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Abstract

Radar is ubiquitous in autonomous driving systems due to its low cost and good
adaptability to bad weather. Nevertheless, the radar detection performance is
usually inferior because its point cloud is sparse and not accurate due to the poor
azimuth and elevation resolution. Moreover, point cloud generation algorithms
already drop weak signals to reduce the false targets which may be suboptimal for
the use of deep fusion. In this paper, we propose a novel method named EchoFusion
to skip the existing radar signal processing pipeline and then incorporate the
radar raw data with other sensors. Specifically, we first generate the Bird’s Eye
View (BEV) queries and then take corresponding spectrum features from radar
to fuse with other sensors. By this approach, our method could utilize both rich
and lossless distance and speed clues from radar echoes and rich semantic clues
from images, making our method surpass all existing methods on the RADIal
dataset, and approach the performance of LiDAR. The code will be released on
https://github.com/tusen-ai/EchoFusion.

1 Introduction

Robust and accurate perception is a long-standing challenge in Autonomous Driving Systems (ADS).
The full perception system usually relies on multiple sensor fusion including camera, LiDAR, and
radar. Camera provides rich semantic cues of objects and excellent resolution, while LiDAR is
capable of capturing highly accurate spatial information. However, neither camera nor LiDAR
can directly measure speed or survive in adverse weather conditions, such as fog, sandstorms, and
snowstorms [26]. Although radar can overcome the aforementioned problems, even the point cloud
from the latest 4D millimeter wave (mmWave) radars suffers from severe sparsity and low angular
resolution, which makes it hard to discriminate objects and backgrounds solely. Fortunately, radar
and camera are highly complementary to each other. Fusing these two types of sensors becomes a
promising solution.

Radar data are usually represented as point clouds. Technically, the radar point cloud stems from
raw Analog-Digital-Converter (ADC) data received by antennas. Range, speed, and angle of arrival
(AoA) information of perceivable objects can be explicitly extracted in the frequency domain by
consecutively applying FFT along corresponding dimensions. Among these steps, side lobe suppres-
sion and constant false alarm rate (CFAR) detector [40] are usually adopted to reduce the noise and
false alarms. As a result, all the derived points are equipped with spatial coordinates, speed, and
reflection intensity. Though these noise suppression operations can significantly reduce the data size
and further computation costs, the resulting radar point cloud is extremely sparse, as shown in Figure
1. Even worse, quite a lot of useful information is lost during CFAR, which is adverse to the accurate
perception of environments and subsequent fusion with other sensors [18]. Raw data serves as a
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Figure 1: Illustration of sparsity and false alarms of the radar point cloud. The red points and the
blue points correspond to data from radar and LiDAR, respectively. We visualize the predicted
bounding boxes of different variants of our proposed method. red denotes ground-truth, purple
denotes predictions from image only modality, green denotes predictions from image and radar
range-time data fusion, and blue denotes predictions from image and radar point cloud fusion. Best
viewed on screen.

potential solution to alleviate these problems. However, how to efficiently utilize it, especially fusing
with other sensors remains an open problem.

Recently, Birds-Eye-View (BEV) based methods are prevalent for driving scenario perception. It
integrates features from multiple views and multiple modalities into a unified 3D representation space
[4; 17; 24]. Among the varieties of BEV-based methods, PolarFormer [9] divides the 3D space in
polar coordinates, which matches the format of raw radar data better. As such, we chose PolarFormer
as our baseline model.

In this work, we present EchoFusion, a method designated for fusing raw radar data with images.
We observe that a set of 3D positions exactly corresponds to one column in the image and one
row in raw radar data. Thereby we propose a novel polar-aligned attention (PAA) technique to
efficiently fuse features from these two different modalities. With row-wise cross-attention on radar
data and column-wise attention on image, PAA could precisely aggregate essential features from
both modalities while maintaining simple and efficient implementation. Finally, a polar BEV decoder
refines object queries for accurate bounding box predictions.

The contribution of our paper is three-folds:

1. We are the first to fuse raw radar data with images in BEV space. Specifically, we propose
a novel Polar-Aligned Attention module to guide the network effectively learn radar and
image features.

2. We relabel the RADIal dataset [39] with accurate 3D bounding box annotations. The new
annotations is published with our codebase together.

3. Extensive experiments show that our method has outperformed all the existing methods
and achieved promising BEV detection performance, even approaching the LiDAR-based
method.

2 Related Work

2.1 Deep Learning on Radar

2.1.1 Radar Data Representation and Datasets

Traditional radar usually only outputs sparse points [2; 5; 42] for use. However, such points are
subjective to heavy signal processing methods to reduce noisy observation and alleviate bandwidth
limitation. Nevertheless, such hand-crafted pipelines make the subsequent fusion with other sen-
sors intractable. Consequently, some attempts have been made to provide upstream data, such as
range-azimuth-Doppler (RAD) tensor [34; 54], range-azimuth (RA) maps [44], range-Doppler (RD)
spectrums [29] or even raw Analog Digital Converter (ADC) data [19; 29]. Note that the RAD, RA,
and RD tensors are generated from ADC data using several times (almost) lossless FFT. Thus we call
all these four types of data "radar raw data" in the sequel.

Since our motivation is to deeply fuse with other sensors, we only consider the datasets providing data
beyond point cloud. Among them, both RADIal [39], Radatron [26] and KRadar [35] provide such
data. But Radatron only covers a single scenario while lacking camera calibration, LiDAR modality,
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Table 1: 4D Radar Datasets Comparison. Data: PC, RA, ADC denote to point cloud, range azimuth
map and raw ADC data; Sensors: C, Cs, L, O denote to camera, stereo camera, LiDAR, and odometer;
Scenarios: U, S, H denote to urban (city), suburban, highway; Annotations: 3D, BEV, T, Po, M
denote to 3D bounding box, BEV bounding box, track ID, object-level point and segmentation mask;
Classes and Size denote the number of classes and the number of annotated frames of each dataset.

