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Abstract

While large language models based on the transformer architecture have demon-1

strated remarkable in-context learning (ICL) capabilities, understandings of such2

capabilities are still in an early stage, where existing theory and mechanistic un-3

derstanding focus mostly on simple scenarios such as learning simple function4

classes. This paper takes initial steps on understanding ICL in more complex5

scenarios, by studying learning with representations. Concretely, we construct6

synthetic in-context learning problems with a compositional structure, where the7

label depends on the input through a possibly complex but fixed representation8

function, composed with a linear function that differs in each instance. By construc-9

tion, the optimal ICL algorithm first transforms the inputs by the representation10

function, and then performs linear ICL on top of the transformed dataset. We show11

theoretically the existence of transformers that approximately implement such12

algorithms with mild depth and size. Empirically, we find trained transformers13

consistently achieve near-optimal ICL performance in this setting, and exhibit14

the desired dissection where lower layers transforms the dataset and upper layers15

perform linear ICL. Through extensive probing and a new pasting experiment, we16

further reveal several mechanisms within the trained transformers, such as concrete17

copying behaviors on both the inputs and the representations, linear ICL capability18

of the upper layers alone, and a post-ICL representation selection mechanism in a19

harder mixture setting. These observed mechanisms align well with our theory and20

may shed light on how transformers perform ICL in more realistic scenarios.21

1 Introduction22

Large language models based on the transformer architecture have demonstrated remarkable in-23

context learning (ICL) capabilities [6], where they can solve newly encountered tasks when prompted24

with only a few training examples, without any parameter update to the model. Recent state-of-the-art25

models further achieve impressive performance in context on sophisticated real-world tasks [24, 8, 30].26

Such remarkable capabilities call for better understandings, which recent work tackles from various27

angles [37, 9, 27, 22, 23, 35].28

A recent surge of work investigates ICL in a theoretically amenable setting where the context consists29

of real-valued (input, label) pairs generated from a certain function class. They find that transformers30

can learn many function classes in context, such as linear functions, shallow neural networks, and31

decision trees [12, 2, 15], and further studies provide theoretical justification on how transformers can32

implement and learn various learning algorithms in-context such as ridge regression [2], gradient de-33

scent [32, 10, 38, 1], algorithm selection [4], and Bayes model averaging [39], to name a few. Despite34

the progress, an insufficiency of this line is that the settings and results may not actually resemble ICL35

Submitted to the Mathematics of Modern Machine Learning Workshop at NeurIPS 2023. Do not distribute.



(a) Illustration of our setting and theory
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(b) ICL risks
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(c) Linear probes
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Figure 1: An illustration of our setting and results. (a) We consider ICL problems with a fixed representation
composed with changing linear functions, and we construct transformers that first compute the representations
and then performs linear ICL. (b,c) Empirically, learned transformers can perform near-optimal ICL in this
setting, and exhibit mechanisms that align with our theory (detailed setups in Appendix D.1).

in real-world scenarios—For example, ICL in linear function classes are well understood in theory36

with efficient transformer constructions [4], and transformers indeed learn them well empirically [12];37

however, such linear functions in the raw input may fail to capture real-world scenarios where prior38

knowledge can often aid learning.39

This paper takes initial steps towards addressing this by studying ICL in the setting of learning with40

representations, a more complex and perhaps more realistic setting than existing ones. We construct41

synthetic ICL tasks where labels depend on inputs through a fixed representation function composed42

with a varying linear function. We instantiate the representation as shallow neural networks (MLPs),43

and consider both a supervised learning setting (with input-label pairs) and a dynamical systems44

setting (with inputs only) for the in-context data. Our contributions can be summarized as follows.45

• Theoretically, we construct transformers that implement in-context ridge regression on the46

representations (which includes the Bayes-optimal algorithm) for both learning settings (Section 247

& Appendix C). Our transformer constructions admit mild sizes, and can predict at every token48

using a decoder architecture, (non-trivially) generalizing existing efficient constructions that49

predict at the last token only using an encoder architecture.50

• Empirically, we find that trained small transformers consistently achieve near-optimal ICL risk in51

both learning settings (Section 3 & Appendix D; see also Figure 1b).52

• Using linear probing techniques, we identify evidence for various mechanisms in the trained53

transformers. Our high-level finding is that the lower layers transforms the data by the representa-54

tion and prepares it into a certain format, and the upper layers perform linear ICL on top of the55

transformed data (Figure 1c), with often a clear dissection between these two modules, consistent56

with our theory. See Figure 1a for a pictorial illustration.57

• We further observe several lower-level behaviors using linear probes that align well with our (and58

existing) theoretical constructions, such as copying (of both the input and the representations)59

where which tokens are being copied are precisely identifiable (Appendix D.2), and a post-ICL60

representation selection mechanism in a harder setting (Appendix D.1.3 & Appendix I).61

• We perform a new pasting experiment and find that the upper layers within the trained transformer62

can perform nearly-optimal linear ICL in (nearly-)isolation (Appendix D.1), which provides63

stronger evidence that the upper module alone can be a strong linear ICL learner.64

Related work Our work is intimately related to the lines of work on the theoretical and empirical65

investigations of in-context learning, as well as techniques for mechanistic understanding and probing.66

Due to space limit, we discuss these related work in Appendix A.67

2 Setup and theory68

We consider in-context learning (ICL) on regression problems where labels depend on the input69

through linear functions of a fixed representation function. Formally, let Φ⋆ : Rd → RD be a70

fixed representation function. We generate each in-context data distribution P = Pw by sampling71

a linear function w ∼ N(0, τ2ID) from a Gaussian prior, and then generate the ICL instance72

D = {(xi, yi)}i∈[N ] ∼ Pw by a linear model on Φ⋆ with coefficient w and noise level σ > 0:73

yi = ⟨w,Φ⋆(xi)⟩+ σzi, xi
iid∼ Px, zi

iid∼ N(0, 1), i ∈ [N ]. (1)

Note that all D’s share the same representation Φ⋆, but each admits a unique linear function w.74

2



(a) Varying noise level
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(b) Varying rep hidden dimension
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(c) Varying depth of rep
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Figure 2: Test ICL risk for learning with representations. Each plot modifies a single problem parameter from
the base setting (L,D, σ) = (2, 20, 0.1). Dotted lines plot the Bayes-optimal risks for each setting respectively.
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(b) Probe Φ⋆(xi) at yi tokens
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Figure 3: Probing errors for the learning with representation setting. Each setting modifies one or two problem
parameters from the base setting (L,D, σ) = (2, 20, 0.1). Note that the orange curve corresponds to the same
setting (and thus the same transformer) across (a,b,c), as well as the red curve.

The representation function Φ⋆ can in principle be chosen arbitrarily. As a canonical and flexible75

choice for both our theory and experiments, we choose Φ⋆ to be a standard L-layer MLP:76

Φ⋆(x) = σ⋆
(
B⋆

Lσ
⋆
(
B⋆

L−1 · · ·σ⋆(B⋆
1x) · · ·

))
, B⋆

1 ∈ RD×d, (B⋆
ℓ )

L
ℓ=2 ⊂ RD×D (2)

where D is the hidden and output dimension, and σ⋆ is the activation function (applied entry-wise)77

which we choose to be the leaky ReLU σ⋆(t) = σρ(t) := max {t, ρt} with slope ρ ∈ (0, 1).78

Theory As a main contribution of this paper (details in Appendix C), we provide efficient trans-79

former constructions for the following ICL algorithms with a representation at every token i ∈ [N ]:80

• (Φ⋆-Ridge), the in-context ridge regression predictor on {Φ⋆(xi), yi} (Theorem C.1).81

• A similar algorithm (Φ⋆-Ridge-Dyn) for an additional dynamical system setting where xi+1 is82

generated from [xi−k+1; . . . ;xi] through a linear function over a representation (Theorem C.2).83

Our constructions suggest internal transformer mechanisms with concrete intermediate output formats84

(cf. (4); (7)-(9)), which we test experimentally on trained transformers. Technically, the constructions85

extend that of Bai et al. [4] with new techniques (cf. Appendix C.1), which may be of further interest.86

3 Experiments87

We empirically investigate trained transformers under the two settings considered in Section 2.88

We choose the representation function Φ⋆ to be a normalized version of the L-layer MLP (2):89

Φ⋆(x) := Φ̃⋆(x)/∥Φ̃⋆(x)∥2, where Φ̃⋆ takes form (2), with weight matrices (B⋆
i )i∈[L] sampled as90

random (column/row)-orthogonal matrices and held fixed in each experiment, and slope ρ = 0.01.91

We test L ∈ {1, 2, 3, 4}, hidden dimension D ∈ {5, 20, 80}, and noise level σ ∈ {0, 0.1, 0.5}. All92

experiments use Px = N(0, Id), τ2 = 1, d = 20, and N = 41. We use a small architecture within93

the GPT-2 family with 12 layers, 8 heads, and Dhid = 256, following [12, 15, 4]. Here we present94

figures and results selectively; the full results are in Appendix D, and ablations are in Appendix J.95

3.1 Supervised learning with representation96

We first test ICL with supervised learning data as in Appendix C.1, where for each configuration of97

(L,D, σ) (which induces a Φ⋆) we train a transformer on ICL data distribution (1) and evaluate ICL98

on the same distribution. Note that Figure 1c & 1b plots the results for (L,D, σ) = (2, 20, 0.1).99
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(a) Illustration of the pasting experiment
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(b) Linear ICL in TF_upper via pasting
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Figure 4: (a) Illustration of our pasting experiment, which examines the linear ICL capability of the upper
module of a trained transformer. (b) Pasting results for the upper module of a trained transformer in setting
(L,D, σ) = (3, 20, 0.1). It achieves nearly optimal linear ICL risk (in 20 dimension with noise 0.1), using a
1-layer transformer embedding, and also non-trivial performance using linear and linear copy embeddings.

