
Explore then Execute: Adapting without Rewards via Factorized
Meta-Reinforcement Learning

Evan Zheran Liu 1 Aditi Raghunathan 1 Percy Liang 1 Chelsea Finn 1

Abstract
We seek to efficiently learn by leveraging shared
structure between different tasks and environ-
ments. For example, cooking is similar in dif-
ferent kitchens, even though the ingredients may
change location. In principle, meta-reinforcement
learning approaches can exploit this shared struc-
ture, but in practice, they fail to adapt to new
environments when adaptation requires targeted
exploration (e.g., exploring the cabinets to find
ingredients in a new kitchen). We show that ex-
isting approaches fail due to a chicken-and-egg
problem: learning what to explore requires know-
ing what information is critical for solving the
task, but learning to solve the task requires al-
ready gathering this information via exploration.
For example, exploring to find the ingredients
only helps a robot prepare a meal if it already
knows how to cook, but the robot can only learn
to cook if it already knows where the ingredients
are. To address this, we propose a new exploration
objective (DREAM), based on identifying key in-
formation in the environment, independent of this
information will exactly be used solve the task.
By decoupling exploration from task execution,
DREAM explores and consequently adapts to new
environments requiring no reward signal when
the task is specified via an instruction. Empiri-
cally, DREAM scales to more complex problems,
such as sparse-reward 3D visual navigation, while
existing approaches fail from insufficient explo-
ration.

1. Introduction
A general-purpose agent should be able to perform multiple
tasks across multiple environments, both of which share

1Department of Computer Science, Stanford University,
Stanford, USA. Correspondence to: Evan Z. Liu <evan-
liu@cs.stanford.edu>.

Proceedings of the 4 th Lifelong Learning Workshop, Vienna, Aus-
tria, 2020. Copyright 2020 by the author(s).

considerable structure. Our goal is to develop agents that can
perform a variety of tasks in novel environments, based on
previous experience and only a small amount of experience
in the new environment. For example, we may want a
robot to cook a meal (a new task) in a new kitchen (the
environment) after it has learned to cook other meals in
other kitchens. To adapt to a new kitchen, the robot must
first explore to discover the locations of the ingredients,
and then use this information to cook. Existing meta-RL
methods have shown promise for adapting to new tasks
and environments, but, as we identify in this work, are
poorly equipped when adaptation requiring sophisticated
exploration.

In the meta-RL setting, the agent is presented with a set
of meta-training problems, each in an environment (e.g., a
kitchen) with some task (e.g., make pizza); at meta-test time,
the agent is given a new but similar environment and task.
It is allowed to gather experience in a few initial (training)
episodes, and its goal is to then maximize returns on all sub-
sequent (testing) episodes. A common meta-RL approach
is to train a recurrent neural network (RNN) (Duan et al.,
2016; Wang et al., 2016a; Stadie et al., 2018; Zintgraf et al.,
2019; Humplik et al., 2019; Kamienny et al., 2020) to max-
imize test returns on each meta-training environment and
task, such that it can quickly adapt to new meta-test settings.
With enough capacity, such approaches can express the op-
timal adaptation strategy, which involves both exploring in
the initial few episodes (to find relevant information) and
then executing in the subsequent episodes (use the gained
information to solve the task). However, optimizing for
exploration and execution end-to-end in this way creates a
challenging chicken-and-egg optimization problem: Learn-
ing how to explore requires knowing what information is
critical for actually solving the task, but learning to solve
the task requires already gathering this information via ex-
ploration. As a concrete example, exploring to locate the
ingredients only helps a robot prepare a meal if it already
knows how to cook, but the robot can only learn to cook if
it already knows where the ingredients are.

The key insight of this work is to construct a decoupled
exploration objective by first automatically identifying task-
relevant information and then training an exploration policy

Explore then Execute: Adapting without Rewards via Factorized Meta-Reinforcement Learning

to uncover this information. Concretely, we assume access
to a problem ID (during meta-training but not meta-testing)
that identifies the task and environment, which may contain
information irrelevant to solving the task. We first train
an execution policy to solve the tasks conditioned on an
intermediate representation of this problem ID, and simul-
taneously minimize the mutual information between this
ID representation and the ID itself. This makes the ID
representation capture only task-relevant information, strip-
ping extraneous information. Then, we train an exploration
policy to produce trajectories that contain precisely the in-
formation in the learned ID representation ensuring efficient
and targeted exploration (Section 4).

Beyond the above optimization challenges, a second issue
prevents existing approaches from exploring to identify rel-
evant information in the environment relates to the problem
formulation rather than the approaches themselves. In the
standard meta-RL formulation, both the task and environ-
ment vary across problems and must be inferred via trial-
and-error. While the environment must naturally be inferred
through interaction, hiding all information about the task,
e.g., the meal to cook (or the velocity to run at (Finn et al.,
2017)) is unrealistic and can create unnecessary exploration
challenges particularly in sparse reward settings. For ex-
ample, the robot might need to cook various meals until it
guesses the correct meal to cook. Instead, we propose a set-
ting called instruction-based meta-RL (IMRL), where the
agent is provided information about the task via instructions
(e.g., ”cook a pizza” or a one-hot representation). Providing
instructions that contain information about the reward func-
tion also enables reward-free adaptation: the agent receives
rewards during meta-training, but during meta-testing, it
executes instructions in a new environment without ever re-
ceiving additional rewards, by exploring to identify relevant
environment information and inferring the objective from
the instructions (Section 3).

Overall, we present two contributions: (i) we identify the
problem of coupling between exploration and execution and
provide an approach that overcomes this via a decoupled
objective, and (ii) a new meta-RL setting (IMRL), that can
enable reward-free adaptation. When applied to IMRL, our
decoupled approach, called DREAM (Decoupling Reward-
free ExplorAtion and execution in Meta-RL) learns sophis-
ticated exploration strategies and enables reward-free adap-
tation on a sparse-reward 3D visual navigation problem,
achieving near-optimal performance. In contrast, existing
state-of-the-art meta-RL approaches (IMPORT, VARIBAD,
RL2) do not learn the optimal exploration strategy and
achieve zero reward, even when they receive rewards at
meta-test time (Section 6).

2. Preliminaries
Meta-Reinforcement Learning Setting. The standard
meta-RL setting considers a family of Markov decision pro-
cesses (MDPs), 〈S,A,RT , TT 〉 with states S, actions A,
rewardsRT , and dynamics TT , parametrized by a problem
T . Colloquially, we refer to the dynamics as the environ-
ment, the rewards as the task, and the entire MDP as the
problem. Different problems share structure (e.g., similar
kitchens or cooking similar meals), and are drawn from
some distribution T ∼ p(T). Following prior problem set-
tings (Finn et al., 2017; Rakelly et al., 2019; Rothfuss et al.,
2018; Fakoor et al., 2019) and terminology from Duan et al.
(2016), we define a trial as M + N episodes in the same
MDP T , with M initial training (exploration) episodes of T
steps (we set M = 1 for simplicity), typically used to infer
dynamics and rewards, followed by N testing (execution)
episodes. To enable efficient exploration, we allow the agent
to take a special ”end-episode” action aterm to terminate ex-
ploration early. Meta-training and meta-testing both consist
of sampling a problem T ∼ p(T) and running a trial. The
agent’s goal is to maximize the returns summed over the
N execution episodes during meta-testing. Following prior
work (Rakelly et al., 2019; Humplik et al., 2019; Kamienny
et al., 2020), we make the problem ID of T available for
meta-training, but not meta-testing, when the agent must
infer this via exploration.

For convenience, we formally express the objective in terms
of an exploration policy πexp used in the exploration episode
and an execution policy πexe used in execution episodes,
but these policies may be the same or share parameters.
The execution policy πexe may depend on all prior expe-
riences in the trial, including the exploration trajectory
τ exp = (s0, a0, r0, . . . , sT) ∼ πexp from rolling out πexp

in the exploration episode. The goal of the agent to maxi-
mize:

J (πexp, πexe) = ET ∼p(T),τ exp∼πexp

[
V π

exe
(τ exp; T)

]
, (1)

where V π
exe

(τ exp; T) is the expected return of πexe in prob-
lem T in the execution episodes.

Learning to Reinforcement Learn. A common meta-RL
approach is the Learning to Reinforcement Learn framework
(Wang et al., 2016a; Duan et al., 2016; Zintgraf et al., 2019;
Kamienny et al., 2020; Humplik et al., 2019), which directly
maximizes the objective J in (1) by learning the same
recurrent policy π(at | st, τ:t) for both exploration and
execution (i.e., πexe = πexp = π). This policy takes action
at given state st and history of experiences spanning all
episodes in a trial τ:t = (s0, a0, r0, . . . , st−1, at−1, rt−1).
Intuitively, the recurrent representation of τ:t can encode
uncertainty over which problem the agent is currently in
i.e., p(T | τ:t) (Kaelbling et al., 1998; Zintgraf et al., 2019).

Explore then Execute: Adapting without Rewards via Factorized Meta-Reinforcement Learning

The optimal policy explores to reduce this uncertainty in
the initial exploration episode, ideally until the agent can
receive high rewards via the same actions on all potential
problems the agent might be in. Then, when uncertainty is
low during the execution episodes, the optimal policy can
take actions leading to high returns. By optimizing both
exploration and execution end-to-end to maximize returns,
this approach can learn the optimal policy, but optimization
is challenging, which we show in Section 4.1. We refer to
this framework by its canonical instantiation, RL2 (Duan
et al., 2016).

