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Abstract

We study probabilistic Deep Learning methods through the lens of Approximate Bayesian
Inference. In particular, we examine Bayesian Neural Networks (BNNs), which usually
suffer from multiple ill-posed assumptions such as prior and likelihood misspecification. In
this direction, we investigate a recently proposed approximate inference framework called
Generalised Variational Inference (GVI) in comparison to state-of-the-art methods includ-
ing standard Variational Inference, Monte-Carlo Dropout, Stochastic gradient Langevin
dynamics and Deep Ensembles. Also, we expand the original research around GVI by ex-
ploring a broader set of model architectures and mathematical settings on both real and syn-
thetic data. Our experiments demonstrate that approximate posterior distributions derived
from such a method offer attractive properties with respect to uncertainty quantification,
prior specification robustness and predictive performance, especially in the case of BNNs.
The code for all the experiments can be found in the following public Github repository:
https://github.com/gfelekis/GVI-posteriors-in-Probabilistic-Deep-Learning

1. Introduction

Bayesian methods provide the gold standard method to capture uncertainty in deep learn-
ing models through their natural probabilistic representation. The success of these methods
in practice, including the recent advances of Bayesian Deep Learning field, relies on Ap-
proximate Inference methods. These approximation schemes perform Bayesian reasoning
efficiently, as they are approximating the posterior distribution either in a stochastic way
(MCMC) or in a deterministic one (Variational Inference), thus allowing Bayesian mod-
elling to be applied to many practical tasks. Recently, there’s a lot of progress on these
ideas mainly through variational techniques (3),(4),(14) and (17). In recent years, due to
the availability of massive datasets, the main focus of Variational Inference is on scalable
approaches (15), (5), black box algorithms (21) and Bayesian deep learning architectures
such as the Variational Autoencoders (VAE) (18). In our work, we motivate the recently
proposed framework of Generalised Variational Inference (19) which is a generalisation of
standard Bayesian and Variational methods and seems to be able to overcome a lot of draw-
backs and pathogenies of them regarding the prior, the likelihood and the computational
needs. In this work we advance the research on GVI by exploring a broader set of diver-
gences on more complex Bayesian Neural Network architectures and comparing these with
state-of-the-art approximate inference methods.
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Contributions: We carry out an extensive comparative analysis of GVI among different
discrepancy settings and model complexity. We also compare these against multiple Ap-
proximate Inference methods ranging from standard Variational Inference to Monte Carlo
Dropout (13), Stochastic Gradient Langevin Dynamics (22) and Deep Ensembles. We found
certain settings of different divergences, hyperparameters and neural network depths that
markedly improve the performance of GVI and provide empirical evidence of the superiority
of it over traditional approximate inference methods in the framework of Bayesian Neural
Networks. Finally, we also conduct a detailed empirical analysis of uncertainty quantifica-
tion in a controlled synthetic setting for GVI with a variety of different divergences. We
finally evaluate their epistemic and aleatoric uncertainty and asses model calibration.

2. Theoretical Background - The many views of Variational Inference

2.1. ELBO view (Model selection)

It has been shown by Csiszar (6) and Donsker (9) that the Bayesian inference objective
can be seen as the solution to an infinite dimensional optimisation problem and therefore
every posterior distribution is the result of a well defined problem of this nature (Zellner in
1998 (23)). A few years later, Bissiri et. al (2) extensively discussed a generalised solution
inspired by the Fenchel’s conjugate of KL divergence and restated the optimisation problem
over P (Θ), about a parameter θ, specified via an abstract loss function l (compared to the
previous log-likelihood one) and regularised by the KL divergence, as follows:

q∗(θ) = argmin
q∈P (Θ)

{
Eq(θ)

[
n∑
i=1

l(θ, xi)

]
+KL(q||π)

}

where q∗(θ) = q(θ|κ∗) for some optimal parameter κ∗ ∈ K, the variational parameter space.
The later is the standard way of deriving Variational Inference, by maximizing the evidence
in the data and picking the element from the approximation family Q that maximizes the
well-known Evidence Lower Bound (ELBO).

