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Abstract

Artificial Intelligence (AI) is facilitating transformative pro-
ductivity enhancements by enabling ever-increasing levels
of automation. The Advanced Research Projects Agency-
Energy (ARPA-E) of the U.S. Department of Energy seeks
to leverage this capability to automate elements of the energy
technology development process in order to accelerate the re-
alization of technological solutions to our climate crisis. This
paper introduces three critical AI-enabled design capabilities
– expert optimizers, low-cost yet high-fidelity evaluators, and
inverse design tools – that are being developed for a wide
range of energy applications and provides examples of two
such tools being developed to accelerate the discovery of new
materials.

The transition to a zero-carbon energy system in a time
frame that is commensurate with the 1.5◦C goal set by the
Intergovernmental Panel on Climate Change requires the
rapid development of a wide range of energy technologies.
However, to develop them in adequate time, transformative
design methods with disruptive potential are required.

In order to accelerate the development of such tools,
ARPA-E launched the Design Intelligence Fostering
Formidable Energy Reduction and Enabling Novel Totally
Impactful Advanced Technology Enhancements (i.e., DIF-
FERENTIATE, or D′) program in April 2019, and through
it is investing $35M to develop a suite of design tools en-
hanced by AI and machine learning (ML). These include
expert optimizers, low-cost yet high-fidelity design evalua-
tors, and generative/inverse design models for range of en-
ergy applications, including thermodynamic systems, elec-
trical circuits, molecules and materials, aerodynamic com-
ponents, and photonic devices (ARPA-E 2019).

The process that engineers use to develop new technolo-
gies and design new products is largely founded upon, and
is similar to, the scientific method. Engineers hypothesize
solutions to a problem, evaluate them via simulations or ex-
periments, and iterate as required to ideally achieve perfor-
mance levels that are consistent with the problem definition.
This simplified design process is depicted in Figure 1 and
may be used as a framework to define the desired roles of
productivity-augmenting ML-based design tools.
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Figure 1: Engineering design process.

In the traditional, or forward, design process, cost is
driven by the product of number of required iterations and
the cost per iteration – with the cost per iteration being
driven by the expense of evaluating candidate designs. Al-
ternatively, if the inverse of the combined hypothesis and
evaluation functions can be found, the design process itself
may be inverted in that designs may be expressed as explicit
functions of the desired output performance parameters, and
these inverse representations may be subsequently used to
rapidly generate design concepts from requirements.

Desired Capabilities
Design tools are sought to enhance both the creativity of en-
gineers as they develop new ideas, and the efficiency with
which they evaluate them. Such tools might come in the
form of domain-expert optimizers, high-fidelity and low-
cost evaluators, or generative/inverse models.

Domain-expert optimizers may leverage ML methods in
the development of designs in a specific domain (e.g., ther-
modynamic systems, electrical circuits, or materials) using
data from physics-based numerical simulations (e.g., den-
sity functional theory, computational fluid dynamics) and/or
physical experiments. These domain-expert tools can be
more efficient than general-purpose optimizers (Yoon et al.
2021).

To reduce the cost of the data required to train expert op-
timizers, ML-based surrogate models may be developed and
employed to evaluate the performance of the many candi-
date designs required for training purposes (Willcox, Ghat-
tas, and Heimbach 2021). These models are frequently in the
form of neural networks (NNs) or Gaussian processes (GPs),
and they may be developed with data that was either previ-
ously acquired or generated during the optimization process
(Cozad, Sahinidis, and Miller 2014; Rackauckas et al. 2021).
Once trained, these models can offer effectively instanta-



Figure 2: The Bayesian optimization framework for materials design with LVGP-based surrogate model. Figure reproduced
from (Zhang, Apley, and Chen 2020); licensed under a Creative Commons Attribution (CC BY) license.

neous design performance predictions. In this context, ML
surrogate models would offer an attractive value proposition
if the number of current design evaluations required to train
them is less than the number of new evaluations that would
be required to train the expert optimizer without a surrogate
model.