3. Instruction-based Meta-RL
While the standard meta-RL setting (Section 2) captures
adapting to new problems, it requires exploring to obtain
both key information about the environment (the ingredi-
ents’ location in a kitchen), as well as the task itself (the
meal to cook). It is often more realistic and efficient to
directly convey the task to the agent. We therefore propose
a new meta-RL setting called instruction-based meta-RL
(IMRL), where the agent receives instructions conveying
the task. Additionally, unlike the standard setting, where an
agent repeatedly executes the same task (e.g., cook pizza)
in a trial, we allow each episode to have a different task pro-
vided via a different instruction (e.g., cook pizza, then pasta,
then soup), while the environment remains fixed. Specifi-
cally, we augment the state with an instruction i ∈ I (e.g.,
cook pizza), represented in this work as collections of one-
hots. On each episode, we sample an instruction i from a
distribution of instructions pT (i) and the agent receives the
rewards RT (st, i) at each timestep t in problem T . Note
that when the instruction is always the same, (e.g., |I| = 1),
IMRL can recover the standard setting, so any algorithms
developed for IMRL (e.g., Section 4) also apply to the stan-
dard setting. We summarize IMRL in Figure 1 for a special
case below where we remove instructions and rewards from
exploration episodes.

Special case: reward-free adaptation. When the in-
structions i together with the transition observations, i.e.,
(s, a, s′)-tuples, contain enough information about the re-
ward function, executing instructions does not require ob-
serving the rewards directly during exploration. For ex-
ample, a robot can execute the instruction ”cook the soup
recipe on the fridge” by reading (transition observations)
and following the recipe on the fridge, without observing
the corresponding rewards. Consequently, we optionally
make the exploration episode reward-free, providing nei-
ther instruction nor rewards. Further, if the agent does not
adapt using reward feedback during execution episodes, the
entire process of adaptation at meta-test time can be made
reward-free: Specifically, during meta-training, the explo-
ration episode is reward-free, but the agent receives rewards
during execution episodes. During meta-testing, the agent

receives no rewards at all. This models real-world situa-
tions where providing rewards is expensive (e.g., a robot
chef would ideally adapt to a new home kitchen without
any human supervision). IMRL allows us to conveniently
model this special case.

4. Decoupling Exploration and Execution
4.1. The Problem with Coupling Exploration and

Execution

We begin by showing how approaches like RL2, which opti-
mize behavior on both exploration and execution episodes
end-to-end by maximizing J in (1), can be sample ineffi-
cient in IMRL, even when |I| = 1. For clarity, we refer
to the policy followed during exploration episodes as πexp

and the policy followed during execution episodes as πexe,
although for RL2 they are the same policy.

Figure 2a illustrates this end-to-end training approach. Note
that πexe relies on πexp for good exploration data in the form
of τ exp in order to learn to solve the task. Additionally, note
that learning πexp relies on gradients passed through πexe. If
πexe cannot effectively solve the task, then these gradients
will be uninformative. This causes a bad local optimum:
if our current (suboptimal) πexe obtains low rewards with
a good informative trajectory τ̄ exp, the low reward would
cause πexp to learn to not generate τ̄ exp. This causes πexp

to instead generate trajectories τ exp that lack information
required to obtain high reward, further preventing the execu-
tion policy πexe from learning. Typically, early in training,
both πexp and πexe are stuck in this local optimum, where
neither policy can become optimal without many samples.
We illustrate this effect in a simple example in Section 5.2.

4.2. DREAM: Decoupling Reward-free Exploration and
Execution in Meta-learning

The key idea behind DREAM is to sidestep this local op-
timum by optimizing decoupled objectives for the explo-
ration and execution policies. Intuitively, the goal of the
exploration policy is to identify the distinguishing charac-
teristics of the environment and task relevant to executing
instructions. An initial approach is to train πexp so that it
produces trajectories that are predictive of the problem ID or
dynamics (Zhou et al., 2019b). This yields a policy that can
distinguish problems, but inefficiently explores instruction-
irrelevant attributes, such as the color of the walls. To avoid
this, we propose to derive a stochastic problem encoding
Fψ(z | T), which extracts only the information necessary to
execute instructions in the problem T . DREAM obtains this
encoder by training an execution policy πexe conditioned
on the encoder’s outputs, with an information bottleneck
on z. Then, DREAM trains an exploration policy πexp to
produce trajectories with high mutual information with z.

Explore then Execute: Adapting without Rewards via Factorized Meta-Reinforcement Learning

s
T

exploration episode

Trial 2

execution episode 2

...

i
2

= cook soup

...

Trial 1

exploration episode execution episode 1

no instruction i
1

= cook pizza

...s
0

 s
1

 s
0

 s
1

 ...

no instruction

...s
0

 s
1

 s
T

......s

0
 s

1

Figure 1. Reward-free instruction-based meta-RL: Meta-training trials (in a single problem) consist of a reward-free exploration episode
followed by many execution episodes with rewards defined by instructions.

(train time)

(test time)

(a) Coupled Exploration and Adaptation (b)
Problem ID

DREAM: Decoupled Reward-free ExplorAtion and execution in Meta-RL

Learned

Fixed
(shaded)

Figure 2. (a) Coupling between the exploration policy πexp and execution policy πexe. The exploration and execution policies are illustrated
separately for clarity, but may be a single policy. Since the two policies depend on each other (for gradient signal and the τ exp distribution),
it is challenging to learn one when the other policy has not learned. (b) DREAM: πexp and πexe are learned from decoupled objectives by
leveraging the environment e during training. At test time, the execution policy conditions on the exploration trajectory as before.

In this approach, the execution policy πexe no longer relies
on effective exploration πexp to learn, and once Fψ(z | T)
is learned, the the exploration policy πexp can also learn
independent of πexe, decoupling the two optimization pro-
cesses. Later, during meta-testing, when the problem ID T
is unavailable, the two policies easily combine, since the
trajectories generated by πexp contain the same information
as the stochastic encodings Fψ(z | T) that the execution
policy πexe trained on (overview in Figure 2b).

Learning the problem ID encodings. We begin with learn-
ing a good stochastic encoder Fψ(z | T) parametrized by
ψ and execution policy πexe

θ (a | s, i, z) parameterized by
θ. Unlike RL2, we choose not to make πexe

θ recurrent for
simplicity, relying on z to contain the necessary informa-
tion. We learn Fψ(z | T) jointly with the execution policy
πexe
θ (a | s, i, z) by optimizing the following objective:

maximize
ψ,θ

ET ∼p(T),z∼Fψ(z|T),i∼pT (i)

[
V π

exe
θ (i, z; T)

]
︸ ︷︷ ︸

Reward

−λ I(z; T)︸ ︷︷ ︸
Information bottleneck

,

(2)

where V π
exe
θ (i, z; T) is the expected return of πexe

θ on prob-
lem T given instruction i and encoding z. Importantly, both
terms are independent of the exploration policy πexp.

We minimize the mutual information I(z; T) by applying
a variational upper bound (Barber & Agakov, 2003) as fol-
lows.

I(z; T) = ET [DKL(Fψ(z | T)||r(z))]− DKL(pψ(z)||r(z))
≤ ET [DKL(Fψ(z | T)||r(z))] , (3)

where r is any prior and z is distributed as pψ(z) =∫
T Fψ(z | T)p(T)dT .

Learning an exploration policy given problem ID encod-
ings. Once we’ve obtained an encoder Fψ(z | T) to extract
only the necessary information required to optimally execute
instructions, we can optimize the exploration policy πexp to
produce trajectories that encode this same information by
maximizing their mutual information. We slightly abuse no-
tation to use πexp to denote the probability distribution over
the trajectories τ exp. Then, the mutual information I(τ exp; z)
can be efficiently optimized by applying a variational lower
bound (Barber & Agakov, 2003) as follows.

I(τ exp; z) = H(z)−H(z | τ exp) (4)
≥ H(z) + ET ,z∼Fψ,τ exp∼πexp [log qω(z | τ exp)]

= H(z) + ET ,z∼Fψ [log qω(z)]

+ ET ,z∼Fψ,τ exp∼πexp

[
T∑
t=1

log qω(z | τ exp
:t)− log qω(z | τ exp

:t−1)

]
,

where qω is any distribution parameterized by ω. We maxi-
mize the above expression over ω to learn qω that approx-
imates the true conditional distribution p(z | τ exp), which
makes this bound tight. In addition we do not have access
to the problem T at test time and hence cannot sample from
F (z | T). Therefore, q serves as a decoder that generates
the encoding z from the exploration trajectory τ exp.

Note that only the third term depends on the exploration tra-
jectory. Hence, we maximize this by training the exploration

Explore then Execute: Adapting without Rewards via Factorized Meta-Reinforcement Learning

policy on rewards set to be the information gain:

rexp
t (at, st+1, τ

exp
t−1; T) =

Ez∼Fψ(z|T)

[
log qω(z | [st+1; at; τ

exp
:t−1])− log qω(z | τ exp

:t−1)
]

− c. (5)

Intuitively, the reward for taking action at and transition-
ing to state st+1 is high if this transition encodes more
information about the problem (and hence the encoding
z ∼ Fψ(z | T)) than was already present in the trajectory
τ exp
:t−1. The reward also includes a small per timestep penalty
c to encourage exploring efficiently.

This reward is attractive because (i) it is independent from
the execution policy and hence avoids the local optima high-
lighted in Section 4.1, and (ii) it is a dense reward signal
and helps with credit assignment. Note that it is not Marko-
vian, because it depends on τ exp, so we learn a recurrent
πexp
φ (at | st, τ exp

:t) parametrized by φ that conditions on its
history τ exp

:t = (s0, a0, r0, . . . , st−1, at−1, rt−1). For the
reward-free exploration case, we simply omit the rewards
rt from τ exp.

4.3. A Practical Implementation of DREAM

Altogether, DREAM learns four separate components (neural
networks), which we detail below.

1. Encoder Fψ(z | T): For simplicity, we parameterize the
stochastic encoder by learning a deterministic encoding
fψ(T) and apply Gaussian noise, i.e., Fψ(z | T) =
N (fψ(T), ρ2I). We choose a convenient prior r(z) to
be a unit Gaussian with same variance ρ2I which makes
the information bottleneck (Equation 3) take the form of
simple `2-regularization ‖fψ(T)‖22.

