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Abstract

Many complex time series can be effectively subdivided into distinct regimes that
exhibit persistent dynamics. Discovering the switching behavior and the statistical
patterns in these regimes is important for understanding the underlying dynam-
ical system. We propose the Recurrent Explicit Duration Switching Dynamical
System (RED-SDS), a flexible model that is capable of identifying both state-
and time-dependent switching dynamics. State-dependent switching is enabled by
a recurrent state-to-switch connection and an explicit duration count variable is
used to improve the time-dependent switching behavior. We demonstrate how to
perform efficient inference using a hybrid algorithm that approximates the posterior
of the continuous states via an inference network and performs exact inference for
the discrete switches and counts. The model is trained by maximizing a Monte
Carlo lower bound of the marginal log-likelihood that can be computed efficiently
as a byproduct of the inference routine. Empirical results on multiple datasets
demonstrate that RED-SDS achieves considerable improvement in time series
segmentation and competitive forecasting performance against the state of the art.

1 Introduction

Time series forecasting plays a key role in informing industrial and business decisions [17, 24, 8],
while segmentation is useful for understanding biological and physical systems [40, 45, 34]. State
Space Models (SSMs) [16] are a powerful tool for such tasks—especially when combined with
neural networks [42, 12, 13]—since they provide a principled framework for time series modeling.
One of the most popular SSMs is the Linear Dynamical System (LDS) [5, 43], which models the
dynamics of the data using a continuous latent variable, called state, that evolves with Markovian
linear transitions. The assumptions of LDS allow for exact inference of the states [27]; however,
they are too restrictive for real-world systems that often exhibit piecewise linear or non-linear hidden
dynamics with a finite number of operating modes or regimes. For example, the power consumption
of a city may follow different hidden dynamics during weekdays and weekends. Such data are better
explained by a Switching Dynamical System (SDS) [1, 21], an SSM with an additional set of latent
variables called switches that define the operating mode active at the current timestep.

Switching events can be classified into time-dependent or state-dependent [33]. Historically, emphasis
was placed on the former, which occurs after a certain amount of time has elapsed in a given regime.
While in a vanilla SDS switch durations follow a geometric distribution, more complex long-term
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temporal patterns can be captured using explicit duration models [40, 9]. As a recent alternative
to time-dependency, recurrent state-to-switch connections [35] have been proposed that capture
state-dependent switching, i.e., a change that occurs when the state variable enters a region that is
governed by a different regime. For added flexibility, these models can be used in conjunction with
transition/emission distributions parameterized by neural networks [25, 19, 13, 30]. Recent works,
e.g., [13, 30], proposed hybrid inference algorithms that exploit the graphical model structure to
perform approximate inference for some latent variables and conditionally exact inference for others.

0 20 40 60 80 100 120
Time

Ground Truth

No ED Modeling

RED-SDS

X Ywaggle turn right turn left

Figure 1: Segments (colored bars at the bottom) inferred by a baseline
with no Explicit Duration (ED) modeling vs. our RED-SDS for a time
series from the dancing bees dataset (top). The baseline struggles to
learn long-term temporal patterns, particularly during the “waggle”
phase of the bee dance.

Despite these advances in repre-
sentation and inference, model-
ing complex real-world temporal
phenomena remains challenging.
For example, state-of-the-art state-
dependent models (e.g., [13]) lack
the capacity to adequately capture
time-dependent switching. Empir-
ically, we find this hampers their
ability to learn parsimonious seg-
mentations when faced with com-
plex patterns and long-term depen-
dencies (see Fig. 1 for an example).
Conversely, time-dependent switching models are “open-loop” and unable to model state-conditional
behavioral transitions that are common in many systems, e.g., in autonomous or multi-agent sys-
tems [35]. Intuitively, the suitability of the switching model largely depends on the underlying
data-generating process; city power consumption may be better modeled via time-dependent switch-
ing, whilst the motion of a ball bouncing between two walls is driven by its state. Indeed, complex
real-world processes likely involve both types of switching behavior.

Motivated by this gap, we propose the Recurrent Explicit Duration Switching Dynamical System
(RED-SDS) that captures both state-dependent and time-dependent switching. RED-SDS combines
the recurrent state-to-switch connection with explicit duration models for switches. Notably, RED-
SDS allows the incorporation of inductive biases via the hyperparameters of the duration models to
better identify long-term temporal patterns. However, this combination also complicates inference,
especially when using neural networks to model the underlying probability distributions. To address
this technical challenge, we propose a hybrid algorithm that (i) uses an inference network for the
continuous latent variables (states) and (ii) performs efficient exact inference for the discrete latent
variables (switches and counts) using a forward-backward routine similar to Hidden Semi-Markov
Models [48, 9]. The model is trained by maximizing a Monte Carlo lower bound of the marginal
log-likelihood that can be efficiently computed by the inference routine.

