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Abstract

Tracing the source of research papers is a fun-
damental yet challenging task for researchers.
The billion-scale citation relations between pa-
pers hinder researchers from understanding the
evolution of science efficiently. To date, there
is still a lack of an accurate and scalable dataset
constructed by professional researchers to iden-
tify the direct source of their studied papers,
based on which automatic algorithms can be
developed to expand the evolutionary knowl-
edge of science. In this paper, we study the
problem of paper source tracing (PST) and con-
struct a high-quality and ever-increasing dataset
PST-Bench in computer science. Based on PST-
Bench, we reveal several intriguing discoveries,
such as the differing evolution patterns across
various topics. An exploration of various meth-
ods underscores the hardness of PST-Bench,
pinpointing potential directions on this topic.
The dataset and codes have been available'.

1 Introduction

Comprehending the patterns of scientific evolution,
such as the trends of topics and the flow of ideas,
are critical for funding agencies in policy develop-
ment and for researchers in knowledge discovery
(Fortunato et al., 2018). The trajectory of scientific
evolution can be discerned through citation rela-
tionships. However, a notable gap persists between
the large-scale and semantically rich citation rela-
tions (Zhang et al., 2019a; Tang et al., 2009) and
the backbone structure of scientific evolution.

To reveal the essence of scientific development,
how can we simplify the citation graph to trace
the source of publications and uncover the relation-
ships of inspiration between papers? One might
intuitively consider the most cited references of
each paper as the sources, discarding other citation
relations. However, this is not the case. Based on
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Figure 1: The cumulative distribution function (CDF)
of the references’ citation ranks for source papers.

around 1,500 computer science papers and their
professionally annotated source papers, we visu-
alize the cumulative distribution function (CDF)
of the references’ citation ranks of source papers
in Figure 1. It shows that if we consider the most
cited reference as the source paper, the accuracy is
less than 10%. Further, nearly 70% of papers have
source papers that are not among the top-5 cited
references. This challenges the intuition that the
citation number is the primary indicator to identify
the source of publications. For example, Random
Forest (Breiman, 2001), Scikit-learn (Pedregosa
et al., 2011), and ImageNet (Deng et al., 2009) are
among the most cited papers. However, they are not
frequently regarded as the direct sources of anno-
tated papers as these works are popular and classic
methods/tools/benchmarks. In contrast, the TAGE
branch predictor (Seznec and Michaud, 2006), a
performance-critical component in modern CPUs,
receives less than 20 citations per year on average,
but its inspired variants are applied to most high-
end ARM processors (Pellegrini, 2021) and AMD
Zen processors (Suggs et al., 2020).

Tracing the source of publications is a challeng-
ing issue that remains under-explored.  Valen-
zuela et al. (2015) classify citing relationships
into incidental and important citations and propose
a feature-engineering approach to predict impor-
tant citations. However, their dataset only com-
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prises less than 100 annotated important citing
pairs. Given the high level of expertise required
for annotation, many related works employ auto-
mated methods to generate datasets. Algorithm
Roadmap (Zha et al., 2019) applies weak supervi-
sion in the citation contexts to generate datasets and
extract comparative algorithms from texts. Further,
MRT (Yin et al., 2023) is an unsupervised frame-
work designed to generate fine-grained annotated
evolution roadmaps for specific publications by uti-
lizing text embeddings and node embeddings on
citation graphs. MRT assesses the generated impor-
tant scores between papers and references based
on user clicks on the generated roadmap, which
may suffer from the sparsity and bias of user clicks.
Consequently, relevant resources suffer from small
scale, lack of diversity due to machine generation,
or absence of professional annotation.

Present Work. For this purpose, in this study, we
first formally define the problem of paper source
tracing (PST) and introduce PST-Bench, a profes-
sionally annotated PST dataset comprising 1,576
computer science papers and 55,014 associated ref-
erences, supplemented by additional 4,800 papers
and their rule-generated source papers. Each tar-
get paper within this dataset has been meticulously
annotated with its source papers. We devise a new
data annotation strategy via an online paper reading
group to ensure high-quality and ever-increasing
professional annotations. Second, we perform a
comprehensive analysis of this dataset, examin-
ing aspects such as the year gap and cross-venue
influence between papers on different topics and
their source papers, uncovering several interesting
patterns. Lastly, we investigate the potential for
automatically tracing the source of papers. To sum-
marize, our contributions are as follows.

