c(t) = 0 into (60):

H(t, τ) = e−
∫ t
τ
2
√
µ ds = e−2

√
µ(t−τ) =

e2
√
µτ

e2
√
µt

.

It follows from
∂H(t, τ)

∂t
= −2

√
µe2

√
µ(τ−t) = −2

√
µH(t, τ)

that the ODE (55) with the differential kernel (62) recovers (AGM-SC ODE).

C. Unified Lagrangian Formulation for Convex and Strongly Convex Objective Functions
C.1. Computing Euler–Lagrange Equation

For the unified Bregman Lagrangian (4), the partial derivatives ∂L
∂Ẋ

(
X, Ẋ, t

)
and ∂L

∂X

(
X, Ẋ, t

)
are given by

∂L
∂Ẋ

(
X, Ẋ, t

)
= eγ

(
1 + µeβ

) (
∇h
(
X + e−αẊ

)
−∇h(X)

)
∂L
∂X

(
X, Ẋ, t

)
= eα+γ

(
1 + µeβ

) (
∇h
(
X + e−αẊ

)
−∇h(X)

)
− eγ

(
1 + µeβ

) d

dt
∇h(X)− eα+β+γ∇f(X).

The time derivative of ∂L
∂Ẋ

can be computed as

d

dt

{
∂L
∂Ẋ

(
X, Ẋ, t

)}
=
(
γ̇eγ + µ

(
β̇ + γ̇

)
eβ+γ

)(
∇h
(
X + e−αẊ

)
−∇h(X)

)
+ eγ

(
1 + µeβ

)( d

dt
∇h
(
X + e−αẊ

)
− d

dt
∇h(X)

)
.

Thus, the Euler–Lagrange equation (24) can be written as

eγ
(
1 + µeβ

) d

dt
∇h
(
X + e−αẊ

)
=
(
eα+γ

(
1 + µeβ

)
− γ̇eγ − µ

(
β̇ + γ̇

)
eβ+γ

)(
∇h
(
X + e−αẊ

)
−∇h(X)

)
− eα+β+γ∇f(X).

Substituting the ideal scaling condition γ̇ = eα (23a) into the equation above and then dividing both sides by eγ
(
1 + µeβ

)
>

0, we obtain

d

dt
∇h
(
X + e−αẊ

)
= − µβ̇eβ

1 + µeβ

(
∇h
(
X + e−αẊ

)
−∇h(X)

)
− eα+β

1 + µeβ
∇f(X).

Letting Z = X + e−αẊ yields the system of ODEs (5).
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C.2. Time Dilation Property of Unified Bregman Lagrangian Flow

We show that the unified Bregman Lagrangian flow (5) is closed under time-dilation, similarly to the first Bregman
Lagrangian flow (25) and the second Bregman Lagrangian flow (27) (see Wibisono et al., 2016; Wilson et al., 2021).

Theorem C.1. Let T : I2 → I1 be a strictly increasing twice-continuously differentiable function, where I1 and I2
are intervals in [0,∞). If (X1, Z1) is a solution to the unified Bregman Lagrangian flow (5) on I1 with the parameters
α1, β1 : I1 → R, then the reparametrized curves X2(t) := X1(T(t)) and Z2(t) := Z1(T(t)) form a solution to the unified
Bregman Lagrangian flow on I2 with the parameters α2, β2 : I2 → R defined as

α2(t) = α1(T(t)) + log Ṫ(t)

β2(t) = β1(T(t)).

Proof. Let (X1, Z1) be a solution to the system of ODE (5) on I1 with the parameters α1, β1 : I1 → R. Then, the time
derivatives of the curves X2(t) = X1(T(t)) and ∇h(Z2(t)) = ∇h(Z1(T(t))) can be computed as

Ẋ2(t) = Ṫ(t)Ẋ1(T(t))

= Ṫ(t)eα1(T(t))(Z1(T(t))−X1(T(t))

= Ṫ(t)eα1(T(t))(Z2(t)−X2(t))

= eα2(t)(Z2(t)−X2(t))

and

d

dt
∇h(Z2(t)) = Ṫ(t)

d(∇h ◦ Z1)

dt
(T(t))

= Ṫ(t)

(
µβ̇1(T(t))eβ1(T(t))

1 + µeβ1(T(t))
(∇h(X1(T(t))−∇h(Z1(T(t))))

− eα1(T(t))+β1(T(t))

1 + µeβ1(T(t))
∇f(X1(T(t)))

)

=
µβ̇2(t)e

β2(t)

1 + µeβ2(t)
(∇h(X2(t))−∇h(Z2(t)))−

eα2(t)+β2(t)

1 + µeβ2(t)
∇f(X2(t)).

Thus, (X2, Z2) is a solution to the system of ODE (5) on I2 with the parameters α2, β2 : I2 → R. This completes the
proof.

C.3. Proof of Theorem 3.1

Define the time-dependent Lyapunov function V : Rn × Rn × [0,∞) → R as

V (X,Z, t) =
(
1 + µeβ(t)

)
Dh (x

∗, Z) + eβ(t) (f(X)− f (x∗)) . (63)

We show that the continuous-time energy function

E(t) = V (X(t), Z(t), t) =
(
1 + µeβ(t)

)
Dh (x

∗, Z(t)) + eβ(t) (f(X(t))− f (x∗)) (64)

is monotonically non-increasing on [0,∞). Note that

d

dt
Dh (x

∗, Z) =
d

dt
{h (x∗)− h(Z)− ⟨∇h(Z), x∗ − Z⟩}

= −
〈
∇h(Z), Ż

〉
−
〈

d

dt
∇h(Z), x∗ − Z

〉
+
〈
∇h(Z), Ż

〉
= −

〈
d

dt
∇h(Z), x∗ − Z

〉
.
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Thus, we have

d

dt
E(t) = −

(
1 + µeβ

)〈 d

dt
∇h(Z), x∗ − Z

〉
+ µβ̇eβDh (x

∗, Z)

+ β̇eβ (f(X)− f (x∗)) + eβ
〈
∇f(X), Ẋ

〉
=
〈
µβ̇eβ (∇h(Z)−∇h(X)) + eα+β∇f(X), x∗ − Z

〉
+ µβ̇eβDh (x

∗, Z)

+ β̇eβ (f(X)− f (x∗)) + eβ
〈
∇f(X), Ẋ

〉
.

It follows from the Bregman three-point identity,18 the non-negativity of Bregman divergence, and the µ-uniform convexity
of f with respect to h that

⟨∇h(Z)−∇h(X), x∗ − Z⟩+Dh (x
∗, Z) = Dh (x

∗, X)−Dh(Z,X)

≤ Dh (x
∗, X)

≤ 1

µ
Df (x

∗, X) .

Thus, we have

d

dt
E(t) ≤ β̇eβDf (x

∗, X) + eα+β ⟨∇f(X), x∗ − Z⟩

+ β̇eβ (f(X)− f (x∗)) + eβ
〈
∇f(X), Ẋ

〉
= β̇eβDf (x

∗, X) + eα+β ⟨∇f(X), x∗ −X⟩+ β̇eβ (f(X)− f (x∗))

=
(
eα − β̇

)
eβ ⟨∇f(X), x∗ −X⟩

≤
(
eα − β̇

)
eβ (f (x∗)− f(X))

≤ 0,

where the last two inequalities follows from the ideal scaling condition β̇(t) ≤ eα(t) (23b), the convexity of f , and the fact
that x∗ is a minimizer of f . Writing E(t) ≤ E(0) explicitly completes the proof.

C.4. Second Bregman Lagrangian Flow is Asymptotic Limit of Unified Bregman Lagrangian Flow

For simplicity, we assume that the distance-generating function h is Lh-smooth and µh-strongly convex. The µh-strong
convexity of h implies the Lh∗-Lipschitz continuity of ∇h∗, where Lh∗ = 1/µh > 0 (see Rockafellar & Wets, 2009,
Proposition 12.60). The following proposition rigorously states that the system (7) is the asymptotic limit of the system (5).

Proposition C.2. Let x0 ∈ Rn and T > 0. Then, for every real number ϵ > 0, there exists a real number r > 0 such that

∥X1(t0 + T )−X2(t0 + T )∥ ≤ ϵ ∀t0 > r,

where

• (X1, Z1) is the solution to the system (5) with the initial conditions X1(t0) = Z1(t0) = x0.

• (X2, Z2) is the solution to the system (7) with the initial conditions X2(t0) = Z2(t0) = x0.

Proof. Introducing W (t) = ∇h(Z(t)), the systems (5) and (7) can be equivalently written as

Ẋ = eα(∇h∗(W )−X)

Ẇ =
µβ̇eβ

1 + µeβ
(∇h(X)−W )− eα+β

1 + µeβ
∇f(X)

(65)

18Dh(x, y)−Dh(x, z) = −⟨∇h(y)−∇h(z), x− y⟩ −Dh(y, z) with x = x∗, y = Z, z = X (see Wilson et al., 2021).
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and
Ẋ = eα(∞)(∇h∗(W )−X)

Ẇ = β̇(∞) (∇h(X)−W )− eα(∞)

µ
∇f(X),

(66)

respectively. Let W1(t) = ∇h(Z1(t)) and W2(t) = ∇h(Z2(t)). Then, (X1,W1) and (X2,W2) are the solutions to (65)
and (66) respectively. Let ∆X(t) = X1(t)−X2(t) and ∆W = W1(t)−W2(t). Then, we have∥∥∥∆̇X(t)

∥∥∥ =
∥∥∥eα(∞) (∇h∗(W1(t))−∇h∗(W2(t))−∆X(t)) +

(
eα(t) − eα(∞)

)
(∇h∗(W1(t))−X1(t))

∥∥∥
≤ Lh∗eα(∞) ∥∆W (t)∥+ eα(∞) ∥∆X(t)∥+

∣∣∣eα(t) − eα(∞)
∣∣∣ (∥X1(t)∥+ ∥∇h∗(0)∥+ Lh∗ ∥W1(t)∥)

and ∥∥∥∆̇W (t)
∥∥∥ =

∥∥∥∥β̇(∞) (∇h(X1(t))−∇h(X2(t))−∆W (t))− eα(∞)

µ
(∇f(X1)−∇f(X2))

+

(
µβ̇(t)eβ(t)

1 + µeβ(t)
− β̇(∞)

)
(∇h(X1(t))−W1(t))−

(
eα(t)+β(t)

1 + µeβ(t)
− eα(∞)

µ

)
∇f(X1(t))

∥∥∥∥
≤
(
Lhβ̇(∞) +

Lfe
α(∞)

µ

)
∥∆X(t)∥+ β̇(∞) ∥∆W (t)∥

+

∣∣∣∣∣µβ̇(t)eβ(t)1 + µeβ(t)
− β̇(∞)

∣∣∣∣∣ (∥∇h(0)∥+ Lh ∥X1(t)∥+ ∥W1(t)∥)

+

∣∣∣∣ eα(t)+β(t)

1 + µeβ(t)
− eα(∞)

µ

∣∣∣∣ (∥∇f(0)∥+ Lf ∥X1(t)∥) .

We can show that ∥X1(t)∥ and ∥Z1(t)∥ are bounded above by a constant which is independent of the initial time t0.19 Let
U(t) = (∆X(t),∆W (t)) ∈ R2n and u(t) = ∥U(t)∥. Let δ = C

eTC−1
, where

C = Lh∗eα(∞) + eα(∞) + Lhβ̇(∞) +
Lfe

α(∞)

µ
+ β̇(∞).

Then, because eα(t) → eα(∞), µβ̇(t)eβ(t)

1+µeβ(t) → β̇(∞), and eα(t)+β(t)

1+µeβ(t) → eα(∞)

µ as s → 0, we can easily show that:

There exists r ∈ R such that t ≥ t0 ≥ r ⇒ u′(t) ≤ Cu(t) + δ.

Let v(t) = u(t) + δ/C. Then, v̇(t) ≤ Cv(t) and v(t0) = δ/C. By Grönwall’s inequality, we have

∥X1(t0 + T )−X2(t0 + T )∥ ≤ u(t0 + T ) = v(t0 + T )− δ

C

≤ v(t0) exp

(∫ t0+T

t0

C

)
− δ

C
= v(t0)e

TC − δ

C
=

δ

C

(
eTC − 1

)
= ϵ

for all t0 > r. This completes the proof.

C.5. Lyapunov Analysis of Unified Bregman Lagrangian Flow Recovers Lyapunov Analysis of Second Bregman
Lagrangian Flow

Because the system (7) is the second Bregman Lagrangian flow (27) with α2nd(t) :≡ α(∞) and β2nd(t) := β̇(∞)t, its
convergence rate can be proven by showing that the following energy function (34) is decreasing:

E2nd(t) := eβ̇(∞)t (µDh (x
∗, Z(t)) + f(X(t))− f (x∗)) . (67)

19This can be proven by bounding ∥X(t)− x∗∥ and ∥Z(t)− x∗∥ using the strong convexity of f and the fact that the energy function
(83) is non-increasing on [t0,∞). We omit the details.
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The time derivative of the energy function (64) for the unified Bregman Lagrangian flow can be written as

d

dt
E(t) = d

dt
1 + µeβDh (x

∗, Z) +
(
1 + µeβ

) d

dt
{Dh (x

∗, Z)}

+
d

dt

{
eβ
}
(f(X)− f (x∗)) + eβ

d

dt
{f(X)− f (x∗)} .

Because d
dtE(t) ≤ 0, we have

0 ≥ e−β(t0+t) d

dt
{E(t0 + t)}

= µβ̇(t0 + t)Dh (x
∗, Z(t0 + t)) +

1 + µeβ(t0+t)

eβ(t0+t)

d

dt
{Dh (x

∗, Z(t0 + t))}

+ β̇(t0 + t) (f(X(t0 + t))− f (x∗)) +
d

dt
{f(X(t0 + t))− f (x∗)}

for all t > 0, where t0 > 0 is the initial time of the system. Fix x0 = X(t0) = Z(t0) in Rn. Proposition C.2 shows that as
t0 → ∞, the flow t 7→ (X(t0 + t), Z(t0 + t)) converges to the flow t 7→ (X2nd(t), Z2nd(t)) corresponding to the system
(7) with X2nd(0) = Z2nd(0) = x0 starting at t = 0 (because this system is time-invariant, we can shift the initial time).
Now, taking the limit t0 → ∞ in the inequality above yields

0 ≥ µβ̇(∞)Dh (x
∗, Z(t)) + µ

d

dt
{Dh (x

∗, Z(t))}

+ β̇(∞) (f(X(t))− f (x∗)) +
d

dt
{f(X(t))− f (x∗)}

= e−β2nd(t)
d

dt
E2nd(t),

where E2nd is defined in (67). This completes the proof.