We evaluated RED-SDS on two important tasks: segmentation and forecasting. Empirical results
on segmentation show that RED-SDS is able to identify both state- and time-dependent switching
patterns, considerably outperforming benchmark models. For example, Fig. 1 shows that RED-SDS
addresses the oversegmentation that occurs with an existing strong baseline [13]. For forecasting, we
illustrate the competitive performance of RED-SDS with an extensive evaluation against state-of-
the-art models on multiple benchmark datasets. Further, we show how our model is able to simplify
the forecasting problem by breaking the time series into different meaningful regimes without any
imposed structure. As such, we manage to learn appropriate duration models for each regime and
extrapolate the learned patterns into the forecast horizon consistently.

In summary, the key contributions of this paper are:

• RED-SDS, a novel non-linear state space model which combines the recurrent state-to-
switch connection with explicit duration models to flexibly model switch durations;

• an efficient hybrid inference and learning algorithm that combines approximate inference
for states with conditionally exact inference for switches and counts;

• a thorough evaluation on a number of benchmark datasets for time series segmentation and
forecasting, demonstrating that RED-SDS can learn meaningful duration models, identify
both state- and time-dependent switching patterns and extrapolate the learned patterns
consistently into the future.
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2 Background: switching dynamical systems

Notation. Matrices, vectors and scalars are denoted by uppercase bold, lowercase bold and low-
ercase normal letters, respectively. We denote the sequence {y1, . . . ,yT } by y1:T , where yt is the
value of y at time t. In our notation, we do not further differentiate between random variables and
their realizations.

Switching Dynamical Systems (SDS) are hybrid SSMs that use discrete “switching” states zt to index
one of K base dynamical systems with continuous states xt. The joint distribution factorizes as

p(y1:T ,x1:T , z1:T ) =

T∏
t=1

p(yt|xt)p(xt|xt−1, zt)p(zt|zt−1), (1)

where p(x1|x0, z1)p(z1|z0) = p(x1|z1)p(z1) is the initial (continuous and discrete) state prior. The
base dynamical systems have continuous state transition p(xt|xt−1, zt) and continuous or discrete
emission p(yt|xt) that can both be linear or non-linear.

The discrete transition p(zt|zt−1) of vanilla SDS is parametrized by a stochastic transition matrix
A ∈ RK×K , where the entry aij = A(i, j) represents the probability of switching from state i to
state j. This results in an “open loop” as the transition only depends on the previous switch which
inhibits the model from learning state-dependent switching patterns [35]. Further, the state duration
(also known as the sojourn time) follows a geometric distribution [9], where the probability of staying
in state i for d steps is ρi(d) = (1− aii)ad−1

ii . This memoryless switching process results in frequent
regime switching, limiting the ability to capture consistent long-term time-dependent switching
patterns. In the following, we briefly discuss two approaches that have been proposed to improve the
state-dependent and time-dependent switching capabilities in SDSs.

Recurrent SDS. Recurrent SDSs (e.g., [6, 35, 7, 30]) address state-dependent switching by chang-
ing the switch transition distribution to p(zt|xt−1, zt−1)—called the state-to-switch recurrence—
implying that the switch transition distribution changes at every step and the sojourn time no longer
follows a geometric distribution. This extension complicates inference. Furthermore, the first-order
Markovian recurrence does not adequately address long-term time-dependent switching.

Explicit duration SDS. Explicit duration SDSs are a family of models that introduce additional
random variables to explicitly model the switch duration distribution. Explicit duration variables have
been applied to both HMMs and SDSs with Gaussian linear continuous states; the resulting models
are referred to as Hidden Semi-Markov Models (HSMMs) [38, 48], and Explicit Duration Switching
Linear Gaussian SSMs (ED-SLGSSMs) [9, 40, 10], respectively. Several methods have been proposed
in the literature for modeling the switch duration, e.g., using decreasing or increasing count, and
duration-indicator variables. In the following, we briefly describe modeling switch duration using
increasing count variables and refer the reader to Chiappa [9] for details.