2. Decoder qω(z | τ exp): Similarly, we parameterize the de-
coder qω(z | τ exp) as a Gaussian centered around a de-
terministic encoding gω(τ exp) with variance ρ2I . Then,
qω maximizes ET ,z∼Fψ(z|T)

[
‖z − gω(τ exp)‖22

]
w.r.t., ω

(Equation 4), and the exploration rewards take the form
rexp(a, s′, τ exp; T) = ‖fψ(T)− gω([τ exp; a; s′])‖22 −
‖fψ(T)− gω([τ exp])‖22 − c (Equation 5).

3. Execution policy πexe
θ and 4. Exploration policy πexp

φ :
We represent both policies as Q-networks and apply dou-
ble deep Q-learning (DDQN) (van Hasselt et al., 2016),
treating (s, i, z) as the state for πexe

θ .

While the above suggests training the encoder and execution
policy to convergence, and then using these to train the
exploration policy, we find it less cumbersome to learn all
components together in an EM-like fashion where in the
exploration episode, we assume fψ and πexe

θ are fixed. We

also train πexe
θ conditioned on the exploration trajectory

gω(τ exp), instead of exclusively training πexe on the outputs
of the encoder z ∼ Fψ(z | T). We include all details and a
summary (Algorithm 1) in Appendix A.

5. Analysis
5.1. Theoretical Consistency of the DREAM Objective

A key property of DREAM is that it is consistent: maxi-
mizing our decoupled objective also maximizes expected
returns (Equation 1). This contrasts prior works (Zhou et al.,
2019b; Rakelly et al., 2019; Gupta et al., 2018; Gurumurthy
et al., 2019), which also decouple exploration from execu-
tion, but do not recover the optimal policy even with infinite
data. Formally,

Proposition 1. Let V ∗(i; T) be the maximum expected re-
turns achievable by any execution policy with access to T
on instruction i and problem T , i.e., with complete informa-
tion. Let πexe

? , πexp
? , F? and q?(z | τ exp) be the optimizers of

the DREAM objective. Then for large enough T (the length
of the exploration episode) and M (number of exploration
episodes), and expressive enough function classes,

ET ∼p(T),i∼pT (i),τ exp∼πexp
? ,z∼q?(z|τ exp)

[
V π

exe
? (i, z; T)

]
= ET ∼p(T),i∼pT (i) [V ∗(i; T)] .

Since knowledge of T uniquely identifies the MDP
〈S,A,RT , TT 〉, the maximum returns any agent can obtain
corresponds to the returns of πexe

opt , which has access to T .
Optimizing the decoupled objective in DREAM also obtains
this maximum reward, which we prove in Appendix C.1.

5.2. Analysis of the Sample Complexity of Coupled and
Decoupled Approaches

With enough capacity, approaches like RL2 can also recover
the optimal policy, but can be highly sample inefficient due
to the coupling problem in Section 4.1. We highlight this in
a simple tabular example to remove the effects of function
approximation: Each episode is a one-step bandit problem
with action space A. Taking action a? in the exploration
episode leads to a trajectory τ exp

? that reveals the problem
T ; all other actions a reveal no information and lead to
τ exp
a . The problem T identifies a unique action that receives

reward 1 during execution; all other actions get reward 0.
Therefore, taking a? during exploration is necessary and suf-
ficient to obtain optimal reward 1. We now study the number
of samples required for RL2 and DREAM to learn the op-
timal exploration policy with ε-greedy tabular Q-learning.
We precisely describe a more general setup in Appendix C.2
and prove that DREAM learns the optimal exploration policy
in Ω(|A|H

H log |A|) times fewer samples than RL2 in this simple
setting with horizon H . Figure 3a empirically validates this

Explore then Execute: Adapting without Rewards via Factorized Meta-Reinforcement Learning

result and we provide intuition below.

In the tabular analog of RL2, the execution Q-values
form targets for the exploration Q-values: Q̂exp(a) ←
V̂ exe(τ exp

a) := maxa′ Q̂
exe(τ exp

a , a′). We drop the fixed ini-
tial state from notation. This creates the local optimum
in Section 4.1. Initially V̂ exe(τ exp

?) is low, as the execu-
tion policy has not learned to achieve reward, even when
given τ exp

? . This causes Q̂exp(a?) to be small and therefore
arg maxa Q̂

exp(a) 6= a? (Figure 3b), which then prevents
V̂ exe(τ exp

?) from learning (Figure 3c) as τ exp
? is roughly sam-

pled only once per |A|ε episodes. This effect is mitigated
only when Q̂exp(a?) becomes higher than Q̂exp(a) for the
other uninformative as (the dot in Figure 3b-d). Then, learn-
ing both the execution and exploration Q-values accelerates,
but getting there takes many samples.

In DREAM, the exploration Q-values regress toward the
decoder q̂: Q̂exp(a) ← log q̂(T | τ exp(a)). This decoder
learns much faster than Q̂exe, since it does not depend on
the execution actions. Consequently, DREAM’s exploration
policy quickly becomes optimal (dot in Figure 3b), which al-
lows quickly learning the execution Q-values and achieving
high reward (Figures 3c and 3d).

6. Experiments
We compare DREAM with 4 state-of-the-art meta-RL al-
gorithms: (i) RL2; (ii) VARIBAD (Zintgraf et al., 2019),
which tries to optimally trades-off between exploration and
exploitation with an auxiliary loss that predicts the dynamics
and rewards from the recurrent state; (iii) IMPORT (Kami-
enny et al., 2020), which alternates between training the
policy conditioned on the problem ID and its recurrent state
and adds an auxiliary loss to keep the recurrent state close
to the problem ID embedding; (iv) PEARL-UB, the ana-
lytically computed expected rewards achieved by the op-
timal problem-specific policy that explores via Thompson
Sampling (TS) with the true posterior problem distribu-
tion, which is an upperbound on the final performance of
PEARL (Rakelly et al., 2019). We report the average returns
achieved by each method in trials with one reward-free ex-
ploration and one execution episode, averaged over 3 seeds
with 1-std error bars (full details in Appendix B).

6.1. Didactic Experiments

We first evaluate on grid world domains illustrated in Fig-
ures 4a and 4b. The state is the agent’s (x, y)-position and a
one-hot indicator of the object at the agent’s position (none,
bus, map, pot, or fridge). The actions are to move up, down,
left, or right; ride bus (if the agent is at a bus, this tele-
ports the agent to another bus of the same color); pickup
ingredients at the fridge; and drop ingredients at the pot.
Episodes consist of 20 timesteps and the agent receives a

reward of −0.1 at each timestep until the instruction is exe-
cuted (full details in Appendix B.1 and qualitative results in
Appendix B.2).

Targeted exploration. We first test if these methods can
minimally explore to find the necessary information with
the family of problems in Figure 4a. There are 4 possible
instructions (green goal locations). Reaching the correct
goal yields +1 reward and ends the episode. The four col-
ored buses each lead to a different green goal location when
ridden; in different problems T , their destinations are set
to 1 of the 4! different permutations. In the distracting bus
version, in different problems, the gray buses lead to dif-
ferent gray locations in the bottom row, which is unhelpful
for solving the task. In the map version, there is a map that
reveals the destinations of the colored buses when touched.

Figures 5 and 6 (left) summarize the results. DREAM learns
to optimally explore and thus receives optimal reward in
both versions: in distracting bus, it rides 3 of the 4 colored
buses, and in map, it visits the map and ends the exploration
episode. During execution episodes, DREAM immediately
reaches the goal by riding the correct colored bus. In con-
trast, IMPORT and RL2 rarely explore buses during explo-
ration and then walk to the goal during execution, which
achieves lower reward, indicative of the coupling problem
(Section 4.1). VARIBAD learns slower, likely from learning
the dynamics in its auxiliary loss, but eventually matches
IMPORT and E-RL2 in ˜3x as many samples. The perfor-
mance of PEARL-UB highlights how Thompson sampling
even with the true posterior and optimal problem-specific
policies does not explore optimally, and only explores one
bus per episode (and never reads the map) in this case.

In distracting bus, we also compare to a version of DREAM
without the information bottleneck (does not minimize the
mutual information I(z; T) between problem IDs and the
encoder Fψ(z | T)). As seen in Figure 5 (left), this ablation
(DREAM (no bottleneck)) wastes its exploration on the gray
unhelpful buses, since they are part of the problem, and
consequently gets lower reward.

Generalization to new problems / instructions. We test
generalization to unseen problems / instructions in a cooking
domain (Figure 4b). The fridges on the right each contain
1 of 7 different (color-coded) ingredients, determined by
the problem. The fridges’ contents are unobserved until the
agent uses the ”pickup” action at the fridge. Instructions
specify placing 2 correct ingredients in the pot in the right
order. We hold out ˜1% of the problems and ˜5% of the
instructions during training.

Figure 6 shows the results on the training (left) and held-out
(middle) problems and instructions. Only DREAM achieves
near-optimal returns on both. During exploration, it in-
vestigates each fridge by using the ”pickup” action, and

Explore then Execute: Adapting without Rewards via Factorized Meta-Reinforcement Learning

0 20 40 60 80 100 120
Number of Actions (| |)

0

50

100

150

200

250

300
Sa

m
pl

es
 (1

e3
) u

nt
il

Op
tim

al
ity (a) Sample Complexity

DREAM
RL2

(| |2log| |)
(| |)

0 500 1000 1500 2000
Number of Samples

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Q
ex

p (
a)

(b) Exploration Q-values

Sub-optimal a
Optimal a

0 500 1000 1500 2000
Number of Samples

0.0

0.2

0.4

0.6

0.8

1.0

Vin
s (

ex
p)

(c) Instruction Q-values

0 500 1000 1500 2000
Number of Samples

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn
s

(d) Returns

Figure 3. (a) Sample complexity of learning the optimal exploration policy as the action space |A| grows (1000 seeds). (b) Exploration
Q-values Q̂exp(a). The policy argmaxa Q̂

exp(a) is optimal after the dot; (c) instruction values given optimal trajectory V̂ exe(τ exp
?); and

(d) returns achieved on a tabular MDP with |A| = 8 (3 seeds).

map

(a) (c)

agent

bus

potential goal

pot

fridge (ingredients)

unhelpful bus stop

(b)

Figure 4. (a) Navigation. (b) Cooking. (c) 3D Visual Navigation: the agent must
read the sign to determine what colored object to go to.