2.2. Discrepancy-minimisation view (DVI)

The Bayesian posterior is not a unique solution to the optimisation problem and hence,
we could see its solution as the minimisation of a distance metric (usually in the form
of divergences). Specifically, if we want to approximate the standard Bayesian posterior
q∗B(θ) with a variational distribution q(θ) we could write the solution of this problem as:
q∗(θ) = argmin

q∈Q
KL(q||q∗B). The fact that the same objective function that maximizes the

ELBO is the one that minimizes the distance of Q and q∗B(θ) in the KL divergence sense by
just rearranging the terms of the ELBO equation has motivated a large body of research
(20), (1), (8) that tries to approximate the posterior by minimizing divergences, different
from the KL, between the family Q and q∗B(θ). In particular, for a divergence measure
D : P (Θ)×P (Θ) −→ R+ we can define a new class of methods called Discrepancy Variational
Inference (DVI) methods. DVI methods’ objective is of the following form:

q∗DVI(θ) = argmin
q∈Q

D(q||q∗B), D 6= KL
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2.3. Constrained optimisation view (GVI)

Under the traditional Bayesian inference framework, modern machine learning models suffer
from certain ill-posed assumptions mainly regarding prior misspecification (11). In order
to tackle this Knoblauch et al. (19) proposed the Rule of Three (RoT) framework which
split the inference problem into three elements: A loss, a divergence and a space of feasible
solutions. The RoT foundation provides enough flexibility to tackle most of the inappro-
priate assumptions especially by its modularity nature. The authors define a generalised
representation of Bayesian inference as follows:
Definition: For given observations x1:n, a prior π(θ), a space Π ⊆ P(Θ), a loss function
l : Θ × X −→ R and a divergence D(·||π) : Π −→ R+ we say that posteriors have been
constructed via the Rule of Three if they can be written as 1:

q∗(θ) = argmin
q∈Π

{
Eq(θ)

[
n∑
i=1

l(θ, xi)

]
+D(q||π)

}
:= P (l,D,Π)

The Rule of Three P (l,D,Π) has a modular interpretation and is decomposed into three
separate parts, each of them serving a specific and separate from each other purpose. Many
of the existing approximation methods can be interpreted by RoT e.g. standard VI solves a
problem specified by the Rule of Three P (l,D,Π) where: q∗VI(θ) := P (log p(xi|θ),KL(q||π),Q).
All the above lead us to the third view of VI, the constrained optimisation view (19) which
treats the VI solution as the best Q-constrained solution, where Q is a variational family.
Definition: Any Bayesian inference method solving a RoT form P (l,D,Q) for Q =
{q(θ|κ) : κ ∈ K} ⊆ P (Θ) is a procedure called Generalazided Variational Inference (GVI).
Hence, GVI like VI has the form P (l,D,Q) which satisfies the RoT modularity property
and like DVI targets non-standard posteriors without conflating l and D. Changing the
divergence in the GVI-sense affects only the uncertainty quantification and cannot interfere
with the way that the best parameter is found (e.g. interfere with the loss function).

3. Experiments and Results

The black box nature of Bayesian Neural Networks (BNN) lurks a high risk of having a
misspecified priors. Even in small BNN architectures we define priors over weights and
biases without having proper intuition about what they actually express. As a result, such
inappropriate assumptions could lead many times to strange posterior distributions. In
that sense approximate inference methods which can capture robustness to prior misspeci-
fication might actually be “better”, at least for the BNN case compared to asymptotically
exact inference algorithms. For all these reasons, we motivate the use of GVI to achieve
such robustness, which we then test experimentally across a range of different discrepancies
and real/synthetic datasets. Our experiments evaluate to what extent switching to a Gen-
eralised framework through GVI can actually improve prior misspecification, uncertainty
quantification (UQ) and predictive performance on BNNs.

1. We use the symbol P to describe the optimization Problem defined by these three elements.
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3.1. Regression on UCI data sets

Initially, we conduct multiple regression experiments on four different data sets from the
UCI Machine Learning repository (10) in order to compare different divergence measures
and different neural network depths on the GVI setting. Thanks to the modularity of RoT,
and as a result of GVI, in order to tackle the issue of prior misspecification in Bayesian
Neural Networks we just need to focus on trying different discrepancy measures while keep-
ing the loss function fixed. Indeed, in the experiments that we have conducted we expand
the research of (19) to almost all the members of the f -divergence family and also Fisher
distance, while we kept the loss function fixed to the usual log-likelihood one. Consequently,
we made a straight comparison between the best performing divergences that we found on
the previous step, the Standard VI (KL Divergence) and three approximate inference meth-
ods: Monte-Carlo Dropout, Deep Ensemble and Stochastic Gradient Langevin Dynamics.
In Figure 1, we can see this comparison of the methods across different number of hidden
layers for a fixed dataset.