Increasing count random variables ct represent the run-length of the currently active regime and
can either increment by 1 or reset to 1. An increment indicates that the switch variable zt is copied
over to the next timestep whereas a reset indicates a regular Markov transition using the transition
matrix A. Each of the K switches has a distinct duration distribution ρk, a categorical distribution
over {dmin, . . . , dmax}, where dmin and dmax delimit the number of steps before making a Markov
transition. Following [40, 9], the probability of a count increment is given by

vk(c) = 1− ρk(c)∑dmax

d=c ρk(d)
. (2)

The transition of count ct and switch zt variables is defined as

p(ct|zt−1 = k, ct−1) =

{
vk(ct−1) if ct = ct−1 + 1

1− vk(ct−1) if ct = 1
, (3)

p(zt = j|zt−1 = i, ct) =

{
δzt=i if ct > 1

A(i, j) if ct = 1
, (4)

where δcond denotes the delta function which takes the value 1 only when cond is true.

Although SDSs with explicit switch duration distributions can identify long-term time-dependent
switching patterns, the switch transitions are not informed by the state—inhibiting their ability to
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model state-dependent switching events. Furthermore, to the best of our knowledge, SDSs with
explicit duration models have only been studied for Gaussian linear states [10, 9, 40].

3 Recurrent explicit duration switching dynamical systems

In this section we describe the Recurrent Explicit Duration Switching Dynamical System (RED-SDS)
that combines both state-to-switch recurrence and explicit duration modeling for switches in a single
non-linear model. We begin by formulating the generative model as a recurrent switching dynamical
system that explicitly models the switch durations using increasing count variables. We then discuss
how to perform efficient inference for different sets of latent variables. Finally, we discuss how to
estimate the parameters of RED-SDS using maximum likelihood.

3.1 Model formulation

Consider the graphical model in Fig. 2 (a); the joint distribution of the counts ct ∈ {1, . . . , dmax},
the switches zt ∈ {1, . . . ,K}, the states xt ∈ Rm, and the observations yt ∈ Rd, conditioned on the
control inputs ut ∈ Rc, factorizes as

pθ(y1:T ,x1:T , z1:T , c1:T |u1:T ) = p(y1|x1)p(x1|z1,u1)p(z1|u1)

·

[
T∏
t=2

p(yt|xt)p(xt|xt−1, zt,ut)p(zt|xt−1, zt−1, ct,ut)p(ct|zt−1, ct−1,ut)

]
.

(5)

Similar to [40, 9], we consider increasing count variables ct to incorporate explicit switch durations
into the model, i.e., ct can either increment by 1 or reset to 1 at every timestep and represent the
run-length of the current regime. A self-transition is allowed after the exhaustion of dmax steps for
flexibility. In the subsequent discussion we omit the control inputs ut for clarity of exposition.

We model the initial prior distributions in Eq. (5) for the respective discrete and continuous case as

p(z1) = Cat(z1;π), (6)
p(x1|z1) = N (x1;µz1 ,Σz1), (7)

where Cat denotes a categorical and N a multivariate Gaussian distribution. The transition distribu-
tions for the discrete variables (count and switch) are given by

p(ct|zt−1, ct−1) =

{
vzt−1(ct−1) if ct = ct−1 + 1

1− vzt−1
(ct−1) if ct = 1

, (8)

p(zt|xt−1, zt−1, ct) =

{
δzt=zt−1

if ct > 1

Cat(zt;Sτ (fz(xt−1, zt−1))) if ct = 1
, (9)

where Sτ is the tempered softmax function (cf. Section 3.3) with temperature τ , and fz can be a
linear function or a neural network. The probability of a count increment vk for a switch k is defined
via the duration model ρk as in Eq. (2). The continuous state transition and the emission are given by

p(xt|xt−1, zt) = N (xt; f
µ
x (xt−1, zt), f

Σ
x (xt−1, zt)), (10)

p(yt|xt) = N (yt; f
µ
y (xt), f

Σ
y (xt)), (11)

where fµx , fΣ
x , fµy , fΣ

y are again linear functions or neural networks.

The model is general and flexible enough to handle both state- and time-dependent switching. The
switch transitions zt−1 → zt are conditioned on the previous state xt−1 which ensures that the
switching events occur in a “closed loop”. The switch duration models ρk provide flexibility to stay
long term in the same regime, allowing to better capture time-dependent switching. We use increasing
count variables to incorporate switch durations into our model as they are more amenable to the case
when the count transitions depend on the control ut. For instance, decreasing count variables, another
popular option [11, 36, 9], deterministically count down from the sampled segment duration length
to 1. This makes it difficult to condition the switch duration model on the control inputs. In contrast,
increasing count variables increment or reset probabilistically at every timestep.
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Figure 2: (a) Forward generative model of RED-SDS. (b) Left: Approximate inference for the states
xt using an inference network. h1

t is given by a non-causal network and h2
t is given by a causal RNN.