D. Unified ODE Model and Algorithm for Minimizing Convex and Strongly Convex Functions
For convenience, we define the unified AGM family as

yk = xk +

2
√
s

tk+1
cothc

(√
µ

2 tk+1

)
− µs

1− µs
(zk − xk)

xk+1 = yk − s∇f (yk)

zk+1 = zk +

√
stk+1

2
tanhc

(√
µ

2
tk+1

)
(µyk − µzk −∇f (yk)) ,

(68)

where (tk) is a strictly increasing sequence in [0,∞). In particular, it is easy to check that the unified AGM (Algorithm 1) is
equivalent to the unified AGM family with the sequence tk := ι

√
sk. This general family will be useful when studying

variants of the unified AGM in Appendix D.8.

D.1. Choosing Parameters α and β of Unified Bregman Lagrangian Flow

We first note some properties of the functions α and β that recover AGM-C ODE (or AGM-SC ODE) from the first Bregman
Lagrangian flow (or the second Bregman Lagrangian flow, respectively).

The first Bregman Lagrangian flow (25) with h(x) = 1
2 ∥x∥

2 can be written as the following ODE:

Ẍ + (−α̇+ eα) Ẋ + e2α+β∇f(X) = 0.

The choices α(t) = log 2
t and β(t) = log t2

4 , which recover AGM-C ODE, satisfy the ideal scaling condition (23b) with
equality and make the coefficient of ∇f(X) equal to the coefficient of Ẍ .
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The second Bregman Lagrangian flow (27) with h(x) = 1
2 ∥x∥

2 can be written as

Ẍ +
(
−α̇+ eα + β̇

)
Ẋ +

e2α

µ
∇f(X) = 0.

The choices α(t) = log
√
µ and β(t) = log

(√
µt
)
, which recover AGM-SC ODE, satisfy the ideal scaling condition (23b)

with equality and make the coefficient of ∇f(X) equal to the coefficient of Ẍ .

Inspired by these facts, in the unified Bregman Lagrangian, we construct functions α(t) and β(t) so that the ideal scaling
condition (23b) holds with equality and that the coefficient of ∇f(X) is equal to the coefficient of Ẍ . The unified Bregman
Lagrangian flow (5) with h(x) = 1

2 ∥x∥
2 can be equivalently written as

Ẍ +

(
−α̇+ eα +

µβ̇eβ

1 + µeβ

)
Ẋ +

e2α+β

1 + µeβ
∇f(X) = 0.

Now, the conditions aforementioned can be written as the following system of ODEs:

β̇ = eα

e2α+β = 1 + µeβ .

We solve this system. Let A(t) = eβ(t) > 0. Then, we have Ȧ = β̇eβ = eα+β > 0. Because (Ȧ)2 = e2α+βeβ =
A(1 + µA), we have Ȧ =

√
A(1 + µA). Solving this differential equation with the initial condition A(0) = 0 yields

A(t) = t2

4 sinhc2(
√
µ

2 t). In this case, we have β(t) = log( t
2

4 sinhc2(
√
µ

2 t)) and α(t) = log(β̇(t)) = log( 2t cothc(
√
µ

2 t)).

D.2. Equivalent Forms of Unified AGM ODE

In this section, we provide the three equivalent forms of the unified AGM ODE (8). We assume µ > 0 for the sake
of simplicity. The unified Bregman Lagrangian flow (5) with h(x) = 1

2∥x∥2, α(t) = log( 2t cothc(
√
µ

2 t)), and β(t) =

log( t
2

4 sinhc2(
√
µ

2 t)) can be written as the following system of ODEs, which we call the unified AGM system:

Ẋ =
2

t
cothc

(√
µ

2
t

)
(Z −X)

Ż =
t

2
tanhc

(√
µ

2
t

)
(µX − µZ −∇f(X)) .

(69)

In what follows, we show that this system is equivalent to the unified AGM ODE (8).

Second-order ODE form of the unified AGM system. When µ > 0, we can write the unified AGM system (69) as

Ẋ =
√
µ coth

(√
µ

2
t

)
(Z −X)

Ż =
1√
µ
tanh

(√
µ

2
t

)
(µX − µZ −∇f(X)) .

Substituting Z = X + 1√
µ tanh(

√
µ

2 t)Ẋ into Ż = 1√
µ tanh(

√
µ

2 t)(µX − µZ −∇f(X)), we obtain

1√
µ
tanh

(√
µ

2
t

)
Ẍ +

(
1 +

1

2
sech2

(√
µ

2
t

))
=

1√
µ
tanh

(√
µ

2
t

)
(µX − µZ −∇f(X))

= −√
µ tanh

(√
µ

2
t

)
(Z −X)− 1√

µ
tanh

(√
µ

2
t

)
∇f(X)

= − tanh2
(√

µ

2
t

)
Ẋ − 1√

µ
tanh

(√
µ

2
t

)
∇f(X).
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Multiplying by
√
µ coth(

√
µ

2 t) and rearranging the terms, we have

Ẍ +

(√
µ tanh

(√
µ

2
t

)
+
√
µ coth

(√
µ

2
t

)
+

√
µ

2
sech

(√
µ

2
t

)
csch

(√
µ

2
t

))
Ẋ +∇f(X) = 0.

Using the identity tanh(x)− coth(x) + sech(x) csch(x) = 0, we can equivalently write this ODE as

Ẍ +

(√
µ

2
tanh

(√
µ

2
t

)
+

3
√
µ

2
coth

(√
µ

2
t

))
Ẋ +∇f(X) = 0,

which is the unified AGM ODE (8).

Differential kernel of the unified AGM ODE. Substituting b(t) =
√
µ

2 tanh(
√
µ

2 t) +
3
√
µ

2 coth(
√
µ

2 t) and c(t) = 0 into
(60), we yield the differential kernel of the unified AGM ODE as

H(t, τ) = e
−

∫ t
τ

(√
µ

2 tanh
(√

µ

2 s
)
+

3
√

µ

2 coth
(√

µ

2 s
))

ds

= e
−
[
3 log

(
sinh

(√
µ

2 s
))

+log
(
cosh

(√
µ

2 s
))]t

τ

=
sinh3

(√
µ

2 τ
)
cosh

(√
µ

2 τ
)

sinh3
(√

µ

2 t
)
cosh

(√
µ

2 t
) .

D.3. Existence and Uniqueness of Solution to Unified AGM ODE

In order to prove the existence and uniqueness of a solution to the unified AGM system (69) (which is equivalent to the unified
AGM ODE), we prove a stronger result, that the unified Bregman Lagrangian flow (5) with α(t) = log( 2t cothc(

√
µ

2 t)) and
β(t) = log( t

2

4 sinhc2(
√
µ

2 t)):

Ẋ =
2

t
cothc

(√
µ

2
t

)
(Z −X)

d

dt
∇h(Z) =

t

2
tanhc

(√
µ

2
t

)
(µ∇h(X)− µ∇h(Z)−∇f(X))

(70)

with the initial conditions X(0) = Z(0) = x0 has a unique global solution (X,Z) in C1([0,∞),Rn × Rn). Following
Krichene et al. (2015), we assume that ∇f is Lf -Lipschitz continuous, ∇h is Lh-Lipschitz continuous, and that h is
µh-strongly convex. The µh-strong convexity of h implies the Lh∗ -Lipschitz continuity of ∇h∗, where Lh∗ = 1

µh
> 0 (see

Rockafellar & Wets, 2009, Proposition 12.60).

D.3.1. PROOF OF EXISTENCE

Fix t1 > 0. We show the existence of solution to the system (70) on [0, t1]. To remove the singularity of the system (70) at
t = 0, fix δ > 0, and consider the following system of ODEs:

Ẋ =
2

max{δ, t} cothc

(√
µ

2
max{δ, t}

)
(Z −X)

d

dt
∇h(Z) =

t

2
tanhc

(√
µ

2
t

)
(µ∇h(X)− µ∇h(Z)−∇f(X))

(71)

with X(0) = Z(0) = x0. Denote the image of Z under the mirror map ∇h as W (t) = ∇h(Z(t)). Denote the convex
conjugate of h by h∗ : Rn → R. Then, ∇h and ∇h∗ are inverses of each other (see Rockafellar & Wets, 2009, Section 11).
Now, we can equivalently write the system (71) as

Ẋ =
2

max{δ, t} cothc

(√
µ

2
max{δ, t}

)
(∇h∗(W )−X) (72a)
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Ẇ =
t

2
tanhc

(√
µ

2
t

)
(µ∇h(X)− µW −∇f(X)) (72b)

with the X(0) = x0 and W (0) = w0 := ∇h (x0). By the Cauchy-Lipschitz theorem (Teschl, 2012, Theorem 25), the
system of ODEs (72) has a unique solution (Xδ,Wδ) in C1([0, t1],Rn × Rn). If we prove the following lemma, then one
can prove the existence of solution to the ODE system (71) following the argument in (Krichene et al., 2015, Section 3.2).

Lemma D.1. Define a constant T as

T = min

{√
2

µ
,
1

2

√
1

K2K3

}
,

where K2 and K3 are constants defined in (74). Then, the family of solutions ((Xδ, Zδ)|[0,T ])δ∈(0,T ] is equi-Lipschitz-
continuous and uniformly bounded.

We now prove this lemma. We follow the argument of Krichene et al. (2015) and omit the detailed calculations that can be
found in (Krichene et al., 2015, Appendix 2). Fix δ. For t > 0, define

Aδ(t) := sup
u∈[0,t]

∥∥∥Ẇδ(u)
∥∥∥

u

Bδ(t) := sup
u∈[0,t]

∥Xδ(u)− x0∥
u

Cδ(t) := sup
u∈[0,t]

∥∥∥Ẋδ(u)
∥∥∥ .

Then, these quantities are finite. We first prove the following inequalities, which correspond to (Krichene et al., 2015,
Lemma 3):

Aδ(t) ≤ µ ∥w0∥+ µ ∥∇h (x0)∥+ ∥∇f (x0)∥+ (µLh + Lf ) tBδ(t) (73a)

Bδ(t) ≤
Lh∗t

3
cothc

(√
µ

2
T

)
Aδ(t) (73b)

Cδ(t) ≤ cothc

(√
µ

2
T

)
(Lh∗TAδ(t) + 2Bδ(t)) . (73c)

Proof of (73a). Using Aδ and Bδ , we can bound ∥Wδ(t)− w0∥ and ∥Xδ(t)− x0∥ as

∥Wδ(t)− w0∥ ≤ t2

2
Aδ(t)

∥Xδ(t)− x0∥ ≤ tBδ(t).

From (72b), we have

2

∥∥∥Ẇδ(t)
∥∥∥

t
= tanhc

(√
µ

2
t

)
∥µ∇h(Xδ)− µWδ −∇f(Xδ)∥

≤ ∥µ∇h(Xδ)− µWδ −∇f(Xδ)∥
≤ µ ∥Wδ∥+ µ ∥∇h(Xδ)∥+ ∥∇f(Xδ)∥

≤ µ ∥w0∥+
µt2

2
Aδ(t) + µ ∥∇h (x0)∥+ µLhtBδ(t) + ∥∇f (x0)∥+ Lf tBδ(t).

Thus,

2Aδ(t) ≤ µ ∥w0∥+ µ ∥∇h (x0)∥+ ∥∇f (x0)∥

+
µt2

2
Aδ(t) + (µLh + Lf ) tBδ(t).

Because T ≤
√
2/µ, we obtain the inequality (73a).

31



Unified Nesterov’s Accelerated Gradient Methods

Proof of (73b). To bound the function Bδ(t) = supu∈[0,t]
∥Xδ(u)−x0∥

u , we first compute an upper bound of ∥Xδ(t)− x0∥
in the case 0 ≤ t ≤ δ and the case t ≥ δ separately. First, consider the case t ∈ [0, δ]. By (72a), we have

Ẋδ +
2

δ
cothc

(√
µ

2
δ

)
(Xδ − x0) =

2

δ
cothc

(√
µ

2
δ

)
(∇h∗(Wδ −∇h∗ (w0)) .

Multiplying e
2
δ cothc

(√
µ

2 δ
)
t, we obtain

e
2
δ cothc

(√
µ

2 δ
)
t
[
Ẋδ +

2

δ
cothc

(√
µ

2
δ

)
(Xδ − x0)

]
=

2

δ
cothc

(√
µ

2
δ

)
e

2
δ cothc

(√
µ

2 δ
)
t
(∇h∗(Wδ)−∇h∗ (w0)) .

This equality can be written as

d

dt

(
(Xδ(t)− x0) e

2
δ cothc

(√
µ

2 δ
)
t
)

=
2

δ
cothc

(√
µ

2
δ

)
e

2
δ cothc

(√
µ

2 δ
)
t
(∇h∗ (Wδ(t))−∇h∗ (w0)) .

Integrating both sides yields

(Xδ(t)− x0) e
2
δ cothc

(√
µ

2 δ
)
t
=

2

δ
cothc

(√
µ

2
δ

)∫ t

0

[
e

2
δ cothc

(√
µ

2 δ
)
s
(∇h∗ (Wδ(s))−∇h∗ (w0))

]
ds.

Taking norms, we have

∥Xδ(t)− x0∥ ≤ 2

δ
cothc

(√
µ

2
δ

)∫ t

0

∥∇h∗ (Wδ(s))−∇h∗ (w0)∥ ds

≤ 2Lh∗

δ
cothc

(√
µ

2
δ

)∫ t

0

∥Wδ(s)− w0∥ ds

≤ 2Lh∗

δ
cothc

(√
µ

2
δ

)∫ t

0

s2

2
Aδ(t) ds

=
2Lh∗

δ
cothc

(√
µ

2
δ

)
Aδ(t)

t3

6

≤ 2Lh∗

t
cothc

(√
µ

2
δ

)
Aδ(t)

t3

6

=
Lh∗t2

3
cothc

(√
µ

2
δ

)
Aδ(t).

So far, we provide an upper bound of ∥Xδ(t)− x0∥ in the case 0 ≤ t ≤ δ. We now consider the case t ≥ δ. By (72a), we
have

Ẋδ +
2

t
cothc

(√
µ

2
t

)
(Xδ − x0) =

2

t
cothc

(√
µ

2
t

)
(∇h∗(Wδ)−∇h∗ (w0)) .

Multiplying t2

4 sinhc2(
√
µ

2 t) to both sides, we obtain

t2

4
sinhc2

(√
µ

2
t

)
Ẋδ +

t

2
sinhc

(√
µ

2
t

)
cosh

(√
µ

2
t

)
(Xδ − x0)

=
t

2
sinhc

(√
µ

2
t

)
cosh

(√
µ

2
t

)
(∇h∗(Wδ)−∇h∗ (w0)) .