ICL performance Figure 2 reports the test risk across various settings, where we observe that100

trained transformers can consistently match the Bayes-optimal ridge predictor. This extends existing101

results which show that linear functions (without a representation) can be learned near-optimally102

in-context by transformers [12, 2], adding our model (1) to this list of (empirically) nearly-optimally103

learnable function classes.104

Mechanisms via linear probing We adapt the linear probing [3] technique to the transformer105

setting to identify evidences of (a) computing Φ⋆(xi) (b) copying mechanisms, and (c) linear ICL106

on {Φ⋆(xi), yi}i. We linearly regress quantities of interests (as the y) on the intermediate tokens107

(as the x), pooled over the token index i ∈ [N ]. Figure 3 reports the errors of three linear probes108

across all 12 layers: The representation Φ⋆(xi) in the xi tokens and yi tokens, and the optimal109

ridge prediction ŷΦ
⋆,λ

i in the xi tokens. We observe that the separation between the lower and upper110

modules seems to be strong in certain runs, with lower layers recovering the representations and111

upper layers implementing ICL algorithm. See Appendix D.1.1 for additional details.112

Investigating upper module via pasting To further investigate upper module, we conduct a113

pasting experiment, where we feed D-dimensional linear ICL problems (y′i = ⟨w′,x′
i⟩ without114

a representation) with input format (3) directly to the upper module of the transformer trained115

on representation Φ⋆, by adding a trainable embedding layer in between; see Figure 4a for an116

illustration of the pasting approach. This trainable embedding layer itself needs to be shallow without117

much ICL power—we test the following three choices: (1) Linear embedding: h
x

i = W[xi; 0]118

and hy
i = W[0D; yi]; (2) Linear-copy embedding, where the y tokens are instead h

y

i = W[xi; yi],119

motivated by the format (4); (3) One-layer transformer embedding TF, which computes H = TF(H).120

See Appendix H.2 for further setups of pasting. Figure 4b shows the pasting results on a trained121

transformer on (L,D, σ) = (3, 20, 0.1). The results suggest that the majority of the ICL is indeed122

carried by the upper module, with the one-layer transformer embedding not doing much ICL itself.123

See Appendix D.1.2 for additional details.124

Additional results We investigate two additional settings where transformers exhibit nearly Bayes-125

optimal ICL risks, and we identify mechanisms that align with our theory:126

• An extension of (1) where there exists multiple possible representation functions (Φ⋆
j )j∈[K].127

Probing shows evidences of a certain algorithm selection mechanism [4] (Appendix I).128

• An additional dynamical system setting where xi+1 is generated from [xi−k+1; . . . ;xi] through a129

linear function over a representation (Appendix C.2). Probing shows the two copyings suggested130

by theory indeed happen on trained transformers (Appendix D.2).131

4 Conclusion132

This paper presents theoretical and mechanistic studies on the in-context learning ability of trans-133

formers on learning tasks involving a common representation, where we give efficient transformer134

constructions and empirically confirm the existence of various high-level mechanisms in trained135

transformers. We believe our work opens up the investigation of ICL beyond simple function classes,136

and suggests open questions such as further investigations of the mechanisms of the linear ICL137

modules, theory for ICL in more complex function classes, and similar studies on real-world data.138
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A Related work237

In-context learning The in-context learning (ICL) capabilities of pretrained transformers have238

gained significant attention since first demonstrated with GPT-3 [6]. Subsequent empirical studies239

have investigated the capabilities and limitations of ICL in large language models [17, 20, 21, 18, 40,240

28, 27, 11, 14, 35].241

A line of recent work investigates why and how pretrained transformers perform ICL from a theoretical242

perspective [12, 15, 32, 2, 37, 4, 38, 39, 1, 26]. In particular, [37] proposed a Bayesian inference243

framework explaining ICL. [12] showed transformers could be trained from scratch for ICL of244

simple function classes. Other studies found transformers can implement ICL through in-context245

gradient descent [32, 2] and in-context algorithm selection [4]. [38] studied the training dynamics of246

a single attention layer on linear ICL tasks. [16] used the ICL framework to explain chain-of-thought247

reasoning [34]. Our work builds on and extends the work of [12, 2, 32, 4], where we study the248

more challenging setting of ICL with a representation function, and also provide new efficient ICL249

constructions for predicting at every token using a decoder transformer, as opposed to predicting only250

at the last token in most of these work.251

In-weights learning versus in-context learning Recent work has investigated when transformers252

learn a fixed input-label mapping versus when they perform ICL [9, 35, 5]. [9] refer to learning a253

fixed input-label mapping from the pre-training data as “in-weights learning” (IWL), in contrast with254

ICL. Our problem setting assumes the pre-training data admits a fixed representation function, which255

should be learned by IWL. In this perspective, unlike these existing works where IWL and ICL are256

typically treated as competing mechanisms, we study a model in which IWL (computing the fixed257

representation by transformer weights) and ICL (learning the changing linear function in context)258

occur simultaneously.259

Mechanistic understanding and probing techniques A line of work focuses on developing260

techniques for understanding the mechanisms of neural networks, in particular transformers [3,261

13, 19, 32, 2, 33, 25]. We adopted the linear probing technique of [3] in a token-wise fashion for262

interpreting the ICL mechanisms of transformers. Beyond probing, more convincing mechanistic263

interpretations may require advanced approaches such as causal intervention [13, 31, 33]; Our264

pasting experiment has a similar interventional flavor in that we feed input sequences (ICL instances)265

from another distribution directly (through a trainable embedding layer) to the upper module of a266

transformer.267

B Preliminaries268

Transformers We consider sequence-to-sequence functions applied to N input vectors {hi}Ni=1 ⊂269

RDhid in Dhid dimensions, which we write compactly as an input matrix H = [h1, . . . ,hN ] ∈270

RDhid×N , where each hi is a column of H (also a token).271

We use a standard L-layer decoder-only (autoregressive) transformer, which consists of L consecutive272

blocks each with a masked self-attention layer (henceforth “attention layer”) followed by an MLP273

layer. Each attention layer computes274

Attnθ(H) := H+
∑M

m=1(VmH)× σ
(
MSK⊙ ((QmH)⊤(KmH))

)
∈ RD×N ,

where θ = {(Qm,Km,Vm) ⊂ RDhid×Dhid}m∈[M ] are the (query, key, value) matrices, M is the275

number of heads, MSK ∈ RN×N is the decoder mask matrix with MSKij = 1{i ≤ j}, and σ276
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is the activation function which is typically chosen as the (column-wise) softmax: [σ(A)]:,j =277

softmax(aj) ∈ RN for A = [a1, . . . ,aN ] ∈ RN×N . Each MLP layer computes278

MLPW1,W2(H) := H+W2σ(W1H),

where W{1,2} ∈ RDhid×Dhid are the weight matrices, and σ(t) = max {t, 0} is the ReLU activation.279

We use TF to denote a transformer, and typically use H̃ = TF(H) to denote its output on H.280

In-context learning We consider in-context learning (ICL) on regression problems, where each281

ICL instance is specified by a dataset D = {(xi, yi)}i∈[N ]
iid∼ P, with (xi, yi) ∈ Rd × R, and the282

model is required to accurately predict yi given all past observations Di−1 := {(xj , yj)}j≤i−1 and283

the test input xi. The main difficulty of ICL compared with standard supervised learning is that each284

instance D(j) is in general drawn from a different data distribution P = P(j) (for example, a linear285

model with a new w
(j)
⋆ ∈ Rd). Accurate prediction requires learning P in-context from the past286

observations Di−1 (i.e. the context); merely memorizing any fixed P(j) is not enough.287

We consider using transformers to do ICL, where we feed a sequence of length 2N into the transformer288

TF using the following input format:289

H = [h1, . . . ,h2N ] =

[
x1 0 . . . xN 0
0 y1 . . . 0 yN
px
1 py

1 . . . px
N py

N

]
∈ RDhid×2N , (3)

where px
i ,p

y
i ∈ RDhid−d−1 are fixed positional encoding vectors consisting of zero paddings,290

followed by non-zero entries containing information about the position index i and indicator of being291

an x-token (1 in px
i , and 0 in py

i ); see (12) for our concrete choice. We refer to each odd token h2i−1292

as as an x-token (also the xi-token), and each even token h2i as a y-token (also the yi-token).293

After obtaining the transformer output H̃ = TF(H), for every index i ∈ [N ], we extract the294

prediction ŷi from the output token at position xi: ŷi := (h̃x
i )d+1.1 Feeding input (3) into the295

transformer simultaneously computes ŷi ← TF(x1, y1, . . . ,xi−1, yi−1,xi) for all i ∈ [N ].296

In addition to the above setting, we also consider a dynamical system setting with D = {xi}i∈[N ]297

where the transformer predicts x̂i from the preceding inputs x≤i−1. See Appendix C.2 for details.298

C Details for setup and theory299

C.1 Supervised learning with representation300

Theory As Φ⋆ is fixed and the w is changing in model (1), by construction, a good ICL algorithm301

should compute the representations {Φ⋆(xi)}i and perform linear ICL on the transformed dataset302

{(Φ⋆(xi), yi)}i to learn w. We consider the following class of Φ⋆-ridge estimators:303

ŵΦ⋆,λ
i := argminw∈Rd

1
2(i−1)

∑i−1
j=1 (⟨w,Φ⋆(xj)⟩ − yj)

2
+ λ

2 ∥w∥
2
2 , (Φ⋆-Ridge)

and we understand ŵΦ⋆,λ
1 := 0. In words, ŵΦ⋆,λ

i performs ridge regression on the transformed304

dataset {Φ(xj), yj}j≤i−1 for all i ∈ [N ]. By standard calculations, the Bayes-optimal predictor2 for305

yi given (Di−1,xi) is exactly the ridge predictor ŷΦ
⋆,λ

i := ⟨ŵΦ⋆,λ
i ,Φ⋆(xi)⟩ at λ = σ2/τ2.306

We show that there exists a transformer that can approximately implement (Φ⋆-Ridge) in-context at307

every token i ∈ [N ]. The proof can be found in Appendix F.3.308

Theorem C.1 (Transformer can implement Φ⋆-Ridge). For any representation function Φ⋆ of form (2),309

any λ > 0, BΦ, Bw, By > 0, ε < BΦBw/2, letting κ := 1 +B2
Φ/λ, there exists a transformer TF310

with L+O(κ log(BΦBw/ε)) layers, 5 heads, Dhid = 2D + d+ 10 such that the following holds.311

For any dataset D such that ∥Φ⋆(xi)∥2 ≤ BΦ, |yi| ≤ By and the corresponding input H ∈312

RDhid×2N of format (3), we have313

1There is no information leakage, as the “prefix” property of decoder transformers h̃x
i = h̃2i−1 =

[TF(H:,1:(2i−1))]2i−1 ensures that h̃x
i (and thus ŷi) only depends on (Di−1,xi).

2The predictor ŷi = ŷi(Di−1,xi) that minimizes the posterior square loss E[ 1
2
(ŷi − yi)

2|Di−1,xi].
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(a) The first (L+ 2) layers of TF transforms xi to the representation Φ⋆(xi) at each x token, and314

copies them into the succeeding y token:315

TF(1:L+2)(H) =

[
Φ⋆(x1) Φ⋆(x1) . . . Φ⋆(xN ) Φ⋆(xN )

0 y1 . . . 0 yN
p̃x
1 p̃y

1 . . . p̃x
N p̃y

N

]
, (4)

where p̃x
i , p̃

y
i only differ from px

i ,p
y
i in the dimension of the zero paddings.316

(b) For every index i ∈ [N ], the transformer output H̃ = TF(H) contains prediction ŷi :=317

[h̃2i−1]D+1 that is close to the (Φ⋆-Ridge) predictor: |ŷi − ⟨Φ⋆(xi), ŵ
Φ⋆,λ
i ⟩| ≤ ε.318

The transformer construction in Theorem C.1 consists of two “modules”: The lower layers computes319

the representations and prepares the transformed dataset {(Φ⋆(xi), yi)}i into form (4). In particular,320

each Φ⋆(xi) appears both in the i-th x-token and is also copied into the succeeding y token. The upper321

layers perform linear ICL (ridge regression) on top of the transformed dataset. We will test whether322

such mechanisms align with trained transformers in reality in our experiments (Appendix D.1).323

Proof techniques The proof of Theorem C.1 builds upon (1) implementing the MLP Φ⋆ by trans-324

formers (Lemma F.3), and (2) an efficient construction of in-context ridge regression (Theorem F.5),325

which to our knowledge is the first efficient construction for predicting at every token using de-326

coder transformers. The latter requires several new construction techniques such as a copying layer327