Right: Exact inference for switch zt and count ct variables given pseudo-observations (highlighted in
red) of xt provided by the inference network. (Shaded) circles represent (observed) random variables,
diamonds represent deterministic nodes, and dashed lines represent optional connections.

3.2 Inference

Exact inference is intractable in SDSs and scales exponentially with time [32]. Various approximate
inference procedures have been developed for traditional SDSs [14, 21, 6], while more recently
inference networks have been used for amortized inference for all or a subset of latent variables [25,
28, 13, 30]. Particularly, Dong et al. [13] used an inference network for the states and performed exact
HMM-like inference for the switches, conditioned on the states. We take a similar approach and use an
inference network for the continuous latent variables (states) and perform conditionally exact inference
for the discrete latent variables (switches and counts) similar to the forward-backward procedure for
HSMM [48, 9]. We define the variational approximation to the true posterior p(x1:T , z1:T , c1:T |y1:T )
as q(x1:T , z1:T , c1:T |y1:T ) = qφ(x1:T |y1:T )pθ(z1:T , c1:T |y1:T ,x1:T ) where φ and θ denote the
parameters of the inference network and the generative model respectively.

Approximate inference for states. The posterior distribution of the states, qφ(x1:T |y1:T ), is approx-
imated using an inference network. We first process the observation sequence y1:T using a non-causal
network such as a bi-RNN or a Transformer [46] to simulate smoothing by incorporating both past
and future information. The non-causal network returns an embedding of the data h1

1:T which is then
fed to a causal RNN that outputs the posterior distribution qφ(x1:T |y1:T ) =

∏
t q(xt|x1:t−1,h

1
1:T ).

See Fig. 2 (b) for an illustration of the inference procedure.

Exact inference for counts and switches. Inference for the switches z1:T and the counts c1:T

can be performed exactly conditioned on states x1:T and observations y1:T . Samples from the
approximate posterior x̃1:T ∼ q(x1:T |y1:T ) are used as pseudo-observations of x1:T to infer the
posterior distribution pθ(z1:T , c1:T |y1:T , x̃1:T ). A naive approach to infer this distribution is by
treating the pair (ct, zt) as a “meta switch” that takesKdmax possibles values and perform HMM-like
forward-backward inference. However, this results in a computationally expensive O(TK2d2

max)
procedure that scales poorly with dmax. Fortunately, we can pre-compute some terms in the forward-
backward equations by exploiting the fact that the count variable can only increment by 1 or reset
to 1 at every timestep. This results in an O(TK(K + dmax)) algorithm that scales gracefully with
dmax [9]. The forward αt and backward βt variables, defined as

αt(zt, ct) = p(y1:t,x1:t, zt, ct), (12)
βt(zt, ct) = p(yt+1:T ,xt+1:T |xt, zt, ct), (13)

can be computed by modifying the forward-backward recursions used for the HSMM [9] to handle
the additional observed variables x1:t. We refer the reader to Appendix A.1 for the exact derivation.
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3.3 Learning

The parameters {φ, θ} can be learned by maximizing the evidence lower bound (ELBO):

LELBO = Eq(x1:T |y1:T )p(z1:T ,c1:T |y1:T ,x1:T )

[
log

p(y1:T ,x1:T , z1:T , c1:T , )

q(x1:T |y1:T )p(z1:T , c1:T |y1:T ,x1:T )

]
= Eq(x1:T |y1:T )

[
log

p(y1:T ,x1:T )

q(x1:T |y1:T )

]
.

(14)

The likelihood term p(y1:T ,x1:T ) can be computed using the forward variable αT (zT , cT ) by
marginalizing out the switches and the counts,

p(y1:T ,x1:T ) =
∑
zT ,cT

αT (zT , cT ), (15)

and the entropy term −Eq(x1:T |y1:T ) [log q(x1:T |y1:T )] can be computed using the approximate
posterior q(x1:T |y1:T ) output by the inference network. The ELBO can be maximized via stochastic
gradient ascent given that the posterior q(x1:T |y1:T ) is reparameterizable.