Dataset Data Other Sensors Scenarios Annotations Classes Size

Astyx [28] PC CL SH 3D 7 500
View-of-Delft [37] PC CsLO U 3D,T 13 8693
RADIal [39] ADC,RA,PC CLO USH Po,M 1 8252
TJ4DRadSet [57] PC CLO U 3D,T 5 7757
Radatron [26] ADC,RA Cs U BEV 1 16K
KRadar [35] RA, PC CLO USH 3D,T 5 35K

and height annotation, while KRadar only provides radar RA map and PCD formats. Taking the
factors mentioned above into account, we carry out our experiments mainly on the RADIal dataset,
and provide additional results on a subset of KRadar dataset. However, the annotations of RADIal
only contain object-level points. For a more comprehensive and objective evaluation, we further
annotate the bounding box size and heading of each object based on dense LiDAR points. The
annotations can be found in our codebase.

2.1.2 Object Detection on Radar Data

Traditional radar object detection methods that utilize point cloud face challenges of super sparsity
due to the low angular resolution. Practical treatments include occupancy grid mapping [59] and
separate processing for static and dynamic objects [43]. 4D radar technology improves the azimuth
resolution and provides additional elevation resolution, which enables the combination of static
and dynamic object detection in a single network, using either PointPillars [37] or tailor-made
self-attention modules [1; 51].

The pre-CFAR(Constant False Alarm Rate Detector) data provides rich information of both targets
and backgrounds. RAD tensor is fully decoded but brings high demand of storage and computation.
Hence, Zhang et al. [54] takes the Doppler dimension as channels and Major et al. [27] projects
RAD tensor to multiple 2D views. RTCNet [36] divides RAD tensor into small cubes and applies
3D CNN to reduce computation burden. Besides, [39; 55] take complex RD spectrum as input and
apply neural networks to automatically extract spatial information. Networks such as RODNet [48]
adopt RA maps for detection, which avoid false alarms caused by extended Doppler profile. Despite
the aforementioned research works, the utilization of ADC radar data has recently gained increasing
attention within the community [7; 52]. However, their results remain unsatisfactory.

The fusion of different type of sensors provides complementary cues, leading to more robust perfor-
mance. At input level, radar point clouds are usually projected as pseudo-images and concatenated
with camera images [3; 33]. At Region of Interest (RoI) level, some approaches [31; 32] consec-
utively refine the RoIs by radar and other modalities, while others [12; 14] unify RoIs generated
independently by different sensors. At feature level, [50; 56] integrate feature maps generated from
different modalities, while [11; 13] use RoIs to crop and merge features across modalities. To the
best of our knowledge, we are the first to deeply fuse radar using raw data with other modalities in a
unified BEV perspective.

2.2 BEV 3D Object Detector

BEV object detection bursts out a rising wave of research due to its vast success in 3D perception
tasks. One thread is to adopt transformations to project 2D image features to 3D BEV space for
further detection, such as OFT [41] and LSS [38]. Another thread applies initialized BEV queries [58]
or object queries [22; 23] to iteratively and automatically sample features from multi-view images.
Based on these advanced techniques, BEVFusion [24] explores the advantages of BEV representation
in multi-sensor fusion and achieves impressive performances. Despite that, how to make full use of
other information sources also attracts the interest of researchers. BEVFormer [17] and its variant
[53] utilize temporal information to enhance detection capability, while BEVStereo [16] and STS
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Figure 2: Radar data formats used in this paper. All the axes that indicate spatial location are labeled
with units. For ADC data, the vertical unit is the sampling cycle. And for ADC data, Range-Time
data, the horizontal unit is the chirp cycle. Due to Doppler domain multiplexing (DDM), the real
speed is periodic on the Doppler dimension, which is hard to label (More details of DDM can be
found in the appendix). We use the index number of the Doppler dimension as horizontal unit instead
in Range-Doppler and CFAR result.

[49] explore how the estimated depth can benefit BEV-based detection. Besides, PolarFormer [9]
introduces the polar grid setting and proves its effectiveness in environment perception, which is
closely related to our work.

3 Preliminary

In the automotive industry, multiple-input, multiple-output (MIMO) frequency-modulated continuous-
wave (FMCW) radars are adopted [59] to balance cost, size, and performance. Each transmitting
antenna (Tx) transmits a sequence of FMCW waveforms, also named chirps, which will be reflected by
objects and returned to the receiving antennas (Rx). Then the echo signal will be first mixed with the
corresponding emitted signal and then passed through a low pass filter, so as to obtain the intermediate
frequency (IF) signal. The discretely sampled IF signal, which includes the phase difference of
emitted and returned signal, is called ADC data [46]. The ADC data has three dimensions, fast
time, slow time, and channel, which have physical correspondence with range, speed, and angle
respectively.

Because of the continuous-wave nature, the IF signal of a chirp contains a frequency shift caused by
the time delay of traveling between radar and objects. Then the radial distance of obstacles can be
extracted by applying Fast Fourier Transform (FFT) on each chirp, i.e. fast-time dimension. This FFT
operation is also called range-FFT. The resulting complex signal is denoted as range-time (RT) data.
Next, a second FFT (Doppler FFT) along different chirps, i.e. slow-time dimension, is conducted
to extract the phase shift between two chirps caused by the motion of targets. The derived data is
named range-Doppler (RD) spectrum. We denote NTx and NRx respectively as the number of
transmitting and receiving antennas. And each grid on the RD spectrum has NTx ×NRx channels.
The small distance between adjacent virtual antennas leads to phase shifts among different antennas,
which is dependent on the AoA. Thus a third FFT (angle-FFT) can be applied along the channel axis
to unwrap AoA. The AoA can be further decoded to azimuth and elevation based on the radar antenna
calibration. The final 4D tensor is referred to as the range-elevation-azimuth-Doppler (READ)
tensor.

If point cloud is desired, the RD spectrum will be first processed by the CFAR algorithm to filter
out peaks as candidate points. Then the angle-FFT will only be executed on these points. Final
radar point cloud (PCD) consists of 3D coordinates, speed, and reflective intensity. In traditional
radar signal processing, there is another data format named range-azimuth (RA) map, which is
obtained by decoding the azimuth of a single elevation on the RD spectrum and compressing the
Doppler dimension to one channel. For comprehensive analyses, we include this modality in our
experiments as well. The data formats mentioned above are illustrated in Figure 2, except for READ
tensor because it is difficult to visualize.
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Figure 3: Overall pipeline of the proposed EchoFusion. H and W are the height and weight of the
image, while R, A, and T are the bin number of range, azimuth, and Doppler dimension, respectively.
The Coord. Mapping in the figure is explained in section 4.2.