Distracting bus (750K steps) Map (750K steps)

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

R
et

ur
ns

Distracting Bus / Map

Dream

Dream (no bottleneck)

RL2

Import

VariBAD

Pearl-UB

Optimal

Optimal (no exploration)

Figure 5. Navigation results. Only
DREAM optimally explores all the
buses and read the map.

then directly retrieves the correct ingredients during exe-
cution. RL2 only sometimes explores the fridges during
training, leading to lower returns. It overfits to the training
recipes and fails to cook the testing recipes. Training on
the problem ID actually hurts IMPORT compared to RL2.
IMPORT successfully cooks conditioned on the problem ID,
but it fails on many recipes conditioned on its recurrent
state and we observe the recurrent state and problem ID
embeddings become far apart. VARIBAD learns slowly
as before. Thompson sampling (PEARL-UB) cannot learn
optimal exploration as before.

6.2. Sparse-Reward 3D Visual Navigation

We conclude with a more challenging variant of the problem
family introduced by Kamienny et al. (2020) with visual
observations, illustrated in (Figure 4c): There are two prob-
lems, one where the sign on the right says ”blue” and the
other where it says ”red.” The instructions specify whether
the agent should go to the key, block, or ball, and the agent
receives +1 reward for going to the object with the correct
color (specified by the sign) and shape, and -1 reward oth-
erwise. The agent begins the episode on the far side of the
barrier and must walk around the barrier to visually “read”
the sign. The agent’s observations are images and its actions
are to rotate left or right, move forward, or end the episode.

DREAM is the only method that learns to read the sign
and achieve reward (Figure 6 (right)). RL2, IMPORT, and
VARIBAD do not read the sign and consequently stay away

from all the objects, in fear of receiving negative reward.
This occurs even when we allow these methods to receive
an instruction and rewards during the exploration episode
(dashed lines), while DREAM successfully adapts reward-
free. Since the optimal problem-specific policy does not ever
read the sign for any instruction or problem, optimal Thomp-
son sampling exploration (PEARL-UB) does not achieve
maximal reward, even when it receives rewards during ex-
ploration.

7. Related Work
We draw on the long line of work on learning to adapt
to new similar tasks (Schmidhuber, 1987; Thrun & Pratt,
2012; Naik & Mammone, 1992; Bengio et al., 1991; 1992;
Hochreiter et al., 2001; Andrychowicz et al., 2016; San-
toro et al., 2016). Within meta-RL, many works focus on
adapting efficiently to a new task from few samples without
optimizing the sample collection process, via updating the
policy parameters (Finn et al., 2017; Rothfuss et al., 2018;
Agarwal et al., 2019; Yang et al., 2019; Mendonca et al.,
2019), learning a model (Nagabandi et al., 2018; Sæmunds-
son et al., 2018), multi-task learning (Fakoor et al., 2019),
or leveraging demonstrations (Zhou et al., 2019a). Instead,
we focus on problems where targeted exploration is critical
for few-shot adaptation.

More closely related to our work are approaches that specifi-
cally explore to obtain the most informative samples. These

Explore then Execute: Adapting without Rewards via Factorized Meta-Reinforcement Learning

0 250 500 750 1000 1250 1500 1750 2000

Timesteps (1e3)

−2.0

−1.5

−1.0

−0.5

0.0

A
ve

ra
ge

R
et

ur
ns

Cooking (Training Problems / Instructions)

Dream

RL2

Import

VariBAD

Pearl-UB

Optimal

0 250 500 750 1000 1250 1500 1750 2000

Timesteps (1e3)

−2.0

−1.5

−1.0

−0.5

0.0

0.5
Cooking (Unseen Problems / Instructions)

0 500 1000 1500 2000 2500 3000 3500

Timesteps (1e3)

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

3D Visual Navigation

reward-free

with rewards

Figure 6. Left / Middle: Cooking results. Only DREAM achieves optimal reward on both unseen and training problems and instructions.
Right: Visual navigation results. Only DREAM reads the sign and solves the task.

fall into two main categories: end-to-end and decoupled
approaches. The first category jointly learns exploration
and adaptation behaviors end-to-end by training a recurrent
policy to maximize returns (Duan et al., 2016; Wang et al.,
2016a; Mishra et al., 2017; Stadie et al., 2018; Zintgraf et al.,
2019; Humplik et al., 2019; Kamienny et al., 2020; Ritter
et al., 2018). and can represent the optimal policy (Kaelbling
et al., 1998), but, as this work shows, suffer from coupling
between exploration and adaptation. Notably, many of these
works use separate objectives to train the representation
of explored transitions but not for directly improving the
exploration behavior. As a result, the coupling problem
remains. The second category decouples exploration from
adaptation via, e.g., Thompson-sampling (TS) (Thompson,
1933; Rakelly et al., 2019), obtaining exploration trajecto-
ries predictive of dynamics or rewards (Zhou et al., 2019b;
Gurumurthy et al., 2019), or exploration noise (Gupta et al.,
2018). These avoid the problem of coupling in the first
category, but no longer learn optimal exploration. In par-
ticular, TS (Rakelly et al., 2019) explores by guessing the
task and executing a policy for that task, and therefore can-
not represent exploration behaviors that are different from
adaptation (Russo et al., 2017). Predicting the dynamics
(Zhou et al., 2019b; Gurumurthy et al., 2019) is inefficient
when only a small subset of the dynamics are relevant to
solving the task. In contrast, DREAM’s objective is consis-
tent and yields optimal exploration when maximized. Past
work (Gregor et al., 2016; Houthooft et al., 2016; Eysen-
bach et al., 2018; Warde-Farley et al., 2018) also optimizes
mutual information objectives, but not for meta-RL.

IMRL also draws inspiration from prior work. Reward-
free adaptation relates to prior work that considers ignoring
the rewards in the first episodes (Stadie et al., 2018) and
when rewards are unavailable at test time (Yang et al., 2019).
Other work (Nagabandi et al., 2018; Sæmundsson et al.,
2018) assume that the reward function is known to the agent,
like instructions.

8. Conclusion
In summary, we present two contributions. First, we identify
a coupling issue with existing meta-RL works that leads to
poor sample complexity, and propose decoupled objectives
for exploration and execution (DREAM) to address this. Un-
like prior decoupled objectives (Zhou et al., 2019b; Rakelly
et al., 2019; Gupta et al., 2018; Gurumurthy et al., 2019) that
do not learn the optimal exploration strategy, maximizing
our decoupled objectives also maximizes returns. Second,
we propose a new meta-RL setting (IMRL) to model real-
istic situations where the agent receives instructions. The
combination of these two contributions is greater than their
sum: In IMRL, DREAM adapts to new environments and
tasks without ever seeing rewards during meta-testing, solv-
ing challenging problems that prior methods fail to solve.
IMRL also alleviates unnecessary exploration for inferring
the task. We therefore advocate for research on adaptation
to provide the agent instructions like in IMRL. While our
work provides many benefits, we study the setting where
the agent is allowed initial training episodes. Other work
like VARIBAD can, in principle, adapt even without these
initial episodes, which we leave to future work. Future work
could also explore more sophisticated representations for
the problem IDs and instructions, such as natural language.

Reproducibility. Our code is available at https://
github.com/ezliu/dream.

Acknowledgements
This material is based upon work supported by the National
Science Foundation Graduate Research Fellowship under
Grant No. 2018255189. Icons used in this paper were made
by Freepik, ThoseIcons and dDara from www.flaticon.
com.

https://github.com/ezliu/dream
https://github.com/ezliu/dream
www.flaticon.com
www.flaticon.com

Explore then Execute: Adapting without Rewards via Factorized Meta-Reinforcement Learning

References
Agarwal, R., Liang, C., Schuurmans, D., and Norouzi, M.

Learning to generalize from sparse and underspecified
rewards. arXiv preprint arXiv:1902.07198, 2019.

Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W.,
Pfau, D., Schaul, T., Shillingford, B., and Freitas, N. D.
Learning to learn by gradient descent by gradient descent.
In Advances in neural information processing systems,
pp. 3981–3989, 2016.

Barber, D. and Agakov, F. V. The IM algorithm: a vari-
ational approach to information maximization. In Ad-
vances in neural information processing systems, 2003.

Bengio, S., Bengio, Y., Cloutier, J., and Gecsei, J. On the
optimization of a synaptic learning rule. In Preprints Conf.
Optimality in Artificial and Biological Neural Networks,
volume 2, 1992.

Bengio, Y., Bengio, S., and Cloutier, J. Learning a synaptic
learning rule. In IJCNN-91-Seattle International Joint
Conference on Neural Networks, volume 2, pp. 969–969,
1991.

Chevalier-Boisvert, M. Gym-Miniworld environment for
openai gym. https://github.com/maximecb/
gym-miniworld, 2018.

Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever,
I., and Abbeel, P. RL2: Fast reinforcement learn-
ing via slow reinforcement learning. arXiv preprint
arXiv:1611.02779, 2016.

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. Diversity
is all you need: Learning skills without a reward function.
arXiv preprint arXiv:1802.06070, 2018.