Figure 1: RMSE values (x-axis) of different methods/divergences across a different number of hidden layers
(HL) for the Boston Housing dataset. We have three approximate inference methods: Stochastic gradient
Langevin Dynamics, SGLD (light green), Monte-Carlo Dropout, MCD (green), and Deep Ensembles, ENS
(light blue), three GVI based divergences: Parametrized α-Rényi Divergence, aAR (purple) for α = 2.50,
Jensen-Shannon Divergence, JS (red), α-Divergence, A (light brown) for α = 2.75 and the standard VI
approach via the KL Divergence, KL (pink). The complete results can be found in Appendix C.

Overall, we empirically demonstrate the superiority of GVI compared to the the other
methods in most of the scenarios that we created. From the complete results that can be
found in the Appendix C we can observe that GVI outperforms in every divergence the
other methods in 9 out of 12 experiments that we conduct on different datasets and model
architectures. The model settings can be found in Appendix A.

3.2. Regression on Gaussian Process ground truth

We evaluate aleatoric (noise) and epistemic (model) uncertainty on a GVI setting across
different discrepancies, network depths and compare this with the prior art. From (16) we
regress on a heteroscedastic toy data set generated from a GP as the ground truth. Based
on (7) we decompose uncertainty into aleatoric (UA) and epistemic (UE) as follows:

UA = E[σ2
pred] = Eq(w)[U(y′|x′, w)], UE = V arq(w)(µpred) = U(y′|x′)− UA

In Figure 2 we focus on the GVI case of Fisher distance and we can observe that in the
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Figure 2: Aleatoric (purple) and epistemic (blue) uncertainty decomposition across different number of
hidden layers (HL) for Fisher distance. The black line represents the mean of prediction with respect to the
variational posterior. The complete results can be found in Appendix C.

interpolation region all the models seem to fit the data really well and performance improves
when the number of hidden layers increases. In the extrapolation regions we observe two
different trends. First, for x < −2 the models seem to be heavily overconfident in the one
hidden layer case, because the heteroscedacity of the data lowers noise variance, and UQ
improves as the number of hidden layers increases. For x > 2 we can observe underconfi-
dence especially when the number of hidden layers is increasing. In this region aleatoric
uncertainty dominates the epistemic one.

In Figure 3 we provide an extended comparison among the different methods for the

Figure 3: Aleatoric (purple) and epistemic (blue) uncertainty decomposition across methods for the one
hidden layer case. The black line represents the mean of prediction with respect to the variational posterior.
Top: From left to right we have, the GP ground truth, Standard VI with KL divergence (KL), GVI with
Jensen-Shannon divergence (JS). Bottom: From left to right we have, Deep Ensemble (ENS), Monte Carlo
Dropout (MC-Dropout) and Stochastic Gradient Langevin Dynamics (SGLD). The complete results can be
found in Appendix C.
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one hidden layer case and see how GVI behaves compared to other approximate inference
methods regarding the UQ. As mentioned before UQ is performed poorly for one hidden
layer case in general due to the heteroscedacity of the data which makes all the models
overconfident in the left extrapolation area. As expected epistemic uncertainty, which ex-
presses model uncertainty, dominates in this region and thus a more complex model will
be more suitable for this evaluation (see Fig. 2). We observe that compared to KL, JS
divergence seems to offer both better UQ and balance of aleatoric-epistemic uncertainty
in all the regions. It is worth mentioning that KL and JS divergences both belong to the
f -family and the later is a normalized and symmetrical version of the first which makes it
smoother. For the three approximate inference methods, both Deep Ensembles and SGLD
are badly fit the data. They offer a poor UQ and predictive performance (black line) even
in the interpolation area, contrary to the MC Dropout model which performs significantly
better. MC Dropout efficiently captures aleatoric uncertainty also in the left extrapolation
region and does not collapse it compared to other methods apart from JS (GVI). This is
probably due to the fact that is know that it’s effectively introduces noise (12).
In Table 1 we report the predicted probability difference to ground truth and the effective
coverage at the 1σ interval for GVI and MC Dropout methods. Except KL divergence JS,
Fisher and MC Dropout provide nice calibration measures. Overall, GVI with JS diver-
gence and MC Dropout seem to perform better compared to all the other methods in UQ,
predictive performance and calibration.