This equality can be written as

d

dt

(
t2

4
sinhc2

(√
µ

2
t

)
(Xδ(t)− x0)

)
=

t

2
sinhc

(√
µ

2
t

)
cosh

(√
µ

2
t

)
(∇h∗ (Wδ(t))−∇h∗ (w0)) .

Integrating both sides, we obtain

t2

4
sinhc2

(√
µ

2
t

)
(Xδ(t)− x0) =

∫ t

0

(
s

2
sinhc

(√
µ

2
s

)
cosh

(√
µ

2
s

)
(∇h∗ (Wδ(s))−∇h∗ (w0))

)
ds.
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Taking norms, we have the following upper bound on ∥Xδ(t)− x0∥:

∥Xδ(t)− x0∥ ≤ 2

t
cothc

(√
µ

2
t

)∫ t

0

∥∇h∗ (Wδ(s))−∇h∗ (w0)∥ ds.

≤ 2Lh∗

t
cothc

(√
µ

2
t

)∫ t

0

∥Wδ(s)− w0∥ ds.

≤ 2Lh∗

t
cothc

(√
µ

2
t

)∫ t

0

s2

2
Aδ(t) ds

=
2Lh∗

t
cothc

(√
µ

2
t

)
Aδ(t)

t3

6

=
Lh∗t2

3
cothc

(√
µ

2
t

)
Aδ(t).

Combining both cases 0 ≤ t ≤ δ and t ≥ δ, we have

∥Xδ(t)− x0∥ ≤ Lh∗t2

3
cothc

(√
µ

2
T

)
Aδ(t)

for all t ≥ 0. Dividing by t and taking the supremum, we obtain

Bδ(t) ≤
Lh∗t

3
cothc

(√
µ

2
T

)
Aδ(t).

Proof of (73c). By (72a), we have∥∥∥Ẋ∥∥∥ =
2

max{δ, t} cothc

(√
µ

2
max{δ, t}

)
∥∇h∗ (Wδ(t))−Xδ(t)∥

≤ 2

max{δ, t} cothc

(√
µ

2
max{δ, t}

)
(∥∇h∗ (Wδ(t))−∇h∗ (z0)∥+ ∥Xδ(t)− x0∥)

≤ 2

max{δ, t} cothc

(√
µ

2
max{δ, t}

)(
t2

2
Lh∗Aδ(t) + tBδ(t)

)
≤ cothc

(√
µ

2
T

)
2

t

(
t2

2
Lh∗Aδ(t) + tBδ(t)

)
≤ cothc

(√
µ

2
T

)
(Lh∗TAδ(t) + 2Bδ(t)) .

Complete the proof of Lemma D.1. Define five positive constants K1, . . ., K5 as

K1 := µ ∥w0∥+ µ ∥∇h (x0)∥+ ∥∇f (x0)∥
K2 := µLh + Lf

K3 :=
2Lh∗

3
K4 := 2Lh∗

K5 := 4.

(74)

Because T ≤ 2√
µ , we have cothc(

√
µ

2 T ) ≤ cothc(1) ≤ 2. Thus, the inequalities (73) imply

Aδ(t) ≤ K1 +K2TBδ(t) (75a)
Bδ(t) ≤ K3TAδ(t) (75b)
Cδ(t) ≤ K4TAδ(t) +K5Bδ(t). (75c)
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Combining (75a) and (75b), we have (
1

K3T
−K2T

)
Bδ(t) ≤ K1.

Because T 7→ 1
K3T

−K2T is a positive non-increasing funtion on [0, 1
2

√
1

K2K3
] and T ≤ 1

2

√
1

K2K3
, we have

Bδ(T ) ≤

 1

K3 · 1
2

√
1

K2K3

−K2 ·
1

2

√
1

K2K3

−1

K1 =
2

3
K1

√
K3

K2
. (76)

The inequalities (75a), (76), and T ≤ 1
2

√
1

K2K3
imply

Aδ(T ) ≤ K1 +K2TBδ(T ) ≤ K1 +K2

(
1

2

√
1

K2K3

)(
2

3
K1

√
K3

K2

)
. (77)

The inequalities (75a), (76), (77), and T ≤ 1
2

√
1

K2K3
imply

Cδ(T ) ≤ K4TAδ(T ) +K5Bδ(T )

≤ K4

(
1

2

√
1

K2K3

)(
K1 +K2

(
1

2

√
1

K2K3

)(
2

3
K1

√
K3

K2

))
+K5

(
2

3
K1

√
K3

K2

)
.

(78)

Therefore, ∥Ẇ∥ and ∥Ẋ∥ are bounded uniformly in δ because∥∥∥Ẇδ(t)
∥∥∥ ≤ TAδ(T )∥∥∥Ẋδ(t)
∥∥∥ ≤ Cδ(T )

for all t ∈ [0, T ]. This implies that the family of solutions ((Xδ, Zδ)|[0,T ])δ∈(0,T ] is equi-Lipschitz-continuous and uniformly
bounded.

D.3.2. PROOF OF UNIQUENESS

We follow the argument in (Krichene et al., 2015, Appendix 3) and omit the detailed calculations that can be found in
(Krichene et al., 2015, Appendix 3). Because we only need to prove the uniqueness of solution near t = 0, we assume t < T
for some T > 0. Let (X,W ) and

(
X̄, W̄

)
be solutions to the following system of ODEs, which is equivalent to (70):

Ẋ =
2

t
cothc

(√
µ

2
t

)
(∇h∗(W )−X)

Ẇ =
t

2
tanhc

(√
µ

2
t

)
(µ∇h(X)− µW −∇f(X)) .

Let ∆W = W − W̄ and ∆X = X − X̄ . Then, we have

∆̇W =
t

2
tanhc

(√
µ

2
t

)(
µ∇h(X)− µW −∇f(X)− µ∇h

(
X̄
)
+ µW̄ +∇f

(
X̄
))

∆̇X =
2

t
cothc

(√
µ

2
t

)(
∇h∗(W )−∇h∗ (W̄ )−∆X

)
with ∆X(0) = ∆W (0) = 0. Define

A(t) := sup
[0,t]

∥∥∥∆̇W (u)
∥∥∥

u
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B(t) := sup
[0,t]

∥∆X∥ .

Then, B(t) and C(t) are finite because ∆X and ∆W are continuous. First, we compute an upper bound of A(t). We have∥∥∥∆̇W (t)
∥∥∥ =

t

2
tanhc

(√
µ

2
t

)∥∥µ∇h(X)− µW −∇f(X)− µ∇h
(
X̄
)
+ µW̄ +∇f

(
X̄
)∥∥

≤ t

2
tanhc

(√
µ

2
t

)(
µ
∥∥∇h(X)−∇h

(
X̄
)∥∥+ µ

∥∥W − W̄
∥∥+ ∥∥∇f(X)−∇f

(
X̄
)∥∥)

≤ t

2
tanhc

(√
µ

2
t

)
((µLh + Lf ) ∥∆X∥+ µ ∥∆W ∥)

≤ t

2
tanhc

(√
µ

2
t

)(
(µLh + Lf )B(t) +

µt2

2
A(t)

)
,

(79)

where we used ∥∆W (t)∥ ≤ ∥
∫ t

0
∆̇W (s) ds∥ ≤

∫ t

0
sA(s) ds ≤

∫ t

0
sA(t) ds = t2

2 A(t) for the last inequality. Dividing both
sides of (79) by t and then taking the supremum, we obtain

A(t) ≤ 1

2
tanhc

(√
µ

2
t

)(
(µLh + Lf )B(t) +

µt2

2
A(t)

)
. (80)

Nest, we compute an upper bound of B(t). We have

∆̇X +
2

t
cothc

(√
µ

2
t

)
∆X =

2

t
cothc

(√
µ

2
t

)(
∇h∗(W )−∇h∗ (W̄ )) .

Multiplying both sides by t2

4 sinhc2
(√

µ

2 t
)

, we have

t2

4
sinhc2

(√
µ

2
t

)
∆̇X +

t

2
sinhc

(√
µ

2
t

)
cosh

(√
µ

2
t

)
∆X

=
t

2
sinhc

(√
µ

2
t

)
cosh

(√
µ

2
t

)(
∇h∗(W )−∇h∗ (W̄ )) .

This equality can be written as

d

dt

(
t2

4
sinhc2

(√
µ

2
t

)
∆X

)
=

t

2
sinhc

(√
µ

2
t

)
cosh

(√
µ

2
t

)(
∇h∗(W )−∇h∗ (W̄ )) .

Integrating both sides, we obtain

t2

4
sinhc2

(√
µ

2
t

)
∆X =

∫ t

0

[
s

2
sinhc

(√
µ

2
s

)
cosh

(√
µ

2
s

)(
∇h∗(W (s))−∇h∗ (W̄ (s)

))]
ds.

Taking norms, we have

∥∆X(t)∥ ≤ 2

t
cothc

(√
µ

2
t

)∫ t

0

∥∥∇h∗(W (s))−∇h∗ (W̄ (s)
)∥∥ ds.

≤ 2Lh∗

t
cothc

(√
µ

2
t

)∫ t

0

∥∆W (s)∥ ds.

≤ 2Lh∗

t
cothc

(√
µ

2
t

)∫ t

0

s2

2
A(t) ds

=
Lh∗2

t
cothc

(√
µ

2
t

)
A(t)

t3

6

=
Lh∗t2

3
cothc

(√
µ

2
t

)
A(t).
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Taking the supremum yields

B(t) ≤ Lh∗t2

3
cothc

(√
µ

2
t

)
A(t). (81)

Now, combining the inequalities (80) and (81), we have

A(t) ≤ 1

2
tanhc

(√
µ

2
t

)(
(µLh + Lf )B(t) +

µt2

2
A(t)

)
≤ 1

2
tanhc

(√
µ

2
t

)(
(µLh + Lf )

Lh∗t2

3
cothc

(√
µ

2
t

)
+

µt2

2

)
A(t).

Using continuity, it is easy to see that there exists a constant Tsmall > 0 such that the following inequality holds whenever
t ∈ (0, Tsmall):

1

2
tanhc

(√
µ

2
t

)(
(µLh + Lf )

Lh∗t2

3
cothc

(√
µ

2
t

)
+

µt2

2

)
< 1.

Thus, for t ∈ (0, Tsmall), we have A(t) ≤ 1 ·A(t), which implies A(t) = 0 because A(t) is nonnegative by its definition.
Finally, B(t) = 0 follows from (81). This completes the proof.

D.4. Proof of Theorem 4.1

Substituting h(x) = 1
2∥x∥2, α(t) = log( 2t cothc(

√
µ

2 t)), and β(t) = log( t
2

4 sinhc2(
√
µ

2 t)) in the Lyapunov function (63)
gives

V (X,Z, t) =
1

2
cosh2

(√
µ

2
t

)
∥Z − x∗∥2 + t2

4
sinhc2

(√
µ

2
t

)
(f(X)− f (x∗)) . (82)

Also, the energy function (64) can be written as

E(t) = V (X(t), Z(t), t) =
1

2
cosh2

(√
µ

2
t

)
∥Z(t)− x∗∥2 + t2

4
sinhc2

(√
µ

2
t

)
(f(X(t))− f (x∗)) . (83)

Beccuase E(t) is monotonically non-increasing (see Appendix C.3), we have E(t) ≤ E(0). Writing this inequality explicitly,
we obtain

f(X(t))− f(x∗) ≤ 2

t2
cschc2

(√
µ

2
t

)
∥x0 − x∗∥2.

Since cschc2 is decreasing on [0,∞), this implies that the unified AGM ODE (8) achieves an O(1/t2) convergence rate
regardless of the value of µ ≥ 0. When µ > 0, since 1

t2 cschc
2
(√

µ

2 t
)
∼ µe−

√
µt as t → ∞, the unified AGM ODE

achieves an O(e−
√
µt) convergence rate. Combining these bounds, we conclude that the unified AGM ODE achieves an

O
(
min

{
1/t2, e−

√
µt
})

convergence rate.

D.5. Proof of Theorem 4.2

Note that the unified AGM is equivalent to the unified AGM family (68) with tk := ι
√
sk. For this sequence (tk), we can

check that the following conditions hold (see Appendix D.5.1):

2
√
s

tk
cothc

(√
µ

2
tk

)
≤ 1 for k ≥ 2 (84)

and (
1− 2

√
s

tk+1
cothc

(√
µ

2
tk+1

))
t2k+1

4
sinhc2

(√
µ

2
tk+1

)
≤ t2k

4
sinhc2

(√
µ

2
tk

)
for k ≥ 0. (85)

Now, we claim that the following discrete-time energy function is non-increasing:

Ek = V (xk, zk, tk) =
1

2
cosh2

(√
µ

2
tk

)
∥zk − x∗∥2 + t2k

4
sinhc2

(√
µ

2
tk

)
(f (xk)− f (x∗)) , (86)
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where the Lyapunov function V is defined in (82).

Note that when µ > 0, the inequality (85) can be written as

0 ≥
(
1−√

µs coth

(√
µ

2
tk+1

))
1

µ
sinh2

(√
µ

2
tk+1

)
− 1

µ
sinh2

(√
µ

2
tk

)
=

1

µ
sinh2

(√
µ

2
tk+1

)
−
√

s

µ
sinh

(√
µ

2
tk+1

)
cosh

(√
µ

2
tk+1

)
− 1

µ
sinh2

(√
µ

2
tk

)
=

1

µ
cosh2

(√
µ

2
tk+1

)
−
√

s

µ
sinh

(√
µ

2
tk+1

)
cosh

(√
µ

2
tk+1

)
− 1

µ
cosh2

(√
µ

2
tk

)
=

(
1−√

µs tanh

(√
µ

2
tk+1

))
1

µ
cosh2

(√
µ

2
tk+1

)
− 1

µ
cosh2

(√
µ

2
tk

)
.

Thus, the following inequality holds for all µ ≥ 0 (it clearly holds for µ = 0):(
1− µ

√
stk+1

2
tanhc

(√
µ

2
tk+1

))
cosh2

(√
µ

2
tk+1

)
≤ cosh2

(√
µ

2
tk

)
. (87)

Using (85) and (87), we have

Ek+1 − Ek

=
1

2
cosh2

(√
µ

2
tk+1

)
∥zk+1 − x∗∥2 − 1

2
cosh2

(√
µ

2
tk

)
∥zk − x∗∥2

+
t2k+1

4
sinhc2

(√
µ

2
tk+1

)
(f (xk+1)− f (x∗))− t2k

4
sinhc2

(√
µ

2
tk

)
(f (xk)− f (x∗))

≤ 1

2
cosh2

(√
µ

2
tk+1

)
∥zk+1 − x∗∥2 − 1

2

(
1− µ

√
stk+1

2
tanhc

(√
µ

2
tk+1

))
cosh2

(√
µ

2
tk+1

)
∥zk − x∗∥2

+
t2k+1

4
sinhc2

(√
µ

2
tk+1

)
(f (xk+1)− f (x∗))

−
(
1− 2

√
s

tk+1
cothc

(√
µ

2
tk+1

))
t2k+1

4
sinhc2

(√
µ

2
tk+1

)
(f (xk)− f (x∗)) .