Fakoor, R., Chaudhari, P., Soatto, S., and Smola, A. J. Meta-
Q-learning. arXiv preprint arXiv:1910.00125, 2019.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Interna-
tional Conference on Machine Learning (ICML), 2017.

Gregor, K., Rezende, D. J., and Wierstra, D. Variational
intrinsic control. arXiv preprint arXiv:1611.07507, 2016.

Gupta, A., Mendonca, R., Liu, Y., Abbeel, P., and Levine,
S. Meta-reinforcement learning of structured exploration
strategies. In Advances in Neural Information Processing
Systems (NeurIPS), pp. 5302–5311, 2018.

Gurumurthy, S., Kumar, S., and Sycara, K. Mame:
Model-agnostic meta-exploration. arXiv preprint
arXiv:1911.04024, 2019.

Hochreiter, S., Younger, A. S., and Conwell, P. R. Learning
to learn using gradient descent. In International Confer-
ence on Artificial Neural Networks (ICANN), pp. 87–94,
2001.

Houthooft, R., Chen, X., Duan, Y., Schulman, J., Turck,
F. D., and Abbeel, P. Vime: Variational information max-
imizing exploration. In Advances in Neural Information
Processing Systems (NeurIPS), pp. 1109–1117, 2016.

Humplik, J., Galashov, A., Hasenclever, L., Ortega, P. A.,
Teh, Y. W., and Heess, N. Meta reinforcement learning as
task inference. arXiv preprint arXiv:1905.06424, 2019.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. Plan-
ning and acting in partially observable stochastic domains.
Artificial intelligence, 101(1):99–134, 1998.

Kamienny, P., Pirotta, M., Lazaric, A., Lavril, T., Usunier,
N., and Denoyer, L. Learning adaptive exploration strate-
gies in dynamic environments through informed policy
regularization. arXiv preprint arXiv:2005.02934, 2020.

Kapturowski, S., Ostrovski, G., Quan, J., Munos, R., and
Dabney, W. Recurrent experience replay in distributed
reinforcement learning. In International Conference on
Learning Representations (ICLR), 2019.

Kingma, D. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Mendonca, R., Gupta, A., Kralev, R., Abbeel, P., Levine, S.,
and Finn, C. Guided meta-policy search. In Advances
in Neural Information Processing Systems (NeurIPS), pp.
9653–9664, 2019.

Mishra, N., Rohaninejad, M., Chen, X., and Abbeel, P.
A simple neural attentive meta-learner. arXiv preprint
arXiv:1707.03141, 2017.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529–533, 2015.

Nagabandi, A., Clavera, I., Liu, S., Fearing, R. S., Abbeel,
P., Levine, S., and Finn, C. Learning to adapt in dynamic,
real-world environments through meta-reinforcement
learning. arXiv preprint arXiv:1803.11347, 2018.

Naik, D. K. and Mammone, R. J. Meta-neural networks that
learn by learning. In [Proceedings 1992] IJCNN Interna-
tional Joint Conference on Neural Networks, volume 1,
pp. 437–442, 1992.

Rakelly, K., Zhou, A., Quillen, D., Finn, C., and Levine,
S. Efficient off-policy meta-reinforcement learning

https://github.com/maximecb/gym-miniworld
https://github.com/maximecb/gym-miniworld

Explore then Execute: Adapting without Rewards via Factorized Meta-Reinforcement Learning

via probabilistic context variables. arXiv preprint
arXiv:1903.08254, 2019.

Ritter, S., Wang, J. X., Kurth-Nelson, Z., Jayakumar, S. M.,
Blundell, C., Pascanu, R., and Botvinick, M. Been there,
done that: Meta-learning with episodic recall. arXiv
preprint arXiv:1805.09692, 2018.

Rothfuss, J., Lee, D., Clavera, I., Asfour, T., and Abbeel,
P. Promp: Proximal meta-policy search. arXiv preprint
arXiv:1810.06784, 2018.

Russo, D., Roy, B. V., Kazerouni, A., Osband, I., and Wen,
Z. A tutorial on thompson sampling. arXiv preprint
arXiv:1707.02038, 2017.

Sæmundsson, S., Hofmann, K., and Deisenroth, M. P. Meta
reinforcement learning with latent variable gaussian pro-
cesses. arXiv preprint arXiv:1803.07551, 2018.

Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., and
Lillicrap, T. One-shot learning with memory-augmented
neural networks. arXiv preprint arXiv:1605.06065, 2016.

Schmidhuber, J. Evolutionary principles in self-referential
learning, or on learning how to learn: the meta-meta-
... hook. PhD thesis, Technische Universität München,
1987.

Stadie, B., Yang, G., Houthooft, R., Chen, P., Duan, Y.,
Wu, Y., Abbeel, P., and Sutskever, I. The importance of
sampling inmeta-reinforcement learning. In Advances in
Neural Information Processing Systems (NeurIPS), pp.
9280–9290, 2018.

Thompson, W. R. On the likelihood that one unknown
probability exceeds another in view of the evidence of
two samples. Biometrika, 25(3):285–294, 1933.

Thrun, S. and Pratt, L. Learning to learn. Springer Science
& Business Media Springer Science & Business Media,
2012.

van der Maaten, L. and Hinton, G. Visualizing data using
t-SNE. Journal of machine learning research, 9(0):2579–
2605, 2008.

van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double Q-learning. In Association
for the Advancement of Artificial Intelligence (AAAI),
volume 16, pp. 2094–2100, 2016.

Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H.,
Leibo, J. Z., Munos, R., Blundell, C., Kumaran, D., and
Botvinick, M. Learning to reinforcement learn. arXiv
preprint arXiv:1611.05763, 2016a.

Wang, Z., Schaul, T., Hessel, M., Hasselt, H. V., Lanctot,
M., and Freitas, N. D. Dueling network architectures for
deep reinforcement learning. In International Conference
on Machine Learning (ICML), 2016b.

Warde-Farley, D., de Wiele, T. V., Kulkarni, T., Ionescu, C.,
Hansen, S., and Mnih, V. Unsupervised control through
non-parametric discriminative rewards. arXiv preprint
arXiv:1811.11359, 2018.

Yang, Y., Caluwaerts, K., Iscen, A., Tan, J., and Finn, C.
Norml: No-reward meta learning. In Proceedings of the
18th International Conference on Autonomous Agents
and MultiAgent Systems, pp. 323–331, 2019.

Zhou, A., Jang, E., Kappler, D., Herzog, A., Khansari, M.,
Wohlhart, P., Bai, Y., Kalakrishnan, M., Levine, S., and
Finn, C. Watch, try, learn: Meta-learning from demon-
strations and reward. arXiv preprint arXiv:1906.03352,
2019a.

Zhou, W., Pinto, L., and Gupta, A. Environment probing
interaction policies. arXiv preprint arXiv:1907.11740,
2019b.

Zintgraf, L., Shiarlis, K., Igl, M., Schulze, S., Gal, Y., Hof-
mann, K., and Whiteson, S. Varibad: A very good method
for bayes-adaptive deep RL via meta-learning. arXiv
preprint arXiv:1910.08348, 2019.

Explore then Execute: Adapting without Rewards via Factorized Meta-Reinforcement Learning

A. DREAM Training Details
Algorithm 1 summarizes a practical algorithm for training
DREAM, parametrizing the policies as deep dueling double-
Q networks (Wang et al., 2016b; van Hasselt et al., 2016),
with exploration Q-values Q̂exp(s, τ exp, a;φ) parametrized
by φ (and target network parameters φ′) and execution Q-
values Q̂exe(s, i, z, a; θ) parametrized by θ (and target net-
work parameters θ′). We train on trials with one exploration
and one execution episode, but can test on arbitrarily many
execution episodes, as the execution policy acts on each
episode independently (i.e. it does not maintain a hidden
state across episodes). Using the choices for Fψ and qω in
Section 4.3, training proceeds as follows.

We first sample a new problem for the trial and roll-out the
exploration policy, adding the roll-out to a replay buffer
(lines 7-9). Then, we sample an instruction and roll-out
the execution policy, adding the roll-out to a replay buffer
(lines 10-13). We train the execution policy on both stochas-
tic encodings of the problem ID N (fψ(T), ρ2I) and on
encodings of the exploration trajectory gω(τ exp).

Next, we sample from the replay buffers and update the
parameters. First, we sample from the exploration replay
buffer and perform a normal DDQN update on the explo-
ration Q-value parameters φ using rewards computed from
the decoder (lines 14-16). Concretely, we take the following
gradient step, regressing toward the target network:

∇φ
∥∥∥Q̂exp(st, τ

exp
:t−1, at;φ)− target

∥∥∥2
2

where target = rexp
t + γQ̂exp(st+1, [τ

exp
:t−1; at; st], aDDQN;φ′),

and aDDQN = arg max
a

Q̂exp(st+1, [τ
exp
:t−1; at; st];φ).

We perform a similar update with the execution Q-value
parameters (lines 17-19). We sample from the execution
replay buffer and perform two DDQN updates, one from
the encodings of the exploration trajectory and one from
the encodings of the problem ID. These take the following
form:

∇θ,ω
∥∥∥Q̂exe(s, i, gω(τ exp), a; θ)− targettraj

∥∥∥2
2

and ∇θ,ψ
∥∥∥Q̂exe(s, i, fψ(T), a; θ)− targetprob

∥∥∥2
2
,

where targettraj = r + Q̂exe(s′, i, gω′(τ exp), atraj; θ
′)

atraj = arg max
a

Q̂exe(s′, i, gω(τ exp), a; θ),

and targetprob = r + Q̂exe(s′, i, fψ′(T), aprob; θ′)

aprob = arg max
a

Q̂exe(s′, i, fψ(T), a; θ).