Divergence No. of hidden layers Predicted probability Difference to N (µ, σ2)

1 0.56 0.12
F 2 0.56 0.12

3 0.83 0.15

1 0.55 0.13
KL 2 0.81 0.13

3 0.53 0.15

1 0.60 0.08
JS 2 0.53 0.15

3 0.52 0.16

MC Dropout 1 0.60 0.08

Table 1: Table of differences between the predicted probability and the true probability for each of the divergences for
F, KL and JS divergences and MC Dropout. Note here that under the Gaussian assumption the predicted probability
should be 0.68 for 1σ interval. The complete table alongside the calibration curves can be found in Appendix B.2

4. Conclusions

This work offers a comparative analysis of a generalised Bayesian inference framework among
different discrepancy settings, datasets, network architectures and other approximate infer-
ence methods. We have empirically shown the usefulness of GVI on BNNs in certain settings
regarding the model complexity and provide extensive insights of the performance of differ-
ent divergence measures and its benefits over traditional approximate inference methods.
Overall, GVI offers an alternative approach to dealing with the challenging model and prior
specification tasks in BNNs. It handles model misspecification via robust scoring functions
and prior misspecification through alternative divergences and we argue that these might
be preferred in Bayesian Deep Learning.
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Appendix A. Regression on UCI data sets

A.1. Model settings & data

Across all the experiments we kept the structure of the neural network fixed in order to
make the comparisons as fair as possible. In particular, we use a Multi-Layer Perceptron
with [100] hidden units for the one hidden layer case, [100, 100] hidden units for the two
hidden layer case and [100, 100, 100] hidden units for the three hidden layer case. The ac-
tivation function was a ReLU function and inference was performed via Bayes by backprop
and the Adam optimiser. For the training of each model we run 100 epochs and perform
30 random splits of each data set with a split of 90%-10% (train-test). All the models were
evaluated on the test sets using the average negative log likelihood (NLL) as well as the
average root mean square error (RMSE). Also, for each of the 30 splits, the predictions are
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computed based on 100 samples from the variational posterior. Note that the priors and
variational posteriors are both fully factorised normal distributions and thus our model was
predicting the regression mean µ(x) and the log-standard deviation log σ(x). Also, that
helped us of having all of our divergences in a closed Gaussian form. Below we present the
closed form of the divergences that were used:

For a prior π ∼ N (µ1, σ
2
1) and approximate posterior q ∼ N (µ2, σ

2
2) distributions we have

the following closed forms:
• Kullback-Leibler Divergence:

KL(π||q) =
1

2σ2
2

(
(µ1 − µ2)2 + σ2

1 − σ2
2

)
+ ln

σ2

σ1

• Reverse Kullback-Leibler Divergence:

RKL(π||q) = KL(q||π)

• α-Divergence:

D
(α)
A (π||q) =

1

α(1− α)

(
1− σα2 σ

1−α
1√

ασ2
2 + (1− α)σ2

1

e
− α(1−α)

ασ2
2+(1−α)σ2

1

(µ1−µ2)
2

2

)
• Jensen-Shannon Divergence:

JS(π, q) = KL
(
π||π + q

2

)
+KL

(
q||π + q

2

)
• Total Variation Distance:

For the TV distance there is no closed form and hence we approximate it by its
bounds. In particular, the following inequality holds:

1

200
min

{
1,max

{
|σ2

1 − σ2
2

σ2
1

,
40|µ1 − µ2|

σ1

}}
≤ TV (π, q) ≤ 3|σ2

1 − σ2
2|

2σ2
1

+
|µ1 − µ2|

2σ1

Hence we defined an approximation for each bound (upper U, lower L):