Substituting

zk+1 = yk +

(
1− µ

√
stk+1

2
tanhc

(√
µ

2
tk+1

))
(zk − yk)−

√
stk+1

2
tanhc

(√
µ

2
tk+1

)
∇f (yk)

into the inequality above, we have

Ek+1 − Ek

≤ 1

2
cosh2

(√
µ

2
tk+1

)

×
∥∥∥∥∥
(
1− µ

√
stk+1

2
tanhc

(√
µ

2
tk+1

))
(zk − yk)−

√
stk+1

2
tanhc

(√
µ

2
tk+1

)
∇f (yk)− (x∗ − yk)

∥∥∥∥∥
2

− 1

2

(
1− µ

√
stk+1

2
tanhc

(√
µ

2
tk+1

))
cosh2

(√
µ

2
tk+1

)
∥(zk − yk)− (x∗ − yk)∥2

+
t2k+1

4
sinhc2

(√
µ

2
tk+1

)
(f (xk+1)− f (x∗))

−
(
1− 2

√
s

tk+1
cothc

(√
µ

2
tk+1

))
t2k+1

4
sinhc2

(√
µ

2
tk+1

)
(f (xk)− f (x∗))

=
1

2
cosh2

(√
µ

2
tk+1

)((
1− µ

√
stk+1

2
tanhc

(√
µ

2
tk+1

))2

−
(
1− µ

√
stk+1

2
tanhc

(√
µ

2
tk+1

)))
∥zk − yk∥2
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+

√
stk+1

2
sinhc

(√
µ

2
tk+1

)
cosh

(√
µ

2
tk+1

)
⟨∇f (yk) , x

∗ − yk⟩

+
µ
√
stk+1

4
sinhc

(√
µ

2
tk+1

)
cosh

(√
µ

2
tk+1

)
∥x∗ − yk∥2

−
√
stk+1

2
sinhc

(√
µ

2
tk+1

)
cosh

(√
µ

2
tk+1

)(
1− µ

√
stk+1

2
tanhc

(√
µ

2
tk+1

))
⟨∇f(yk), zk − yk⟩

+
st2k+1

8
sinhc2

(√
µ

2
tk+1

)
∥∇f (yk)∥2 +

t2k+1

4
sinhc2

(√
µ

2
tk+1

)
(f (xk+1)− f (x∗))

−
(
1− 2

√
s

tk+1
cothc

(√
µ

2
tk+1

))
t2k+1

4
sinhc2

(√
µ

2
tk+1

)
(f (xk)− f (x∗)) .

Since

0 ≤ 1−√
µs ≤ 1− µ

√
stk+1

2
tanhc

(√
µ

2
tk+1

)
≤ 1,

we have

1

2
cosh2

(√
µ

2
tk+1

)((
1− µ

√
stk+1

2
tanhc

(√
µ

2
tk+1

))2

−
(
1− µ

√
stk+1

2
tanhc

(√
µ

2
tk+1

)))
∥zk − yk∥2 ≤ 0.

Therefore, we deduce that

Ek+1 − Ek

≤
√
stk+1

2
sinhc

(√
µ

2
tk+1

)
cosh

(√
µ

2
tk+1

)
⟨∇f (yk) , x

∗ − yk⟩

+
µ
√
stk+1

4
sinhc

(√
µ

2
tk+1

)
cosh

(√
µ

2
tk+1

)
∥x∗ − yk∥2

−
√
stk+1

2
sinhc

(√
µ

2
tk+1

)
cosh

(√
µ

2
tk+1

)
×
(
1− µ

√
stk+1

2
tanhc

(√
µ

2
tk+1

))
⟨∇f(yk), zk − yk⟩

+
st2k+1

8
sinhc2

(√
µ

2
tk+1

)
∥∇f (yk)∥2

+
t2k+1

4
sinhc2

(√
µ

2
tk+1

)
(f (xk+1)− f (x∗))

−
(
1− 2

√
s

tk+1
cothc

(√
µ

2
tk+1

))
t2k+1

4
sinhc2

(√
µ

2
tk+1

)
(f (xk)− f (x∗)) .

Now, in order to show that Ek is non-increasing, it suffices to show that the right-hand side (RHS) of the inequality above is
non-positive. By the µ-strong convexity of f , we have

0 ≥ f (yk)− f (x∗) + ⟨∇f (yk) , x
∗ − yk⟩+

µ

2
∥x∗ − yk∥2 .

Moreover, it follows from the convexity and the 1
s -smoothness of f that

0 ≥ f (yk)− f (xk) + ⟨∇f(yk), xk − yk⟩

and
0 ≥ f(xk+1)− f(yk) +

s

2
∥∇f(yk)∥2 ,
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respectively. Note that

xk − yk = − τk
1− τk

(zk − yk) = −
2
√
s

tk+1
cothc

(√
µ

2 tk+1

)
− µs

1− 2
√
s

tk+1
cothc

(√
µ

2 tk+1

) (zk − yk) .

Taking a weighted sum of the inequalities above yields (the condition (84) ensures that these weights are non-negative for
k ≥ 1, and the case k = 0 is trivial because y0 = x0)

0 ≥ 2
√
s

tk+1
cothc

(√
µ

2
tk+1

)
t2k+1

4
sinhc2

(√
µ

2
tk+1

)
×
[
f (yk)− f (x∗) + ⟨∇f (yk) , x

∗ − yk⟩+
µ

2
∥x∗ − yk∥2

]
+

(
1− 2

√
s

tk+1
cothc

(√
µ

2
tk+1

))
t2k+1

4
sinhc2

(√
µ

2
tk+1

)
× [f (yk)− f (xk) + ⟨∇f(yk), xk − yk⟩]

+
t2k+1

4
sinhc2

(√
µ

2
tk+1

)[
f(xk+1)− f(yk) +

s

2
∥∇f(yk)∥2

]
=

√
stk+1

2
sinhc

(√
µ

2
tk+1

)
cosh

(√
µ

2
tk+1

)
⟨∇f (yk) , x

∗ − yk⟩

+
µ
√
stk+1

4
sinhc

(√
µ

2
tk+1

)
cosh

(√
µ

2
tk+1

)
∥x∗ − yk∥2

−
(
2
√
s

tk+1
cothc

(√
µ

2
tk+1

)
− µs

)
t2k+1

4
sinhc2

(√
µ

2
tk+1

)
⟨∇f(yk), zk − yk⟩

+
st2k+1

8
sinhc2

(√
µ

2
tk+1

)
∥∇f (yk)∥2

+
2
√
s

tk+1
cothc

(√
µ

2
tk+1

)
t2k+1

4
sinhc2

(√
µ

2
tk+1

)
(f (yk)− f (x∗))

+

(
1− 2

√
s

tk+1
cothc

(√
µ

2
tk+1

))
t2k+1

4
sinhc2

(√
µ

2
tk+1

)
(f (yk)− f (xk))

+
t2k+1

4
sinhc2

(√
µ

2
tk+1

)
(f(xk+1)− f(yk))

=

√
stk+1

2
sinhc

(√
µ

2
tk+1

)
cosh

(√
µ

2
tk+1

)
⟨∇f (yk) , x

∗ − yk⟩

+
µ
√
stk+1

4
sinhc

(√
µ

2
tk+1

)
cosh

(√
µ

2
tk+1

)
∥x∗ − yk∥2

−
√
stk+1

2
sinhc

(√
µ

2
tk+1

)
cosh

(√
µ

2
tk+1

)
×
(
1− µ

√
stk+1

2
tanhc

(√
µ

2
tk+1

))
⟨∇f(yk), zk − yk⟩

+
st2k+1

8
sinhc2

(√
µ

2
tk+1

)
∥∇f (yk)∥2

+
t2k+1

4
sinhc2

(√
µ

2
tk+1

)
(f (xk+1)− f (x∗))

−
(
1− 2

√
s

tk+1
cothc

(√
µ

2
tk+1

))
t2k+1

4
sinhc2

(√
µ

2
tk+1

)
(f (xk)− f (x∗)) .
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Thus, the energy function (86) is non-increasing. Writing Ek ≤ E0 explicitly, we obtain

f (xk)− f (x∗) ≤ 4

t2k
cschc2

(√
µ

2
tk

)(
1

2
cosh2

(√
µ

2
t0

)
∥x0 − x∗∥2 + t20

4
sinhc2

(√
µ

2
t0

)
(f (x0)− f (x∗))

)
=

2

ι2sk2
cschc2

(
ι
√
µs

2
k

)
∥x0 − x∗∥2.

Because cschc2 is decreasing on [0,∞), we have

2

ι2sk2
cschc2

(
ι
√
µs

2
k

)
≤ 2

ι2sk2
.

This implies that the convergence guarantee of the unified AGM is always better than that of AGM-C and that the unified
AGM achieves an O(1/k2) convergence rate, regardless of the value of µ. When µ > 0, since

4

t2k
cschc2

(√
µ

2
tk

)
∼ 4µe−

√
µtk = 4µ (1−√

µs)
k as k → ∞,

the unified AGM achieves an O((1 −√
µs)k) convergence rate. Combining these two guarantees, we conclude that the

unified AGM achieves an
O
(
min

{
1/k2, (1−√

µs)
k
})

convergence rate. This completes the proof.

D.5.1. CHECKING CONDITIONS ON TIME SEQUENCE

We show that the sequence tk := ι
√
sk satisfies the conditions (84) and (85). For convenience, we assume µ > 0 (the case

µ = 0 can be handled easily). The condition (84) follows from

2
√
s

tk
cothc

(√
µ

2
tk

)
=

√
µs coth

(√
µ

2
tk

)
≤ √

µs coth

(√
µ

2
t2

)
=

√
µs coth (− log (1−√

µs))

=
√
µs

1 + e2 log(1−√
µs)

1− e2 log(1−√
µs)

=
√
µs

1 +
(
1−√

µs
)2

1−
(
1−√

µs
)2

≤ 1,

where the last inequality holds because
√
µs ∈ (0, 1). To prove (85), it suffices to show that the inequality

sinh2
(√

µ

2
t

)
−√

µs sinh

(√
µ

2
t

)
cosh

(√
µ

2
t

)
− sinh2

(√
µ

2
t+

1

2
log (1−√

µs)

)
≤ 0

holds for all t ∈ R. Letting r = e
√

µ

2 t, this inequality can be expressed as

r2 + r−2 − 2

4
−√

µs
r2 − r−2

4
−
(
1−√

µs
)
r2 +

(
1−√

µs
)−1

r−2 − 2

4
≤ 0.

Letting q = r2 and multiplying both sides by 4q, the inequality can be rewritten as

0 ≥ q2 + 1− 2q −√
µs
(
q2 − 1

)
− (1−√

µs) q2 − (1−√
µs)

−1
+ 2q

= 1 +
√
µs− 1

1−√
µs

=
−µs

1−√
µs

,

which clearly holds.
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D.6. Unified AGM Converges to Unified AGM ODE

Note that the unified AGM family (68) is the three-sequence scheme (41) with

τk =

2
√
s

tk+1
cothc

(√
µ

2 tk+1

)
− µs

1− µs

δk =

√
stk+1

2
tanhc

(√
µ

2
tk+1

)
.

(88)

If the sequence (tk)
∞
k=0 in [0,∞) satisfies the conditions (42) and (43), then we have

lim
s→0

τk(t)√
s

=
2

t
cothc

(√
µ

2
t

)
lim
s→0

δk(t)√
s

= lim
s→0

t

2
tanhc

(√
µ

2
t

)
=

t

2
tanhc

(√
µ

2
t

)
for all t > 0, where k is the inverse function of the sequence t. In this case, the result in Appendix B.2.1 implies that the
unified AGM family (68) converges to the unified AGM system (69) as s → 0.

Because the sequence tk = ι
√
sk clearly satisfies the conditions (42) and (43) and the unified AGM is equivalent to the

unified AGM family (68) with tk = ι
√
sk, the unified AGM converges to the unified AGM system (69), which is equivalent

to the unified AGM ODE.

D.7. AGM-SC is Asymptotic Limit of Unified AGM

The following proposition rigorously states that AGM-SC is the asymptotic limit of the unified AGM.

Proposition D.2. Let x0 ∈ Rn and K ∈ N. Then, for every real number ϵ > 0, there exists a positive integer R such that

∥x1
k0+K − x2

k0+K∥ ≤ ϵ for every integer k0 ≥ R,

where

• The iterates (x1, z1) are generated by the unified AGM with the initial point x1
k0

= z1k0
at the initial iteration k0 (that

is, we run Algorithm 1 where the for loop is started at k = k0 instead of k = 0).

• The iterates (x2, z2) are generated by AGM-SC with the initial point x2
k0

= z2k0
at the initial iteration k0.

Proof. Let τk = 1
1−q

(
2

ι(k+1) cothc
(
k+1
2 ι

√
q
)
− q
)

, τ =
√
q

1+
√
q , δk = ιs(k+1)

2 tanhc
(
k+1
2 ι

√
q
)
, and δ =

√
s
µ . Then, it is

easy to check that τk → τ and δk → δ as k → ∞. In addition, we can write the unified AGM and AGM-SC as

yk = xk + τk(zk − xk)

xk+1 = yk − s∇f(yk)

zk+1 = zk + δk(µyk − µzk −∇f(yk))

and

yk = xk + τ(zk − xk)

xk+1 = yk − s∇f(yk)

zk+1 = zk + δ(µyk − µzk −∇f(yk)),

respectively. Now, a straightforward calculation yields

y1k+1 − y2k+1 = (1− τ)
(
y1k − y2k − s∇f(y1k) + s∇f(y2k)

)
+ τ

(
z1k+1 − z2k+1

)
− (τk − τ) y1k + s (τk − τ)∇f(y1k) + (τk − τ) z1k+1
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and

z1k+1 − z2k+1 = (1− µδ)
(
z1k − z2k

)
+ µδ

(
y1k − y2k

)
− δ

(
∇f(y1k)−∇f(y2k)

)
− µ (δk − δ) z1k + µ (δk − δ) y1k − (δk − δ)∇f(y1k).

We can show that ∥yk∥ and ∥zk∥ are bounded above by a constant which is independent of the initial iteration k0.20 Define
∆k = (y1k − y2k, z

1
k − z2k) ∈ R2n and uk = ∥∆k∥. Let C = 1 + (s − sτ + δ)Lf , where Lf is a Lipschitz continuity

parameter of ∇f . Let d = C−1
CK−1

ϵ. Then, because τk → τ and δk → δ as k → ∞, we can show that

There exists R ∈ N such that k ≥ k0 ≥ R ⇒ uk+1 ≤ Cuk + d.