4 Methods

In this section, we will introduce our network design. Firstly we will give a brief introduction of the
whole pipeline in Section 4.1. Then our proposed Polar-Aligned Attention module will be elaborated
in Section 4.2 and Section 4.3. Finally, the detection head and loss functions are introduced in Section
4.4.

4.1 Overall Structure

The overall architecture of our model is shown in Figure 3. First, we use separate backbones and
FPNs [20] to extract multi-level features from RT radar maps and images. Then the polar queries
aggregate camera features and radar features by cross-attention. Finally, the multi-scale polar BEV
map will be passed through a transformer-based decoder with object queries. The final score and
bounding box predictions can be obtained by decoding the output object queries. The core of our
EchoFusion is how to fuse the camera and radar slow-time data. We fuse them using a novel strategy
named Polar Aligned Attention (PA-Attention). In the next two subsections, we will explain this
strategy in detail.

4.2 Column-wise Image Fusion

After obtaining image and radar features from corresponding encoders, we first initialize the l-th
level polar queries Ql ∈ RRl×Al×d uniformly in polar BEV space. Here, Rl, Al, and d respectively
denote the shape of range, azimuth, and channel dimensions. For brevity, we omit l in the following
two subsections. Given a query q ∈ Rd located at (rbev, ϕbev), it corresponds to a pillar centered at
(rbev, ϕbev) with infinite height. Taking the coordinate system defined in RADIal [39], xR, yR, and
zR axes respectively points to the front, left, and upright, while subscript R means radar coordinate.
Similarly, the camera coordinates are denoted as (xC , yC , zC), which points to the right, down, and
front, respectively. Thus we have correspondence in Cartesian coordinate system as follows:

xR = rbev cos (ϕbev) , yR = rbev sin (ϕbev) . (1)

Using extrinsic matrix and intrinsic matrix, we have the following formulation:

xI − u0

fx
=

xC

zC
,

(
xC

yC
zC

)
= R

(
xR

yR
zR

)
+ T, T =

(
d1
d2
d3

)
, (2)

where u0, fx are principal point offset and focal length on x-axis in the intrinsic matrix, xI is the
image column index that corresponds to the point (xR, yR, zR), while R and T are rotation matrix
and translation vector of the calibration matrix between camera and radar, respectively. Under mild
distortion conditions and normally adopted sensor setting, xI is determined by pillar position and
calibration parameters as follows:

xI ≈ u0 + fx
−rbev sinϕbev + d1
rbev cosϕbev + d3

. (3)
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Limited by the number of pages, we leave the detailed proof in the appendix.

However, the height is not specified for a query, while for a pixel (xI , yI) on the monocular image,
its depth is unknown as well. Thus we cannot precisely associate a query to the image feature, but
we can correspond queries of the same azimuth to the same column of images. Enlightened by this
observation, we use a versatile cross-attention mechanism to flexibly aggregate required features
from images. Namely, all the queries with the same azimuth form the query matrix, while all the
features in the corresponding column in the image form the key and value matrix. Formally, these
two steps can be expressed as follows:

FI(xI , ·) = Stack ([fI (xI , yI)]) ∈ RHl×d, ∀yI ∈ [0, Hl − 1],

q̂ (rbev, ϕbev) = CrossAttn (q (rbev, ϕbev) , FI (xI , ·) , FI (xI , ·)) ,
(4)

where fI(xI , yI) is the image feature located at xI , yI , while details of cross attention function
CrossAttn can be found in [47].

4.3 Range-wise Radar Fusion

We denote updated BEV queries as Q̂l ∈ RRl×Al×d. After that, it will be used to sample features
from radar. Since the radar feature map shares the same range partition with the BEV queries, the
updated query q̂ (rbev, ϕbev) matches the same range index of the radar feature, i.e. rR = rbev. To
aggregate all the features from all chirps in one frame, we perform cross attention for a certain query
q̂ with the row rR in RT map as key and value. Formally,

FR(rR, ·) = Stack ([fR(rR, tR)]) ∈ RRl×d, ∀tR ∈ [0, Tl − 1],

q̃ (rbev, ϕbev) = CrossAttn (q̂ (rbev, ϕbev) , FR (rR, ·) , FR (rR, ·)) ,
(5)

where Rl and Tl are the height and width of the radar feature map, and fR (rR, tR) ∈ Rd is the radar
feature of position (rR, tR).

Note that though we don’t explicitly decode AoA as in RA map, the AoA has been implicitly encoded
in the phase difference of the response of different virtual antenna. Consequently, it can be learned
from the features in RT map indirectly.

4.4 Head and Loss

We follow polar BEV decoders [9] to decode multi-level BEV features and make predictions from
object queries. Since we don’t have velocity annotation on this dataset, we remove the corresponding
branch. The regression targets include (dρ, dϕ, dz , logl, logw, logh, sin(θori − ϕ), cos(θori − ϕ)),
where dρ, dϕ, dz are relative offset to the reference point (ρ, ϕ, z), l, w, h, θori are length, width,
height, and orientation of bounding box. The classification and regression tasks are respectively
supervised by Focal loss [21] and L1 loss.

5 Experiments

In this section, we conduct thorough experiments to validate the effectiveness of our approach. We
first introduce the dataset and metrics used in our experiments, then followed by comparisons with
other state-of-the-art methods. Lastly, we ablate some designs and potential input format of raw radar
data in our method, and discuss some limitations.

5.1 Experimental Settings

The RADIal Dataset [39] provides 8252 annotated frames with synchronized multi-sensor data.
Training, validation, and test sets contain 6231, 986, and 1035 frames, respectively. Each object is
annotated with a 3D center coordinate of the visible face of the vehicle. The size and orientation
of the objects are pre-defined templates, i.e. they are the same for all objects. In the evaluation,
precisions and recalls under ten thresholds are calculated. The average precision (AP), average recall
(AR), and F1 score are obtained through the ten precisions and ten recalls as the evaluation metric.
Range error (RE) and azimuth error (AE) are also reported to evaluate localization accuracy. The
annotation method and metrics are quite different to those in common autonomous driving datasets
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Table 2: Detection performances on RADIal Dataset test split with original protocol [39]. C, RD, and
RT respectively refer to camera, range-Doppler spectrum, and range-time data. Our method achieves
the best performance in both average precision (AP), average recall (AR), and F1-score (F1). The
best result of each metric is in bold.