Finally, from the same execution replay buffer samples,
we also update the problem ID embedder to enforce the

information bottleneck (line 20) and the decoder to approx-
imate the true conditional distribution (line 21). Since the
magnitude ‖fψ(T)‖22 partially determines the scale of the
reward, we add a hyperparameter K and only minimize the
magnitude when it is larger than K. As is usual with deep
Q-learning, instead of sampling from the replay buffers and
updating after each episode, we sample and perform all of
these updates every 4 timesteps. We periodically update the
target networks (lines 22-23).

B. Experiment Details
B.1. Tasks

Distracting bus / map. Riding each of the four colored
buses teleports the agent to one of the green goal locations.
In different problems, the destinations of the colored buses
change. Additionally, in the distracting bus domain, the
problem also encodes the x-coordinates of the destinations
of the gray buses in the bottom gray row. Overall, in the
map domain, the problem T is a one-hot representation rep-
resenting which of the 4! permutations of the four green
goal locations the colored buses map to. The states include
an extra dimension, which is set to 0 when the agent is not
at the map, and is set to this one-hot value T when the agent
is at the map. In the distracting bus domain, the problem is
represented as a 5-tuple, where the first index is the same
as the map domain, and the remaining four indices describe
the x-coordinates of the gray buses. Figure 7 displays three
such examples. This figure also shows the optimal explo-
ration policies learned by DREAM. When we remove the
information bottleneck from DREAM, as in Figure 5, the
exploration begins to visit the gray buses, because these are
part of the problem representation, even though this results
in lower execution returns.

Cooking. In different problems, the (color-coded) fridges
contain 1 of 7 different ingredients. The ingredients in
each fridge are unknown until the goes to the fridge and
uses the pickup action. Figure 8 displays three example
problems and the optimal exploration learned by DREAM.
The representation of the problem T is a triple, where the
i-th index is an indicator of what ingredient is in the i-th
fridge.

Each instruction i corresponds to a recipe of placing the two
correct ingredients in the pot in the right order. We represent
this as a tuple, where the first index is an indicator of the first
ingredient and the second index is the indicator of the second
ingredient. In a given problem, we only sample recipes
(instructions) involving the ingredients actually present in
that problem. For test time, we hold out a randomly chosen
1% of the 73 different problems and 3 of the 72 different
instructions: (3, 6), (7, 1), and (5, 4).

Explore then Execute: Adapting without Rewards via Factorized Meta-Reinforcement Learning

Algorithm 1 DREAM DDQN
1: Initialize execution replay buffer Bexe = {} and exploration replay buffer Bexp = {}
2: Initialize execution Q-value Q̂exe parameters θ and target network parameters θ′

3: Initialize exploration Q-value Q̂exp parameters φ and target network parameters φ′

4: Initialize problem ID embedder fψ parameters ψ and target parameters ψ′

5: Initialize trajectory embedder gω parameters ω and target parameters ω′

6: for trial = 1 to max trials do
7: Sample problem T ∼ p(T), defining MDP 〈S,A,RT , TT 〉
8: Roll-out ε-greedy exploration policy Q̂exp(st, τ

exp
:t , at;φ), producing trajectory τ exp = (s0, a0, . . . , sT).

9: Add tuples to the exploration replay buffer Bexp = Bexp ∪ {(st, at, st+1, T , τ exp)}t.

10: Sample instruction i ∼ p(i).
11: Randomly select between embedding z ∼ N (fψ(T), ρ2I) and z = gω(τ

exp).
12: Roll-out ε-greedy execution policy Q̂exe(st, i, z, at; θ), producing trajectory (s0, a0, r0, . . .) with rt = RT (st+1, i).
13: Add tuples to the execution replay buffer Bexe = Bexe ∪ {(st, at, rt, st+1, i, T , τ exp)}t.

14: Sample batches of (st, at, st+1, T , τ exp) ∼ Bexp from exploration replay buffer.
15: Compute reward rexp

t = ‖fψ(T)− gω(τ exp
:t)‖22 −

∥∥fψ(T)− gω(τ exp
:t−1)

∥∥2
2
− c (Equation 5).

16: Optimize φ with DDQN update with tuple (st, at, r
exp
t , st+1)

17: Sample batches of (s, a, r, s′, i, T , τ exp) ∼ Bexe from execution replay buffer.
18: Optimize θ and ω with DDQN update with tuple ((s, i, τ exp), a, r, (s′, i, τ exp))
19: Optimize θ and ψ with DDQN update with tuple ((s, i, T), a, r, (s′, i, T))
20: Optimize ψ on∇ψmin(‖fψ(T)‖22 ,K) (Equation 3)
21: Optimize ω on∇ω

∑
t ‖fψ(T)− gω(τ

exp
:t)‖22 (Equation 4)

22: if trial ≡ 0 (mod target freq) then
23: Update target parameters φ′ = φ, θ′ = θ, ψ′ = ψ, ω′ = ω
24: end if
25: end for

1
2

3

4

56
7

8

9

10

11

1
2

4

7

3

5

6

8

9
11

agent

bus potential goal

map unhelpful bus stop

ride bus action end episode action

position after ride bus action

1 2 3
4

(a) (b) (c)

Figure 7. Examples of the distracting bus and map problems. (a) Example of the exploration policy DREAM learns in distracting bus.
It infers the destinations of all colored buses by riding 3 of the 4 colored buses. (b) Example of the exploration policy DREAM (no
bottleneck) learns in distracting bus. It rides the gray buses (whose destinations are fixed throughout a trial) because they are part of the
problem, but this does not help it achieve high returns. (c) Example of the exploration DREAM learns in map. It learns the destinations of
all colored buses by visiting the map.

Explore then Execute: Adapting without Rewards via Factorized Meta-Reinforcement Learning

pickup action

fridge (ingredients)agent

pot

(a)

3

1 2

5
4

6 (b) (c)

Figure 8. Example of cooking problems. (a) Example of the ex-
ploration policy DREAM learns. It learns the fridges’ contents by
going to each fridge and using the pickup action.

We use a shaped reward function AT . The agent receives
a per timestep penalty of −0.1 reward and receives +0.25
reward for completing each of the four steps: (i) picking up
the first ingredient specified by the instruction; (ii) placing
the first ingredient in the pot; (iii) picking up the second
ingredient specified by the instruction; and (iv) placing the
second ingredient in the pot. To prevent the agent from
gaming the reward function, e.g., by repeatedly picking up
the first ingredient, dropping the first ingredient anywhere
but in the pot yields a penalty of−0.25 reward, and similarly
for all steps.

Sparse-reward 3D visual navigation. We implement
this domain in Gym MiniWorld (Chevalier-Boisvert, 2018),
where the agent’s observations are 80× 60× 3 RGB arrays.
There are two problems T = 0 (the sign says “blue”) and
T = 1 (the sign says “red”). There are three instructions
i = 0, 1, 2 corrsponding to picking up the ball, key, and
box, respectively. The reward function AT (s, i) is +1 for
picking up the correct colored object (according to T) and
the correct type of object (according to the instruction) and
−1 for picking up an object of the incorrect color or type.
Otherwise, the reward is 0. On each episode, the agent be-
gins at a random location on the other side of the barrier
from the sign.

B.2. Additional Results

Distracting bus / map. Figures 7a, 7b, and 7c show the
exploration policy DREAM learns on the distracting bus and
map domains. With the information bottleneck, DREAM
optimally explores by riding 3 of the 4 colored buses and
inferring the destination of the last colored bus (Figure 7a).
Without the information bottleneck, DREAM explores the
unhelpful gray buses and runs out of time to explore all
of the colored buses, leading to lower reward (Figure 7b).
In the map domain, DREAM optimally explores by visit-
ing the map and terminating the exploration episode. In
contrast, the other methods (RL2, IMPORT, VARIBAD)
rarely visit the colored buses or map during exploration

and consequently walk to their destination during execution,
which requires more timesteps and therefore receives lower
returns.

In Figure 9, we additionally visualize the exploration trajec-
tory encodings gω(τ exp) and problem ID encodings fψ(T)
that DREAM learns in the distracting bus domain by apply-
ing t-SNE (van der Maaten & Hinton, 2008). We visualize
the encodings of all possible problem IDs as dots. They
naturally cluster into 4! = 24 clusters, where the problems
within each cluster differ only in the destinations of the gray
distracting buses, and not the colored buses. Problems in
the support of the true posterior p(T | τ exp) are drawn in
green, while problems outside the support (e.g., a problem
that specifies that riding the green bus goes to location (3, 3)
when it has already been observed in τ exp that riding the
orange bus goes to location (3, 3)) are drawn in red. We
also plot the encoding of the exploration trajectory τ exp so
far as a blue cross and the mean of the green clusters as a
black square. We find that the encoding of the exploration
trajectory gω(τ exp) tracks the mean of the green clusters
until the end of the exploration episode, when only one
cluster remains, and the destinations of all the colored buses
has been discovered. Intuitively, this captures uncertainty
in what the potential problem ID may be. More precisely,
when the decoder is a Gaussian, placing gω(τ exp) at the
center of the encodings of problems in the support exactly
minimizes Equation 4.

Cooking. Figure 8a shows the exploration policy DREAM
learns on the cooking domain, which visits each of the
fridges and investigates the contents with the ”pickup” ac-
tion. In contrast, the other methods rarely visit the fridges
during exploration, and instead determine the locations
of the ingredients during execution, which requires more
timesteps and therefore receives lower returns.

B.3. Model Architecture

In this section, we describe the model architectures used in
our experiments. Where possible, we use the same model
architecture for all methods: DREAM, RL2, IMPORT, and
VARIBAD.