* We establish an accurate, diverse, and continu-
ally expanding paper source tracing dataset PST-
Bench. To achieve this, we develop a novel strat-
egy that leverages a reading group of graduate
students to share papers and mark the sources of
papers accurately and regularly.

* We perform in-depth analyses of the PST graph,
revealing several intriguing discoveries. For in-
stance, papers in high performance computing
(HPC) tend to draw inspiration from less-cited
papers than Al papers, even though the former
are inclined to be influenced by older papers.

* We explore a variety of methods to automatically

trace the source of papers, including statistical
methods, graph-based methods, and pre-trained
language model (PLM) based methods. Experi-
ments indicate that PLMs exhibit the potential for
addressing the PST problem. However, the best
result of automatic methods is still far from satis-
factory, leaving much room for future research.

PST-Bench can be used for various research
topics, such as understanding scientific evolution,
studying automatic paper source tracing, and mea-
suring paper impact, aiming to boost innovation
through analogy mining and thinking ultimately.

2 Problem Definition

In this section, we formally define the problem of
paper source tracing (PST).

Problem 1 Paper Source Tracing (PST). Given
a target paper p along with its full text, the ob-
Jjective is to identify the most important references,
termed as “ref-sources”, that have significantly
contributed to the ideas or methods presented in
the paper. For each reference within the paper p,
an important score ranging from 0 to 1 should be
assigned, indicating the degree of influence each
reference has exerted on the paper. For each paper
D, the predictive output is denoted as S,.

Note that a paper may draw inspiration from
one or more “ref-sources”. The determination of
whether a reference qualifies as a “ref-source” is
based on one of the following criteria:

* Does the main idea of paper p draw inspiration
from the reference?

¢ Is the fundamental methodology of paper p de-
rived from the reference?

Namely, is the reference indispensable to pa-
per p? Without the contributions of the reference,
would the completion of paper p be impossible?
It’s vital to clarify that if paper p,. cites both papers
pe and pyp, with p, serving as a ref-source for py
and py in turn serving as a ref-source for p.. In this
case, p, does not become a ref-source for p., even
if p. cites p,. Our focus is solely on identifying
ref-sources that directly inspire paper p.

3 Building the PST-Bench

Considering the specialized knowledge necessary
for tracing the sources of academic papers, we en-
gaged dozens of computer science graduate stu-
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Figure 2: A filling example. Multiple items are sepa-
rated by “###” in the fields of ref-sources and keywords.

dents to identify the sources of English papers
within their respective fields of expertise.

Our data collection methodology is bifurcated
into two approaches. The first approach involves
each student marking the papers they had previ-
ously read, averaging around 20 papers per individ-
ual. To ensure a consistent influx of high-quality
labeled data, the second approach requires each stu-
dent to read and mark two new papers every week.
This is conducted in the format of an online paper
reading group, where students identify the source
papers of the ones they read recently. A data collec-
tion example is shown in Figure 2. More specifics
about data collection can be found in Section A.

After gathering and preprocessing the data, we
obtain a total of 1,576 labeled computer science
papers. The dataset is then partitioned based on
their publication year, with 788 papers allocated
for training, 394 for validation, and the remaining
394 set aside for testing.

Furthermore, we additionally generate a supple-
mentary dataset by extracting references that ap-
pear near signal words like “motivated by” and
“inspired by” as source papers, resulting in 4,800
papers with their rule-generated source papers.

Quantity control & quality control. We de-
vise several strategies to ensure a steady and high-
quality growth of the dataset. First, each student
only needs to read and mark two new papers every
week, avoiding the attacks of perfunctory annota-
tions to some extent. Second, we offer additional
accumulated rewards to students once they have
read and marked a certain number of papers (e.g.,
20) and remove students who have not marked any
papers for a long time, thereby improving long-
term user retention. Third, we conduct both auto-
matic and manual quality control on the labeled

Topics
DB and DM
Al
Software Engineering
HPC
Graphics and MM
Others

Figure 3: Paper topic distribution. DB and DM: Database
and Data Mining, AI: Artificial Intelligence and Pattern Recog-
nition, HPC: High Performance Computing, Graphics and
MM: Computer Graphics and Multimedia.

data, including verifying the existence of citation
relationships between ref-sources and target papers,
identifying the perfunctory annotations via the qual-
ity of the reading notes (e.g., incoherent abstract
translation without modifications), and manually
checking the rationality of the annotations.