Note that uk0
= 0. Now, it is easy to show that

uk0+K ≤ CKuk0
+
(
1 + C + · · ·+ CK−1

)
d

= CKuk0 +
CK − 1

C − 1
d

=
CK − 1

C − 1
d

= ϵ

for all k0 ≥ R. This completes the proof.

D.8. Nesterov’s Constant Step Scheme as Rate-Matching Discretization of Unified AGM ODE

In Appendix D.8.1, we provide a rate-matching discretization of the unified AGM system (69) with an adaptive timestep. In
Appendix D.8.3, we show that this algorithm is equivalent to the constant step scheme I (Nesterov, 2018, Equation 2.2.19).

D.8.1. A RATE-MATCHING DISCRETIZATION OF UNIFIED AGM ODE WITH ADAPTIVE TIMESTEP

Define the sequence (tk)
∞
k=0 as

tk+1 =

{
Given constant t0 > 0 (possibly depending on s), k + 1 = 0

The largest real number satisfying (85), k + 1 ≥ 1.
(89)

Then, it is easy to check that the sequence (tk)
∞
k=0 is well-defined and strictly increasing. We refer to the unified AGM

family (68) with this time sequence as the adaptive timestep scheme. Note that the conditions (84) and (85) hold by
construction.21 Therefore, the discrete-time energy function (86) is non-increasing for the iterates of the adaptive timestep
scheme. We will show that for the sequence (tk) defined by (89),

• The sequence (tk) is well-defined.

• The conditions (42) and (43) hold when lims→0 t0 = 0.

Then, these results imply that if lims→0 t0 = 0, then the adaptive timestep scheme converges to the unified AGM system
(69) as s → 0 by the result in Appendix A.1. Because the discrete-time energy function (86) for the adaptive timestep
scheme and the continuous-time energy function (83) for the unified AGM system are equivalent under the identifications
t ↔ tk, X(tk) ↔ xk, and Z(tk) ↔ zk, we conclude that the adaptive timestep scheme is a rate-matching discretization of
the unified AGM ODE.

20This can be proven by bounding ∥xk − x∗∥ and ∥zk − x∗∥ using the strong convexity of f and the fact that the energy function (86)
is non-increasing after k = k0. We omit the details.

21The first condition follows from the facts that (84) holds for the sequence tk = kδ, and that we have tk > 2δ for k ≥ 2, for the
sequence (tk) defined in (89).
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The sequence (tk) is well-defined. Because

4

t2k+1

cschc2
(√

µ

2
tk+1

)
+ µ =

4

t2k+1

cothc2
(√

µ

2
tk+1

)
,

the updating rule (89) is equivalent to

4

t2k+1

cothc2
(√

µ

2
tk+1

)
=

(
1− 2

√
s

tk+1
cothc

(√
µ

2
tk+1

))
4

t2k
cothc2

(√
µ

2
tk

)
+

2µ
√
s

tk+1
cothc

(√
µ

2
tk+1

)
, tk+1 > 0. (90)

Introduce a sequence (αk)
∞
k=−1 such that αk = 2

√
s

tk+1
cothc

(√
µ

2 tk+1

)
. As t 7→ 2

√
s

t cothc
(√

µ

2 t
)

is a bijective map from

(0,∞) to
(√

µs,∞
)
, the sequences (tk) and (αk) have a one-to-one relationship. Thus, the updating rule (90) is equivalent

to
α2
k = (1− αk)α

2
k−1 + µsαk, αk >

√
µs, (91)

which admits a unique solution in (
√
µs,∞) when αk−1 >

√
µs. Thus, the sequence (tk) is well-defined.

The sequence (tk) satisfies the conditions (42) and (43). Define a function A(t) as

A(t) :=
t2

4
sinhc2

(√
µ

2
t

)
. (92)

For t ∈ (0,∞), it follows from (89) that

Ȧ
(
tk(t)+1

)
=

A
(
tk(t)+1

)
−A (t)√

s
=

A
(
tk(t)+1

)
−A (t)

tk(t)+1 − t

tk(t)+1 − t√
s

.

Because tk(t)+1 → t as s → 0, taking the limit s → 0 in the equation above yields

1 = lim
s→0

tk(t)+1 − t√
s

.

Thus, the condition (85) holds.

D.8.2. NESTEROV’S CONSTANT STEP SCHEME

For µ-strongly (possibly with µ = 0) convex objective functions, Nesterov considered the following algorithm: Given an
initial point x0 = z0 ∈ Rn and γ0 > 0, the constant step scheme I (Nesterov, 2018, Equation 2.2.19) (we will also refer to
this algorithm as the original NAG) updates the iterates as

γk+1 = (1− αk) γk + µαk

yk =
1

γk + µαk
(αkγkzk + γk+1xk)

xk+1 = yk − s∇f (yk)

zk+1 =
1

γk+1
((1− αk) γkzk + µαkyk − αk∇f (yk)) ,

(93)

where the sequence (αk)
∞
k=0 in (0, 1) is inductively defined by the equation

1

s
α2
k = (1− αk) γk + µαk. (94)

Using the estimate sequence technique, Nesterov (2018, Theorem 2.2.1) showed that the iterates of the original NAG (93)
satisfy the inequality

f (xk)− f (x∗) ≤
(

k−1∏
i=0

(1− αi)

)(
f (x0)− f (x∗) +

γ0
2

∥x0 − x∗∥2
)

(95)

when s ≤ 1/L.
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D.8.3. EQUIVALENCE BETWEEN ADAPTIVE TIMESTEP SCHEME AND ORIGINAL NAG

Surprisingly, the adaptive timestep scheme in Appendix D.8.1, which is purely obtained from the unified Lagrangian
framework, is equivalent to the original NAG (93).

Proposition D.3. The adaptive timestep scheme is equivalent to the original NAG (93) with γ0 = 4
t20

cothc2
(√

µ

2 t0

)
>

µ. Moreover, the sequence γk and αk in the original NAG can be written as γk = 4
t2k

cothc2
(√

µ

2 tk

)
and αk =

2
√
s

tk+1
cothc

(√
µ

2 tk+1

)
. Conversely, the original NAG (93) with γ0 > µ is equivalent to the adaptive timestep scheme, where

t0 is a nonnegative constant satisfying γ0 = 4
t20

cothc2
(√

µ

2 t0

)
.

Proof. We first show that the sequences (αk)
∞
k=0 and (γk)

∞
k=0 generated in the original NAG (93) with γ0 =

4
t20

cothc2
(√

µ

2 t0

)
> µ can be written as αk = 2

√
s

tk+1
cothc

(√
µ

2 tk+1

)
and γk = 4

t2k
cothc2

(√
µ

2 tk

)
, where the sequence

(tk)
∞
k=0 is defined as (89). Note that the updating rules of (αk) and (γk) in the original NAG implies

γk+1 = (1− αk) γk + µαk =
α2
k

s
.

Thus, the updating rule for αk (94) can be equivalently written as

1

s
α2
k = (1− αk)

α2
k−1

s
+ µαk,

where we define α−1 :=
√
sγ0 = 2

√
s

t0
cothc

(√
µ

2 t0

)
>

√
µs. This implies that the sequence (αk)

∞
k=−1 in the original

NAG and the sequence (αk)
∞
k=−1 defined in Section D.8.1 are identical. Thus, we have αk = 2

√
s

tk+1
cothc

(√
µ

2 tk+1

)
and

γk =
α2

k−1

s = 4
t2k

cothc2
(√

µ

2 tk

)
.

Now, we show that the parameters τk and δk for the original NAG are equal to those for our adaptive timestep scheme. In
the original NAG, we have

(αk − µs) (γk + µαk) = αkγk + µα2
k − µsγk − µ2sαk

= µsγk+1 + αkγk − µsγk − µ2sαk

= µs ((1− αk) γk + µαk) + αkγk − µsγk − µ2sαk

= (1− µs)αkγk.

Therefore, we have

τk =
αkγk

γk + µαk
=

αk − µs

1− µs
=

2
√
s

tk+1
cothc

(√
µ

2 tk+1

)
− µs

1− µs

and

δk =
αk

γk+1
=

s

αk
=

√
stk+1

2
tanhc

(√
µ

2
tk+1

)
,

which are the momentum coefficients in (68). Thus, the ogirinal NAG with γ0 = 4
t20

cothc2
(√

µ

2 t0

)
> µ is equivalent to

the adaptive timestep scheme.

The following remark shows that under the identification in Proposition D.3, the convergence rate of the adaptive timestep
scheme is equivalent to the convergence rate (95) of the original NAG obtained by Nesterov (2018).
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Remark D.4. Because the discrete-time energy function (86) is non-increasing, the iterates of the adaptive timestep scheme
satisfy

f (xk)− f (x∗)

≤ 4

t2k
cschc2

(√
µ

2
tk

)
×
(
1

2
cosh2

(√
µ

2
t0

)
∥x0 − x∗∥2 + t20

4
sinhc2

(√
µ

2
t0

)
(f (x0)− f (x∗))

)
=

4

t2k
cschc2

(√
µ

2
tk

)
t20
4
sinhc2

(√
µ

2
t0

)
×
(

2

t20
cothc2

(√
µ

2
t0

)
∥x0 − x∗∥2 + (f (x0)− f (x∗))

)
=

k−1∏
i=0

(
1− 2

√
s

ti+1
cothc

(√
µ

2
ti+1

))(
2

t20
cothc2

(√
µ

2
t0

)
∥x0 − x∗∥2 + (f (x0)− f (x∗))

)
,

(96)

where the last equality follows from our updating rule (89) of the sequence (tk). Therefore, we recover the convergence
rate (95) of the original NAG with γk = 4

t2k
cothc2

(√
µ

2 tk

)
and αk = 2

√
s

tk+1
cothc

(√
µ

2 tk+1

)
.

E. Unified Higher-Order Method for Minimizing Convex and Uniformly Convex Functions
E.1. Existence and Uniqueness of Solution to Unified ATM ODE

In this subsection, we prove the existence and uniqueness of a solution to the unified ATM ODE, by using the existence and
uniqueness of a solution to the system of ODEs (70) and the time-dilation property (Theorem C.1) of the unified Bregman
Lagrangian flow. We first note that

• The system of ODEs (70) is the unified Bregman Lagrangian flow (5) with β1 = log
(

t2

4 sinhc2
(√

µ

2 t
))

and

α1 = log β̇1.

• The unified ATM ODE (12) is the unified Bregman Lagrangian flow (5) with β2 = p log t + logC +
p log

(
sinhcp

(
C1/pµ1/pt

))
and α2 = log β̇2.

Define a function T : [0,∞) → [0,∞) as T = β−1
1 ◦ β2. Then, we have

α2(t) = α1(T(t)) + log Ṫ(t)

β2(t) = β1(T(t)).

Thus, by Theorem C.1, if (X1, Z1) is a solution to the ODE system (70), then X2(t) = X1(T(t)) and Z2(t) = Z1(T(t))
forms a solution to the unified ATM ODE. Thus, the existence of solution to the system (70) implies the existence of solution
to the unified ATM ODE.

A similar argument shows that if (X2, Z2) is a solution to the unified ATM ODE, then X1(t) = X2(T
−1(t)) and

Z1(t) = Z2(T
−1(t)) forms a solution to the system (70). It is easy to show that this correspondence is one-to-one. Thus,

the uniqueness of solution to the system (70) implies the uniqueness of solution to the unified ATM ODE.

E.2. Proof of Theorem 5.1

For the unified ATM ODE (12), the Lyapunov function (63) can be written as

V (X,Z, t) = coshpp

(
C1/pµ1/pt

)
Dh (x

∗, Z) + Ctp sinhcpp

(
C1/pµ1/pt

)
(f(X)− f (x∗)) . (97)

Thus, the proof of Theorem 3.1 (Appendix C.3) implies that the continuous-time energy function

E(t) = V (X(t), Z(t), t) = coshpp

(
C1/pµ1/pt

)
Dh (x

∗, Z(t)) + Ctp sinhcpp

(
C1/pµ1/pt

)
(f(X(t))− f (x∗)) (98)
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is monotonically non-increasing on [0,∞). Writing E(t) ≤ E(0) explicitly, we have

f(X(t))− f (x∗) ≤ 1

Ctp sinhcpp
(
C1/pµ1/pt

)Dh (x
∗, x0) .

Since sinhcp(0) = 1 and sinhcp is increasing on [0,∞) (see Appendix B.1.2), this inequality implies that the unified ATM
ODE (12) achieves an O (1/tp) convergence rate regardless of the value of µ ≥ 0. On the other hand, when µ > 0, it
follows from Proposition B.1 that

1

Ctp sinhcpp
(
C1/pµ1/pt

) = O
(
e−pC1/pµ1/pt

)
as t → ∞.

Therefore, the unified ATM ODE achieves an O(e−pC1/pµ1/pt) convergence rate. Combining these bounds, we conclude
that the unified ATM ODE achieves an

O
(
min

{
1/tp, e−pC1/pµ1/pt

})
convergence rate.

E.3. Proof of Theorem 5.3

We show that the discrete-time energy function

Ek = V (xk, zk, tk) = (1 + µAk)Dh (x
∗, zk) +Ak (f (xk)− f (x∗)) (99)

is non-increasing, where the Lyapunov function V is defined in (97) and tk := p
√
Ak/C if µ = 0 and tk :=

sinh−1
p ( p

√
µAk)/

p
√
Cµ if µ > 0.

By the Bregman three-point identity22 and the non-negativity of Bregman divergence, we have

Dh (x
∗, zk+1) = Dh (x

∗, xk+1)− ⟨∇h (zk+1)−∇h (xk+1) , x
∗ − zk+1⟩ −Dh (zk+1, xk+1)

≤ Dh (x
∗, xk+1)− ⟨∇h (zk+1)−∇h (xk+1) , x

∗ − zk+1⟩ .

Thus, we can bound the difference of the discrete-time energy function (99) as follows:

Ek+1 − Ek
= (1 + µAk+1)Dh (x

∗, zk+1)− (1 + µAk)Dh (x
∗, zk)

+Ak+1 (f (xk+1)− f (x∗))−Ak (f (xk)− f (x∗))

= µ (Ak+1 −Ak)Dh (x
∗, zk+1)

+ (Ak+1 −Ak) (f (xk+1)− f (x∗)) +Ak (f (xk+1)− f (xk))

+ (1 + µAk) (−h (zk+1)− ⟨∇h (zk+1) , x
∗ − zk+1⟩+ h (zk) + ⟨∇h (zk) , x

∗ − zk⟩)
≤ µ (Ak+1 −Ak)Dh (x

∗, xk+1)− µ (Ak+1 −Ak) ⟨∇h (zk+1)−∇h (xk+1) , x
∗ − zk+1⟩

+ (Ak+1 −Ak) (f (xk+1)− f (x∗)) +Ak (f (xk+1)− f (xk))

+ (1 + µAk) (−h (zk+1)− ⟨∇h (zk+1) , x
∗ − zk+1⟩+ h (zk) + ⟨∇h (zk) , x

∗ − zk⟩) .