(Lemma G.1), and an efficient implementation of N parallel in-context gradient descent algorithms328

at all tokens simultaneously using a decoder transformer (Proposition F.4). These extend the related329

constructions of von Oswald et al. [32], Bai et al. [4] who only consider predicting at the last token330

using encoder transformer, and could be of independent interest.331

In addition, the bounds on the number of layers, heads, and Dhid in Theorem C.1 can imply a sample332

complexity guarantee for (pre-)training: A transformer with ε̃-excess risk (on the same ICL instance333

distribution) over the one constructed in Theorem C.1 can be found in Õ
(
(L+ κ)2(D + d)2ε̃−2

)
334

training instances, by the generalization analysis of Bai et al. [4, Theorem 20]. We remark that335

the constructions in Theorem C.1 & C.2 choose σ as the normalized ReLU instead of softmax,336

following [4] and in resonance with recent empirical studies [36].337

C.2 Dynamical system with representation338

As a variant of model (1), we additionally consider a (nonlinear) dynamical system setting with339

data D = (x1, . . . ,xN ), where each xi+1 depends on the k preceding inputs [xi−k+1; . . . ;xi] for340

some k ≥ 1 through a linear function on top of a fixed representation function Φ⋆. Compared to the341

supervised learning setting in Appendix C.1, this setting better resembles some aspects of natural342

language, where the next token in general depends on several preceding tokens.343

Formally, let k ≥ 1 denote the number of input tokens that the next token depends on, and Φ⋆ : Rkd →344

RD denotes a representation function. Each ICL instance D = {xi}i∈[N ] is generated as follows:345

First sample P = PW where W ∈ RD×d is sampled from a Gaussian prior: Wij
iid∼ N(0, τ2). Then346

sample the initial input x1 ∼ Px and let347

xi+1 = W⊤Φ⋆([xi−k+1; . . . ;xi]) + σzi, zi
iid∼ N(0, Id), i ∈ [N − 1], (5)

where we understand xj := 0d for j ≤ 0. We choose Φ⋆ to be the same L-layer MLP as in (2),348

except that the first weight matrix has size B⋆
1 ∈ RD×kd to be consistent with the dimension of the349

augmented input xi := [xi−k+1; . . . ;xi]. We remark that (5) substantially generalizes the setting350

of Li et al. [15] which only considers linear dynamical systems (equivalent to Φ⋆ ≡ id), a task351

arguably much easier for transformers to learn in context.352

As xi acts as both inputs and labels in model (5), we use the following input format for transformers:353

H :=

[
x1 . . . xN

p1 . . . pN

]
∈ RDhid×N , (6)

where pi := [0Dhid−d−4; 1; i; i
2; i3], and we extract prediction x̂i+1 from the i-th output token.354
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Theory Similar as above, we consider the ridge predictor for the dynamical system setting355

ŴΦ⋆,λ
i := argminW∈RD×d

1
2(i−1)

∑i−1
j=1

∥∥W⊤Φ⋆(xj)− xj+1

∥∥2
2
+ λ

2 ∥W∥
2
Fr . (Φ⋆-Ridge-Dyn)

We understand ŴΦ⋆,λ
0 := 0D×d, and let ∥W∥2,∞ := maxj∈[d] ∥W:,j∥2 for any W ∈ RD×d.356

Again, (Φ⋆-Ridge-Dyn) gives the Bayes-optimal predictor (ŴΦ⋆,λ
i )⊤Φ⋆(xi) at λ = σ2/τ2.357

The following result shows that (Φ⋆-Ridge-Dyn) can also be implemented efficiently by a transformer.358

The proof can be found in Appendix G.2.359

Theorem C.2 (Transformer can implement Φ⋆-Ridge for dynamical system). For the dynamical360

system setting where the L-layer representation function Φ⋆ : Rkd → RD takes form (2), but other-361

wise same settings as Theorem C.1, there exists a transformer TF with L+ 2 +O(κ log(BΦBw/ε))362

layers, max {3d, 5} heads, and Dhid = max {2(k + 1), D}d+3(D+d)+5 such that the following363

holds.364

For any dataset D such that ∥Φ⋆(xi)∥2 ≤ BΦ, ∥xi∥∞ ≤ By, and ∥ŴΦ⋆,λ
i ∥2,∞ ≤ Bw/2 (cf. (Φ⋆-365

Ridge-Dyn)) for all i ∈ [N ], and corresponding input H ∈ RDhid×N of format (6), we have366

(a) The first transformer layer copies the k previous inputs into the current token, and computes the367

first layer {σρ(B
⋆
1xi)}i∈[N ] within Φ⋆:368

Attn(1)(H) =

[
x1 . . . xN

p1 . . . pN

]
=

x1−k+1 . . . xN−k+1

| |
x1 . . . xN

p1 . . . pN

 ; (7)

TF(1)(H) = MLP(1)
(
Attn(1)(H)

)
=

[
σρ(B

⋆
1x1) . . . σρ(B

⋆
1xN )

x1 . . . xN

p′
1 . . . p′

N

]
. (8)

(b) The first (L+ 1) layers of TF transforms each xi to Φ⋆(xi), and copies the preceding represen-369

tation Φ⋆(xi−1) onto the same token to form the (input, label) pair (Φ⋆(xi−1),xi):370

TF(1:L+1)(H) =


Φ⋆(x1) Φ⋆(x2) . . . Φ⋆(xN )
0d 0d . . . 0d

0D Φ⋆(x1) . . . Φ⋆(xN−1)
x1 x2 . . . xN

p̃1 p̃2 . . . p̃N

 . (9)

Above, pi,p
′
i, p̃i only differs from pi in the dimension of the zero paddings.371

(c) For every index i ∈ [N ], the transformer output H̃ = TF(H) contains prediction x̂i+1 :=372

[h̃i]1:d that is close to the (Φ⋆-Ridge-Dyn) predictor: ∥x̂i+1 − (ŴΦ⋆,λ
i )⊤Φ⋆(xi)∥∞ ≤ ε.373

To our best knowledge, Theorem C.2 provides the first transformer construction for learning nonlinear374

dynamical systems in context. Similar as for Theorem C.1, the bounds on the transformer size here375

imply guarantees ε̃ excess risk within Õ
(
(L+ κ)2((k +D)d)2ε̃−2

)
(pre-)training instances.376

In terms of the mechanisms, compared with Theorem C.1, the main differences in Theorem C.2377

are (1) the additional copying step (7) within the first layer, where the previous (k − 1) to-378

kens [xi−k+1; . . . ,xi−1] are copied onto the xi token, to prepare for computing of Φ⋆(xi); (2)379

the intermediate output (9), where relevant information (for preparing for linear ICL) has form380

[Φ⋆(xi−1);xi; Φ
⋆(xi)] and is gathered in the x-tokens, different from (4) where the relevant informa-381

tion is [Φ⋆(xi); yi], gathered in the y-token. We will test these in our experiments (Appendix D.2).382

D Details for experiments383

The (pre)-training objective for the transformer (for the supervised learning setting) is the average384

prediction risk at all tokens:385

minθ Ew,D∼Pw

[
1

2N

∑N
i=1 (ŷθ,i(Di−1,xi)− yi)

2
]
, (10)
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where ŷθ,i is extracted from the (2i− 1)-th output token of TFθ(H) (cf. Section B). The objective386

for the dynamical system setting is defined similarly. Additional experimental details can be found387

in Appendix H, and ablation studies (e.g. along the training trajectory; cf. Figure 9) in Appendix J.388

D.1 Supervised learning with representation389

We first test ICL with supervised learning data as in Appendix C.1, where for each configuration of390

(L,D, σ) (which induces a Φ⋆) we train a transformer on ICL data distribution (1) and evaluate ICL391

on the same distribution. Note that Figure 1c & 1b plots the results for (L,D, σ) = (2, 20, 0.1).392

ICL performance Figure 2 reports the test risk across various settings, where we observe that393

trained transformers can consistently match the Bayes-optimal ridge predictor. This extends existing394

results which show that linear functions (without a representation) can be learned near-optimally395

in-context by transformers [12, 2], adding our model (1) to this list of (empirically) nearly-optimally396

learnable function classes. Among the complexity measures (L,D, σ), observe that the noise level σ397

and hidden dimension D of the representation (Figure 2a & 2b) appears to have a larger effect on the398

(nearly Bayes-optimal) risk than the depth L (Figure 2c).399

D.1.1 Mechanisms via linear probing400

We conduct probing experiments to further understand the mechanisms of the trained transformers.401

In accordance with the theoretical construction in Theorem C.1, our main question here is: Does the402

trained transformer perform the following in order:403

1. Computes Φ⋆(xi) at xi tokens;404

2. Copies them onto the following yi token and obtains dataset {Φ⋆(xi), yi}i in the form of (4);405

3. Performs linear ICL on top of {Φ⋆(xi), yi}i?406

While such internal mechanisms are in general difficult to quantify exactly, we adapt the linear407

probing [3] technique to the transformer setting to identify evidence. Linear probing allows us to test408

whether intermediate layer outputs (tokens) {hx,(ℓ)
i }ℓ∈[12] (ℓ denotes the layer) and {hy,(ℓ)

i }ℓ∈[12]409

“contains” various quantities of interest, by linearly regressing these quantities (as the y) on the410

intermediate tokens (as the x), pooled over the token index i ∈ [N ]. For example, regressing Φ⋆(xi)411

on h
x,(ℓ)
i tests whether the xi token after the ℓ-th layer “contains” Φ⋆(xi), where a smaller error412

indicates a better containment. See Appendix H.1 for further setups of linear probing.413

Figure 3 reports the errors of three linear probes across all 12 layers: The representation Φ⋆(xi) in414

the xi tokens and yi tokens, and the optimal ridge prediction ŷΦ
⋆,λ

i in the xi tokens. Observe that the415

probing errors for the representation decrease through lower layers and then increase through upper416

layers (Figure 3a & 3b), whereas probing errors for the ridge prediction monotonically decrease417

through the layers (Figure 3c), aligning with our construction that the transformer first computes418

the representations and then performs ICL on top of the representation. Also note that deeper419

representations take more layers to compute (Figure 3a). Further, the representation shows up later in420

the y-tokens (layers 5-6) than in the x-tokens (layers 1,3,4,5), consistent with the copying mechanism,421

albeit the copying appears to be lossy (probe errors are higher at y-tokens).422

Finally, observe that the separation between the lower and upper modules seems to be strong in423

certain runs—For example, the red transformer (L = 4, σ = 0.1) computes the representation at424

layer 5, copies them onto y-tokens at layer 6, and starts to perform iterative ICL from layer 7, which425

aligns fairly well with our theoretical constructions at a high level.426

D.1.2 Investigating upper module via pasting427

To further investigate upper module, we test whether it is indeed a strong ICL learner on its own428

without relying on the lower module, which would provide stronger evidence that the upper module429

performs linear ICL. However, a key challenge here is that it is unclear how to feed raw inputs430

directly into the upper module, as they supposedly only admit input formats emitted from the lower431

module—the part we wanted to exclude in the first place.432

We address this by conducting a pasting experiment, where we feed D-dimensional linear ICL433

problems (y′i = ⟨w′,x′
i⟩ without a representation) with input format (3) directly to the upper module434

of the transformer trained on representation Φ⋆, by adding a trainable embedding layer in between;435
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Figure 5: ICL risks and probing errors for the dynamical system setting. (a) Each curve modifies problem
parameters from the base setting (k, L,D, σ) = (3, 2, 80, 0.5). (b,c) Results are with the same base setting.