TV U(π, q) =
1

200
min

{
1,max

{
|σ2

1 − σ2
2

σ2
1

,
40|µ1 − µ2|

σ1

}}

TV L(π, q) =
3|σ2

1 − σ2
2|

2σ2
1

+
|µ1 − µ2|

2σ1

• α-Rényi Divergence:

D
(α)
AR(p||q) = ln

σ2

σ1
+

1

2(α− 1)
ln
( σ2

2

(σ2)∗α

)
+

1

2

α(µ1 − µ2)2

(σ2)∗α

where:
(σ2)∗α = ασ2

2 + (1− α)σ2
1 > 0
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• Fisher Distance:

F (π, q) =
√

2ln
(F((µ1, σ

2
1), (µ2, σ

2
2)) + (µ1 − µ2)2 + 2(σ2

1 + σ2
2)

4σ1σ2

)
where:

F((µ1, σ
2
1), (µ2, σ

2
2)) =

√
((µ1 − µ2)2 + 2(σ1 − σ2)2)((µ1 − µ2)2 + 2(σ1 + σ2

2))

Appendix B. Regression on Gaussian Process ground truth

B.1. Model settings & data

Here, the heteroscedastic data was generated by a Gaussian Process with an RBF kernel
(l = 1, σn = 0.3|x+ 2|). Also a Multi-Layer Perceptron was used as the regressor with [100]
ReLU hidden units for the one hidden layer case, [100, 200] ReLU hidden units for the two
hidden layer case and [100, 200, 100] ReLU hidden units for the three hidden layer case and in
all cases it was trained for 500 epochs. We compute epistemic and aleatoric uncertainty and
we also investigate the behaviour of all the models across different divergences and different
depths by not only visual inspection but also some model selection and information criteria
that we are going to see below.

B.2. Model Calibration

Here is the complete table of the differences between the predicted probability and the true
probability for each of the divergences.

Divergence No. of hidden layers Predicted probability Difference

KL 1 0.55 0.13

KL 2 0.81 0.13

KL 3 0.53 0.15

RKL 1 0.56 0.12

RKL 2 0.54 0.14

RKL 3 0.52 0.16

A 1 0.58 0.10

A 2 0.66 0.02

A 3 0.75 0.07

AR 1 0.55 0.13

AR 2 0.57 0.11

AR 3 0.84 0.16

αAR 1 0.56 0.12

αAR 2 0.60 0.10

αAR 3 0.68 0.00
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Divergence No. of hidden layers Predicted probability Difference

JS 1 0.58 0.10

JS 2 0.53 0.15

JS 3 0.52 0.16

TVL 1 0.58 0.10

TVL 2 0.89 0.21

TVL 3 0.65 0.03

TVU 1 0.57 0.11

TVU 2 0.56 0.12

TVU 3 0.82 0.14

F 1 0.55 0.13

F 2 0.56 0.12

F 3 0.83 0.15

We highlight the divergence measures which correspond to the two best calibrated models
for each neural network depth. Note here that we define a well-calibrated model to be one
whose predicted probability differs no more than 0.1 from the true probability:

• For the one hidden layer case: TVL and αAR

• For the two hidden layers case: KL, AR and A

• For the three hidden layers case: TVL, A and JS.

In Figure 4 we can see the calibration curves for each divergence for different number of
hidden layers. Each curve represents how confidence varies across different sigma intervals,
indicating either underconfidence if the curve is above the dashed line or overconfidence if
it falls below it. Two key observations here are that the confidence increases together with
the number of layers in almost all the models and that there is a general overconfidence
trend on lower sigma intervals i.e. (0, 0.7).

B.3. Model Selection

Finally, one standard way to perform model selection in Probabilistic Deep Learning is to
compute the values of certain criteria from the Information Theory field. Specifically here
we tested three of them for each model:

1. Bayesian Information Criterion - BIC

BIC(M) = p ln (n)− 2 ln (L̂)

2. Akaike Information Criterion - AIC

AIC(M) = 2p− 2 ln (L̂)

3. Hannan–Quinn Information Criterion - HQC

HQC(M) = 2p ln (ln (n))− 2L̂

11
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Figure 4: Calibration curves of different divergences. The x-axis represents the σ-interval and the y-
axis represents the probability inside a σ-interval. The dashed line represents the expected values under a
Gaussian distribution (1σ ≈ 0.68, 2σ ≈ 0.955 and 3σ ≈ 0.997).