Methods Modality AP(%)↑ AR(%)↑ F1(%)↑ RE(m)↓ AE(◦)↓
FFTRadNet [39] RD 96.84 82.18 88.91 0.11 0.17
T-FFTRadNet [7] ADC 89.60 89.50 89.50 0.15 0.12
ADCNet [52] ADC 95.00 89.00 91.90 0.13 0.11
CMS [10] RD&C 96.90 83.50 89.70 0.45 n/a
EchoFusion RT&C 96.95 93.43 95.16 0.12 0.18

[2; 45]. Nonetheless, to compare with state-of-the-art methods, we still list our results using the
metrics defined in RADIal [39] as a reference.

Re-annotation and more metrics. Based on the provided LiDAR point cloud, we have refined the
cluster-center-based annotation to 3D bounding box form, which includes center position, scale, and
heading in 3D space. Capitalizing on these new annotations, we are able to apply metrics that are
vastly used in 3D object detection tasks. Specifically, we take AP defined in Waymo dataset [45] as
our main metrics. Since the LiDAR used in RADIal is only 16-beam, we cannot label accurate height
for the objects. So we mainly utilize BEV IoU for evaluation. We use the threshold of 0.7 for normal
IoU and longitudinal error-tolerant (LET) IoU computation [8]. Considering the spatial distribution
of ground-truth, the distance evaluation is further broken down into two categories: 0 to 50 meters,
50 to 100 meters. For a more comprehensive evaluation, we also introduce the error metrics defined
in nuScenes dataset [2], including ATE, ASE, and AOE for measuring errors of translation, scale, and
orientation.

The KRadar Dataset [35] is a recently published 4D radar dataset, which contains 58 sequences,
i.e. 35K frames of synchronized multi-modality data. However, we have limited time to obtain the
full data via shipping, so we only provide results on the sub-dataset stored on Google Drive, which
consists of 20 sequences. This so-called KRadar-20 dataset includes 6493 training samples and 6515
test samples, of which 50 % are nighttime data. The training samples are named trainval split, it is
further split into train split of 5190 samples and val split of 1303 samples for ablation. Metrics follow
KITTI [6] protocols with 40 recall positions. Different from RADIal, it only contains radar formats
of range-azimuth map (RA map) and radar point cloud. But the RA map of KRadar contains an extra
height dimension, and it enables us to test 3D prediction ability with 4D radar data.

Radar Formats. As introduced in Section 3, there are multiple formats of radar raw data, such
as ADC, RT, RD, READ. These formats can be converted sequentially by FFT, which is a linear
operation that can be absorbed into the linear layers. So from the perspective of neural network, these
formats are equivalent. However, our proposed Polar-Aligned Attention requires a range dimension
for indexing key and value in cross-attention, so we choose RT as a representative in the experiments.
We also conduct experiments on RA to investigate the necessity of explicit azimuth.

Implementation Details. All our experiments are carried out on eight 3090 GPUs with the same
batch size of 8. For the image backbone, we adopt ResNet-50 with pre-trained weights provided
by BEVFormer [17]. For LiDAR and radar point cloud branch, we borrow the voxel encoder from
PointPillar [15] and use ResNet-50 with modified strides as the backbone. Other representations of
radar data share similar modified ResNet-50 as the backbone, but with an extra 1 × 1 convolution at
the beginning for channel number alignment. To prevent overfitting, the image-only variant is trained
for only 12 epochs while others are trained for 24 epochs. AdamW [25] is adopted as the optimizer
and a learning rate of 5e-5 is shared for all models. Due to the limited size of the dataset, we find that
the results are unstable across different runs. To make a fair comparison, each experiment is repeated
three times. In modality ablation, we show the mean and variance of each experiment result.

7



Table 3: BEV detection performances on RADIal Dataset test split with refined 3D ground-truth
bounding box. C, RD, and RT respectively refer to camera, range-Doppler spectrum, and range-time
data. The best result of each metric is in bold. Our method exceeds FFTRadNet by a large margin.

BEV AP@0.7(%)↑ LET-BEV-AP@0.7(%)↑
Methods Modality Overall 0 - 50m 50 - 100m Overall 0 - 50m 50 - 100m

FFTRadNet3D[39] RD 57.26 68.66 52.28 62.81 75.55 57.98
EchoFusion RT&C 84.92 87.56 91.06 88.86 92.81 94.81

Table 4: BEV detection performances on KRadar Dataset test split with KITTI protocol. 0.3, 0.5, and
0.7 are IoU thresholds. The inputs of EchoFusion are image and range-azimuth map. The best result
of each metric is in bold.

BEV AP(%)↑ 3D AP(%)↑
Training Set Method AP@0.3 AP@0.5 AP@0.7 AP@0.3 AP@0.5 AP@0.7

KRadar RTNH[35] 58.04 42.60 10.69 49.65 17.87 0.45
KRadar-20-trainval RTNH[35] 61.38 46.47 10.47 53.05 17.98 3.03
KRadar-20-trainval EchoFusion 69.95 57.28 33.07 68.35 43.87 14.00

5.2 Comparison to State-of-the-art Methods

5.2.1 Results on RADIal Dataset

We first compare our method with state-of-the-art detectors on AP, AR, range error, and azimuth
error defined in RADIal [39], with original object-level point annotations1. The results are illustrated
in Table 2. Our method significantly improves AR and F1 performance and achieves a remarkable
improvement over all existing detectors including CMS [10], which also integrates both radar raw
data and camera data. Note that RE and AE are not quite informative because these two metrics are
calculated on all the recalled objects of a method, which is unfair to high-recall models like ours.