see Figure 4a for an illustration of the pasting approach. This trainable embedding layer itself needs436

to be shallow without much ICL power—we test the following three choices: (1) Linear embedding:437

h
x

i = W[xi; 0] and hy
i = W[0D; yi]; (2) Linear-copy embedding, where the y tokens are instead438

h
y

i = W[xi; yi], motivated by the format (4); (3) One-layer transformer embedding TF, which439

computes H = TF(H). See Appendix H.2 for further setups of pasting.440

Figure 4b shows the pasting results on a trained transformer on (L,D, σ) = (3, 20, 0.1) (an ablation441

in Figure 10b), where we dissect the lower and upper modules at layer 4 as suggested by the probing442

curve (Figure 3a green). Perhaps surprisingly, the upper module of the transformer can indeed443

perform nearly optimal linear ICL without representation when we use the one-layer transformer444

embedding. Note that a (freshly trained) single-layer transformer itself performs badly, achieving445

about the trivial test risk 1.01, which is expected due to our specific input format3 (3). This suggests446

that the majority of the ICL is indeed carried by the upper module, with the one-layer transformer447

embedding not doing much ICL itself. Also note that the linear-copy and linear embeddings also448

yield reasonable (though suboptimal) performance, with linear-copy performing slightly better.449

D.1.3 Extension: Mixture of multiple representations450

We aditionally investigate an harder scenario in which there exists multiple possible representation451

functions (Φ⋆
j )j∈[K], and the ICL data distribution is a mixture of the K distributions of form (1)452

each induced by Φ⋆
j (equivalent to using the concatenated representation Φ

⋆
= [Φ⋆

1, . . . ,Φ
⋆
K ] with a453

group 1-sparse prior on w ∈ RKD). We find that transformers still approach Bayes-optimal risks,454

though less so compared with the single-representation setting. Using linear probes, we find that455

transformers sometimes implement the post-ICL algorithm selection mechanism identified in Bai456

et al. [4], depending on the setting. Details are deferred to Appendix I.457

D.2 Dynamical systems458

We now study the dynamical systems setting in Appendix C.2 using the same approaches as in Ap-459

pendix D.1. Figure 5a shows that transformers can still consistently achieve nearly Bayes-optimal ICL460

risk. An ablation of the risks and probing errors in alternative settings can be found in Appendix J.2.461

Probing copying mechanisms The main mechanistic question we ask here is about the data462

preparation phase, where the transformer construction in Theorem C.2 performs copying twice:463

i) A copying of [xi−k+1; . . . ;xi−1] onto the xi token as in (7), to prepare for the computation of464

Φ⋆(xi); As copying may not be distinguishable from the consequent matrix multiplication step465

[xi−k+1; . . . ,xi−1;xi] 7→ B⋆
1[xi−k+1; . . . ,xi−1;xi], we probe instead the result B⋆

1,−jxi−j466

after matrix multiplication, where B⋆
1,−j ∈ RD×d denotes the block within B⋆

1 hitting xi−j .467

ii) A second copying of Φ⋆(xi−1) onto the xi token to obtain (9), after {Φ⋆(xi)}i are computed.468

We probe one transformer trained on the dynamical systems problem with k = 3 (so that the469

useful preceding inputs are xi−1 and xi−2), and find that the transformer indeed performs the two470

conjectured copyings. Figure 5b demonstrates copying i) onto the current token, where the copying of471

xi−1 happens earlier (at layer 3) and is slightly more accurate than that of xi−2 (at layer 4), as expected.472

3A one-layer transformer does not have much ICL power using input format (3)—xi and yi are stored in
separate tokens there, which makes “one-layer” mechanisms such as gradient descent [32, 2, 4] unlikely to be
implementable; see Appendix H.3 for a discussion.
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Further observe that layer 4 (which we recall contains an attention layer and an MLP layer) have473

seemingly also implemented the (unnormalized) MLP representation Φ̃⋆(xi) = σρ(B
⋆
2σρ(B

⋆
1xi)),474

though the probing error for the actual representation Φ⋆(xi) = Φ̃⋆(xi)/∥Φ̃⋆(xi)∥2 continues to475

drop in layer 4-6 (Figure 5c). Figure 5c further demonstrates copying ii), where Φ⋆(xi−1) are indeed476

copied to the i-th token, whereas by sharp contrast Φ⋆(xi−k) for k ≥ 2 are not copied at all into the477

xi token, aligning with our conjectured intermediate output format (9).478

E Technical tools479

The following convergence result for minimizing a smooth and strongly convex function is standard480

from the convex optimization literature, e.g. by adapting the learning rate in Bubeck [7, Theorem481

3.10] from η = 1/β to any η ≤ 1/β.482

Proposition E.1 (Gradient descent for smooth and strongly convex functions). Suppose L : Rd → R483

is α-strongly convex and β-smooth for some 0 < α ≤ β. Then, the gradient descent iterates484

wt+1
GD := wt

GD − η∇L(wt
GD) with learning rate η ≤ 1/β and initialization w0

GD ∈ Rd satisfies for485

any t ≥ 1,486 ∥∥wt
GD −w⋆

∥∥2
2
≤ exp (−ηα · t) ·

∥∥w0
GD −w⋆

∥∥2
2
.

where w⋆ := argminw∈Rd L(w) is the minimizer of L.487

F Proofs for Appendix C.1488

Throughout the rest of this and next section, we consider transformer architectures defined in Ap-489

pendix B where we choose σ to be the (entry-wise) ReLU activation normalized by sequence length,490

following [4]: For all A ∈ RN×N and i, j ∈ [N ],491

[σ(A)]ij =
1

j
σ(Aij), (11)

where we recall σ(t) = max {t, 0} denotes the standard ReLU. This activation is similar as the492

softmax in that, for every (query index) j, the resulting attention weights { 1j σ(Aij)}
i∈[j]

is approxi-493

mately a probability distribution in typical scenarios, in the sense that they are non-negative and sum494

to O(1) when each Aij = O(1). We remark that transformers with (normalized) ReLU activation is495

recently shown to achieve comparable performance with softmax in larger-scale tasks [29, 36].496

With activation chosen as (11), a (decoder-only) attention layer H̃ = Attnθ(H) with θ =497

(Qm,Km,Vm)m∈[M ] takes the following form in vector notation:498

h̃i = hi +
M∑

m=1

1

i

i∑
j=1

σ(⟨Qmhi,Kmhj⟩) ·Vmhj .

Recall our input format (3):499

H =

[
x1 0 . . . xN 0
0 y1 . . . 0 yN
px
1 py

1 . . . px
N py

N

]
∈ RDhid×2N .

We will use (hk)k∈[2N ] and (hx
i ,h

y
i )i∈[N ] interchangeably to denote the tokens in (3), where hx

i :=500

h2i−1 and hy
i := h2i. Similarly, we will use (px

i ,p
y
i )i∈[N ] and (pk)k∈[2N ] interchangably to denote501

the positional encoding vectors in (3), where p2i−1 := px
i and p2i := py

i . Unless otherwise specified,502

we typically reserve use i, j as (query, key) indices within [N ] and k, ℓ as (query, key) indices within503

[2N ].504

We use the following positional encoding vectors for all i ∈ [N ]:505

px
i = [0Dhid−d−9; 1; 2i− 1; (2i− 1)2; (2i− 1)3; i; i2; 1; i],

py
i = [0Dhid−d−9; 1; 2i; (2i)

2; (2i)3; i; i2; 0; 0].
(12)

Note that pk contains [1; k; k2; k3] for all k ∈ [2N ]; px
i , py

i contains [i; i2], an indicator of being an506

x-token, and the product of the indicator and i.507
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F.1 Useful transformer constructions508

Lemma F.1 (Copying by a single attention head). There exists a single-head attention layer θ =509

(Q,K,V) ⊂ RDhid×Dhid that copies each xi into the next token for every input H of the form (3),510

i.e.511

Attnθ(H) =

[
x1 x1 . . . xN xN

0 y1 . . . 0 yN
px
1 py

1 . . . px
N py

N

]
∈ RDhid×2N .

Proof. By assumption of the positional encoding vectors, we can define matrices Q,K ∈ RDhid×Dhid512

such that for all k, ℓ ∈ [2N ],513

Qhk = [k3; k2; k;0Dhid−3], Khℓ = [−1; 2ℓ+ 2;−ℓ2 − 2ℓ;0Dhid−3].

This gives that for all ℓ ≤ k,514

σ(⟨Qhk,Khℓ⟩)
= σ

(
−k3 + k2(2ℓ+ 2)− k(ℓ2 + 2ℓ)

)
= σ

(
k(1− (k − ℓ− 1)2)

)
= k1{ℓ = k − 1}.

Further defining V such that Vhx
i = [xi;0] and Vhy

i = 0, we have for every k ∈ [2N ] that515 ∑
ℓ≤k

1

k
σ(⟨Qhk,Khℓ⟩)Vhℓ

=
1

k
· k1{ℓ = k − 1} · [x⌈ℓ/2⌉1{ℓ is odd};0] = [x⌈ℓ/2⌉;0] · 1{ℓ = k − 1 and ℓ is odd}.

By the residual structure of the attention layer, the above exactly gives the desired copying behavior,516

where every xi on the odd token H is copied to the next token.517

Lemma F.2 (Linear prediction layer). For any Bx, Bw, By > 0, there exists an attention layer518

θ = {(Qm,Km,Vm)}m∈[M ] with M = 2 heads such that the following holds. For any input519

sequence H ∈ RDhid×2N that takes form520

hx
i = [xi; 0;wi;p

x
i ], hy

i = [xi; yi;0d;p
y
i ]

with ∥xi∥2 ≤ Bx, |yi| ≤ By , and ∥w∥2 ≤ Bw, it gives output Attnθ(H) = H̃ ∈ RDhid×2N with521

h̃x
i = h̃2i−1 = [xi; ŷi;wi;p

x
i ], where ŷi = ⟨xi,wi⟩

for all i ∈ [N ].522

Proof. Let R := max {BxBw, By}. Define matrices (Qm,Km,Vm)m=1,2 as523

Q1h
x
i =

wi

i
R
0

 , K1h
x
j = K1h

y
j =

 xj

−2R
2j + 1

0

 ,V1hℓ =

[
0d

ℓ
0Dhid−d−1

]
,

Q2h
x
i =

[
i
R
0

]
, K2h

x
j = K1h

y
j =

[ −2R
2j + 1

0

]
,V2hℓ = −

[
0d

ℓ
0Dhid−d−1

]
for all i, j ∈ [N ] and ℓ ∈ [2N ]. For every i ∈ [N ], we then have524

2∑
m=1

2i−1∑
ℓ=1

1

2i− 1
σ(⟨Qmhx

i ,Kmhℓ⟩) ·Vmhℓ

=
1

2i− 1

( i∑
j=1

[
σ
(
w⊤

i xj +R(−2i+ 2j + 1)
)
− σ(R(−2i+ 2j + 1))

]
· [0d; 2j − 1;0Dhid−d−1]

+

i−1∑
j=1

[
σ
(
w⊤

i xj +R(−2i+ 2j − 1)
)
− σ(R(−2i+ 2j + 1))

]
· [0d; 2j;0Dhid−d−1]

)
=

1

2i− 1
·w⊤

i xi · [0d; 2i− 1;0Dhid−d−1] = [0d;w
⊤
i xi;0Dhid−d−1].