Human evaluation. Senior researchers double-
checked 100 papers in the test set and tried to iden-
tify those papers that were clearly annotated incor-
rectly. The sampled correct rate is 94%.

4 Preliminary Study
4.1 Overall Analysis of PST-Bench

Paper topic distribution. Figure 3 visualizes the
topic distribution of the collected papers, which are
categorized into five subtopics”. This figure reveals
that the majority of papers fall within the Al field,
followed by database and data mining and high
performance computing (HPC). This distribution is
largely due to the fact that our paper reading group
initially expanded from students in the HPC and
Al groups. Papers in other fields can be added to
the dataset in a similar way in the future.

PST graph vs. citation graph. The PST graph,
denoted as Gpsy = {P, £}, consists of a paper set
P and edge set £. Each edge e € & represents
the relations between one paper and its ref-sources.
For better visualization, we plot the largest con-
nected component of the PST graph, including pa-
per nodes with over 100 citations, in Figure 4(a).
We discover that papers are scattered in several
“communities”, each containing a “super node”.
This figure vividly illustrates the research threads of
several fields. For instance, Transformers (Vaswani
et al., 2017) (node 2) and BERT (Devlin et al.,
2019) (node 1) inspired a significant body of pre-
training works, including ViT (Dosovitskiy et al.,

2https: //numbda.cs.tsinghua.edu.cn/~yuwj/
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Figure 4: Visualization of the simplified PST graph and the simplified citation graph.
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Figure 5: Analysis of the distribution of ref-sources.

2020) (node 4). ViT, in turn, inspired numerous re-
search works in computer vision. On the left, graph
convolutional networks (GCN) (Kipf and Welling,
2017) (node 3) and its subsequent inspired graph
attention networks (GAT) (Velickovié et al., 2018)
(node 5) are two pioneering works that inspired a
lot of studies in graph mining.

Additionally, we plot the corresponding citation
graph in Figure 4(b) for comparison. Given the den-
sity of citations, we visualize paper nodes with at
least 10,000 citations. Despite this simplification,
Figure 4(b) is much denser than Figure 4(a). Figure
4(b) presents more diverse research fields, includ-
ing language-image pretraining, natural language
pretraining, protein pretraining, vision pretraining,
etc. In Figure 4(b), Swin Transformer (Liu et al.,
2021) (node 4) cites CLIP (Radford et al., 2021)
(node 1), and CLIP cites T5 (Raffel et al., 2020)
(node 2). However, these citation relationships
exist primarily due to background introductions
and don’t represent the evolution of relevant fields.
Thus, it is arduous to identify the evolution of these

research works from the intricate citation graph.

4.2 Distribution Analysis of ref-sources

In the following subsection, we conduct a detailed
analysis of the distribution of ref-sources.

Ref-sources per paper. Figure 5(a) depicts the
histogram of the number of ref-sources per paper. It
demonstrates that most annotated papers have only
one ref-source, with about 10% of papers having
more than three ref-sources. This could reflect the
actual distribution of ref-sources per paper to some
extent, suggesting that the majority of annotated
papers are inspired by one significant idea.

Matthew effect of ref-sources. Figure 5(b) and
Figure 5(c) display the frequency of a paper be-
ing considered as a ref-source and the cumulative
distribution between ref-sources and target papers,
respectively. We observe that the majority of pa-
pers are regarded as ref-sources only once in our
dataset, while only a few dozen papers are regarded
as ref-sources more than 10 times. In Figure 5(c),
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Figure 7: Influence between computer science venues.

the rate of ref-sources is sorted by the times of a
paper being treated as a ref-source. We observe
that the top 20% of papers inspire more than 40%
of other papers, and the top 40% of papers inspire
about 60% of papers. Papers ranked in the bottom
20% largely maintain a one-to-one mapping with
their ref-sources, demonstrating the diversity of
related research as well as our datasets.

4.3 Analysis of Different Topics

What are the underlying evolution patterns of differ-
ent topics? In the following subsection, we conduct
analyses from multi-faceted aspects.