We note that Dong et al. [13] used a lower bound for the likelihood term in Switching Non-Linear
Dynamical Systems (SNLDS); however, it can be computed succinctly by marginalizing out the
discrete random variable (i.e., the switch in SNLDS) from the forward variable αT , similar to Eq.
(15). Using our objective function, we observed that the model was less prone to posterior collapse
(where the model ends up using only one switch) and we did not require the additional ad-hoc KL
regularizer used in Dong et al. [13]. Please refer to Appendix B.4 for a brief discussion on the
likelihood term in SNLDS.

Temperature annealing. We use the tempered softmax function Sτ to map the logits to probabilities
for the switch transition p(zt|xt−1, zt−1, ct = 1) and the duration models ρk(d) which is defined as

Sτ (o)i =
exp

(
oi
τ

)∑
j exp

( oj
τ

) , (16)

where o is a vector of logits. The temperature τ is deterministically annealed from a high value
during training. The initial high temperature values soften the categorical distribution and encourage
the model to explore all switches and durations. This prevents the model from getting stuck in poor
local minima that ignore certain switches or longer durations which might explain the data better.

4 Related work

The most relevant components of RED-SDS are recurrent state-to-switch connections and the explicit
duration model, enabling both for state- and time-dependent switching. Additionally, RED-SDS
allows for efficient approximate inference (analytic for switches and counts), despite parameterizing
the various conditional distributions through neural networks. Existing methods address only a subset
of these features as we discuss in the following.

The most prominent SDS is the Switching Linear Dynamical System (SLDS), where each regime
is described by linear dynamics and additive Gaussian noise. A major focus of previous work has
been on efficient approximate inference algorithms that exploit the Gaussian linear substructure
(e.g., [21, 49, 14]). In contrast to RED-SDS, these models lack recurrent state-to-switch connections
and duration variables and are limited to linear regimes.

Previous work has addressed the state-dependent switching by introducing a connection to the
continuous state of the dynamical system [6, 35, 7, 30]. The additional recurrence complicates
inference w.r.t. the continuous states; prior work uses expensive sampling methods in order to
approximate the corresponding integrals [6] or as part of a message passing algorithm for joint
inference of states and parameters [35]. On the other hand, ARSGLS [30] avoids sampling the
continuous states by using conditionally linear state-to-switch connections and softmax-transformed
Gaussian switch variables. However, both the ARSGLS and the related KVAE [19] can be interpreted
as an SLDS with “soft” switches that interpolate linear regimes continuously rather than truly discrete
states. This makes them less suited for time series segmentation compared to RED-SDS. Contrary to
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the aforementioned models, RED-SDS allows non-linear regimes described by neural networks and
incorporates a discrete explicit duration model without complicating inference w.r.t. the continuous
states, since closed-form expressions are used for the discrete variables instead. Using amortized
variational inference for continuous variables and analytic expressions for discrete variables has
been proposed previously for segmentation in SNLDS [13]. RED-SDS extends this via an additional
explicit duration variable that represents the run-length for the currently active regime.

Explicit duration variables have previously been proposed for changepoint detection [2, 3] and
segmentation [10, 26]. For instance, BOCPD [2] is a Bayesian online changepoint detection model
with explicit duration modeling. RED-SDS improves upon BOCPD by allowing for segment labeling
rather than just detecting changepoints. The HDP-HSMM [26] is a Bayesian non-parametric extension
to the traditional HSMM. Recent work [11, 36] has also combined HSMM with RNNs for amortized
inference. These models—being variants of HSMM—do not model the latent dynamics of the data
like RED-SDS. Chiappa and Peters [10] proposed approximate inference techniques for a variant of
SLDS with explicit duration modeling. In contrast, RED-SDS is a more general non-linear model
that allows for efficient amortized inference—closed-form w.r.t. the discrete latent variables.

5 Experiments

In this section, we present empirical results on two prominent time series tasks: segmentation and
forecasting. Our primary goals were to determine if RED-SDS (a) can discover meaningful switching
patterns in the data in an unsupervised manner, and (b) can probabilistically extrapolate a sequence
of observations, serving as a viable generative model for forecasting. In the following, we discuss the
main results and relegate details to the appendix.

5.1 Segmentation

Ground Truth

SNLDS

ED-SDS

0 20 40 60 80 100
Time

RED-SDS

Input Reconstructiongoing down going up

(a) Bouncing ball

Ground Truth

SNLDS

ED-SDS

0 20 40 60 80 100 120 140 160 180
Time

RED-SDS

Input Reconstructionmode 1 mode 2 mode 3

(b) 3 mode system

Ground Truth

SNLDS

ED-SDS

0 20 40 60 80 100 120
Time

RED-SDS

Input Reconstructionwaggle turn right turn left

(c) Dancing bees

Figure 3: Qualitative segmentation results on the bouncing ball,
3 mode system, and dancing bees datasets. Background colors
represent the different operating modes.