By the residual structure of an attention layer, the above shows the desired result.525
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Lemma F.3 (Implementing MLP representation by transformers). Fix any MLP representation526

function Φ⋆ of the form (2), suppose Dhid ≥ max {2D,D + d+ 10}, where D is the hidden527

dimension within the MLP (2). Then there exists a transformer TFθ with (L+ 1) layers and 5 heads528

that exactly implements Φ⋆ in a token-wise fashion, i.e. for any input H of form (3),529

H̃ = TFθ(H) =

[
Φ⋆(x1) 0 . . . Φ⋆(xN ) 0

0 y1 . . . 0 yN
p̃x
1 p̃y

1 . . . p̃x
N p̃y

N

]
,

where p̃x
i , p̃

y
i differs from px

i ,p
y
i only in the dimension of their zero paddings.530

Proof. Recall that Φ⋆(x) = σρ(B
⋆
L · · ·σρ(B

⋆
1x) · · · ). We first show how to implement a single531

MLP layer x 7→ σρ(B
⋆
1x) by an (MLP-Attention) structure.532

Consider any input token hx
i = [xi; 0;p

x
i ] at an x-location. Define matrices W1,W2 ∈ RDhid×Dhid533

such that534

W1h
x
i =

[
B⋆

1xi

−B⋆
1xi

0

]
, σ(W1h

x
i ) =

[
σ(B⋆

1xi)
σ(−B⋆

1xi)
0

]
,

W2σ(W1h
x
i ) =

[
0d

σ(B⋆
1xi)− ρσ(−B⋆

1xi)
0

]
=

[
0d

σρ(B
⋆
1xi)

0

]
.

Therefore, the MLP layer (W1,W2) outputs535

h
x

i := [MLPW1,W2(H)]
x
i = hx

i +W2σ(W1h
x
i ) =

 xi

σρ(B
⋆
1xi)

0
px
i

 ,

and does not change the y-tokens.536

We next define an attention layer that “moves” σρ(B1xi) to the beginning of the token, and removes537

xi. Define three attention heads θ = (Qm,Km,Vm)m∈[3] as follows:538

Q{1,2,3}hk =

 k2

k
k1{k is odd}

0

 ,K{1,2,3}hℓ =

−1ℓ1
0

 ,

V1h
x

j =

[
σρ(B

⋆
1xj)

0d

0

]
,V2h

x

j =

[−xj

0D

0

]
,V3h

x

j =

[
0d

−σρ(B
⋆
1xj)

0

]
.

The values for V1,2,3h
y

i are defined automatically by the same operations over the h
y

i tokens (which539

does not matter to the proof, as we see shortly). For any ℓ ≤ k and m ∈ [3],540

1

k
σ
(〈
Qmhk,Kmhℓ

〉)
=

1

k
σ(k(−k + ℓ+ 1{k is odd})) = 1{ℓ = k, k is odd}.

Therefore, these three attention heads are only active iff the query token k = 2i− 1 is odd (i.e. being541

an x-token) and ℓ = k = 2i− 1. At such tokens, the three value matrices (combined with the residual542

structure of attention) would further remove the xi part, and move σρ(B
⋆
1xi) to the beginning of the543

token, i.e.544

h̃x
i =

[
Attnθ(H)

]x
i
=

[
σρ(B

⋆
1xi)
0
px
i

]
,

and h̃y
i = hy

i . Additionally, we now add two more attention heads into θ to move all yi from entry545

d+ 1 to D + 1, and leaves the x-tokens unchanged.546

Repeating the above argument L times, we obtain a structure (MLP-Attention-. . . -MLP-Attention)547

with five heads in each attention layer that exactly implements the Φ⋆ in a token-wise fashion. This548

structure can be rewritten as an (L+1)-layer transformer by appending an identity {Attention, MLP}549

layer (with zero weights) {before, after} the structure respectively, which completes the proof.550
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F.2 In-context ridge regression by decoder transformer551

This section proves the existence of a decoder transformer that approximately implements in-context552

ridge regression at every token i ∈ [N ] simultaneously. For simplicity, we specialize our results to the553

ridge regression problem; however, our construction can be directly generalized to any (generalized)554

linear models with a sufficiently smooth loss, by approximating the gradient of the loss by sum of555

relus [4, Section 3.5].556

Denote the regularized empirical risk for ridge regression on dataset Di = {(xj , yj)}j∈[i] by557

L̂λ
i (w) :=

1

2i

i∑
j=1

(
w⊤xj − yj

)2
+

λ

2
∥w∥22 (13)

for all i ∈ [N ]. Let ŵλ
i := argminw∈Rd L̂λ

i−1(w) denote the minimizer of the above risk (solution558

of ridge regression) for dataset Di−1. We further understand L̂λ
0 (w) := 0 and ŵλ

1 := 0. Let559

L̂i(w) := L̂0
i (w) denote the unregularized version of the above risk.560

Proposition F.4 (Approximating a single GD step by a single attention layer). For any η > 0 and any561

Bx, Bw, By > 0, there exists an attention layer θ = {(Qm,Km,Vm)}m∈[M ] with M = 3 heads562

such that the following holds. For any input sequence H ∈ RDhid×2N that takes form563

hx
i = [xi; 0;wi;p

x
i ], hy

i = [xi; yi;0d;p
y
i ]

with ∥xi∥2 ≤ Bx, |yi| ≤ By, and ∥w∥2 ≤ Bw, it gives output Attnθ(H) = H̃ ∈ RDhid×2N with564

h̃x
i = h̃2i−1 = [xi; 0; w̃i;p

x
i ], where565

w̃i = wi − ηi∇L̂λ
i−1(wi)

with ηi =
i−1
2i−1η, and h̃y

i = hy
i , for all i ∈ [N ].566

Proof. Let R := max {BxBw, By}. By the form of the input (hk)k∈[2N ] in (3), we can define two567

attention heads {(Qm,Km,Vm)}m=1,2 ⊂ RDhid×Dhid such that for all i, j ∈ [N ],568

Q1h
x
i =


wi/2
−1
i
−3R
−R
0

 , K1h
y
j =


xj

yj
3R
j
1
0

 , V1h
x
j = V1h

y
j = −η ·

[
0d+1

xj

0Dhid−2d−1

]
,

Q2h
x
i = Q2h

y
i =

 i
−3R
−R
0

 , K2h
x
j = K2h

y
j =

3Rj1
0

 , V2h
x
j = V2h

y
j = η ·

[
0d+1

xj

0Dhid−2d−1

]
.

Further, Q1h
y
i takes the same form as Q1h

x
i except for replacing the wi/2 location with 0d and569

replacing the −1 location with 0 (using the indicator for being an x-token within px
i ,p

y
i ); K1h

x
j570

takes the same form as K1h
y
j except for replacing the yj location with 0.571

Fixing any i ∈ [N ]. We have for all j ≤ i− 1,572

σ
(〈
Q1h

x
i ,K1h

y
j

〉)
− σ

(〈
Q2h

x
i ,K2h

y
j

〉)
= σ

(
w⊤

i xj/2− yj +R(3i− 3j − 1)
)
− σ(R(3i− 3j − 1)) = w⊤

i xj/2− yj ,

and for all j ≤ i,573

σ
(〈
Q1h

x
i ,K1h

x
j

〉)
− σ

(〈
Q2h

x
i ,K2h

x
j

〉)
= σ

(
w⊤

i xj/2 +R(3i− 3j − 1)
)
− σ(R(3i− 3j − 1)) = w⊤

i xj/2 · 1{j ≤ i− 1}.

Above, we have used
∣∣w⊤

i xj/2− yj
∣∣ ≤ 3R/2,

∣∣w⊤
i xj/2

∣∣ ≤ R/2, and the fact that σ(z+M)−σ(M)574

equals z for M ≥ |z| and 0 for M ≤ − |z|.575
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Therefore for all j ≤ i− 1,576

σ
(〈
Q1h

x
i ,K1h

y
j

〉)
V1h

y
j + σ

(〈
Q2h

x
i ,K2h

y
j

〉)
V2h

y
j

=
(
σ
(〈
Q1h

x
i ,K1h

y
j

〉)
− σ

(〈
Q2h

x
i ,K2h

y
j

〉))
· −η[0d+1;xj ;0Dhid−2d−1]

= −η
(
w⊤

i xj/2− yj
)
· [0d+1;xj ;0Dhid−2d−1],

and similarly for all j ≤ i,577

σ
(〈
Q1h

x
i ,K1h

x
j

〉)
V1h

x
j + σ

(〈
Q2h

x
i ,K2h

x
j

〉)
V2h

x
j

= −η
(
w⊤

i xj/2
)
1{j ≤ i− 1} · [0d+1;xj ;0Dhid−2d−1]

Summing the above over all key tokens ℓ ∈ [2i− 1], we obtain the combined output of the two heads578

at query token 2i− 1 (i.e. the i-th x-token):579

2i−1∑
ℓ=1

∑
m=1,2

1

2i− 1
σ(⟨Qmh2i−1,Kmhℓ⟩)Vmhℓ

=

i−1∑
j=1

∑
m=1,2

1

2i− 1
σ
(〈
Qmhx

i ,Kmhy
j

〉)
Vmhy

j +

i∑
j=1

∑
m=1,2

1

2i− 1
σ
(〈
Qmhx

i ,Kmhx
j

〉)
Vmhx

j

=
1

2i− 1

i−1∑
j=1

−η
(
w⊤

i xj/2− yj
)
+

i∑
j=1

−η
(
w⊤

i xj/2
)
1{j ≤ i− 1}

 · [0d+1;xj ;0Dhid−2d−1]

=
i− 1

2i− 1
·
[
0d+1;−η∇L̂i−1(wi);0Dhid−2d−1

]
.

(14)
It is straightforward to see that, repeating the same operation at query token 2i (i.e. the i-th y-token)580

would output 0Dhid
, since the query vector Q1h

y
i contains [0d; 0] instead of [wi/2;−1] as in Q1h

x
i .581

We now define one more attention head (Q3,K3,V3) ⊂ RD×D such that for all k ∈ [2N ], j ∈ [N ],582

Q3hk =

k
2

k
1
0

 , K3hℓ =

 −1/2
(1− ℓ)/2
1− ℓ/2

0

 , V3h
x
j =

[
0d+1

−ηλwj

0Dhid−2d−1

]
, V3h

y
j = 0Dhid

.

For any ℓ ≤ k, we have583

σ(⟨Q3hk,K3hℓ⟩) = σ
(
−k2/2 + k(1− ℓ)/2 + 1− ℓ/2

)
=

k − 1

2
σ(−k + ℓ+ 1) =

k − 1

2
1{ℓ = k}.

Therefore, for query token k = 2i− 1, the attention head outputs584

k∑
ℓ=1

1

k
σ(⟨Q3hk,K3hℓ⟩)Vmhℓ =

k∑
ℓ=1

1

k
· k − 1

2
1{ℓ = k} ·Vmhℓ

=
k − 1

2k
·Vmhk =

i− 1

2i− 1
·Vmhx

i =
i− 1

2i− 1
· [0d+1;−ηλwi;0Dhid−2d−1].