How soon will one ref-source inspire subsequent
works? We examine the year gap between a paper
and its ref-sources across different fields. Figure 6
shows the distribution of the year gap in four fields
with the most papers. We have the following in-
triguing observations. (1) Across all studied fields,
most papers are inspired by ref-sources published
within the past five years. Papers are less likely
to be influenced by older publications. (2) Clear
differences between fields exist in terms of the dis-
tribution of the year gap. For example, in HPC and
computer graphics, roughly the same order of mag-
nitude of papers are inspired by papers from 0-2
years ago and papers from 3-5 years ago. However,
in Al and database and data mining, almost half

of the papers are inspired by papers from 0-2 years
ago. Some HPC papers are even inspired by papers
published more than 20 years ago, a phenomenon
rarely seen in other fields. It reveals that some ar-
eas, such as Al, are developing rapidly, while for
fields such as HPC, papers in these fields tend to
have a relatively longer life force.

Influence between computer science venues. For
target venues in each subtopic, we study ref-sources
in which source venues are more likely to inspire
papers in target venues. We count pairwise influ-
ence relationships between venues, selecting the
subtopics with the most annotated papers, includ-
ing Al, database and data mining, and HPC. For
each subtopic, we select the top-5 target venues
with the most papers and top-5 source venues that
inspired most papers in target venues. Figure 7 dis-
plays the heatmaps of pairwise venue influence on
these subtopics. We highlight several observations
below. (1) Al venues are mostly influenced by Al
venues. (2) In addition to being affected by data
mining (DM) conferences, DM conferences are
also influenced by Al conferences (e.g., ICML and
NAACL). (3) HPC conferences are primarily influ-
enced by HPC conferences. These figures clearly
demonstrate the cross-influence between different
fields in computer science.
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Are papers inclined to be inspired by the most
cited references? Figure 8 plots the CDF of the
references’ citation ranks for being ref-sources w.r.t.
different topics. The HPC curve is clearly below
the curves of Al, DB and DM. That is, compared
with the other two fields, despite the fact that HPC
papers tend to be motivated by older publications, it
doesn’t mean that HPC papers are more likely to be
inspired by most cited references. The correlation
between the citation number of a reference and its
probability of being a ref-source is weaker in HPC
than in AI, DB and DM.

S PST Approach

With the vast proliferation of research papers, man-
ually annotating the source of each paper is im-
practical. Can we automatically identify the ref-
sources of a paper? In this section, we explore
various approaches to address the PST problem.
PST approaches can be broadly categorized into
the following classes: (1) statistical methods, (2)
graph-based methods, and (3) pre-trained language
model (PLM) based methods.

5.1 Statistical Methods

Rule. An intuitive method to discover ref-sources
is the rule-based method, which extracts references
that appear near signal words like “motivated by”
or “inspired by”. Nevertheless, a limitation of this
method is that not all ref-sources are explicitly men-
tioned in proximity to these signal words.

Random Forest (RF). Alternatively, we can define
statistical features related to each reference to indi-
cate its importance. Following (Valenzuela et al.,
2015), we define features including citing count,
citing position, author overlap, text similarity, etc.
We then employ RF to classify the importance of
each reference. RF is adopted due to its effective-

ness in filtering out unrelated features.

5.2 Graph-based Methods

The paper citation graph can also deliver the struc-
tural importance or structural similarity of each
reference to the target paper. For instance, an ex-
tension paper p. and its original paper p proba-
bly share many references. Thus, their structural
similarity should be high. To this end, we ex-
tract the paper citation graph in computer science’
and learn paper embeddings with network embed-
ding methods, such as LINE (Tang et al., 2015),
ProNE (Zhang et al., 2019b), NetSMF (Qiu et al.,
2019). We adopt these methods owing to their ef-
fectiveness and efficiency in handling large-scale
graphs. Next, we measure the importance of refer-
ences to the target paper by calculating the cosine
similarity between the paper representation and the
reference representation.

5.3 PLM-based Methods

Imagine how researchers judge whether a refer-
ence is a ref-source. They may read the context
where the reference appears in the full text of the
paper and then decide whether the reference is a ref-
source based on content comprehension. Recently,
pre-trained language models (PLMs) have achieved
great success in various natural language under-
standing tasks. Hence, we can extract the contex-
tual texts where each reference appears in the full
text and then encode these texts with the pre-trained
models, which are then followed by an MLP clas-
sifier for binary prediction. We use the annotation
results in the training set as supervision information
to fine-tune the parameters of pre-trained models
and the classifier layers. Then, fine-tuned models
are used to predict the ref-sources of papers in the
test set. The considered PLMs include BERT (De-
vlin et al., 2019), SciBERT (Beltagy et al., 2019),
GLM (Du et al., 2022), and Galactica (Taylor
et al., 2022). We also adopt three state-of-the-art
closed-source models: GPT-3.5 (OpenAl, 2022),
GPT-4 (Achiam et al., 2023), and Claude (An-
thropic, 2023).