where L̂ is the maximized value of the likelihood function of the model M, p is the number
of parameters estimated by the model and n the sample size. Information Criteria (ICs)
are really useful as they can measure the efficiency of a model in terms of predicting the
data and also the complexity of the model. We can observe that all three of them are
constituted of two terms: a complexity term, which is the one dependent to the number of
model’s parameters, and a data fit term. Generally, the computation of ICs is a trade-off
between these two terms as they try to answer the question: Do I need more data or a more
complex model? Therefore, when as a next step we computed all the values of the ICs for all
the models we ended up observing that the complexity penalty dominated the IC value and
hence the one hidden layer case was always the preferable choice (see table in the Appendix).
Here it is important to mention a few things about the information criteria. It would be
naive to conclude that the information criteria, which were used here, are useless. Instead,
they serve their purpose as they penalise the model for trying to fit more parameters than
the needed ones for this specific problem/data set. In the example here, where the data
set was generated from an RBF kernel of a Gaussian process which is a stationary kernel,
the penalty term dominates. It is not necessarily true that the IC value has to increase
as long as the number of parameters grows. As we said, all the ICs perform a trade-off
between model complexity and data fit. Here, the data fit component is roughly equivalent
for all the different neural network depths, thus the only thing that changes is the number
of parameters. Consequently, it makes perfect sense to see this monotonic deterioration.
For neural networks, an advantage of having more than one hidden layers is that they can
capture non stationary kernels (Neural Network kernel, Polynomial kernel, etc). So we
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encourage the reader to examine the same results for a non-stationary case where the ICs
would be much more informative than here. Overall, it is crucial to understand that the
results have to do with the specific problem, which is simple, and the fact that number of
parameters is not a really good complexity value for an MLP. Having said that, it would
probably be more fruitful to compare just the differences between the log-likelihoods of
the models. In the table below we present the log-likelihood value for each model and we
highlight in bold the best for each divergence.

Divergence No. of hidden layers Log-likelihood

KL 1 352

KL 2 347

KL 3 343

RKL 1 380

RKL 2 390

RKL 3 727

A 1 398

A 2 413

A 3 636

AR 1 352

AR 2 347

AR 3 343

αAR 1 348

αAR 2 361

αAR 3 360

JS 1 357

JS 2 368

JS 3 400

TVL 1 344

TVL 2 345

TVL 3 347

TVU 1 343

TVU 2 343

TVU 3 344

F 1 351

F 2 349

F 3 343

From this table we can notice that, although some divergences achieve the best log-likelihood
value at the maximum number of hidden layers, it is not always the case and it does not
justify the increase of the number of model parameters. It is interesting to see that the
best model based on the log-likelihood value agrees in most of the cases with our visual
inspection conclusion about each layer.

13



Probabilistic Deep Learning with GVI

Appendix C. Analytical results

C.1. Regression on UCI data sets

In Figure 4 we can see the comparative analysis of the different GVI settings for the mul-
tiple divergences and in Figure 5 the comparison of GVI’s top performers against common
approximate inference methods:

Figure 5
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Figure 6
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We can make the following remarks from Figure 6:

• For the one hidden layer case: The GVI methods seem to outperform MC-Dropout
and Deep Ensembles and be equally good with the SGLD method especially for the
RMSE values. MC-Dropout seems to be the worst performer here.

• For the two hidden layers case: Here, all the approximate inference methods seem
to improve and come closer to the GVI RMSE values in most of the cases. However,
we see that Ensemble and SGLD outperform all the other methods when it comes to
NLL values.

• For the three hidden layers case: We can notice that the uncertainty value (vari-
ance) increases in all the methods. GVI remains the best performer and in some cases
alongside SGLD and also improves its performance in the NLL scores.

C.2. Regression on Gaussian Process ground truth

In Figures 6 and 7 are the complete results from the regression workaround on the Gaussian
Process ground truth data set. Also, here we provide the best models based on visual
inspection:

• For the one hidden layer case: JS, KL and A and αAR

• For the two hidden layers case: KL, F and TVU

• For the three hidden layers case: TVU, A and JS.

Figure 7
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Figure 8
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Figure 9
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