(15)

It is straightforward to see that the same attention head at query token k = 2i outputs 0Dhid
, as the585

value vector V3hk = V3h
y
i is zero.586

Combining (14) and (15), letting the full attention layer θ := {(Qm,Km,Vm)}m=1,2,3, we have587

Attnθ(H) = H̃, where for all i ∈ [N ],588

h̃x
i = h̃2i−1 = h2i−1 +

3∑
m=1

2i−1∑
ℓ=1

1

2i− 1
σ(⟨Qmh2i−1,Kmhℓ⟩) ·Vmhℓ

=

xi

0
wi

∗

+
i− 1

2i− 1

 0d+1

−η
(
∇L̂i−1(wi) + λwi

)
0Dhid−2d−1

 =


xi

0

wi − ηi∇L̂λ
i−1(wi)
∗

 ,

where ηi :=
i−1
2i−1wi, and h̃y

i = hy
i . This finishes the proof.589
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Theorem F.5 (In-context ridge regression by decoder-only transformer). For any λ ≥ 0,590

Bx, Bw, By > 0 with κ := 1 + B2
x/λ, and ε < BxBw/2, let Dhid ≥ 2d + 10, then there ex-591

ists an L-layer transformer TFθ with M = 3 heads and hidden dimension Dhid, where592

L = ⌈3κ log(BxBw/(2ε))⌉+ 2, (16)

such that the following holds. On any input matrix H of form (3) such that problem (13) has bounded593

inputs and solution: for all i ∈ [N ]594

∥xi∥2 ≤ Bx, |yi| ≤ By,
∥∥ŵλ

i

∥∥
2
≤ Bw/2, (17)

TFθ approximately implements the ridge regression algorithm (minimizer of risk (13)) at every token595

i ∈ [N ]: The prediction ŷi := [TFθ(H)]d+1,2i−1 satisfies596 ∣∣ŷi − 〈
ŵλ

i ,xi

〉∣∣ ≤ ε. (18)

Proof. The proof consists of two steps.597

Step 1 We analyze the convergence rate of gradient descent on L̂λ
i−1 simultaneously for all 2 ≤598

i ≤ N , each with learning rate ηi =
i−1
2i−1η as implemented in Proposition F.4.599

Fix 2 ≤ i ≤ N . Consider the ridge risk L̂λ
i−1 defined in (13), which is a convex quadratic function600

that is λ-strongly convex and λmax

(
X⊤

i−1Xi−1/(i− 1)
)
+λ ≤ B2

x+λ =: β smooth over Rd. Recall601

κ = β/λ = 1 +B2
x/λ.602

Consider the following gradient descent algorithm on L̂λ
i−1: Initialize w0

i := 0, and for every t ≥ 0603

wt+1
i = wt

i − ηi∇L̂λ
i−1(w

t
i), (19)

with ηi =
i−1
2i−1η. Taking η := 2/β, we have ηi ∈ [2/(3β), 1/β], and thus ηiλ ∈ [2/(3κ), 1/κ].604

By standard convergence results for strongly convex and smooth functions (Proposition E.1), we have605

for all t ≥ 1 that606 ∥∥wt
i − ŵλ

i

∥∥2
2
≤ exp (−ηiλt)

∥∥w0
i − ŵλ

i

∥∥2
2
= exp (−ηiλt)

∥∥ŵλ
i

∥∥2
2
.

Further, taking the number of steps as607

T :=

⌈
3κ log

(
BxBw

2ε

)⌉
so that ηiλT/2 ≥ 2/(3κ) · 3κ log(BxBw/(2ε))/2 = log(BxBw/(2ε)), we have608 ∥∥wT

i − ŵλ
i

∥∥
2
≤ exp (−ηiλT/2)

∥∥ŵλ
i

∥∥
2
≤ 2ε

BxBw
· Bw

2
≤ ε

Bx
. (20)

Step 2 We construct a (T + 2)-layer transformer TFθ by concatenating the copying layer609

in Lemma G.1, T identical gradient descent layers as constructed in Proposition F.4, and the linear610

prediction layer in Lemma F.2. Note that the transformer is attention only (all MLP layers being611

zero), and the number of heads within all layers is at most 3.612

The copying layer ensures that the output format is compatible with the input format required in613

Proposition F.4, which in turn ensures that the T gradient descent layers implement (19) simulta-614

neously for all 1 ≤ i ≤ N (wT
1 := 0 is not updated at token i = 1). Therefore, the final linear615

prediction layer ensures that, the output matrix H̃ := TFθ(H) contains the following prediction at616

every i ∈ [N ]:617

ŷi := [h̃x
i ]d+1 =

〈
wT

i ,xi

〉
,

which satisfies618 ∣∣ŷi − 〈
ŵλ

i ,xi

〉∣∣ = ∣∣〈wT
i − ŵλ

i ,xi

〉∣∣ ≤ (ε/Bx) ·Bx = ε.

This finishes the proof.619

620
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F.3 Proof of Theorem C.1621

The result follows directly by concatenating the following two transformer constructions:622

• The MLP implementation module in Lemma F.3, which has (L + 1)-layers, 5 heads, and623

transforms every xi to Φ⋆(xi) to give output matrix (4);624

• The in-context ridge regression module in Theorem F.5 (with inputs being {Φ⋆(xi)} instead of625

xi) which has O(κ log(BΦBw/ε)) layers, 3 heads, and outputs prediction ŷi := [h̃x
i ]D+1 where626

|ŷi − ⟨Φ⋆(xi), ŵ
Φ⋆,λ
i ⟩| ≤ ε, where ŵΦ⋆,λ

i is the (Φ⋆-Ridge) predictor.627

Claim (4) can be seen by concatenating the (L + 1)-layer MLP module with the first layer in the628

ridge regression module (Theorem F.5), which copies the Φ⋆(xi) in each x token to the same location629

in the succeeding y token.630

Further, the hidden dimension requirements are Dhid ≥ max {2D,D + d+ 10} for the first module631

and Dhid ≥ 2D+10 for the second module, which is satisfied at our precondition Dhid = 2D+d+10.632

This finishes the proof.633

G Proofs for Appendix C.2634

Recall our input format (6) for the dynamical system setting:635

H :=

[
x1 . . . xN

p1 . . . pN

]
∈ RDhid×N ,

our choice of the positional encoding vectors pi = [0Dhid−d−4; 1; i; i
2; i3] for all i ∈ [N ], and that636

we understand xi := 0 for all i ≤ 0.637

G.1 Useful transformer constructions638

Lemma G.1 (Copying for dynamical systems). Suppose Dhid ≥ kd + 4. For any k ∈ [N ], there639

exists a (k + 1)-head attention layer θ = {(Qm,Km,Vm)}m∈[k+1] ⊂ RDhid×Dhid such that for640

every input H of the form (6), we have641

H̃ = Attnθ(H) =

x1−k+1 . . . xi−k+1 . . . xN−k+1

| | |
x1 . . . xi . . . xN

p1 . . . pi . . . pN

 ∈ RDhid×N , (21)

where pi only differs from pi in the dimension of the zero paddings. In words, Attnθ copies the k− 1642

previous tokens [xi−k+1; . . . ;xi−1] onto the i-th token.643

Proof. For every k′ ∈ [k], we define an attention head (Qk′ ,Kk′ ,Vk′) ⊂ RDhid×Dhid such that for644

all j ≤ i ∈ [N ],645

Qk′hi = [i3; i2; i;0Dhid−3],

Kk′hj = [−1; 2j + 2(k′ − 1);−j2 + 2(k′ − 1)j + 1− (k′ − 1′)2;0Dhid−3],

Vk′hj = [0(k−k′)D;xj ;0].

Note that646

σ(⟨Qk′hi,Kk′hj⟩) = σ
(
−i3 + 2i2j + 2(k′ − 1)i2 − ij2 + 2ij(k′ − 1) + i− i(k′ − 1)2

)
= iσ

(
1− (j − i+ k′ − 1)2

)
= i1{j = i− k′ + 1}.

Therefore, at output token i ∈ [N ], this attention head gives647

1

i

i∑
j=1

σ(⟨Qk′hi,Kk′hj⟩)Vk′hj =
1

i
· i ·Vk′hi−k′+1 = [0(k−k′)D;xi−k′+1;0]
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when i − k′ + 1 ≥ 1, and zero otherwise. Combining all k heads, and defining one more head648

(Qk+1,Kk+1,Vk+1) to “remove” xi at its original location (similar as in the proof of Lemma F.3),649

we have650

k+1∑
m=1

1

i

i∑
j=1

σ(⟨Qk′hi,Kk′hj⟩)Vk′hj =


xi−k+1 − xi

xi−(k−1)+1

|
xi

0

 .

By the residual structure of an attention layer, we have651

[Attnθ(H)]i =

[
xi

pi

]
+


xi−k+1 − xi

xi−(k−1)+1

|
xi

0

 =


xi−k+1

xi−(k−1)+1

|
xi

pi

 .

(The precondition Dhid ≥ D + 4 guarantees that the x entries would not interfere with the non-zero652

entries within pi.) This is the desired result.653

Lemma G.2 (Implementing MLP representation for dynamical systems). Fix any MLP representation654

function Φ⋆ : Rkd → RD of the form (2), suppose Dhid ≥ 2(k + 1)d + 3D + 2d + 5. Then there655

exists a module MLP-(Attention-MLP-. . . -Attention-MLP) with L+ 1 (Attention-MLP) blocks (i.e.656

transformer layers) and 5 heads in each attention layer (this is equivalent to an (L + 2)-layer657

transformer without the initial attention layer) that implements Φ⋆ in the following fashion: For any658

input H of form659

H =

[
x1 . . . xN

p1 . . . pN

]
where we recall xi = [xi−k+1; . . . ;xi] ∈ Rkd, the following holds. The first MLP layer outputs660

MLP(1)(H) =

[
σρ(B

⋆
1x1) . . . σρ(B

⋆
1xi)

x1 . . . xi

p′
1 . . . p′

i

]
.

The full transformer outputs661

H̃ = TFθ(H) =


Φ⋆(x1) Φ⋆(x2) . . . Φ⋆(xi)
0d 0d . . . 0d

0D Φ⋆(x1) . . . Φ⋆(xi−1)
x1 x2 . . . xi

p̃1 p̃2 . . . p̃i

 . (22)

where p̃i, p̃i differs from pi,pi only in the dimension of their zero paddings.662

Proof. We first construct the first MLP layer. Consider any input token hi = [xi;pi]. Define matrices663

W1,W2 ∈ RDhid×Dhid such that (below ±u := [u;−u])664

W1hi =

±B
⋆
1xi

±xi

±xi

0

 , σ(W1hi) =

σ(±B
⋆
1xi)

σ(±xi)
σ(±xi)

0

 ,

W2σ(W1hi) =

[
σ(B⋆

1xi)− ρσ(−B⋆
1xi)

0

]
+

[
−σ(xi) + σ(−xi)

0

]
+

[
0D

σ(xi)− σ(−xi)
0

]
.