6 Experiments

6.1 Experimental Setup

For the full texts of papers, we use the GROBID*
API to convert PDF to XML format for convenient

3https: //www.aminer.cn/citation
*https://grobid.readthedocs.io/en/latest/


https://www.aminer.cn/citation
https://grobid.readthedocs.io/en/latest/

Table 1: Accuracy results of paper source tracing.

Table 2: The feature contribution analysis for RF.

Method MAP
Stat Rule 0.0616
RF 0.1821
LINE 0.1047
Graph ProNE 0.1050
NetSMF 0.1231
BERT-base 0.2775
SciBERT 0.3240
GLM-2B 0.1503
PLM Galactica-standard 0.1472
GPT-3.5 0.0781
GPT-4 0.0519
Claude-instant 0.0536

Stat: statistical methods.
processing of citation contexts. We employ regular
expressions to identify the contexts of each refer-
ence. For graph-based methods, the node embed-
ding size is set to 128. We utilize the CogDL (Cen
et al., 2023) framework to implement graph-based
methods. For PLM-based methods, the context
length is set to 200. More implementation details
can be found in Section B.

Evaluation Metrics. We adopt mean average
precision (MAP) to evaluate the prediction results.
Concretely, for each paper p in the test set,

1 &
AP(p) = — ) Precy(k)1y, (1)
R, 2 Precs

where R, is the number of ref-sources of paper p,
M,, is the number of references of paper p, Prec, (k)
is the precision at cut-off k in the ranked output
list Sp(k), and 1 is the actual annotation, with the
values O or 1.

AP(p), (2)

where Py is the paper set in the testing set.

6.2 Main Results

Table 1 presents the results of paper source trac-
ing. Among statistical methods, Random Forest
(RF) surpasses the Rule method, emphasizing the
efficacy of feature engineering. The Rule-based
approach underperforms, likely due to the absence
of signal words such as “inspired by” around many
crucial references, leading to a low recall rate.

In terms of graph-based methods, NetSMF out-
performs LINE and ProNE, likely due to its abil-

Feature description Weight
citation number of the reference 0.48
reciprocal of the number of references  0.26

number of paper citations / all citations’ 0.17
appearing near signal words? 0.02
author overlap? 0.02

! This feature computes the number of direct citation
instances for the cited paper over all the direct citation
instances in the citing work.

% Signal words include “inspired by” and “motivated by”.

3 Set to true if the citing and the cited works share at least
one common author.

ity to capture higher-order proximity of nodes via
sparse matrix factorization.

As for PLM-based methods, SciBERT signifi-
cantly surpasses other models, demonstrating the
effectiveness of pre-training on domain-specific
data. Surprisingly, finetuned SciBERT and BERT-
base outperform larger models like GLM-2B,
Galactica-standard, and closed-source PLMs. The
reason may lie in two aspects. First, the training
objective of the mask language model is more suit-
able for this context understanding task. Second,
API-based models may not be well-trained on sim-
ilar tasks. However, the results of current methods
are not yet optimal, suggesting significant potential
for further research in this field, such as combining
multiple categories of methods.

6.3 Feature Analysis

We conduct a feature importance analysis for ran-
dom forest, with the most significant features
shown in Table 2. We observe that the most impor-
tant feature is the citation number of the reference,
aligning with our previous analysis. In addition,
the number of direct citations of a reference also
matters, which makes sense as the more times a
reference is cited, the more important it might be.
Surprisingly, the feature of appearing near signal
words is not that important, possibly due to the
sparsity of this feature. Author overlap is weakly
positively correlated with being a ref-source, which
is intuitive since some authors are likely to extend
the ideas or methods from their previous works.

6.4 Error Analysis

We conduct a case study of the prediction errors
made by our best-performing model, with several
examples shown in Figure 9. We list each target
paper with its ref-source and the corresponding
contexts. We have the following observations. For



Target Paper 1: ProteinBERT: A universal deep-learning model of
protein sequence and function

Ref-source 1: Biological structure and function emerge from scaling
unsupervised learning to 250 million protein sequences

Contexts: ... loss continues to improve on the training set (i.e., does not
saturate), even after multiple epochs (Fig. 2), in accordance with other
studies [20].