DREAM For the decoder gω(τ exp = (s0, a0, s1, . . . , sT)),
we embed each transition (st, at, st+1) of the exploration
trajectory τ exp as follows. We apply a state learned embed-
ding function to both states eω(st) and eω(st+1) and embed
the action eω(at) by applying a learned embedding matrix
with output dimension 32. Then we apply two linear lay-
ers with output dimension 128 and 64 respectively, using
ReLU activations to obtain the embedding for each transi-
tion. Given embeddings for each transition, we embed the
entire trajectory by passing an LSTM with output dimension
128 on top of the transition embeddings, followed by two

Explore then Execute: Adapting without Rewards via Factorized Meta-Reinforcement Learning

ride orange bus ride green busride blue bus

Figure 9. DREAM’s learned encodings of the exploration trajectory and problems visualized with t-SNE (van der Maaten & Hinton,
2008).

linear layers of output dimension 128 and 64 with ReLU
activations.

For the execution policy Q-values Q̂exe
θ (a | s, i, z), we either

choose z to be the decoder embedding of the exploration
trajectory gω(τ exp) of to be an embedding of the problem
ID eθ(T), where we always use the exploration trajectory
embedding gω(τ exp) at meta-test time. We embed the state
and instructions with learned embedding functions e(s) and
eθ(i) respectively. Then we apply a linear layer of output
dimension 64 to the concatenation of [e(s); eθ(i); z] with a
ReLU activation. Finally, we apply two linear layer heads of
output dimension 1 and |A| respectively to form estimates
of the value and advantage functions, using the dueling Q-
network parametrization. To obtain Q-values, we add the
value function to the advantage function, subtracting the
mean of the advantages.

For the exploration policy Q-values Q̂exp
φ (at | st, τ exp

:t), we
embed the past states, actions, and rewards recurrently with
an LSTM of output dimension 64. We embed each state,
action, and reward with learned embedding functions eφ(s),
eφ(a), eφ(r) respectively, where the actions are embedded
with a learned embedding matrix of output dimension 16 and
the rewards are embedded with a linear layer with output
dimension 16. Then, we pass a linear layer with output
dimension 64 and ReLU activations over their concatenation
[eφ(st); eφ(at); eφ(rt)] at each timestep t. We then pass an
LSTM with output dimension 64 over this, setting the initial
hidden state to all 0. We apply two linear layer heads to
obtain value and advantage estimates as above.

RL2 RL2 learns a policy π(at | st, i, τ:t) producing ac-
tions at given the state st, instructions i and history τ:t. We
parametrize this dueling double Q-networks, learning Q-
values Q̂(st, i, τ:t, at). We use an identical architecture to
DREAM’s exploration policy Q-values, except we also em-

bed the instructions and episode terminations. Concretely,
we learn embedding functions on the state e(s), action e(a),
rewards e(r), episode terminations e(d), and instructions
e(i) and pass a linear layer of output dimension 64 over
the concatenation of [e(st); e(at); e(rt); e(dt); e(it)] with a
ReLU activation at each timestep t. Then, we pass an LSTM
with output dimension 64 over this. We embed actions and
episode terminations with a learned embedding matrix with
output dimension 16 and embed rewards with a learned
linear layer with output dimension 16. As for all policies,
we apply two final linear layer heads to obtain value and
advantage estimates.

IMPORT IMPORT learns a policy π(at | st, i, z) produc-
ing actions at given the state st, instructions i and embed-
ding z of either the problem T or the history τ:t We also
parametrize this dueling double Q-networks, learning Q-
values Q̂(st, i, z, at), using a similar architecture to RL2.
We embed the history τ:t and instruction i to obtain e(τ:t)
identically as RL2 above. We embed the problem T and
current state and instructions (st, i) with learned embedding
functions e(T), e(st), and e(i) respectively. Then we alter-
nate meta-training trials between choosing z = e(T) and
z = e(τ:t). We apply a linear layer of output dimension 64
to the concatenation [e(st); e(i); z] with ReLU activations
and then apply two linear layer heads to obtain value and
advantage estimates.

VARIBAD VARIBAD also learns a policy π(at |
st, i, τ:t) producing actions at given the state st, instruc-
tions i and history τ:t. We also parametrize this dueling
double Q-networks, learning Q-values Q̂(st, i, z, at), using
a similar architecture to above. To embed the history and in-
structions, VARIBAD learns an encoder enc(z | τ:t), which
we parametrize by embedding the history τ:t using the same
architecture as RL2 to obtain e(τ:t). Then we apply a linear

Explore then Execute: Adapting without Rewards via Factorized Meta-Reinforcement Learning

layer with output dimension to obtain a mean µ. Finally,
we sample z from N (µ, ν2I), where ν2 = 0.00001. We
also tried learning the variance instead of fixing it to ν2I
by applying a second linear head to the e(τ:t), but found
no change in performance, so stuck with the simpler fixed
variance approach. Given z sampled from the encoder, we
embed the current state st with a learned encoder e(st) and
apply a linear layer of output dimension 64 to the concatena-
tion [e(st); e(i); z]. Then, we apply two linear layer heads
to obtain value and advantage estimates.

VARIBAD also learns a state decoder T̂ (s′ | a, s, z) and
reward decoder R̂(s′ | a, s, z) for its auxiliary losses, where
z is sampled from the decoder. For both of these, we em-
bed the action e(a) with an embedding matrix of output
dimension 32 and learn a state embedder e(s). Then we
apply two linear layers with output dimension 128 to the
concatenation [e(s); e(a); z]. Finally, we apply two linear
heads, one for the state decoder and one for the reward de-
coder and take the mean-squared error. In the 3D visual
navigation domain, we remove the state decoder, because
the state is too high-dimensional to predict. Note that Zint-
graf et al. (2019) found better results when removing the
state decoder in all experiments. We also tried to remove
the state decoder in the grid world experiments, but found
better performance when keeping the state decoder. We also
found that VARIBAD performed better without the KL loss
term, so we excluded that for our final experiments.

State, instruction, and problem ID embeddings. For
all learned embeddings of the state, instruction and problem
ID embeddings, we embed each dimension independently
with an embedding matrix of dimension 32. Then we con-
catenate the per-dimension embeddings and apply two linear
layers with output dimension 256 and 64 with ReLU activa-
tions.

In the 3D visual navigation task, we use the architecture rec-
ommended by Chevalier-Boisvert (2018) for the learned
state embeddings instead of the embedding scheme de-
scribed above. We apply 3 CNN layers each with 32 output
layers and stride length 2 and with kernel sizes of 5, 5, and
4 respectively. We apply ReLU activations in between the
3 CNN layers and apply a final linear layer to the flattened
output of output dimension 128.

B.4. Hyperparameters

In this section, we detail the hyperparameters used in our
experiments. Where possible, we used the default DQN hy-
perparameter values from Mnih et al. (2015). and shared the
same hyperparameter values across all methods for fairness.
We optimize all methods with the Adam optimizer (Kingma
& Ba, 2014). Table 1 summarizes the shared hyperparam-
eters used by all methods and we detail any differences in

Hyperparameter Value

Discount Factor γ 0.99
Test-time ε 0

Learning Rate 0.0001
Replay buffer batch size 32

Target parameters syncing frequency 5000 updates
Update frequency 4 steps

Grad norm clipping 10

Table 1. Hyperparameters shared across all methods: DREAM,
RL2, IMPORT, and VARIBAD.

hyperparameters between the methods below.

All methods use a linear decaying ε schedule for ε-greedy
exploration. For RL2, IMPORT, and VARIBAD, we decay ε
from 1 to 0.01 over 500000 steps. For DREAM, we split the
decaying between the exploration and execution policies.
We decay each policy’s ε from 1 to 0.01 over 250000 steps.

We train the recurrent policies (DREAM’s exploration policy,
RL2, IMPORT, and VARIBAD) with a simplified version
of the methods in Kapturowski et al. (2019) by storing a
replay buffer with up to 16000 sequences of 50 consecutive
timesteps. We decrease the maximum size from 16000 to
10000 for the 3D visual navigation experiments in order to
fit inside a single NVIDIA GeForce RTX 2080 GPU. For
DREAM’s execution policy, the replay buffer stores up to
100K experiences (60K for 3D visual navigation).

For DREAM, we additionally use per timestep exploration
reward penalty c = 0.01, decoder and stochastic encoder
variance ρ2 = 0.1, and information bottleneck weight λ =
1.

C. Analysis
C.1. Consistency

We restate the consistency result of DREAM (Section 5.1)
and prove it below.

Proposition 1. Let V ∗(i; T) be the maximum expected re-
turns achievable by any execution policy with access to T
on instruction i and problem T , i.e., with complete informa-
tion. Let πexe

? , πexp
? , F? and q?(z | τ exp) be the optimizers of

the DREAM objective. Then for large enough T (the length
of the exploration episode) and M (number of exploration
episodes), and expressive enough function classes,

ET ∼p(T),i∼pT (i),τ exp∼πexp
? ,z∼q?(z|τ exp)

[
V π

exe
? (i, z; T)

]
= ET ∼p(T),i∼pT (i) [V ∗(i; T)] .

Proof. Recall that πexe
? and F?(z | T) are optimized with

an information bottleneck according to Equation 2. Note
that if πexe

? is optimized over an expressive enough function

Explore then Execute: Adapting without Rewards via Factorized Meta-Reinforcement Learning

class and λ approaches 0, then πexe
? achieves the desired

expected returns conditioned on the stochastic encoding of
the problem F?(z | T) (i.e., has complete information):

Ei∼pT (i),z∼F?(z|T)

[
V π

exe
? (i, z; T)

]
= ET ∼p(T),i∼pT (i) [V ∗(i; T)] ,

where V π
exe
? (i, z; T) is the expected returns of πexe

? on prob-
lem T given instruction i and embedding z. Therefore, it
suffices to show that the distribution over z from the decoder
q?(z | τ exp) is equal to the distribution from the encoder
F?(z | T) for all exploration trajectories in the support of
πexp(τ exp | T)1, for each problem T . Then,

ET ∼p(T),i∼pT (i),τ exp∼πexp
? ,z∼q?(z|τ exp)

[
V π

exe
? (i, z; T)

]
= Ei∼pT (i),z∼F?(z|T)

[
V π

exe
? (i, z; T)

]
= ET ∼p(T),i∼pT (i) [V ∗(i; T)]

as desired. We show that this occurs as follows.