Therefore, the MLP layer (W1,W2) outputs665

hi := [MLPW1,W2(H)]i = hi +W2σ(W1hi) =

[
σρ(B

⋆
1xi)

xi

pi

]
. (23)

The requirement for Dhid above is Dhid ≥ max {2D + 2(k + 1)d,D + d+ 5}.666

The rest of the proof follows by repeating the proof of Lemma F.3 (skipping the first (MLP-Attention)667

block), with the following modifications:668
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• Save the xi ∈ xi location within each token, and move it into the (2D + d+ 1 : 2D + 2d) block669

in the final layer (instead of moving the label yi in Lemma F.3); this takes the same number (at670

most 2) of attention heads in every layer, same as in Lemma F.3.671

• Append one more copying layer with a single attention head (similar as the construction672

in Lemma G.1) to copy each Φ⋆(xi) to the (D + d+ 1 : 2D + d) block of the next token.673

The above module has structure (L−1)×(MLP-Attention), followed by a single attention layer which674

can be rewritten as an MLP-Attention-MLP module with identity MLP layers. Altogether, the module675

has an MLP-L×(Attention-MLP) structure. The max number of attention heads within the above mod-676

ule is 5. The required hidden dimension here is Dhid ≥ max {kd+ 4, 2D + d+max {D, d}+ 5},677

with Dhid ≥ max {kd, 3D + 2d}+ 5 being a sufficient condition.678

Combining the above two parts, a sufficient condition for Dhid is Dhid ≥ 2(k + 1)d+ 3D + 2d+ 5,679

as assumed in the precondition. This finishes the proof.680

Consider the following multi-output ridge regression problem:681

Ŵλ
i := argmin

W∈RD×d

1

2(i− 1)

i−1∑
j=1

∥∥W⊤xj − yj

∥∥2
2
+

λ

2
∥W∥2Fr . (24)

Theorem G.3 (In-context multi-output ridge regression with alternative input structure). For any682

λ ≥ 0, Bx, Bw, By > 0 with κ := 1 + B2
x/λ, and ε < BxBw/2, let Dhid ≥ Dd + 2(D + d) + 5,683

then there exists an L-layer transformer TFθ with M = 3d heads and hidden dimension Dhid, where684

L = O(κ log(BxBw/(ε))) (25)
such that the following holds. On any input matrix685

H =


x1 x2 . . . xN

0d 0d . . . 0d

0D x1 . . . xN−1

0d y1 . . . yN−1

p1 p2 . . . pN


(where xi ∈ RD, yi ∈ Rd) such that problem (24) has bounded inputs and solution: for all i ∈ [N ]686

∥xi∥2 ≤ Bx, ∥yi∥∞ ≤ By, ∥Ŵλ
i ∥2,∞ ≤ Bw/2, (26)

TFθ approximately implements the ridge regression algorithm (24) at every token i ∈ [N ]: The687

prediction ŷi := [TFθ(H)](D+1):(D+d),i satisfies688 ∥∥∥ŷi − (Ŵλ
i )

⊤xi

∥∥∥
∞
≤ ε. (27)

Proof. Observe that the multi-output ridge regression problem (24) is equivalent to d separable689

single-output ridge regression problems, one for each output dimension. Therefore, the proof follows690

by directly repeating the same analysis as in Theorem F.5, with the adaptation that691

• Omit the copying layer since each token already admits the previous (input, label) pair;692

• Use a O(κ log(BxBw/(ε)))-layer transformer with 3d heads to perform d parallel ridge regres-693

sion problems (each with 3 heads), using in-context gradient descent (Proposition F.4) as the694

internal optimization algorithm, and with slightly different input structures that can be still ac-695

commodated by using relu to implement the indicators. Further, by the precondition (26) and696

Dhid − 2(D + d)− 5 ≥ Dd, we have enough empty space to store the Wt
i ∈ RD×d within the697

zero-paddings in pi.698

• Use a single-attention layer with d parallel linear prediction heads (Lemma F.2), one for each699

j ∈ [d], to write prediction (ŷi)j into location (i,D + j) with |(ŷi)j − ⟨(Ŵλ
i )j ,xi⟩| ≤ ε.700

Therefore,701 ∥∥∥ŷi − (Ŵλ
i )

⊤xi

∥∥∥
∞

= max
j∈[d]

∣∣∣(ŷi)j −
〈
(Ŵλ

i )j ,xi

〉∣∣∣ ≤ ε.

This finishes the proof.702
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G.2 Proof of Theorem C.2703

Proof of Theorem C.2. The proof is similar as that of Theorem C.1. The result follows directly by704

concatenating the following three transformer modules:705

• The copying layer in Lemma G.1, which transforms the input to format (21), and thus verifies706

claim (7).707

• The MLP representation module in Lemma G.2, which transforms (21) to (22). Together with708

the above single attention layer, the module is now an (L+ 1)-layer transformer with 5 heads.709

Claim (8) follows by the intermediate output (23) within the proof of Lemma G.2.710

• The in-context multi-output ridge regression construction in Theorem G.3 (with inputs be-711

ing {Φ⋆(xi)} and labels being {xi+1}). This TF has O(κ log(BΦBw/ε)) layers, and 3d712

heads. It takes in input of format (22), and outputs prediction ŷi := [h̃i]D+1:D+d where713

∥ŷi − (ŴΦ⋆,λ
i )⊤Φ⋆(xi)∥∞ ≤ ε, where ŴΦ⋆,λ

i is the (Φ⋆-Ridge-Dyn) predictor.714

The resulting transformer has max {3d, 5} heads, and the hidden dimension requirement is Dhid ≥715

max {kd+ 5, 2(k + 1)d+ 3D + 2d+ 5, Dd+ 2(D + d) + 5}. A sufficient condition is Dhid =716

max {2(k + 1), D}d+ 3(D + d) + 5, as assumed in the precondition. This finishes the proof.717

H Additional details for experiments718

Architecture and training details We train a 12-layer decoder model in GPT-2 family with 8 heads719

and hidden dimension Dhid = 256, with positional encoding. We use linear read-in and read-out layer720

before and after the transformers respectively, both applying a same affine transform to all tokens721

in the sequence and are trainable. The read-in layer maps any input vector to a Dhid-dimensional722

hidden state, and the read-out layer maps a Dhid-dimensional hidden state to a 1-dimensional scalar723

for model (1) and to a d-dimensional scalar for model (5).724

Under the in-context learning with representation setting, we first generate and fix the represen-725

tation Φ⋆. For a single ICL instance, We generate new coefficients w and N training examples726

{(xi, yi)}i∈[N ] and test input (xN+1, yN+1). Before feeding into transformer, we re-format the727

sequence to HICL−rep, as shown in equation (28).728

HICL−rep =

[
x1,

[
y1

0d−1

]
, . . . ,xN ,

[
yN
0d−1

]]
∈ Rd×2N (28)

We use the use the Adam optimizer with a fixed learning rate 10−4, which works well for all729

experiments. We train the model for 300K steps, where each step consists of a (fresh) minibatch with730

batch size 64 for single representation experiments, except for the mixture settings in Appendix I731

where we train for 150K iterations, each containing K batches one for each task.732

Under ICL dynamic system setting, for a single ICL instance, we don’t need to reformat the input733

sequence. We feed the original sequence HDynamic = [x1, . . . ,xN ] ∈ Rd×N to transformer.734

All our plots show one-standard-deviation error bars, though some of those are not too visible.735

H.1 Details for linear probing736

Denote the ℓ−th hidden state of transformers as737

H(ℓ) =
[
h
x,(ℓ)
1 ,h

y,(ℓ)
1 , . . . ,h

x,(ℓ)
N ,h

y,(ℓ)
N

]
∈ RDhid,2N for ℓ ∈ [12].

Denote the probing target as g({xj , yj}j∈[i]) ∈ Rdprobe for i ∈ [N ]. Denote the linear probing738

parameter as wx,(ℓ) and wy,(ℓ) that belong to RDhid×dprobe . Denote the best linear probing model as739

w
x,(ℓ)
⋆ = argmin

wx,(ℓ)

E
[ N∑

i=1

{(
wx,ℓ

)⊤
h
x,(ℓ)
i − g

(
{xj , yj}j∈[i]

)}2]
and
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w
y,(ℓ)
⋆ = min

wy,(ℓ)
E
[ N∑

i=1

{(
wy,ℓ

)⊤
h
y,(ℓ)
i − g

(
{xj , yj}j∈[i]

)}2]
.

To find them, we generate 2560 ICL input sequences with length N , and obtain 12 hidden states740

for each input sequences. We leave 256 sequences as test sample and use the remaining samples to741

estimate w
x,(ℓ)
⋆ and w

y,(ℓ)
⋆ for each ℓ with ordinary least squares. We use the mean squared error to742

measure the probe errors. In specific, define743

Probe Errorx,(ℓ)i (g) = E
[{(

wx,ℓ
⋆

)⊤
h
x,(ℓ)
i − g

(
{xj , yj}j∈[i]

)}2]
with

Probe Errorx,(ℓ)(g) =
1

N

N∑
i=1

Probe Errorx,(ℓ)i (g), and

Probe Errory,(ℓ)i (g) = E
[{(

wx,ℓ
⋆

)⊤
h
x,(ℓ)
i − g

(
{xj , yj}j∈[i]

)}2]
with

Probe Errory,(ℓ)(g) =
1

N

N∑
i=1

Probe Errory,(ℓ)i (g).

When ℓ = 0, we let hx,(0)
i = h

y,(0)
i = xi as a control to the probe errors in the hidden layer.744

We normalize each probe error with E[∥g(x, y)∥22]/dprobe. We use the 256 leaved-out samples to745

estimate these errors. We replicate the above procedure for three times and take their mean to get the746

final probe errors.747

H.2 Details for pasting748

From the single fixed representation settings above, we pick a trained transformer trained on the749

representation with D = d = 20 to avoid dimension mismatch between Φ⋆(x) and x. We choose750

L = 3 and noise level σ = 0.1.751

We change the data generating procedure of y from Equation (1) to752

yi = ⟨w,xi⟩+ σzi, i ∈ [N ], (29)
which corresponds to a linear-ICL task. According to the results of probing Fig 3a, we conjecture753

that transformer use the first 4 layers to recover the representation, and implement in-context learning754

through the 5-th to the last layers. Therefore, we extract the 5− 12 layers as the transformer upper755

layers. Then paste them with three kinds of embeddings:756

1. Linear embedding W ∈ RDhid×(D+1) with re-formatted input HLinear:757

HLinear =

[[
x1

0

]
,

[
0D

y1

]
, . . . ,

[
xN

0

]
,

[
0D

yN

]]
∈ RD+1×2N

2. Linear copy embedding W ∈ RDhid×(D+1) with re-formatted input Hcopy that copies xi to yi758

tokens in advance:759

Hcopy =

[[
x1

0

]
,

[
x1

y1

]
, . . . ,

[
xN

0

]
,

[
xN

yN

]]
∈ RD+1×2N

3. Transformer embedding TF using the same input format HICL−rep with normal settings, as760

shown in (28). We extract the 4-th layer of the GPT-2 model, its a complete transformer761

block with trainable layer norm. We use a linear read-in matrix to map HICL−rep to the762

Dhid-dimension hidden state, apply one block of transformer to it to get the TF embedding763

H = TF(H).764

We apply the upper layers to the three embeddings, then use the original read-out matrix to get the765

prediction of ŷi. For comparison, we also train a one-layer transformer using the input sequence766

HICL−rep.767

We use the same training objective as in (10). In the retraining process, we switch to task (29), fix the768

parameters of upper layers of the transformer, and only retrain the embedding model. The training769

methods are exact the same with the original transformer. We also find that using a random initialized770

transformer block or extracting the 4-th layer of the transformer don’t make difference to the results.771
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H.3 Difficulty of linear ICL with a single-layer transformer with specific input format772

Recall the input format (3):773

H =

[
x1 0 . . . xN 0
0 y1 . . . 0 yN
px
1 py

1 . . . px
N py

N

]
∈ RDhid×2N .