Target Paper 2: PeCo: Perceptual Codebook for BERT Pre-training of
Vision Transformers

Ref-source 2: The unreasonable effectiveness of deep features as a
perceptual metric.

Contexts: It has been shown in [71] that the internal activations of a
network trained for classification task surprisingly coincide with human
judgment.

Target Paper 3: xMoCo: Cross Momentum Contrastive Learning for
Open-Domain Question Answering

Ref-source 3: Momentum contrast for unsupervised visual representation
learning

Contexts: Momentum contrastive learning (MoCo) is originally
proposed by He et al. (2020). He et al. (2020) learns ...

Figure 9: Predictive error analysis.

target paper 1, the relationship between the target
paper and its ref-source is weak, as indicated by
the signal words “in accordance with”, making it
hard to identify the ref-source based on the context.
For target paper 2, the ref-source appears as a back-
ground explanation of the target paper, resulting
in a loose semantic correlation between them. For
target paper 3, the ref-source is introduced in the
related work section and is not explicitly associated
with the target paper. However, familiar researchers
can easily identify the ref-source based on the title
similarity of the two papers. Thus, the general un-
derstanding of the main ideas of papers might be
omitted in the current contextual methods.

7 Related Work

Paper source tracing is closely related to citation
intention analysis, trend analysis, and citation im-
pact evaluation, among others. The creation of a
scalable benchmark dataset that quantifies and an-
notates the semantics of citation links presents a
significant challenge. Tang et al. (2009) conduct a
study on citation semantic analysis, defining three
categories for each citation link: drill down, similar,
and others. They construct a dataset comprising
approximately 1,000 citation pairs in computer sci-
ence. Hereafter, Valenzuela et al. (2015) propose a
new dataset of 450 citation pairs with both inciden-
tal and important citations. Jurgens et al. (2018)
introduce a larger dataset of nearly 2,000 citation
pairs in the NLP area, in which less than 100 ci-
tation pairs are annotated as the motivation. Most
of these datasets involve meticulous annotation of
each paper, comparing one target paper with each
reference, thus making them hard to scale up.

Some endeavors have been made to automati-
cally identify the importance of references. Early
attempts define hand-crafted features and then em-
ploy classifiers to determine the significance of ref-
erences. Pride and Knoth (2017) argue that abstract
similarity is one of the most predictive features.
Hassan et al. (2017) incorporate several new fea-
tures, such as context-based and cue words-based
features, and utilize Random Forest to assess the
importance of references. He et al. (2009) adapt
the LDA model to citation networks and develop
a new inheritance topic model to depict the topic
evolution. Firber et al. (2018) present a convolu-
tional recurrent neural network based method to
classify potential citation contexts. Jiang and Chen
(2023) propose contextualized representation mod-
els based on SciBERT (Beltagy et al., 2019) to
classify citation intentions. The predictive perfor-
mance is optimistic on certain datasets, achieving
over 90% AUC.

Paper source tracing has numerous practical ap-
plications, including understanding the evolution
of a subfield (Shao et al., 2022) and assessing
scholarly impact. Several online systems, such
as MRT (Yin et al., 2023) and IdeaReader (Li et al.,
2022), have been developed to assist researchers in
better understanding the evolution of ideas or con-
cepts. Characterizing important references enables
a better evaluation of scholarly impact. Manchanda
and Karypis (2021) propose CCI, a content-aware
citation impact measure, to quantify the scholarly
impact of a publication.

In this study, we build an accurate and scalable
benchmark PST-Bench for paper source tracing
and investigate a variety of methods for automatic
source tracing. Extensive experiments underscore
the complexity of the task, which deserves more
in-depth exploration in the future.

8 Conclusion

In this paper, we present PST-Bench, a novel, pro-
fessionally annotated, and ever-growing bench-
mark for paper source tracing. We conduct detailed
analyses on PST-Bench and offer several insights,
such as the differing evolution patterns of papers
across different topics. PST-Bench facilitates fur-
ther analysis of the evolution of science and a deep
understanding of the crux of research works, and so
on. We plan to expand the coverage of PST-Bench
to more topics and design elaborate methods to
improve the accuracy of the PST problem.