To evaluate in a more rigorous and informative way, we also conduct experiments on the refined
annotations and vastly adopted metrics in 3D object detection. FFTRadNet [39] is lifted up with
additional branches to predict the scale and orientation of targets. We can only compare with this
FFTRadNet variant since codes of other algorithms [7; 10; 52] are not available yet. The results in
Table 3 show that the proposed method outperforms FFTRadNet by a large margin. This significant
improvement reveals the huge benefit of unleashing the power of radar data in multi-modality fusion.

5.2.2 Results on KRadar Dataset

The baseline on KRadar dataset is the official RTNH [35], which requires radar point cloud. Here, the
proposed EchoFusion is input with image and RA map. To align with the baseline, we take the radius
and azimuth range respectively as [0, 72] m and [-20, 20] degrees by the limit of camera field of view.
The results are shown in Table 4. With RA map and image fusion, our EchoFusion improves over 10
points at each metric, except for BEV AP of IoU threshold 0.3. And since KRadar has higher vertical
resolution and more accurate 3D groundtruth than RADIal, our method achieves more considerable
improvements in 3D metrics.

5.3 Ablation Studies

We ablate the input format to the radar feature extraction network in Table 5. It shows that the
decomposition of complex input can improve overall detection performance, especially for long-
range perception. The magnitude and phase representation encodes a non-linear transformation of
the complex representation, which may relate to the final prediction target better. We also tried to
remove the pre-training of the image branch. The result drops significantly, which confirms that in
this relatively small dataset, a good pre-training is crucial for good performance.

1The official implementation of these metrics are different from common implementations. Specifically, AP
and AR are averaged on score thresholds from 0.1 to 0.9 with step of 0.1 and IoU threshold of 0.5. And F1 score
is directly calculated from AP and AR defined above.
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Table 5: Ablation studies on our EchoFusion. Complex means interpreting input features as real and
imaginary (IQ) or magnitude and phase (MP). Pretrain means whether to use the pre-trained image
backbone. The best result of each metric is in bold.

Conditions BEV AP@0.7(%)↑ LET-BEV-AP@0.7(%)↑
Complex Pretrain Overall 0 - 50m 50 - 100m Overall 0 - 50m 50 - 100m

MP w 84.92 87.56 91.06 88.86 92.81 94.81
IQ w 82.64 87.09 87.81 88.06 92.25 93.24
MP w/o 74.34 81.26 78.71 78.90 85.44 84.28

Table 6: BEV detection performances of different modality combinations of our algorithm on
RADIal Dataset test split. Refined 3D bounding box annotations are applied. C, L, RD, RT, RA, RP
respectively refer to the camera, LiDAR, range-Doppler spectrum, range-time data, range-azimuth
map, and radar point cloud. The best result without LiDAR of each metric are in bold, and the results
with LiDAR are on gray background.

Modality BEV AP@0.7(%)↑ LET-BEV-AP@0.7(%)↑
C RT RA RP L Overall 0 - 50m 50 - 100m Overall 0 - 50m 50 - 100m

✓ 10.07±1.10 21.68±3.11 2.21±0.59 56.92±3.91 78.98±1.41 36.20±5.81
✓ 48.26±0.92 62.33±4.00 45.05±0.98 55.04±1.25 68.56±4.11 52.30±1.82

✓ 50.67±1.03 65.05±1.59 42.98±0.51 58.53±0.13 72.95±0.78 51.41±0.54
✓ 53.55±0.70 66.19±1.72 47.41±1.06 62.59±1.14 76.45±2.06 56.73±1.33

✓ 84.47±0.15 86.92±0.61 91.91±0.13 86.07±0.44 88.55±0.79 93.17±0.10

✓ ✓ 84.92±0.98 87.56±1.58 91.06±1.18 88.86±0.62 92.81±1.37 94.81±0.52
✓ ✓ 84.77±0.65 87.93±0.60 91.48±0.28 89.54±0.54 93.83±0.56 94.87±0.58
✓ ✓ 82.35±0.93 86.97±1.01 86.39±0.74 88.35±0.78 93.07±0.80 92.77±0.69
✓ ✓ 86.35±1.15 88.81±1.40 94.25±1.68 88.44±0.79 91.63±1.34 95.31±1.28

5.4 Comparison of Different Modalities

To further study the effects of different modalities, we change the input format indicated in Figure 2
and corresponding backbones, and test with and without image modality. Table 6 presents the results,
more results on KRadar can be found in our appendix, and our findings are listed as follows.

Comparing single-modality results It is not surprising that LiDAR ranks first while the camera is the
worst in terms of AP. Though poor in depth estimation, the camera has excellent angular resolution,
which is beneficial for LET-BEV-AP. It achieves comparable results with radar in LET-BEV-AP.
Besides, without the guidance of image, the radar-only network gets better performance as more
hand-crafted post-processing are involved. However, their metrics still lag far from those of LiDAR.

Comparing multi-modality with single modality The power of radar data is released by fusing
with image. No matter in what data format, all the radar raw representations gain around 30 points
improvement by fusing with images. By combining image and range-time data, we obtain BEV
AP that is only 0.03 less than that of LiDAR only method. And the LET-BEV-AP and long-range
detection ability are even better. We argue that it is mainly because images provide enough clues to
decode the essential information from raw radar representation.

Comparing multi-modality results When integrating with images, the LiDAR-fused method still
outperforms other radar-fused methods. In terms of different representations of radar data, both RT
and RA outperform traditional cloud points, especially in the 50-100m range, in which the difference
is as large as 4 points in AP. We owe this finding to the information loss and false alarm of radar
point cloud as shown in Figure 1. The performance gap between RT and RA with camera modality is
within the error bar, indicating that it is not necessary to explicitly solve the azimuth, nor necessary to
permute the Doppler-angle dimensions as FFTRadNet [39] does.

5.5 Discussion and Limitation

Firstly, it is worth noticing that although the overall performance of radar is improved by fusing with
the camera, the performance in the short-range is lower than that in the long-range. We speculate
the main reason is inaccurate annotation. The 16-beam LiDAR provided in RADIal is too sparse at
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Table 7: 3D detection performances on RADIal Dataset test split with refined 3D ground-truth
bounding box. C, L, and RT respectively refer to camera, LiDAR, and radar-time data. The best
result of each metric is in bold.