By the (µ-uniform) convexity of f with respect to h, the p-th order 1-uniform convexity of h, and the inequality (14), the
following inequalities hold:

0 ≥ f (xk+1)− f (x∗) + ⟨∇f (xk+1) , x
∗ − xk+1⟩+ µDh (x

∗, xk+1)

0 ≥ f (xk+1)− f (xk) + ⟨∇f (xk+1) , xk − xk+1⟩
0 ≥ Ms

1
p−1 ∥∇f (xk+1)∥

p
p−1 − ⟨∇f (xk+1) , yk − xk+1⟩

0 ≥ h (zk)− h (zk+1) + ⟨∇h (zk) , zk+1 − zk⟩+
1

p
∥zk+1 − zk∥p .

22Dh(x, y)−Dh(x, z) = −⟨∇h(y)−∇h(z), x− y⟩ −Dh(y, z) (see Wilson et al., 2021), with x = x∗, y = zk+1, z = xk+1.
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Taking a weighted sum of these inequalities yields

0 ≥ (Ak+1 −Ak) [f (xk+1)− f (x∗) + ⟨∇f (xk+1) , x
∗ − xk+1⟩+ µDh (x

∗, xk+1)]

+Ak [f (xk+1)− f (xk) + ⟨∇f (xk+1) , xk − xk+1⟩]
+Ak+1

[
Ms

1
p−1 ∥∇f (xk+1)∥

p
p−1 − ⟨∇f (xk+1) , yk − xk+1⟩

]
+ (1 + µAk)

[
h (zk)− h (zk+1) + ⟨∇h (zk) , zk+1 − zk⟩+

1

p
∥zk+1 − zk∥p

]
≥ Ek+1 − Ek
− µ (Ak+1 −Ak)Dh (x

∗, xk+1) + µ (Ak+1 −Ak) ⟨∇h (zk+1)−∇h (xk+1) , x
∗ − zk+1⟩

− (Ak+1 −Ak) (f (xk+1)− f (x∗))−Ak (f (xk+1)− f (xk))

− (1 + µAk+1) (−h (zk+1)− ⟨∇h (zk+1) , x
∗ − zk+1⟩+ h (zk) + ⟨∇h (zk) , x

∗ − zk⟩)
+ (Ak+1 −Ak) [f (xk+1)− f (x∗) + ⟨∇f (xk+1) , x

∗ − xk+1⟩+ µDh (x
∗, xk+1)]

+Ak [f (xk+1)− f (xk) + ⟨∇f (xk+1) , xk − xk+1⟩]
+Ak+1

[
Ms

1
p−1 ∥∇f (xk+1)∥

p
p−1 − ⟨∇f (xk+1) , yk − xk+1⟩

]
+ (1 + µAk)

[
h (zk)− h (zk+1) + ⟨∇h (zk) , zk+1 − zk⟩+

1

p
∥zk+1 − zk∥p

]
= Ek+1 − Ek
+ ⟨∇f (xk+1) , (Ak+1 −Ak) (x

∗ − xk+1) +Ak (xk − xk+1) +Ak+1 (xk+1 − yk)⟩

+ (1 + µAk) ⟨∇h (zk+1)−∇h (zk) , x
∗ − zk+1⟩+

1 + µAk

p
∥zk+1 − zk∥p

+ µ (Ak+1 −Ak) ⟨∇h (zk+1)−∇h (xk+1) , x
∗ − zk+1⟩+MAk+1s

1
p−1 ∥∇f (xk+1)∥

p
p−1 .

Substituting (105), we have

0 ≥ Ek+1 − Ek
+ ⟨∇f (xk+1) , (Ak+1 −Ak) (x

∗ − xk+1) +Ak (xk − xk+1) +Ak+1 (xk+1 − yk)⟩
+ (Ak+1 −Ak) ⟨µ∇h (xk+1)− µ∇h (zk+1)−∇f (xk+1) , x

∗ − zk+1⟩

+
1 + µAk

p
∥zk+1 − zk∥p

+ µ (Ak+1 −Ak) ⟨∇h (zk+1)−∇h (xk+1) , x
∗ − zk+1⟩+MAk+1s

1
p−1 ∥∇f (xk+1)∥

p
p−1

= Ek+1 − Ek
+ ⟨∇f (xk+1) , (Ak+1 −Ak) (zk+1 − xk+1) +Ak (xk − xk+1) +Ak+1 (xk+1 − yk)⟩

+
1 + µAk

p
∥zk+1 − zk∥p +MAk+1s

1
p−1 ∥∇f (xk+1)∥

p
p−1 .

We also notice that

(Ak+1 −Ak) (zk+1 − xk+1) +Ak (xk − xk+1) +Ak+1 (xk+1 − yk)

= (Ak+1 −Ak) zk+1 +Akxk −Ak+1yk

= (Ak+1 −Ak) (zk+1 − zk) + (Ak+1 −Ak) zk +Akxk −Ak+1yk

= (Ak+1 −Ak) (zk+1 − zk) ,

where the last equality follows from yk = xk + Ak+1−Ak

Ak+1
(zk − xk). Therefore,

0 ≥ Ek+1 − Ek
+ (Ak+1 −Ak) ⟨∇f (xk+1) , zk+1 − zk⟩

+
1 + µAk

p
∥zk+1 − zk∥p +MAk+1s

1
p−1 ∥∇f (xk+1)∥

p
p−1 .
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Now, we use the Fenchel-Young inequality ⟨s, u⟩ + 1
p ∥u∥

p ≥ −p−1
p ∥s∥

p
p−1 (Nesterov, 2008, Lemma 2) with u =

(1 + µAk)
1
p (zk+1 − zk) and s = (Ak+1 −Ak) (1 + µAk)

− 1
p ∇f (xk+1) to obtain that

(Ak+1 −Ak) ⟨∇f (xk+1) , zk+1 − zk⟩+
1 + µAk

p
∥zk+1 − zk∥p

≥ −p− 1

p
(Ak+1 −Ak)

p
p−1 (1 + µAk)

− 1
p−1 ∥∇f (xk+1)∥

p
p−1 .

Hence, we have

0 ≥ Ek+1 − Ek

+

(
MAk+1s

1
p−1 − p− 1

p
(Ak+1 −Ak)

p
p−1 (1 + µAk)

− 1
p−1

)
∥∇f (xk+1)∥

p
p−1

= Ek+1 − Ek

+

(
(p− 1)p

1
p−1C

1
p−1Ak+1s

1
p−1 − p− 1

p
(Ak+1 −Ak)

p
p−1 (1 + µAk)

− 1
p−1

)
∥∇f (xk+1)∥

p
p−1 ,

where C = 1
p (

M
p−1 )

p−1. It is easy to see that the sequence (Ak) satisfies

(Ak+1 −Ak)
p − CppsAp−1

k+1 (1 + µAk) ≤ 0. (100)

Thus, the term(
(p− 1)p

1
p−1C

1
p−1Ak+1s

1
p−1 − p− 1

p
(Ak+1 −Ak)

p
p−1 (1 + µAk)

− 1
p−1

)
∥∇f (xk+1)∥

p
p−1

is non-negative. Thus, we have 0 ≥ Ek+1 − Ek and we conclude that the energy function (99) is non-increasing. Writing
Ek ≤ E0 explicitly, we obtain

f (xk)− f (x∗) ≤ 1

Ak
((1 + µA0)Dh (x

∗, x0) +A0 (f (x0)− f (x∗))) .

Now, we show that the unified ATM achieves an O(1/kp) convergence rate. Let Bk = p
√
Ak. Then, the updating rule of Ak

implies

Bk+1 −Bk = A
1/p
k+1 −A

1/p
k ≥

(
Ak + C1/pps1/pA

p−1
p

k

)1/p

−A
1/p
k =

(
Bp

k + C1/pps1/pBp−1
k

)1/p
−Bk.

Because limk→∞ Bk = ∞ and we have limX→∞
{(

Xp + pαXp−1
)1/p −X

}
= α for all α > 0, we have

lim infk→∞{Bk+1 − Bk} > 0. Thus, we hve Ak = Ω(kp), which implies that the unified ATM achieves an O(1/kp)
convergence rate. Next, it is easy to show that the unified ATM achieves an O((1 + p p

√
Cµs)−k) convergence rate because

Ak+1 = Ak + p
p

√
CsAp−1

k (1 + µAk) ≥ Ak + p
p

√
CsAp−1

k · µAk =
(
1 + p p

√
Cµs

)
Ak.

This completes the proof of Theorem 5.3.
Remark E.1. We show that (1 + p p

√
Cµs)−k ≤ exp(− 1

9
p
√
µsk) holds when N =

√
2 and M = 1/3. Because C =

1
p

(
M
p−1

)p−1

, we have C1/pp =
(

Mp
p−1

)1− 1
p ≥ M1− 1

p ≥ M = 1/3. Thus, we have

(1 + C1/ppµ1/ps1/p)−k ≤
(
1 +

1

3
(µs)1/p

)−k

= exp

(
−k log

(
1 +

1

3
(µs)1/p

))
.

Using the fact that the inequality log(1 + x
3 ) ≥ x/9 holds for all x ∈ [0, 1], we obtain

(1 + C1/ppµ1/ps1/p)−k ≤ e−
1
9µ

1/ps1/pk.
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Remark E.2. When µ = 0, the unified ATM ODE (12) recovers the ATM-C ODE given in (Wibisono et al., 2016):

Ẋ =
p

t
(Z −X)

d

dt
∇h(Z) = −Cptp−1∇f(X).

(101)

Moreover, the updating rules for unified ATM can be written as

yk = xk +
Ak+1 −Ak

Ak+1
(zk − xk)

xk+1 = Gp,s,N (yk)

zk+1 = argmin
z

{(Ak+1 −Ak) ⟨∇f (xk+1) , z⟩+Dh (z, zk)} .
(102)

To exactly recover ATM-C, we modify the sequence (Ak) as Ak := Csk(k + 1) · · · (k + p− 1), which is simpler and also
satisfies Ak = Ω(kp). Then, this sequence satisfies (100) because

C
1

p−1 p
p

p−1 s
1

p−1Ak+1 = C
1

p−1 p
p

p−1 s
1

p−1 · Cs(k + 1) · · · (k + p)

≥ C
1

p−1 p
p

p−1 s
1

p−1 · Cs(k + 1)
p

p−1 · · · (k + p− 1)
p

p−1

= (Ak+1 −Ak)
p

p−1 .

Thus, this modification does not affect the validity of the convergence rate (15). In this case, Algorithm 2 and its convergence
rate recover ATM-C and its convergence rate (Wibisono et al., 2016, Equation 20).

E.4. Unified ATM Converges to Unified ATM ODE

Let tk := p
√
Ak/C if µ = 0 and tk := sinh−1

p ( p
√
µAk)/

p
√
Cµ if µ > 0. We first that the timesteps are asymptotically

equivalent to s1/p as s → 0 in the sense that

lim
s→0

tk(t)+1 − t

s1/p
= 1 ∀t ∈ (0,∞) , (103)

where k is the inverse of t. It is easy to check that the function A(t) defined in (104) satisfies

Ȧ(t) = C1/ppµ
1−p
p sinhp−1

p

(
C1/pµ1/pt

)
coshp

(
C1/pµ1/pt

)
= C1/ppA(t)

p−1
p (1 + µA(t))

1
p

and that the sequence (tk) satisfies

A (tk+1)−A (tk)

s1/p
− C1/ppA (tk+1)

p−1
p (1 + µA (tk))

1
p = 0.

Now, substituting k = k(t) into the above equality and taking the limit s → 0, we have lims→0
tk(t)+1−t

s1/p
= 1.

Now, using (103), we show that the unified ATM converges to the unified ATM ODE (12) under the identifications
xk ↔ X(tk) and zk ↔ Z(tk). For convenience, we assume that µ > 0 (the case µ = 0 can be handled easily). Define a
function A : [0,∞) → R as

A(t) = Ctp sinhcpp

(
C1/pµ1/pt

)
=

1

µ
sinhpp

(
C1/pµ1/pt

)
, (104)

so that Ak = A(tk). Then, we have

Ẋ(t) = lim
s→0

xk(t)+1 − xk(t)

tk(t)+1 − t

= lim
s→0

xk(t)+1 − xk(t)

s1/p
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= lim
s→0

yk(t) − xk(t)

s1/p

= lim
s→0

Ak(t)+1 −Ak(t)

s1/pAk(t)+1

(
zk(t) − xk(t)

)
= lim

s→0

A
(
tk(t)+1

)
−A(t)

s1/pA
(
tk(t)+1

) (Z(t)−X(t))

=
Ȧ(t)

A(t)
(Z(t)−X(t))

= pC1/pµ1/p cothp

(
C1/pµ1/pt

)
(Z(t)−X(t)) ,

where we used ∥xk+1 − yk∥ = o(s1/p) (see Wibisono et al., 2016, Lemma 2.2) for the third equality.

By the first-order optimality condition, the updating rule for zk in the unified ATM is equivalent to

∇h (zk+1)−∇h (zk) =
Ak+1 −Ak

1 + µAk
(µ∇h (xk+1)− µ∇h (zk+1)−∇f (xk+1)) . (105)

Thus, we have

d

dt
∇h(Z(t)) = lim

s→0

∇h
(
zk(t)+1

)
−∇h

(
zk(t)

)
tk(t)+1 − t

= lim
s→0

∇h
(
zk(t)+1

)
−∇h

(
zk(t)

)
s1/p

= lim
s→0

Ak(t)+1 −Ak(t)

s1/p
(
1 + µAk(t)

) (µ∇h
(
xk(t)+1

)
− µ∇h

(
zk(t)+1

)
−∇f

(
xk(t)+1

))
= lim

s→0

A
(
tk(t)+1

)
−A(t)

s1/p (1 + µA(t))
(µ∇h (X(t))− µ∇h (X(t))−∇f (X(t)))

=
Ȧ(t)

1 + µA(t)
(µ∇h (X(t))− µ∇h (X(t))−∇f (X(t)))

=
C1/pp

µ(p−1)/p
tanhp−1

p

(
C1/pµ1/pt

)
(µ∇h (X(t))− µ∇h (X(t))−∇f (X(t))) .

Thus, we conclude that the unified ATM converges to the unified ATM ODE (12).