9 Ethical Considerations

For online publications, PST-Bench provides pub-
licly available metadata and very few parsed full-
texts of open-access papers for research purposes.
For data annotation, all annotators gave their in-
formed consent for inclusion before they partici-
pated in this study.

10 Limitations

While PST-Bench provides an accurate and scal-
able benchmark for paper source tracing, its current
format has the following limitations. (1) The top-
ics covered in PST-Bench are not even, with most
topics related to Al, data mining, and high perfor-
mance computing. In the future, we plan to call
for students majoring in different areas to expand
the coverage of PST-Bench. (2) Although we ex-
plore various types of methods for automatic paper
source tracing, more advanced methods tailored for
the PST problem are absent. However, the elabo-
rate method design for the PST problem is not the
main focus of this paper. We plan to optimize the
methods and call for contributions to improve the
performance of automatic paper source tracing.

11 Broader Impact

PST-Bench can be used by various communities,
such as NLP, graph mining, science of science,
etc. One can use them to mine and understand the
evolution of science or develop automatic methods
to trace the source of papers, etc.
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Paper Reading Group Rules

@ment needs to read 2 papers every week. After reading, you need

to share reading notes and fill in relevant info on the form.

Check mechanism:
Reading notes will be checked by group members and programs to check
whether ref-source is authentic.

Punishment mechanism:

Students who didn’t share their notes last week need to give ¥ 2*Y red
packets to those who completed paper sharing. Students who didn’t share
papers for four weeks will be removed from the reading group.

Reward mechanism:
Students who added a new qualified unique paper can receive ¥ Y
rewards. For every 20 valid papers for each student, (s)he will receive an

Statement:
The collected data will be public for research purposes only.

additional ¥ 20*Y reward. /

Jie Zhang, Yuxiao Dong, Yan Wang, Jie Tang, and Ming
Ding. 2019b. Prone: fast and scalable network repre-
sentation learning. In Proceedings of the 28th Inter-
national Joint Conference on Artificial Intelligence,

pages 4278-4284.

Figure 10: Reading group rules.

A Data Collection

The detailed paper reading group rules are shown
in Figure 10. Currently, each paper is annotated
by one student. Recruited group members are told
that the collected data will be public and used for
research purposes only. Next, we detail the compo-
nents of data annotation to ensure data quality.

Maintenance of the paper reading group. We
periodically hold paper reading groups on WeChat
every week and publicize the reading group on the
public forums of several universities and familiar
labs. Inactive group members are removed every
four weeks. We remove group members immedi-
ately once they have made perfunctory annotations.

Reward and punishment mechanism. The re-
ward mechanisms are divided into immediate and
long-term rewards. As shown in Figure 10, stu-
dents receive rewards each week or once they mark
every 20 papers. In contrast, students who didn’t
share their paper reading notes need to give red
packets to those who completed paper sharing. The
recruited students usually read papers even without
the reading group. Thus, their workload is primar-
ily to annotate the source of papers they have read
and fill in the form we provide. In this case, the
payment is relatively reasonable.

Demographics of group members. Until Febru-
ary 2024, there have been 101 members who partic-
ipated in the effective annotation. We don’t know
many demographics of volunteering students, but
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Table 3: Parameters and running time of main methods.

Method #Parameters Running hours
RF 12 0.05
LINE 1.47B 14
ProNE 1.47B 10
NetSMF 1.47B 16
BERT-base 110M 2
SciBERT 110M 2
GLM-2B 2B 5
Galactica 6.7B 13

most of them are from China, studying in renowned
universities or research institutes, including Chi-
nese Academy of Sciences, Tsinghua University,
Harbin Institute of Technology, Southeast Univer-
sity, Nankai University, etc.

PST-Bench has been made public under the
ODC-BY license. The created dataset and the orig-
inal data are used for research purposes only. We
have anonymized the annotators’ information.

B Implementation Details

The parameters and running time of the main meth-
ods are listed in Table 3. All experiments are con-
ducted on a Linux server with 56 Intel(R) Xeon(R)
Platinum 8336C CPU, 1.88T RAM, and 8 NVIDIA
A100 GPUs, each with 80GB memory.