3D AP@0.5(%)↑ Average Error@0.5↓
Modality Overall 0 - 50m 50 - 100m ATE ASE AOE

L 62.69 80.04 54.26 0.243 0.171 0.027
L&C 68.36 84.74 61.54 0.239 0.180 0.020
RT&C 39.81 56.05 31.24 0.301 0.173 0.020

a farther distance for annotators to give an accurate size for the long-range objects. In such cases,
they are required to assign a template with a fixed size to these objects. These annotations make the
problem much easier for farther distances, which leads to higher performance than near distances.

Secondly, though the radial speed label is included in the original annotations of RADIal, radial
speed is not quite useful for downstream modules like planning since they need accurate longitudinal
and lateral velocity to predict whether the vehicles will interfere with the ego vehicle. However, the
synchronized frames are not consecutive in this dataset, it is hard to label velocities for the objects.
Considering these factors, velocity prediction is not included in our task.

Finally, as shown in Table 7, our method still lags far from LiDAR-based methods. The primary limi-
tation can be attributed to imperfect z localization, resulting in relatively high Average Localization
Error (ATE). The inferior performance is mainly due to coarse LiDAR annotation and inferior radar
elevation resolution. The low elevation distinguishing power of LiDAR makes annotation error much
worse at long range. As a result, both LiDAR-based and radar-based methods experience a significant
drop in 3D AP within the 50-100m interval. But when equipped with high elevation resolution and
accurate 3D groundtruth provided by KRadar, our method shows excellent performance in 3D metrics,
as shown in Table 4. This emphasizes the pressing need for a raw radar dataset of higher quality that
enables better exploration of radar data usage.

6 Conclusion and Future Work

In this work, we have proposed a novel method for radar raw data fusion with other sensors in a BEV
space. Our proposed EchoFusion is concise and effective, which outperforms previous work by a
significant margin. We are the first to demonstrate the potential of radar as a low-cost alternative for
LiDAR in autonomous driving systems through thorough analyses and experiments.

This work is only a starting point to study how raw radar data can be exploited. However, many
attempts are limited by the available datasets. We urge a large-scale and high-quality dataset. However,
the acquisition of high-quality multi-modality data with accurate annotation needs great effort and
deliberate design for clock synchronization and high storage demand. We will try to build the dataset
to facilitate further research.

Societal Impacts Our method can be deployed in the autonomous driving system. Performance loss
caused by improper usage may increase security risks.
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Supplementary Material

A Proof for column and pillar correspondence

In this section, we will provide a detailed proof for the correspondence between pillar in radar
coordinate and column in camera coordinate as described in Section 4.2 of our main paper.

Suppose that the rotation matrix and translation vector between radar and camera are:

R =

(
a1 b1 c1
a2 b2 c2
a3 b3 c3

)
, T =

(
d1
d2
d3

)
. (S1)

Then for a point located at (rbev, ϕbev, z) under radar’s polar coordinate, it has cartesian coordinate
(xR, yR, zR):

xR = rbev cos (ϕbev) , yR = rbev sin (ϕbev) , zR = z, (S2)
and it can be projected to the camera frame using extrinsic parameters:(

xC

yC
zC

)
= R

(
xR

yR
zR

)
+ T =

(
a1rbev cosϕbev + b1rbev sinϕbev + c1z + d1
a2rbev cosϕbev + b2rbev sinϕbev + c2z + d2
a3rbev cosϕbev + b3rbev sinϕbev + c3z + d3

)
. (S3)

Using the intrinsic parameters, the camera coordinate (xC , yC , zC) can be correlated with image
pixel position (xI , yI) using:

xI − u0

fx
=

xC

zC
,
yI − v0

fy
=

yC
zC

, (S4)

where fx, fy, u0, and v0 are intrinsic parameters. Our goal is to find a situation that the pillar is
projected as a column on the image plane. Under this condition, xI should be irrelevant with z, i.e.
in the equation below:

xI − u0

fx
=

xC

zC
=

a1rbev cosϕbev + b1rbev sinϕbev + c1z + d1
a3rbev cosϕbev + b3rbev sinϕbev + c3z + d3

. (S5)

The coefficients of z should be 0, which means by combining the relationship between rotation matrix
R with roll α, pitch β, and yaw γ [30], we can derive:{

c1 = sin γ sinα+ cos γ sinβ cosα = 0
c3 = cosβ cosα = 0.

(S6)

Considering second row of Eq. (S6), there are two solutions β = ±π
2 or α = ±π

2 . Considering the
first solution β = ±π

2 , the first row of Eq. (S6) is transformed to:

sin γ sinα± cos γ cosα = 0, (S7)

which means:
cos (γ ∓ α) = 0. (S8)

Thus we have:
β =

π

2
, γ = α± π

2
, α ∈ [−π, π] ,

or, β = −π

2
, γ = −α± π

2
, α ∈ [−π, π] .

(S9)

For another solution α = ±π
2 , the first row of Eq. (S6) is transformed to:

sin γ sinα+ cos γ sinβ cosα = ± sin γ = 0. (S10)

Thus we have:
α = ±π

2
, γ = 0 or π, β ∈ [−π, π] . (S11)

As a result, the final solution is:

β =
π

2
, γ = α± π

2
, α ∈ [−π, π] ,

or, β = −π

2
, γ = −α± π

2
, α ∈ [−π, π] ,

or, α = ±π

2
, γ = 0 or π, β ∈ [−π, π] .

(S12)
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Figure S1: Illustration of coordinate sys-
tem transformation.