Here we heuristically argue that a single attention layer alone (the only part in a single-layer trans-774

former that handles interaction across tokens) is unlikely to achieve good linear ICL performance on775

input format (3).776

Consider a single attention head (Q,K,V). As we wish the transformer to do ICL prediction at777

every token, the linear estimator wi used to predict ŷi is likely best stored in the xi token (the only778

token that can attend to all past data Di−1 and the current input xi). In this case, the attention layer779

needs to use the following (key, value) vectors to compute a good estimator wi from the data Di−1:780

{Vhx
j ,Vhx

j }j∈[i]
, {Vhy

j ,Vhy
j}j∈[i−1]

.

However (apart from position information), hx
j only contains xj , and hy

j only contains yj . Therefore,781

using the normalized ReLU activation as in Appendix F.3 & G.2, it is unlikely that an attention layer782

can implement even simple ICL algorithms such as one step of gradient descent [32, 2]:783

wi = w0
i − η

1

i− 1

∑
j≤i−1

(〈
w0

i ,xj

〉
− yj

)
xj ,

which (importantly) involves term −yjxj that is unlikely to be implementable by the above attention,784

where each attention head at each key token can observe either xj or yj but not both.785

H.4 Reproducibility786

Code for our experiments is provided at the following anonymous link4.787

I Experiments on mixture of multiple representations788

We train transformers on a mixture of multiple ICL tasks, where each task admits a different789

representation function. This setting can be seen as a representation selection problem similar as the790

“algorithm selection” setting of [4]. In specific, let K ≥ 2 denote the number of tasks. Given j, let791

yi =
〈
w,Φ⋆

j (xi)
〉
+ σzi, zi ∼ N(0, 1), i ∈ [N ], where

Φ⋆
j (x) = σ⋆

(
B

⋆,(j)
L σ⋆,(j)

(
B⋆

L−1 · · ·σ⋆,(j)
(
B

⋆,(j)
1 x

)
· · ·

))
, B

⋆,(j)
1 ∈ RD×d, (B

⋆,(j)
ℓ )Lℓ=2 ⊂ RD×D.

The generating distributions for w, {xi}i∈[N ], and {B⋆,(j)
L } are same with previous setting. We792

generate different Φ⋆
j for j ∈ [K] independently. We choose K ∈ {3, 6}, σ ∈ {0, 0.1, 0.5}, L = 3,793

and noise σ ∈ {0, 0.1, 0.5}.794

At each training step, we generate K independent minibatches, with the j−th minimatch takes the795

representation Φ⋆
j to generate {yi}i∈[N ]. Due to multiple minibatches, we shorten the number of796

total training steps to 150K. The other training details are the same with fixed single representation797

setting.798

ICL performance We choose one representation Φ⋆
1 from the representations that transformers799

are trained on. Figure 6a & Figure 6b report the test risk. We vary K ∈ {3, 6} and noise level800

σ ∈ {0.1, 0.5}. We consider two baseline models.801

1. The Bayes optimal algorithm: Note that the training distribution follows the Bayesian hierarchi-802

cal model:803

j ∼ Unif([K]), xi ∼ N(0, Id), w ∼ N(0, τ2Id), and yi | xi, j,w ∼ N(⟨w,xi⟩ , σ2).

4https://anonymous.4open.science/r/tf-rep-icl
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(a) Risk for K = 3
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Figure 6: ICL risks for multiple representations setting. Dotted lines plot two baseline risks. (a) The
transformer with lower risks is trained with (K,L,D, σ) = (3, 3, 20, 0.1). The upper one is trained with
(K,L,D, σ) = (3, 3, 20, 0.5). (b) The two transformers are trained with K = 6 and same settings otherwise.

This gives the Bayes optimal predictor804

ŷi =

K∑
j=1

η
(j)
i ŷ

(j)
i , with (. . . , η

(j)
i , . . .) = SOFTMAX

{[
. . . ,

i∑
k=1

(yk − ŷ
(j)
k )2/σ2, . . .

]}
(30)

with ŷ
(j)
i being ridge predictor with optimal λ based on

{(
Φ⋆

j (xr), yr
)}

r∈[i−1]
.805

2. The oracle ridge algorithm: We use the ridge predictor ŷ(1)i based on {(Φ⋆
1(xr), yr)}r∈[i−1],806

which is the representation for test distribution. Note that this is an (improper) algorithm that807

relies on knowledge of the ground truth task.808

Comparable to those trained on single fixed representation, transformers consistently match the809

Bayes-optimal ridge predictor. As expected, the oracle ridge algorithm is better than transformers and810

the Bayes optimal algorithm and transformers. Increasing number of tasks K can slightly increase811

this gap. Increasing the noise level has the same effect on transformers and baseline algorithms.812
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Figure 7: Probing errors for transformer trained with (K,L,D, σ) = (3, 3, 20, 0.1). Dotted lines plot probing
errors on y tokens.
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Figure 8: Probing errors for transformer trained with σ = 0.5

Probe setup: Similar to single fixed representation setting, we conduct linear probing experiments.813

We are wondering transformer implements the ICL-learning on representations with algorithm814

25



selections mechanism. We identify three sets of probing targets: Φ⋆(xi), ŷ(j) and η
(j)
i . All of them815

are intermediate values to compute the Bayes optimal estimator (30). We generate different data for816

different probing targets:817

1. To probe Φ⋆(xi) and ŷ(j) for each j, we choose one representation from the representations that818

transformers are trained on, then train and test our linear probing model. This is consistent with819

the training and testing methods for probing transformers trained on a single representation.820

2. To probe choose concatenated probing targets Yi = [ŷ
(1)
i , . . . , ŷ

(K)
i ] and Bi = [η

(1)
i , . . . , η

(K)
i ],821

we generate 2560 in-context sequences for each representation, and obtain 2560×K samples822

together. We use ordinary linear square on 2560×K − 256 samples to get the linear probing823

models. Then test them on the remaining 256 samples to get the probing errors. We also repeat824

this process for three times and take means to get the final probing errors.825

Probe representations: Take the transformer trained on K = 3 mixture representations with826

noise level σ ∈ {0.1, 0.5}. Figure 7 show the probing errors for σ = 0.1: Figure 7a reports the827

errors of probing Φ⋆
j j ∈ [3], with probing models trained on task Φ⋆

1. Echoing the results for828

transformers trained on single representation, the probing errors for each representations decrease829

through lower layers and increase through upper layers on x tokens. The probing errors on y tokens830

drop after x tokens, which suggests a copy mechanism. Surprisingly, on x-tokens, the probing errors831

for all representations attain their minimum at the 3-th layer, with transformers trained on single832

representation achieving their minimum on 4-th layer (compare with Figure 3a).833

More importantly, for both x and y tokens, the probing errors for each representation are similar834

through lower layers, but the probing errors for the true representation Φ⋆
1 become the lowest through835

the upper layers. The gap between the probing errors increases. At the last layer, the probing error836

for the other representations go up to match the initial input.837

Probe intermediate values for computing Bayes optimal predictor: Figure 7b shows the probing838

errors for concatenated ridge predictors ŷ(j)i and Bayes weights η(j)i , i.e., Yi and Bi. The probing839

errors for Yi start dropping at the 4−th layer, which suggest that transformer are implementing ICL840

using each representations. Probing errors for Bi have a sudden drop at the 10−th layer. Figure 7c841

shows the probing errors for probing ŷ
(j)
i . At (j, k)-th cell, we show the probing error of ŷ(j)i with842

probing models trained on Φ⋆
k at the x tokens of the last layer. The diagonal elements dominant. The843

results combined together suggest the possibility that transformer compute in-context learning with844

three representations and implement algorithm selections at the 10−th layer to drop some predictions.845

In comparison, Figure 8 shows results of probing the same targets for transformer under σ = 0.5.846

Figure 8a differs with Figure 7b at upper layers, where probing errors for different representations847

don’t have significant gaps. Figure 8b is close to Figure 7b, also suggesting the algorithm selection848

mechanism. Figure 8c shows that the last layer encodes the information of all ridge predictors
{
ŷ
(j)
i

}
,849

which is drastically different from the results in Figure 7c.850

Conjecture on two different algorithm selection mechanisms: Based on the empirical findings,851

we conjecture two possible mechanisms of algorithm selection in transformer: (1) For small noise level852

data, transformers implement “concurrent-ICL algorithm selection”, which means they concurrently853

implement ICL with algorithm selection, then stop implementing the full ICL procedure for algorithms854

that not are not likely to have good performance. (2) For large noise level data, transformers “post-ICL855

algorithm selection”, which means they first implement ICL using each algorithm, then select and856

output the best one. However, we need further experimental and theoretical to inspect this conjecture.857

J Ablations858

J.1 Supervised learning with representation859

Probing results along training trajectory Figure 9a, Figure 9b, and Figure 9c show the probing860

error for Φ⋆(xi) at x and y tokens and ŷΦ
⋆ridge at x tokens. As expected, all probe errors reduce861

through training steps, showing that the progress of learning Φ⋆ is consistent with the progress of the862

training loss. At the 2000 training steps, transformer cannot recover the representation. At the 5000863

training steps, the transformer starts memorizing the representation, starting showing differences864
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between lower and upper layers. From 5000 training steps to 10000, the trend of probe errors varying865

with layers remains the same.866
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ŷΦ ⋆ ridge
i  at x tokens

(b) 5000 training steps

0 2 4 6 8 10 12
layer

10−1

m
ea

n 
sq

ua
re

d 
er

ro
r

Φ ⋆ (xi) at x tokens
Φ ⋆ (xi) at y tokens
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Figure 9: Probing errors for transformer trained after 2000, 5000, and 10000 steps. All three plots are for the
training run on (L,D, σ) = (2, 10, 0.1).

Additional results for probing and pasting Figure 10a plots the same probing errors as in Figure867

3a with (L,D, σ) = (3, 20, 0.1) (the green line there), except that we separate the errors of the first 4868

tokens with the rest (token 5-41), but the probing training remains the same (pooled across all tokens).869

We observe that lower layers compute the representation in pretty much the same ways, though later870

layers forget the representations more for the beginning tokens (1-4) than the rest tokens.871

Figure 10b plots the same pasting experiment as in Figure 4b, except that for noise level σ = 0.5 as872

opposed to σ = 0.1 therein. The message is mostly the same as in Figure 4b.873
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Figure 10: (a) Probing errors of Φ⋆(xi) in xi tokens evaluated per-token. (b) Pasting results for the upper
module of a trained transformer in setting (L,D, σ) = (3, 20, 0.5).

J.2 Dynamical systems874

Risk Figure 11 gives ablation studies for the ICL risk in the dynamical systems setting in Ap-875

pendix C.2. In all settings, the trained transformer achieves nearly Bayes-optimal risk. Note that the876

noise appears to have a larger effect than the hidden dimension, or the number of input tokens.877
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Figure 11: Ablation studies for the risk for Risk for fixed rep setting. Each plot modifies a single problem
parameter from the base setting (k, L,D, σ) = (3, 2, 20, 0.1).
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Probing Figure 12a & 12b gives ablation studies for the probing errors in the dynamical systems878

setting in Appendix C.2, with D = 20 instead of D = 80 as in Figure 5b & 5c. The message is largely879

similar except that in Figure 12a, all past inputs and intermediate steps in Φ⋆(xi) are simultaneously880

best implemented after layer 4.881
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Figure 12: Ablation study for the probing errors in the dynamics setting. Here (k, L,D, σ) = (3, 2, 20, 0.5),
different from Figure 5 where D = 80.
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