Fortunately, multiple strategies may be employed to re-
duce the time and/or cost required to develop such mod-
els. First, both low- and high-fidelity simulation data may
be merged into meta-model representations that provide the
flexibility for designers to trade accuracy versus cost. Sec-
ondly, a diverse set of desired simulations that span the ex-
pected input space may be preselected and run in parallel –
potentially offering a robust source of training data in a short
period of (clock) time, but perhaps at the cost of additional
processing time. Lastly, some approaches offer predictions
of nominal performance along with an estimate of uncer-
tainty. This uncertainty information can then be used dur-
ing the course of ML training or traditional optimizations to
trigger the refinement of the surrogate model (Zhang, Apley,
and Chen 2020).

Finally, to avoid the cost and time associated with design
iteration, NNs may be used to express designs as explicit
functions of their requirements, thus “inverting” the design
process. Such a capability may take the form of invertible
NNs that are trained in the forward direction per the above-
described techniques, but may be used in practice in the re-
verse direction, where samples of designs may be generated
using desired requirements (Ardizzone et al. 2018; Lee et al.
2021).

Progress
Progress made thus far in the development of the three de-
sired capabilities is described in this section and exemplified
with two D′ projects that are seeking to accelerate the design
of new materials for energy-related applications.

Expert Optimizers
In the context of D′, expert optimizers are ML meth-
ods trained against optimality criteria in narrow applica-
tion spaces. For example, optimizers based on reinforce-
ment learning (RL) methods are being investigated in several

“system” architecture design applications. In RL, an agent
interacts with its environment – the world model – to maxi-
mize a reward that expresses optimality criteria. In the con-
text of energy technology design, relevant worlds include
the design problem definition and an associated design per-
formance estimation approach. A representative project for
this optimality quest is led by Carnegie Melon University
and aims at developing RL-based catalyst design tools (Yoon
et al. 2021).

Low-Cost High-Fidelity Function Evaluators
The cost-effective evaluation of a design candidate’s perfor-
mance is critical in both traditional and ML-enhanced opti-
mization processes, as well as in the development of inverse
design tools. Classical evaluations involve experiments or
high-fidelity numerical simulations, whereas ML techniques
lead to surrogate models that can efficiently combine both
historical and current data from simulations and/or experi-
ments.

There has been a significant focus on both the develop-
ment and use of surrogate models as low-cost high-fidelity
evaluators throughout the D′ program.

As an example, Northwestern University is developing
an ML-based mixed-variable optimization framework for
designing new materials, with a specific focus on those
that exhibit metal-to-insulator transitions (MITs) that lever-
ages surrogate models among other ML-based methods. The
challenge characterizing the identification of these materials
is fivefold: the high-dimensionality of the atomic structure-
composition variable space, the prohibitive cost of high-
fidelity simulations, the lack of unified literature reporting,
the complexity of the physics, and a disjoint design space
due to mixed qualitative and quantitative design variables.

The team employs several ML methods – including nat-
ural language processing (NLP), conditional variational au-
toencoders (CVAEs), and Bayesian optimization (BO) with
latent-variable Gaussian processes (LVGPs), latent map
Gaussian processes (LMGPs), and binary tree-based models
– to discover new MITs materials. More specifically, NLP,
CVAEs, active learning, and binary classification models are
being developed and used to screen materials concepts to
identify candidate MITs families, as well as synthesis paths



from literature data extracted from millions of journal arti-
cles and papers (Georgescu et al. 2019; Georgescu and Mil-
lis 2021; Jensen et al. 2019; Kim et al. 2020).

Unlike standard GPs that operate on numerical/quantita-
tive data, LVGPs automatically discover the qualitative-to-
quantitative latent variable mapping. Consequently, LVGPs
provide a physics-based dimensionality reduction, while
also lowering the number of simulations required for high
accuracy (Zhang et al. 2019). Moreover, LMGPs extend GPs
to accommodate qualitative inputs and handle categorical in-
puts of variable length, rendering a single latent space with
insights of the underlying physics.