E.5. ATM-SC ODE: Asymptotic Limit of Unified ATM ODE

In this subsection, we investigate the asymptotic limit of the unified ATM ODE (12) with µ > 0. Because the unified ATM
ODE is the unified Bregman Lagrangian flow (5) with α(t) = log(pt cothcp(

p
√
Cµt)) and β(t) = log(Ctp sinhcpp(

p
√
Cµt)),

its asymptotic limit is the system (7) with α(∞) = log(C1/ppµ1/p) and β̇(∞) = C1/ppµ1/p:

Ẋ = C1/ppµ1/p(Z −X)

d

dt
∇h(Z) = C1/ppµ1/p

(
∇h(X)−∇h(Z)− 1

µ
∇f(X)

)
,

which we call ATM-SC ODE. Because this system is the second Bregman Lagrangian flow (27) with α2nd(t) :≡ α(∞) =
log(C1/ppµ1/p) and β2nd(t) := β̇(∞)t = C1/ppµ1/pt, it achieves the following convergence rate (see also Appendix C.5):

f(X(t))− f(x∗) ≤ O
(
e−β2nd(t)

)
= O

(
e−C1/ppµ1/pt

)
.
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E.6. ATM-SC: Asymptotic Limit of Unified ATM

In this subsection, we investigate the asymptotic limit of the unified ATM (Algorithm 2) with µ > 0. Because we have
limk→∞ Ak = ∞ and

lim
k→∞

Ak+1

Ak
= lim

k→∞

Ak + p p

√
CsAp−1

k (1 + µAk)

Ak
= 1 + p p

√
Cµs,

we can compute the momentum coefficients in the unified ATM (Algorithm 2) as

lim
k→∞

Ak+1 −Ak

Ak+1
=

p p
√
Cµs

1 + p p
√
Cµs

lim
k→∞

Ak+1 −Ak

1 + µAk
=

p p
√
Cµs

µ
.

Replacing the momentum coefficients Ak+1−Ak

Ak+1
and Ak+1−Ak

1+µAk
with their limits in the unified ATM algorithm, we yield the

following time-invariant algorithm, which we call ATM-SC:

yk = xk +
p p
√
Cµs

1 + p p
√
Cµs

(zk − xk)

xk+1 = Gp,s,N (yk)

zk+1 = argmin
z

{
p p
√
Cµs

µ
(⟨∇f(xk+1), z⟩+ µDh(z, xk+1)) +Dh(z, zk)

}
.

Following the argument in Appendix D.7, we can show that ATM-SC (Algorithm 3) is the asymptotic limit of the unified
ATM, in the sense that the output of the unified ATM converges to the one of ATM-SC as k0 → ∞ (the proof is similar, so
we omit it). The convergence rate of this algorithm is addressed in the following theorem.

Theorem E.3. The iterates of ATM-SC (Algorithm 3) with s ≤ (p− 1)!/L satisfy

f(xk)− f(x∗) ≤ O((1 + p p
√

Cµs)−k).

Proof. For convenience, we define a sequence (Ak) as

Ak =
(
1 + p p

√
Csµ

)k
.

Then, the updating rules in ATM-SC can be written as

yk = xk +
Ak+1 −Ak

Ak+1
(zk − xk)

xk+1 = Gp,s,N (yk)

zk+1 = argmin
z

{
Ak+1 −Ak

µAk
(⟨∇f(xk+1), z⟩+ µDh(z, xk+1)) +Dh(z, zk)

}
.

Define a discrete-time energy function Ek as

Ek = Ak (f (xk)− f (x∗) + µDh (x
∗, zk)) .

By the Bregman three-point identity23 and the non-negativity of Bregman divergence, we have

Dh (x
∗, zk+1) = Dh (x

∗, xk+1)− ⟨∇h (zk+1)−∇h (xk+1) , x
∗ − zk+1⟩ −Dh (zk+1, xk+1)

≤ Dh (x
∗, xk+1)− ⟨∇h (zk+1)−∇h (xk+1) , x

∗ − zk+1⟩ .
23Dh(x, y)−Dh(x, z) = −⟨∇h(y)−∇h(z), x− y⟩ −Dh(y, z) (see Wilson et al., 2021), with x = x∗, y = zk+1, z = xk+1.

51



Unified Nesterov’s Accelerated Gradient Methods

Thus, we can bound the difference of the discrete-time energy function as follows:

Ek+1 − Ek
= µAk+1Dh (x

∗, zk+1)− µAkDh (x
∗, zk)

+Ak+1 (f (xk+1)− f (x∗))−Ak (f (xk)− f (x∗))

= µ (Ak+1 −Ak)Dh (x
∗, zk+1)

+ (Ak+1 −Ak) (f (xk+1)− f (x∗)) +Ak (f (xk+1)− f (xk))

+ µAk (−h (zk+1)− ⟨∇h (zk+1) , x
∗ − zk+1⟩+ h (zk) + ⟨∇h (zk) , x

∗ − zk⟩)
≤ µ (Ak+1 −Ak)Dh (x

∗, xk+1)− µ (Ak+1 −Ak) ⟨∇h (zk+1)−∇h (xk+1) , x
∗ − zk+1⟩

+ (Ak+1 −Ak) (f (xk+1)− f (x∗)) +Ak (f (xk+1)− f (xk))

+ µAk (−h (zk+1)− ⟨∇h (zk+1) , x
∗ − zk+1⟩+ h (zk) + ⟨∇h (zk) , x

∗ − zk⟩) .

By the µ-uniform convexity of f with respect to h, the p-th order 1-uniform convexity of h, and the property (14) of the
higher-order gradient update operator Gp,M , the following inequalities hold:

0 ≥ f (xk+1)− f (x∗) + ⟨∇f (xk+1) , x
∗ − xk+1⟩+ µDh (x

∗, xk+1)

0 ≥ f (xk+1)− f (xk) + ⟨∇f (xk+1) , xk − xk+1⟩
0 ≥ Ms

1
p−1 ∥∇f (xk+1)∥

p
p−1 − ⟨∇f (xk+1) , yk − xk+1⟩

0 ≥ h (zk)− h (zk+1) + ⟨∇h (zk) , zk+1 − zk⟩+
1

p
∥zk+1 − zk∥p .

Taking a weighted sum of these inequalities yields

0 ≥ (Ak+1 −Ak) [f (xk+1)− f (x∗) + ⟨∇f (xk+1) , x
∗ − xk+1⟩+ µDh (x

∗, xk+1)]

+Ak [f (xk+1)− f (xk) + ⟨∇f (xk+1) , xk − xk+1⟩]
+Ak+1

[
Ms

1
p−1 ∥∇f (xk+1)∥

p
p−1 − ⟨∇f (xk+1) , yk − xk+1⟩

]
+ µAk

[
h (zk)− h (zk+1) + ⟨∇h (zk) , zk+1 − zk⟩+

1

p
∥zk+1 − zk∥p

]
≥ Ek+1 − Ek
− µ (Ak+1 −Ak)Dh (x

∗, xk+1) + µ (Ak+1 −Ak) ⟨∇h (zk+1)−∇h (xk+1) , x
∗ − zk+1⟩

− (Ak+1 −Ak) (f (xk+1)− f (x∗))−Ak (f (xk+1)− f (xk))

− µAk+1 (−h (zk+1)− ⟨∇h (zk+1) , x
∗ − zk+1⟩+ h (zk) + ⟨∇h (zk) , x

∗ − zk⟩)
+ (Ak+1 −Ak) [f (xk+1)− f (x∗) + ⟨∇f (xk+1) , x

∗ − xk+1⟩+ µDh (x
∗, xk+1)]

+Ak [f (xk+1)− f (xk) + ⟨∇f (xk+1) , xk − xk+1⟩]
+Ak+1

[
Ms

1
p−1 ∥∇f (xk+1)∥

p
p−1 − ⟨∇f (xk+1) , yk − xk+1⟩

]
+ µAk

[
h (zk)− h (zk+1) + ⟨∇h (zk) , zk+1 − zk⟩+

1

p
∥zk+1 − zk∥p

]
= Ek+1 − Ek
+ ⟨∇f (xk+1) , (Ak+1 −Ak) (x

∗ − xk+1) +Ak (xk − xk+1) +Ak+1 (xk+1 − yk)⟩

+ µAk ⟨∇h (zk+1)−∇h (zk) , x
∗ − zk+1⟩+

µAk

p
∥zk+1 − zk∥p

+ µ (Ak+1 −Ak) ⟨∇h (zk+1)−∇h (xk+1) , x
∗ − zk+1⟩+MAk+1s

1
p−1 ∥∇f (xk+1)∥

p
p−1 .

By the first-order optimality condition, the updating rule for zk is equivalent to

∇h (zk+1)−∇h (zk) =
Ak+1 −Ak

µAk
(µ∇h (xk+1)− µ∇h (zk+1)−∇f (xk+1)) . (106)
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Substituting this, we have

0 ≥ Ek+1 − Ek
+ ⟨∇f (xk+1) , (Ak+1 −Ak) (x

∗ − xk+1) +Ak (xk − xk+1) +Ak+1 (xk+1 − yk)⟩
+ (Ak+1 −Ak) ⟨µ∇h (xk+1)− µ∇h (zk+1)−∇f (xk+1) , x

∗ − zk+1⟩

+
µAk

p
∥zk+1 − zk∥p

+ µ (Ak+1 −Ak) ⟨∇h (zk+1)−∇h (xk+1) , x
∗ − zk+1⟩+MAk+1s

1
p−1 ∥∇f (xk+1)∥

p
p−1

= Ek+1 − Ek
+ ⟨∇f (xk+1) , (Ak+1 −Ak) (zk+1 − xk+1) +Ak (xk − xk+1) +Ak+1 (xk+1 − yk)⟩

+
µAk

p
∥zk+1 − zk∥p +MAk+1s

1
p−1 ∥∇f (xk+1)∥

p
p−1 .

We also notice that

(Ak+1 −Ak) (zk+1 − xk+1) +Ak (xk − xk+1) +Ak+1 (xk+1 − yk)

= (Ak+1 −Ak) zk+1 +Akxk −Ak+1yk

= (Ak+1 −Ak) (zk+1 − zk) + (Ak+1 −Ak) zk +Akxk −Ak+1yk

= (Ak+1 −Ak) (zk+1 − zk) ,

where the last equality follows from yk = xk + Ak+1−Ak

Ak+1
(zk − xk). Therefore,

0 ≥ Ek+1 − Ek
+ (Ak+1 −Ak) ⟨∇f (xk+1) , zk+1 − zk⟩

+
µAk

p
∥zk+1 − zk∥p +MAk+1s

1
p−1 ∥∇f (xk+1)∥

p
p−1 .

Now, we use the Fenchel-Young inequality ⟨s, u⟩ + 1
p ∥u∥

p ≥ −p−1
p ∥s∥

p
p−1 with u = µ1/pA

1/p
k (zk+1 − zk) and s =

(Ak+1 −Ak)µ
−1/pA

−1/p
k ∇f (xk+1) to obtain that

(Ak+1 −Ak) ⟨∇f (xk+1) , zk+1 − zk⟩+
µAk

p
∥zk+1 − zk∥p

≥ −p− 1

p
(Ak+1 −Ak)

p
p−1 µ− 1

p−1A
− 1

p−1

k ∥∇f (xk+1)∥
p

p−1 .

Hence, we have

0 ≥ Ek+1 − Ek

+

(
MAk+1s

1
p−1 − p− 1

p
(Ak+1 −Ak)

p
p−1 (µAk)

− 1
p−1

)
∥∇f (xk+1)∥

p
p−1

= Ek+1 − Ek

+

(
(p− 1)p

1
p−1C

1
p−1Ak+1s

1
p−1 − p− 1

p
(Ak+1 −Ak)

p
p−1 (µAk)

− 1
p−1

)
∥∇f (xk+1)∥

p
p−1 ,

where C = 1
p (

M
p−1 )

p−1. It is easy to see that the sequence (Ak) satisfies

(Ak+1 −Ak)
p − CppµsAkA

p−1
k+1 ≤ 0. (107)

Thus, the term (
(p− 1)p

1
p−1C

1
p−1Ak+1s

1
p−1 − p− 1

p
(Ak+1 −Ak)

p
p−1 (µAk)

− 1
p−1

)
∥∇f (xk+1)∥

p
p−1
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is non-negative. Thus, we conclude that the energy function (99) is non-increasing. Writing Ek ≤ E0 explicitly, we obtain

f (xk)− f (x∗) ≤ A0

Ak
(f (x0)− f (x∗) + µDh (x

∗, x0)) ,

which implies an O((1 + p p
√
Cµs)−k) convergence rate.

F. ODE Model for Minimizing the Gradient Norm of Strongly Convex Functions
F.1. Review: OGM, OGM-G, and Their Limiting ODEs

We review OGM (Kim & Fessler, 2016), an algorithm for reducing the function value accuracy f(xN )−f(x∗), and OGM-G
(Kim & Fessler, 2021), an algorithm for reducing the squared gradient norm ∥∇f(xN )∥2. Given the number N of total
iterations, define a sequence (θk)

N
k=0 as

θk =


1 if k = 0
1+

√
4θ2

k−1+1

2 if 1 ≤ k ≤ N − 1
1+

√
8θ2

k−1+1

2 if k = N.

(108)

Then, OGM is equivalent to the fixed-step first-order scheme (2) with (hF
ij), and OGM-G is equivalent to the fixed-step

first-order scheme (2) with (hG
ij), where the entries of (hF

ij) and (hG
ij) are defined as

hF
ij =


θi−1
θi+1

hi−1,j if j = 0, . . . , i− 2,
θi−1
θi+1

(hi−1,i−1 − 1) if j = i− 1,

1 + 2θi−1
θi+1

if j = i,

hG
ij =


θN−i−1−1

θN−i
hi,j+1 if j = 0, . . . , i− 2,

θN−i−1−1
θN−i

(hi,i − 1) if j = i− 1,

1 + 2θN−i−1−1
θN−i

if j = i.

(109)

Suh et al. (2022) showed that OGM-G converges to OGM-G ODE as s → 0, under the identifications xk ↔ X(k
√
s) and

N ↔ T/
√
s. Next, we provide a simple argument to show that OGM converges to OGM ODE. For the sequence θk defined

in (108), Su et al. (2016) showed that the algorithm

yk =

(
1− 1

θk

)
xk +

1

θk
zk

xk+1 = yk − s∇f (yk)

zk+1 = zk − sθk∇f (yk)

(110)

converges to AGM-C ODE as s → 0 (see Su et al., 2016, Section 2). Because ∥xk+1 − yk∥ = o(
√
s), we can ignore the

gradient descent step xk+1 = yk − s∇f (yk) in both the algorithm (110) and OGM when dealing with their limiting ODEs.
Thus, ignoring the gradient descent step, we can see that applying OGM to the objective function f is equivalent to applying
the algorithm (110) to the objective function 2f . Thus, the limiting ODE of OGM is given by

Ẍ +
3

t
Ẋ + 2∇f(X) = 0,

which is OGM ODE.