Given stochastic encoder F?(z | T), exploration policy πexp
?

maximizes I(τ exp; z) = H(z) −H(z | τ exp) (Equation 4)
by assumption. Since only H(z | τ exp) depends on πexp

? , the
exploration policy outputs trajectories that minimize

H(z | τ exp)

= ET ∼p(T)

[
Eτ exp∼πexp(τ exp∼T)

[
Ez∼F?(z|T) [− log p(z | τ exp)]

]]
= ET ∼p(T)

[
Eτ exp∼πexp(τ exp∼T) [H(F?(z | T), p(z | τ exp))]

]
,

where p(z | τ exp) is the true conditional distribution and
H(F?(z | T), p(z | τ exp)) is the cross-entropy. The cross-
entropy is minimized when p(z | τ exp) = F?(z | T), which
can be achieved with enough exploration episodes M and
long enough exploration trajectories T (by visiting each
transition sufficiently many times). Optimized over an ex-
pressive enough function class, q?(z | τ exp) equals the true
conditional distribution p(z | τ exp) at the optimum of Equa-
tion 4, which equals F?(z | T) as desired.

C.2. Tabular Example

We first formally detail a more general form of the simple
tabular example in Section 5.2, where episodes are hori-
zon H rather than 1-step bandit problems. Then we prove
sample complexity bounds for RL2 and DREAM, with ε-
greedy tabular Q-learning with ε = 1, i.e., uniform random
exploration.

Setting. We construct this horizonH setting so that taking
a sequence of H actions a? (instead of a single action as

1We slightly abuse notation to use πexp(τ exp | T) to denote the
distribution of exploration trajectories τ exp from rolling out πexp

on problem T .

before) in the exploration episode leads to a trajectory τ exp
?

that reveals the problem T ; all other action sequences a lead
to a trajectory τ exp

a that reveals no information. Similarly,
the problem T identifies a unique sequence of H actions
aT that receives reward 1 during execution, while all other
action sequences receive reward 0. Again, taking the action
sequence a? during exploration is therefore necessary and
sufficient to obtain optimal reward 1 during execution.

We formally construct this setting by considering a fam-
ily of episodic MDPs 〈S,A,RT , TT 〉 parametrized by the
problem ID T ∈ M, where:

• Each execution and exploration episode is horizon H .

• The action space A consists of A discrete actions
{1, 2, . . . , A}.

• The space of problemsM = {1, 2, . . . , |A|H} and the
distribution p(T) is uniform.

To reveal the problem via the optimal action sequence a?
and to allow aT to uniquely receive reward, we construct
the state space and deterministic dynamics as follows.

• States s ∈ S are (H + 2)-dimensional and the deter-
ministic dynamics are constructed so the first index
represents the current timestep t, the middle H indices
represent the history of actions taken, and the last index
reveals the problem ID if a? is taken. The initial state
is the zero vector s0 = 0 and we denote the state at the
t-th timestep st as (t, a0, a1, . . . , at−1, 0, . . . , 0, 0).

• The optimal exploration action sequence a? is set to
be taking action 1 for H timesteps. In problem T tak-
ing action aH−1 = 1 at state sH−1 = (H − 1, a0 =
1, . . . , aH−2 = 1, 0, 0) (i.e., taking the entire action
sequence a?) transitions to the state sH = (H, a0 =
1, . . . , aH−2 = 1, aH−1 = 1, T), revealing the prob-
lem T .

• The action sequence aT identified by the problem
T is set as the problem T in base |A|: i.e., aT
is a sequence of H actions (a0, a1, . . . , aH−1) with∑H−1
t=0 at|A|t = T . In problem T with aT =

(a0, a1, . . . , aH−1), taking action aH−1 at timestep
H−1 at state sH−1 = (H−1, a0, a1, . . . , aH−2, 0, 0)
(i.e., taking the entire action sequence aT) yields
RT (sH−1, aH−1) = 1. Reward is 0 everywhere else:
i.e.,RT (s, a) = 0 for all other states s and actions a.

• With these dynamics, the exploration trajectory τ exp
a =

(s0, a0, r0, . . . , sH) is uniquely identified by the action
sequence a and the problem T if revealed in sH . We
therefore write τ exp

a = (a, T) for when a = a? reveals
the problem T , and τ exp

a = (a, 0), otherwise.

Explore then Execute: Adapting without Rewards via Factorized Meta-Reinforcement Learning

Uniform random exploration. In this general setting, we
analyze the number of samples required to learn the optimal
exploration policy with RL2 and DREAM via ε-greedy tabu-
lar Q-learning. We formally analyze the simpler case where
ε = 1, i.e., uniform random exploration, but empirically
find that DREAM only learns faster with smaller ε, and RL2

only learns slower.

In this particular tabular example with deterministic dy-
namics that encode the entire action history and rewards,
learning a per timestep Q-value is equivalent to learning a
Q-value for the entire trajectory. Hence, we denote explo-
ration Q-values Q̂exp(a) estimating the returns from taking
the entire sequence of H actions a at the initial state s0
and exeuction Q-values Q̂exe(τ exp,a) estimating the returns
from taking the entire sequence of H actions a at the initial
state s0 given the exploration trajectory τ exp. We drop s0
from notation, since it is fixed.

Recall that RL2 learns exploration Q-values Q̂exp by re-
gressing toward the execution Q-values Q̂exe. We esti-
mate the execution Q-values Q̂exe(τ exp,a) as the sample
mean of returns from taking actions a given the explo-
ration trajectory τ exp and estimate the exploration Q-values
Q̂exp(a) as the sample mean of the targets. More pre-
cisely, for action sequences a 6= a?, the resulting explo-
ration trajectory τ exp

a is deterministically (a, 0), so we set
Q̂exp(a) = V̂ exe(τ exp

a) = maxa′ Q̂exe(τ exp
a ,a′). For a?, the

resulting exploration trajectory τ exp
a? may be any of (a?, T)

for T ∈ M, so we set Q̂exp(a?) as the empirical mean of
V̂ exe(τ exp

a?) of observed τ exp
a? .

Recall that DREAM learns exploration Q-values Q̂exp by
regressing toward the learned decoder log q̂(T | τ exp

a). We
estimate the decoder q̂(T | τ exp

a) as the empirical counts
of (T , τ exp

a) divided by the empirical counts of τ exp
a and

similarly estimate the Q-values as the empirical mean of
log q̂(T | τ exp

a). We denote the exploration Q-values learned
after t timesteps as Q̂exp

t , and similarly denote the estimated
decoder after t timesteps as q̂t.

Given this setup, we are ready to state the formal sample
complexity results. Intuitively, learning the execution Q-
values for RL2 is slow, because, in problem T , it involves
observing the optimal exploration trajectory from taking
actions a? and then observing the corresponding execu-
tion actions aT , which only jointly happens roughly once
per |A|2H samples. Since RL2 regresses the exploration
Q-values toward the execution Q-values, the exploration
Q-values are also slow to learn. In contrast, learning the
decoder q̂(T | τ exp

a) is much faster, as it is independent
of the execution actions, and in particular, already learns
the correct value from a single sample of a?. We formal-
ize this intuition in the following proposition, which shows
that DREAM learns in a factor of at least |A|H |M| fewer
samples than RL2.

Proposition 1. Let T be the number of samples
from uniform random exploration such that the greedy-
exploration policy is guaranteed to be optimal (i.e.,
arg maxa Q̂

exp
t (a) = a?) for all t ≥ T . If Q̂exp is learned

with DREAM, the expected value of T is O(|A|H log |A|H).
If Q̂exp is learned with RL2, the expected value of T is
Ω(|A|2H |M| log |A|H).

Proof. For DREAM, Q̂exp
T (a?) > Q̂exp

T (a) for all a 6= a? if
log q̂T (T | (a?, T)) > log q̂T (T | (a, 0)) for all T and a 6=
a?. For all t ≥ T , Q̂exp

t is guaranteed to be optimal, since no
sequence of samples will cause log q̂t(T | (a?, T)) = 0 ≤
log q̂t(T | (a, 0)) for any a 6= a?. This occurs once we’ve
observed (T , (a, 0)) for two distinct T for each a 6= a?
and we’ve observed (T , (a?, T)) for at least one T . We
can compute an upperbound on the expected number of
samples required to observe (T , τ exp

a) for two distinct T for
each action sequence a by casting this as a coupon collector
problem, where each pair (T , τ exp

a) is a coupon. There are
2|A|H total coupons to collect. This yields that the expected
number of samples is O(|A|H log |A|H).

For RL2, the exploration policy is optimal for all timesteps
t ≥ T for some T only if the instruction values V̂ exe

T (τ exp =
(a?, T)) = 1 for all T inM. Otherwise, there is a small,
but non-zero probability that V̂ exe

t (τ exp = (a, 0)) will be
greater at some t > T . For the instruction values to be
optimal at all optimal exploration trajectories V̂ exe

T (τ exp =
(a?, T)) = 1 for all T ∈ M, we must jointly observe
exploration trajectory τ exp = (a?, T) and corresponding
action sequence aT for each problem T ∈ M. We can
lowerbound the expecected number of samples required to
observe this by casting this as a coupon collector problem,
where each pair (τ exp = (a?, T),aT) is a coupon. There
are |M| · |A|H unique coupons to collect and collecting any
coupon only occurs with probability 1

|A|H in each episode.
This yields that the expected number of samples is Ω(|A|2H ·
|M| · log |A|H).