In standard ADS, the LiDAR or radar coordinate system
usually has a z-axis pointing up, while the camera coordi-
nate system has a y-axis pointing up or down. So a widely
adopted practice first exchanges the y and z axes, which
means a roll α = ±π

2 . After that, a pitch β around the
vertical y-axis is executed, while further rotation around
the z-axis is not required, as shown in Figure S1. In other
words, the roll β can be any value between −π and π,
while yaw γ is set to 0. This is exactly the situation of the
third solution of Eq. (S12). And under this condition, we
have expression of R according to [30]:

R =

(
cosβ ± sinβ 0
0 0 ∓1

− sinβ ± cosβ 0

)
, T =

(
d1
d2
d3

)
. (S13)

Thus, using Eq. (S3) and Eq. (S5), we can get the expression of column index xI . If α = π
2 , we have:

xI = u0 + fx
rbev cos (β − ϕbev) + d1
−rbev sin (β − ϕbev) + d3

. (S14)

If α = −π
2 , we have:

xI = u0 + fx
rbev cos (β + ϕbev) + d1
−rbev sin (β + ϕbev) + d3

. (S15)

For RADIal, the rotation matrix from the radar coordinate system to the camera coordinate system is:

R =

(
0.0465 −0.9989 −0.0051
−0.0476 0.0029 −0.9989
0.9978 0.0467 −0.0474

)
, (S16)

which is the approximation of (α, β, γ) = (π/2,−π/2, 0). And thus we approximately have:

xI ≈ u0 + fx
−rbev sinϕbev + d1
rbev cosϕbev + d3

. (S17)

It can be inferred that xI is almost irrelevant to z, which means one pillar in the polar coordinate of
radar corresponds to a column in the image.

B Visualization and Dataset Statistics

To better illustrate the performance of our method, we visualize the predictions and ground truths
in Figure S2. As can be seen from the cases in the first and the second column, our method can
accurately predict the position of vehicles. But there are several cases in which the accurate prediction
does not get high confidence, as shown in the upper case in the third column. On the other hand, the
orientation estimation error may be significant when the yaw of the vehicle is large, shown in the
inferior case in the third column. The main reason is that the samples with large yaw are relatively
rare in the dataset, as shown in Figure S3 (b) and (c).

As shown in Figure S3 (a), the samples of test data are rather rare within 30 meters and out of
80 meters. To comprehensively explore the detection performance of objects, we divide the range
into 0-50m and 50-100m, which correspond to short-range and long-range detection performance
respectively.

We further visualize scenarios that are corrected by our new labels. It is worth noting that the original
annotation and prediction of previous methods are centers of objects’ visible faces, and they assign
a fixed scale and zero orientation when calculating Average Precision (AP). But vehicles of large
angles and scales are normal in daily scenarios, as shown in Figure S4. Our new annotations based
on dense LiDAR points correct this, helping a more comprehensive evaluation of existing methods.
We also annotate other traffic participants such as pedestrians and cyclists. But due to their limited
numbers (4 cyclists, 23 pedestrians in training split, and 17 cyclists, 0 pedestrians in test split), we
don’t add more fine-grained class labels.
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Table S1: LET-BEV-AP results with different longitudinal tolerance Tl. The performances of different
modality combinations of our algorithm on RADIal Dataset test split are presented, using refined 3D
bounding box annotations. C, L, and RT respectively refer to the camera, LiDAR, and range-time
data. The results with LiDAR are on gray background.

Modality Tl = 0.1, LET-BEV-AP@0.7(%)↑ Tl = 0.3, LET-BEV-AP@0.7(%)↑
C RT L Overall 0 - 50m 50 - 100m Overall 0 - 50m 50 - 100m

✓ 56.92±3.91 78.98±1.41 36.20±5.81 81.36±1.15 83.30±2.01 77.00±0.43
✓ 55.04±1.25 68.56±4.11 52.30±1.82 55.34±1.91 69.79±4.59 51.02±0.07

✓ 86.07±0.44 88.55±0.79 93.17±0.10 86.41±0.47 89.72±0.03 93.22±0.04

✓ ✓ 88.86±0.62 92.81±1.37 94.81±0.52 88.56±0.53 92.58±0.70 94.57±0.29

Table S2: Recall with different IoU thresholds. The performances of different modality combinations
of our algorithm on RADIal Dataset test split are presented, using refined 3D bounding box annota-
tions. C, L, and RT respectively refer to the camera, LiDAR, and range-time data. The results with
LiDAR are on gray background.

Modality BEV recall@0.7(%)↑ BEV recall@0.3(%)↑
C RT L Overall 0 - 50m 50 - 100m Overall 0 - 50m 50 - 100m

✓ 62.73±1.24 73.89±2.11 61.21±0.82 86.27±0.43 92.13±0.71 93.40±0.54
✓ 86.38±0.00 89.11±0.08 93.35±0.08 91.40±0.08 96.13±0.17 96.95±0.16

✓ ✓ 86.18±0.13 89.13±0.6 92.53±0.56 91.78±0.85 95.82±0.50 97.67±1.05

Table S3: BEV detection performances of different modality combinations of our algorithm on
RADIal Dataset test split. Refined 3D bounding box annotations are applied. C, L, ADC, RD, RT,
RA, RP respectively refer to the camera, LiDAR, ADC data, range-Doppler spectrum, range-time
data, range-azimuth map, and radar point cloud. The best result without LiDAR of each metric are in
bold, and the results with LiDAR are on gray background.

Modality BEV AP@0.7(%)↑ LET-BEV-AP@0.7(%)↑
C ADC RT RD RA RP L Overall 0 - 50m 50 - 100m Overall 0 - 50m 50 - 100m

✓ 10.07±1.10 21.68±3.11 2.21±0.59 56.92±3.91 78.98±1.41 36.20±5.81
✓ 49.64±0.43 61.37±1.57 47.92±1.48 56.52±2.36 68.93±1.87 54.68±1.76

✓ 48.26±0.92 62.33±4.00 45.05±0.98 55.04±1.25 68.56±4.11 52.30±1.82
✓ 47.34±0.73 59.31±1.64 42.53±1.98 54.96±0.67 67.02±1.67 50.59±0.26

✓ 50.67±1.03 65.05±1.59 42.98±0.51 58.53±0.13 72.95±0.78 51.41±0.54
✓ 53.55±0.70 66.19±1.72 47.41±1.06 62.59±1.14 76.45±2.06 56.73±1.33

✓ 84.47±0.15 86.92±0.61 91.91±0.13 86.07±0.44 88.55±0.79 93.17±0.10

✓ ✓ 84.85±0.22 87.68±1.54 91.46±1.08 88.66±0.63 92.43±1.15 94.99±0.66
✓ ✓ 84.92±0.98 87.56±1.58 91.06±1.18 88.86±0.62 92.81±1.37 94.81±0.52
✓ ✓ 83.31±0.39 87.26±0.56 89.16±0.44 88.24±0.06 92.18±0.43 93.26±0.73
✓ ✓ 84.77±0.65 87.93±0.60 91.48±0.28 89.54±0.54 93.83±0.56 94.87±0.58
✓ ✓ 82.35±0.93 86.97±1.01 86.39±0.74 88.35±0.78 93.07±0.80 92.77±0.69
✓ ✓ 86.35±1.15 88.81±1.40 94.25±1.68 88.44±0.79 91.63±1.34 95.31±1.28

Table S4: Ablation on the coordinate system. Experiments are carried on RADIal dataset, with RT
data and image as input.