An overview of the BO framework with LVGP-based
surrogate model is depicted in Figure 2 (Zhang, Apley,
and Chen 2020). Another recent effort includes combining
LVGP-based multi-objective BO with high-fidelity density
functional theory-based simulations to optimize simultane-
ously the bandgap tunability and thermal stability in the
lacunar spinels family of candidate MITs materials (Wang
et al. 2020). In an exploration of less than 25% of design
space, this work has led to the identification of 12 new
promising MITs spinel compounds. The team is collaborat-
ing with experimental research groups at other institutions
(e.g., UC Santa Barbara) to validate the newly identified ma-
terials, while continuing to search for new materials fami-
lies.

This research targets future low-power microelectronic
systems and it applies to other energy materials design
and engineering problems with co-existing mixed variables
and/or critical co-design of processing and structure.

Generative/Inverse Design Tools
The inverse design approaches being developed within D′

are primarily based on NNs. These methods are being ex-
plicitly pursued for the design of photonic devices, aerody-
namic surfaces, and heat exchangers. Techniques being em-
ployed include generative adversarial networks, normaliz-
ing flows, and variational encoders (Goodfellow et al. 2014).
Deep generative models build new data, and even discover
knowledge (Leoni et al. 2021) by revealing the distribu-
tion of the training set that matches that of greater ensem-
bles in many physics-based applications (Wang and Wang
2021). Relatively recent work has suggested that ML-based
material composition design tools can accelerate the iden-
tification of attractive new catalyst compositions (Gomez-
Bombarelli et al. 2018).

Heterogeneous catalysts are broadly used in energy appli-
cations to facilitate the synthesis or the destruction of many
chemical compounds by lowering the activation energies re-
quired for reactions to proceed, without being consumed.
However, catalysts are often very expensive due to the use
of platinum group metals.

New catalyst design efforts focus mostly on developing
new compositions and/or surface morphologies that use less
precious metals and/or have longer life. Multicomponent
catalyst materials, such as perovskite oxides and spinels ex-
hibit an electro-chemical stability that is superior to that
of parent materials. However, the process of enhancing key
properties of engineered catalysts suffers from a scarcity of

design principles and a multi-dimensional search space that
is far too large to be investigated in its entirety.

The Massachusetts Institute of Technology (MIT) is lead-
ing a D′ project that combines expert optimizers and
low-cost evaluations with inverse design to accelerate the
development of catalysts that promote oxygen evolution
and/or reduction reactions. The MIT team is tailoring non-
platinum-group transition metal oxides to improve their
catalytic performance and reduce the number of potential
combinations required for testing. The ML approach em-
ployed successfully integrated synthesis data from the liter-
ature, simulations, lab-scale testing, and industrial prototyp-
ing to yield a catalyst design methodology that shows great
promise for being faster and more efficient than traditional
trial-and-error or serial experimentation-based approaches
(Jensen et al. 2019; Kim et al. 2020).

The key ML-based techniques employed are deep gener-
ative models and message-passing NNs (Gilmer et al. 2017)
for materials as well as convolutional NNs for machine vi-
sion to characterize catalysts. Figure 3 illustrates the prop-
erty prediction strategy that leverages methods for genera-
tive modeling with auto-regressive representation (left). For
each site, temperature, chemical potential, and previous sites
within the same sample inform its subsequent choice of
identity; that is, the probability of the fourth site P4 de-
pends on the previous sites (P1, P2, P3). On the right side,
model and relative probabilities are shown, with the inter-
nal and chemical energies, and the entropy, in the training
procedure to minimize the free energy of the model distribu-
tion (Damewood, Schwalbe-Koda, and Gomez-Bombarelli
2021; Gomez-Bombarelli et al. 2018). For certain per-
ovskites, the Monte Carlo Tree Search algorithm with crys-
tal graph convolutional NNs (Xie and Grossman 2018) was
over 500 times more efficient in generating structures pre-
dicted to be stable. Under the auspices of D′, experiments
based on more than 50 ML-predicted materials are being
conducted at Argonne National Laboratory, and progress is
being made in computer vision applications for spectroscopy
data analysis at MIT.