For the fine-tuned BERT, SciBERT, and GLM
model, we search for the best learning rate in the
range of {le™® 3e7® le % 3e %}, and the best
learning rate is set to le~* according to the per-
formance on the validation set. For the Galactica
model, we adopt the Xturing® framework and use
the default parameters. As for API-based meth-
ods, we use the same input contexts as other open-
sourced pre-trained models for a fair comparison.
We have submitted the paper PDF files and ask-
ing the GPT/Claude which references are the most
significant to inspire the given papers, but the re-
sponses are basically unreasonable. For LINE in
CogDL, we set the walk_length and walk_num to
5 and 5, respectively. For NetSMF in CogDL, we
set the window_size and num_round to 5 and 5, re-
spectively. For ProNE in CogDL, we use its default
parameters. For graph-based methods, the con-
structed citation graph includes 11,478,633 nodes
and 167,161,322 edges. For supervised methods,
we keep all positive instances and sample negative
instances randomly, keeping their ratio at 1 : 10.

Shttps://github.com/stochasticai/xTuring/
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C Responsible NLP Checklist

C ¥ Did you run computational experiments?

L. In Section 6.
A For every submission

¥ C1. Did you report the number of parame-
ters in the models used, the foral computa-
tional budget (e.g., GPU hours), and com-
puting infrastructure used?

In Section B.

¥ C2. Did you discuss the experimental setup,
including hyperparameter search and best-
found hyperparameter values?

In Section B.

C3. Did you report descriptive statistics

about your results (e.g., error bars around
results, summary statistics from sets of ex-
periments), and is it transparent whether you
are reporting the max, mean, etc. or just a
single run?
Since the fine-tuning process and net-
work embedding training process are time-
consuming, we perform a single run for each
method. Meanwhile, our focus is not to de-
velop a best-performing method but to ex-
plore the potential of different methods for
the PST problem.

v c4. 1f you used existing packages (e.g., for
preprocessing, for normalization, or for eval-
uation), did you report the implementation,
model, and parameter settings used (e.g.,
NLTK, Spacy, ROUGE, etc.)?

In Section 6.1 and Section B.

¥ Al. Did you discuss the limitations of your
work?
In Section 10.

A2. Did you discuss any potential risks of
your work?
Work doesn’t have immediate ethical risk.

¥ A3. Do the abstract and introduction sum-
marize the paper’s main claims?
Section I and Abstract.

B ¥ Did you use or create scientific artifacts?
In Section 3.

B1. Did you cite the creators of artifacts you
used?
N/A.

¥ B2. Did you discuss the license or terms for
use and/or distribution of any artifacts?
Yes, we discussed the distribution of our
dataset, which has been made public under
ODC-BY.

¥/ B3. Did you discuss if your use of exist-
ing artifact(s) was consistent with their in-
tended use, provided that it was specified?
For the artifacts you create, do you specify
intended use and whether that is compati-
ble with the original access conditions (in
particular, derivatives of data accessed for
research purposes should not be used outside
of research contexts)?
The created dataset and original data is used
for research purposes only.

¥ B4. Did you discuss the steps taken to check
whether the data that was collected/used
contains any information that names or
uniquely identifies individual people or offen-
sive content, and the steps taken to protect /
anonymize it?
We anonymize the annotators’ information.

D ¥ Did you use human annotators (e.g., crowd-
workers) or research with human subjects?
In Section 3.

¥ DI1. Did you report the full text of instruc-
tions given to participants, including e.g.,
screenshots, disclaimers of any risks to par-
ticipants or annotators, etc.?
In Section 3 and Section A.

¥ D2. Did you report information about how
you recruited (e.g., crowdsourcing platform,
students) and paid participants, and discuss
if such payment is adequate given the par-
ticipants’ demographic (e.g., country of resi-
dence)?
In Section A.

¥ D3. Did you discuss whether and how con-
sent was obtained from people whose data

¥/ B5. Did you provide documentation of the
artifacts, e.g., coverage of domains, lan-
guages, and linguistic phenomena, demo-
graphic groups represented, etc.?
In Section 3 and Section 4.

¥ B6. Did you report relevant statistics like the

number of examples, details of train/test/dev
splits, etc. for the data that you used/created?
In Section 3.
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you’re using/curating (e.g., did your instruc-
tions explain how the data would be used)?
In Section A.



D4. Was the data collection protocol ap-
proved (or determined exempt) by an ethics
review board?

N/A.

¥ D5. Did you report the basic demographic
and geographic characteristics of the annota-
tor population that is the source of the data?
In Section A.

E X Did you use Al assistants (e.g., ChatGPT,
Copilot) in your research, coding, or writing?
Left blank.
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