BEV AP@0.7(%)↑ LET-BEV-AP@0.7(%)↑
Coordinate Overall 0 - 50m 50 - 100m Overall 0 - 50m 50 - 100m

Polar 84.92±0.98 87.56±1.58 91.06±1.18 88.86±0.62 92.81±1.37 94.81±0.52
Sphere 85.02±0.60 88.02±0.59 91.76±0.98 89.97±0.61 93.35±0.32 96.41±1.21
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Figure S2: Visualization of ground truths and predictions from RT and image fusion. The ground
truth bounding boxes are in pink, while the predicted bounding boxes are in green with the confidence
score on its upper right. The LiDAR points and the radar points are respectively in blue and red. The
rear edge of each car is in cyan. We recommend readers to zoom in for better detail.

(c)(a) (b)

Figure S3: Statistics of RADIal dataset. Image (a) corresponds to sample distribution over range,
while images (b) and (c) correspond to yaw distribution over the range of train and test data splits.

C Complementary property of radar and camera

To highlight the complementary nature of radar and camera properties, we investigated the perfor-
mance of LET-BEV-AP with varying longitudinal tolerance (Tl), as presented in Table S1. Notably,
when using a larger Tl of 0.3, the camera’s performance experiences a significant improvement. This
suggests that the relatively lower performance of long-range LET-BEV-AP under Tl of 0.1 primarily
stems from depth errors. By reducing the impact of longitudinal estimation, the camera’s exceptional
angular perception accuracy becomes more pronounced. Conversely, the LET-BEV-AP performance
of the radar-only variant remains relatively unchanged. This finding indicates that the radar’s depth
estimation is quite accurate and minimally affected by the value of Tl. Similarly, the highly accurate
LiDAR-only variant and camera and RT fusion variant don’t suffer from performance fluctuation as
well, which supports our conclusion.

To further investigate the primary factor affecting radar performance, we conducted a comparison of
BEV recall at IoU thresholds of 0.7 and 0.3, as outlined in Table S2. It can be deduced that by using a
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Figure S4: The visualization of the old labels and new labels under Bird’s Eye View. The old labels
include 3D center points and fixed scale and orientation, denoted as green boxes. The new labels are
denoted as red boxes, which we offered real scale and orientation, as well as objects’ accurate center
position. The rear edge of each bounding box is colored in cyan. The left, middle, and right column
respectively denotes the situation of large heading angle, missed traffic participants, and vehicles of
large scale. We recommend readers to zoom in for better detail.

Figure S5: The illustration of Doppler Domain Multiplexing(DDM). This figure shows a toy example
of how to use DDM to distinguish four transmitters.

less stringent IoU threshold, the recall of the RT-only variant experiences a significant increase. This
result suggests that the RT-only variant’s limitation mainly lies in its inferior angular localization
ability. But by combining the strengths of camera and radar modalities, the model can leverage the
advantages of both modalities, leading to a significant performance boost.

D Doppler domain multiplexing and coordinate system

As mentioned in [39], Doppler Domain Multiplexing(DDM) is used to distinguish received radar
signals from different transmitters. The mechanism can be best illustrated in Range-Doppler (RD)
spectrum format of data, as shown in Figure S5. Without DDM, the valid measurable speed interval
is [−Vmax, Vmax]. Suppose we have four transmitters, Tx 1/2/3/4, and one object with speed in
[0, Vmax/2]. The echo signals from Tx 1/2/3/4 will respectively fall into sections C, D, A, B by using
DDM, showing a periodical pattern. But now we can only measure speed in [0, Vmax/2]. Similar
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Table S5: BEV detection performances of different modality combination on KRadar Dataset test split
with KITTI protocol of 40 recall positions. C, RA, RP respectively refer to the camera, range-azimuth
map, and radar point cloud. The best result of each metric is in bold.

BEV AP(%)↑ 3D AP(%)↑
Training set Method AP@0.3 AP@0.5 AP@0.7 AP@0.3 AP@0.5 AP@0.7

KRadar-20-train EchoFusion(RP) 55.74 43.94 20.56 53.40 29.21 2.90
KRadar-20-train EchoFusion(RA) 54.45 42.28 17.97 51.75 24.65 3.85
KRadar-20-train EchoFusion(RP+C) 66.46 54.17 26.39 58.62 34.67 3.96
KRadar-20-train EchoFusion(RA+C) 68.70 55.90 29.65 66.68 34.33 5.34

phenomenon can be observed in the figure of Range Doppler data, i.e. the third image in Figure 2 in
the paper.

We also carried out experiments on coordinate system of BEV space. Though the range dimension
is under sphere system, we found that a polar system can achieve on par performance, as shown in
Table S4. Thus we apply the polar system in the paper.

E More experimental results

Referring to Table S3, we have included the detection performance when our model consumes the
ADC data or range-Doppler spectrum as input. It is worth noticing that we add an extra complex
linear layer initialized with FFT coefficients for ADC data to replace the range FFT and the side-lobe
suppression. In the case of the single modality version, the performance discrepancy between RT and
these two modalities remains within the margin of error. When considering the fusion of image data,
the performance of RD slightly lags behind that of RT, while that of ADC is almost the same as RT.
These findings suggest that the integration of image data significantly mitigates the importance of
conventional radar signal processing in accurate radar-based detection.

Besides, we offer ablation of different modality combinations on KRadar. The results are reported in
Table S5. Here, we train all models with training split. The RA map shows considerable superiority
over radar point cloud when fusing with the monocular image, which aligns with our research
motivation and results on RADIal dataset.
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