Current Challenges and Next Steps
Within D′ the above-described ML-enhanced design capa-
bilities have indeed been demonstrated on multiple chal-
lenge problems (Ghosh et al. 2021; Quadir et al. 2021;
Wu et al. 2021; Lee et al. 2021; Morehead et al. 2021;
Anantharaman et al. 2021; Rackauckas et al. 2021). Once
trained, the ML tools have been effective at optimizing ma-
terials/systems, rapidly evaluating design concepts, and even
automatically generating designs from requirements. How-
ever, there are several outstanding challenges still being ad-
dressed. First, the cost of developing ML tools can be pro-
hibitive in some applications, driving the need for strate-
gies to reduce the number of data points required in train-
ing and/or the cost per point. Candidates include Bayesian
optimization to identify and exploit high-value data re-
gions, adaptive numerical methods that exploit optimally
high cost/fidelity and low cost/fidelity model components at
run time, and dimensionality reduction techniques that en-
able simpler NN representations with fewer weights/fitting



Figure 3: Autoregressive Generator: Leverage generative modeling methods to draw samples of the equilibrium distribution.
Left: sampling using a neural network. Right: minimization of the free energy of the model distribution. Reproduced with
permission and adapted from (Damewood, Schwalbe-Koda, and Gomez-Bombarelli 2021)

.

parameters, like graph NNs (Pandey et al. 2021).
Once an initial ML capability has been developed, trans-

fer learning can improve initial guesses of network weights
for new problems-yielding reduced training costs (Taylor
and Stone 2009; Biagioni et al. 2020; St. John et al. 2019).
As shown in the two examples, NLP methods can har-
vest training and validation data from literature, at a lower
cost than that of running original experiments or physics-
based simulations (Olivetti et al. 2020; Elton et al. 2019;
Georgescu et al. 2021).

However, despite the multiple successful capability
demonstrations within the program thus far, additional work
is required to quantitatively understand the cost/benefit anal-
ysis afforded by ML-techniques in engineering design appli-
cations. Roughly speaking, the key question to be addressed
is “Will enough designs be performed with the ML-tools to
adequately amortize the cost of training?” Unfortunately, the
answer to this question will undoubtedly depend on the ap-
plication. Nevertheless, tools to estimate a priori the cost of
developing an ML solution approach for a particular prob-
lem would be significant when balancing an investment in an
AI/ML capability versus the use of traditional approaches.
At present, the D′ project teams are continuing to move
ahead with the maturation of their tools with a particular
focus on increasing the complexity of their design problems
through higher dimensionality due to increases in the fidelity
of the design representation, the number of physical dimen-
sions, and/or the physical phenomena considered (e.g., fluid,
structure, thermal, electrical, optical).

Summary
As the climate crisis intensifies, our need for technological
solutions that enable us to satisfy our energy needs while
minimizing any associated climate impact will continue to
increase. ARPA-E has launched the D′ program to develop
ML-enhanced design tools that are intended to accelerate
the development of energy-technology solutions to this chal-
lenge. Progress made thus far suggests that such tools will
indeed have a very significant role to play. The three tar-
geted design capabilities-expert optimizers, low-cost high-
fidelity evaluators, and inverse/generative models have been

demonstrated for initial challenge problems in multiple en-
ergy domains – including wind turbines, electrical circuits,
heat transfer surfaces, catalysts, and semi-conductor materi-
als.

Expert optimizers have been demonstrated to work in
multiple domains; although, a full quantitative assessment
of their performance versus traditional optimization ap-
proaches is still pending in most cases. Both GPs- and DNN-
based surrogate models have been developed for multiple
applications, and once trained, they have been shown to pro-
vide effectively instantaneous performance predictions of
adequate fidelity within the bounds of the domains in which
they were trained. Lastly, NN-based inverse, or generative
models, that automatically generate designs given require-
ments appear to have a truly transformative potential, in part
through their ability to dramatically lower the cost of be-
spoke designs.
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