The differential kernel for OGM ODE can be obtained by substituting b(t) = 3/t and c(t) = 1 into (60):

H(t, τ) = 2e−
∫ t
τ

3
s ds = 2e−3 log t+3 log τ =

2τ3

t3
.

The differential kernel for OGM-G ODE can be obtained by substituting b(t) = 3/(T − t) and c(t) = 1 into (60):

H(t, τ) = 2e−
∫ t
τ

3
T−s ds = 2e3 log(T−t)−3 log(T−τ) =

2(T − t)3

(T − τ)3
.
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F.2. Anti-Transpose Relationship Between OGM and OGM-G

Kim & Fessler (2021, Proposition 6.2) observed the following relationship between the matrices (hF
ij) and (hG

ij) in (109):

hF
ij = hG

N−1−j,N−1−i ∀i and j. (111)

When the condition (111) holds, we say there is an anti-transpose relationship between (hF
ij) and (hG

ij) because the matrix
(hF

ij) can be obtained by reflecting (hG
ij) about its anti-diagonal and vice versa. Now, it is straightforward to see that the

anti-transpose relationship (111) between the two matrices is transferred to the anti-transpose relationship (16) between the
differential kernels of OGM ODE and OGM-G ODE as s → 0:

HF(t, τ) = lim
s→0

hF
t√
s
, τ√

s
= lim

s→0
hG
(N−1)− τ√

s
,(N−1)− t√

s
= HG(T − τ, T − t),

where we identify T = N
√
s. To summarize, the relationships between OGM, OGM-G, and their limiting ODEs are

illustrated in Figure 6.

Ẋ(t) = −
∫ t

0
HF(t, τ)∇f(X(τ)) dτ

(OGM ODE)
yi+1 = yi − s

∑i
j=0 h

F
ij∇f (yj)

(OGM)

yi+1 = yi − s
∑i

j=0 h
G
ij∇f (yj)

(OGM-G)
Ẋ(t) = −

∫ t

0
HG(t, τ)∇f(X(τ)) dτ

(OGM-G ODE)

limiting

limiting

HF(t, τ) = HG(T − τ, T − t)hF
i,j = hG

N−1−j,N−1−i

Figure 6. Relationships between OGM (reducing f(xk)− f(x∗)), OGM-G (reducing ∥∇f(xk)∥), and their limiting ODEs.

F.3. Anti-Transpose Relationship Between Unified AGM ODE and Unified AGM-G ODE

For convenience, assume µ > 0. Substituting b(t) =
√
µ

2 tanh(
√
µ

2 (T − t))+
3
√
µ

2 coth(
√
µ

2 (T − t)) and c(t) = 0 into (60),
we yield the following differential kernel corresponding to the unified AGM-G ODE (17):

HG(t, τ) = e
−

∫ t
τ

(√
µ

2 tanh
(√

µ

2 (T−s)
)
+

3
√

µ

2 coth
(√

µ

2 (T−s)
))

ds

= e

[
3 log

(
sinh

(√
µ

2 (T−s)
))

+log
(
cosh

(√
µ

2 (T−s)
))]t

τ

=
sinh3

(√
µ

2 (T − t)
)
cosh

(√
µ

2 (T − t)
)

sinh3
(√

µ

2 (T − τ)
)
cosh

(√
µ

2 (T − τ)
) .

Note that the differential kernel of the unified AGM ODE is (see Appendix D.2)

HF(t, τ) =
sinh3

(√
µ

2 τ
)
cosh

(√
µ

2 τ
)

sinh3
(√

µ

2 t
)
cosh

(√
µ

2 t
) .

Now, we can observe that there is an anti-transpose relationship (16) between these ODEs.

F.4. Proof of Theorem 6.1

Clearly, the unified AGM-G ODE (17) has a unique solution X(t) in C1([0, T ),Rn).24 We can continuously extend this
solution to t = T with Ẋ(T ) = 0 and Ẍ(T ) = limt→T−

Ẋ(t)
t−T = 1

2∇f(X(T )) (see Appendix F.5). Denote this extended
solution by X : [0, T ] → Rn.

24Sketch of the proof: For any ϵ ∈ (0, T/2), the existence and uniqueness of solution on [0, T − ϵ] follows from Cauchy-Lipschitz
theorem (Teschl, 2012, Theorem 25). Paste these solutions on [0, T ) = ∪ϵ∈(0,T/2)[0, T − ϵ).
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For convenience, we assume µ > 0 (the case µ = 0 can be handled easily). Define a continuous-time energy function E(t)
as

E(t) = 4

(T − t)2
cschc2

(√
µ

2
(T − t)

)
(f(X(t))− f(X(T )))

− 8

(T − t)4
cschc4

(√
µ

2
(T − t)

)
∥X(t)−X(T )∥2

+
8

(T − t)4
cschc2

(√
µ

2
(T − t)

)
cothc2

(√
µ

2
(T − t)

)
×
∥∥∥∥X(t) +

T − t

2
tanhc

(√
µ

2
(T − t)

)
Ẋ(t)−X(T )

∥∥∥∥2 .
(112)

For simplicity, we denote X(t) by X , and X(T ) by xT . We also omit the input
√
µ

2 (T − t) of each hyperbolic function. For
example, we write the unified AGM-G ODE (17) as

Ẍ +

(√
µ

2
tanh+

3
√
µ

2
coth

)
Ẋ +∇f(X) = 0

and the continuous-time energy function (112) as

E(t) = µ2 csch4

(
sinh2

µ

(
f(X)− f

(
xT
))

− 1

2

∥∥X − xT
∥∥2 + cosh2

2

∥∥∥∥X +
tanh√

µ
Ẋ − xT

∥∥∥∥2
)
.

Then, we have

sinh4

µ2
Ė(t)

= sinh4
d

dt

{
csch4

}( sinh2

µ

(
f(X)− f

(
xT
))

− 1

2

∥∥X − xT
∥∥2 + cosh2

2

∥∥∥∥X +
tanh√

µ
Ẋ − xT

∥∥∥∥2
)

+
d

dt

{
sinh2

µ

(
f(X)− f

(
xT
))

− 1

2

∥∥X − xT
∥∥2 + cosh2

2

∥∥∥∥X +
tanh√

µ
Ẋ − xT

∥∥∥∥2
}

= 2
√
µ coth

(
sinh2

µ

(
f(X)− f

(
xT
))

− 1

2

∥∥X − xT
∥∥2 + cosh2

2

∥∥∥∥X +
tanh√

µ
Ẋ − xT

∥∥∥∥2
)

− sinh cosh√
µ

(
f(X)− f

(
xT
))

+
sinh2

µ

〈
∇f(X), Ẋ

〉
−
〈
X − xT , Ẋ

〉
−

√
µ sinh cosh

2

∥∥∥∥X +
tanh√

µ
Ẋ − xT

∥∥∥∥2 + cosh2
〈
X +

tanh√
µ

Ẋ − xT ,−Ẋ − tanh√
µ

∇f(X)

〉
,

where we used

d

dt

{
X +

tanh√
µ

Ẋ − xT

}
=

tanh√
µ

Ẍ +

(
1− 1

2
sech2

)
Ẋ

=

(
−1

2
tanh2 −1

2
− 1

2
sech2

)
Ẋ − tanh√

µ
∇f(X)

= −Ẋ − tanh√
µ

∇f(X)

for the last equality. We further simplify as

sinh4

µ2
Ė(t) = 2 sinh cosh√

µ

(
f(X)− f

(
xT
))

−√
µ coth

∥∥X − xT
∥∥2

+
√
µ coth cosh2

(∥∥X − xT
∥∥2 + tanh2

µ

∥∥∥Ẋ∥∥∥2 + 2 tanh√
µ

〈
X − xT , Ẋ

〉)
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− sinh cosh√
µ

(
f(X)− f

(
xT
))

+
sinh2

µ

〈
∇f(X), Ẋ

〉
−
〈
X − xT , Ẋ

〉
−

√
µ sinh cosh

2

(∥∥X − xT
∥∥2 + tanh2

µ

∥∥∥Ẋ∥∥∥2 + 2 tanh√
µ

〈
X − xT , Ẋ

〉)
− cosh2

(〈
X − xT , Ẋ

〉
+

tanh√
µ

∥∥∥Ẋ∥∥∥2
+

tanh√
µ

〈
X − xT ,∇f(X)

〉
+

tanh2

µ

〈
Ẋ,∇f(X)

〉)
=

(
2 sinh cosh√

µ
− sinh cosh√

µ

)(
f(X)− f

(
xT
))

+

(
−√

µ coth+
√
µ coth cosh2 −

√
µ sinh cosh

2

)∥∥X − xT
∥∥2

+

(
sinh cosh√

µ
− sinh2 tanh

2
√
µ

− sinh cosh√
µ

)∥∥∥Ẋ∥∥∥2
+
(
2 cosh2 −1− sinh2 − cosh2

) 〈
X − xT , Ẋ

〉
+

(
sinh2

µ
− sinh2

µ

)〈
∇f(X), Ẋ

〉
− sinh cosh√

µ

〈
X − xT ,∇f(X)

〉
=

sinh cosh√
µ

(
f(X)− f

(
xT
))

+

√
µ sinh cosh

2

∥∥X − xT
∥∥2 − sinh2 tanh

2
√
µ

∥∥∥Ẋ∥∥∥2 − sinh cosh√
µ

〈
X − xT ,∇f(X)

〉
.

It follows from the µ-strong convexity of f that f(X)− f
(
xT
)
≤
〈
X − xT ,∇f(X)

〉
− µ

2

∥∥X − xT
∥∥2. Thus, we have

sinh4

µ2
Ė(t) ≤ sinh cosh√

µ

(〈
X − xT ,∇f(X)

〉
− µ

2

∥∥X − xT
∥∥2)

+

√
µ sinh cosh

2

∥∥X − xT
∥∥2 − sinh2 tanh

2
√
µ

∥∥∥Ẋ∥∥∥2 − sinh cosh√
µ

〈
X − xT ,∇f(X)

〉
= − sinh2 tanh

2
√
µ

∥∥∥Ẋ∥∥∥2
≤ 0.

Therefore, the energy function E(t) is non-increasing. By L’Hôpital’s rule, we have

lim
t→T−

f(X(t))− f(X(T ))

(T − t)2
= lim

t→T−

1

2

〈
Ẋ(t)

t− T
,∇f(X)

〉
=

1

4
∥∇f(X(T ))∥2

lim
t→T−

X(t)−X(T )

(T − t)2
= lim

t→T−

Ẋ(t)

2(t− T )
=

1

4
∇f(X(T )).

It follows from cschc(0) = cothc(0) = 1 that

lim
t→T−

E(t)

= lim
t→T−

4 · f(X(t))− f(X(T ))

(T − t)2
− 8

∥∥∥∥X(t)−X(T )

(T − t)2

∥∥∥∥2 + 8

∥∥∥∥∥X(t)−X(T )

(T − t)2
− Ẋ(t)

2(t− T )

∥∥∥∥∥
2

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= ∥∇f(X(T ))∥2 − 1

2
∥∇f(X(T ))∥2 + 0

=
1

2
∥∇f(X(T ))∥2 .

Writing limt→T− E(t) ≤ E(0) explicitly, we obtain

∥∇f(X(T ))∥2 ≤ 8

T 2
cschc2

(√
µ

2
T

)(
f(x0)− f (X(T )) +

µ

2
∥x0 −X(T )∥2

)
≤ 8

T 2
cschc2

(√
µ

2
T

)
sup
x

{
f(x0)− f(x) +

µ

2
∥x0 − x∥2

}
.

Since cschc2 is decreasing on [0,∞), this implies that the unified AGM-G ODE (69) reduces the squared gradient norm
with an O

(
1/T 2

)
convergence rate regardless of the value of µ ≥ 0. When µ > 0, since 1

T 2 cschc
2
(√

µ

2 T
)
∼ µe−

√
µT as

T → ∞, the unified AGM-G ODE reduces the squared gradient norm with an O
(
e−

√
µT
)

convergence rate. Combining
these bounds, we conclude that the unified AGM-G ODE reduces the squared gradient norm with the following convergence
rate:

∥∇f(X(T ))∥2 ≤ O
(
min

{
1/T 2, e−

√
µT
})

.

This completes the proof.
Remark F.1. One might expect that the anti-transposed dynamics of AGM-SC ODE reduce the gradient norm with an
O(e−

√
µt) convergence rate. However, the argument in this subsection cannot be seamlessly applied to this dynamics. The

differential kernel of AGM-SC ODE is HSC(t, τ) = e2
√
µ(τ−t) (see Appendix B.2.3). Because HSC(t, τ) is anti-symmetric,

the anti-transposed dynamics of AGM-SC ODE is itself:

Ẍ + 2
√
µẊ +∇f(X) = 0, (113)

In the proof of Theorem 6.1, the property Ẋ(T ) = 0 is essentially used. However, the solution to (113) does not satisfy this
property.

F.5. Computing Ẋ(T ) and Ẍ(T )

For simplicity, we assume that the limits limt→T− Ẋ(T ) and limt→T− Ẍ(T ) exist.25 Consider the energy function

E(t) = 1

2

∥∥∥Ẋ(t)
∥∥∥2 + (f(X(t))− f (x∗))

+

∫ t

0

[√
µ

2
tanh

(√
µ

2
(T − s)

)
+

3

T − s
cothc

(√
µ

2
(T − s)

)]∥∥∥Ẋ(s)
∥∥∥2 ds. (114)

Then, it is easy to show that E(t) = E(0) for all t ∈ [0, T ). Because the terms 1
2

∥∥∥Ẋ(t)
∥∥∥2 and f(X(t)) − f (x∗) are

non-negtive, we have∫ T

0

[√
µ

2
tanh

(√
µ

2
(T − s)

)
+

3

T − s
cothc

(√
µ

2
(T − s)

)]∥∥∥Ẋ(s)
∥∥∥2 ds < ∞.

This implies limt→T− Ẋ(t) = 0. By L’Hôpital’s rule, we obtain that

lim
t→T−

[√
µ

2
tanh

(√
µ

2
(T − t)

)
+

3

T − t
cothc

(√
µ

2
(T − t)

)]
Ẋ(t) = −3Ẍ(T ).

Now, we have

0 = lim
t→T−

{
Ẍ(t) +

[√
µ

2
tanh

(√
µ

2
(T − t)

)
+

3

T − t
cothc

(√
µ

2
(T − t)

)]
Ẋ(t) +∇f(X(t))

}
= −2Ẍ(T ) +∇f(X(T )).

Thus, we have Ẍ(T ) = 1
2∇f(X(T )).

25The proof to prove the existence of these limits is similar to that in (Suh et al., 2022, Appendix D.3), so we omit it.
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