We experimented with two instantia-
tions of our model: RED-SDS (com-
plete model) and ED-SDS, the ab-
lated variant without state-to-switch
recurrence. We compared against
the closely related SNLDS [13] trained
with a modified objective func-
tion. The original objective proposed
in [13] suffered from training difficul-
ties: it resulted in frequent posterior
collapse and was sensitive to the cross-
entropy regularization term. Our ver-
sion of SNLDS can be seen as a special
case of RED-SDS with dmax = 1, i.e.,
without the explicit duration model-
ing (cf. Appendix B.4). We also con-
ducted preliminary experiments on
soft-switching models: KVAE [19] and
ARSGLS [30]. However, these models
use a continuous interpolation of the
different operating modes which can-
not always be correctly assigned to a
single discrete mode, hence we do not
report these unfavorable findings here
(cf. Appendix B.4). For all models,
we performed segmentation by taking
the most likely value of the switch at
each timestep from the posterior distribution over the switches. As the segmentation labels are
arbitrary and may not match the ground truth labels, we evaluated the models using multiple metrics:
frame-wise segmentation accuracy (after matching the labelings using the Hungarian algorithm [29]),
Normalized Mutual Information (NMI) [47], and Adjusted Rand Index (ARI) [23] (cf. Appendix B.2).
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Table 1: Quantitative results on segmentation tasks. Accuracy, NMI, and ARI denote the frame-wise segmenta-
tion accuracy, the Normalized Mutual Information, and the Adjusted Rand Index metrics respectively (higher
values are better). Mean and standard deviation are computed over 3 independent runs.

bouncing ball 3 mode system dancing bees dancing bees(K=2)

Accuracy
SNLDS 0.97±0.00 0.82±0.08 0.44±0.01 0.63±0.02
ED-SDS (ours) 0.95±0.00 0.97±0.00 0.56±0.06 0.79±0.09
RED-SDS (ours) 0.97±0.00 0.98±0.00 0.73±0.10 0.91±0.04

NMI
SNLDS 0.83±0.01 0.63±0.08 0.10±0.04 0.05±0.02
ED-SDS (ours) 0.71±0.00 0.89±0.01 0.28±0.02 0.31±0.17
RED-SDS (ours) 0.81±0.00 0.91±0.01 0.48±0.07 0.60±0.09

ARI
SNLDS 0.90±0.01 0.67±0.11 0.10±0.03 0.07±0.02
ED-SDS (ours) 0.81±0.01 0.93±0.00 0.27±0.04 0.36±0.19
RED-SDS (ours) 0.88±0.00 0.95±0.01 0.53±0.11 0.68±0.11

We conducted experiments on three benchmark datasets: bouncing ball, 3 mode system, and dancing
bees to investigate different segmentation capabilities of the models. We refer the reader to Appendix
B.1 for details on how these datasets were generated/preprocessed. For all the datasets, we set the
number of switches equal to the number of ground truth operating modes.

Bouncing ball. We generated the bouncing ball dataset similar to [13], which comprises univariate
time series that encode the location of a ball bouncing between two fixed walls with a constant
velocity and elastic collisions. The underlying system switches between two operating modes (going
up/down) and the switching events are completely governed by the state of the ball, i.e., a switch
occurs only when the ball hits a wall. As such, the switching events are best explained by state-to-
switch recurrence. All models are able to segment this simple dataset well as shown qualitatively in
Fig 3 (a) and quantitatively in Table 1. We note that despite the seemingly qualitative equivalence,
models with state-to-switch recurrence perform best quantitatively. RED-SDS learns to ignore the
duration variable by assigning almost all probability mass to shorter durations (cf. Appendix B.5),
which is intuitive since the recurrence best explains this dataset.

3 mode system. We generated this dataset from a switching linear dynamical system with 3 operating
modes and an explicit duration model for each mode (shown in Fig. 4 (a)). We study this dataset in
the context of time-dependent switching—the operating mode switches after a specific amount of
time elapses based on its duration model. Both ED-SDS and RED-SDS learn to segment this dataset
almost perfectly as shown in Fig. 3 (b) and Table 1 owing to their ability to explicitly model switch
durations. In contrast, SNLDS fails to completely capture the long-term temporal patterns, resulting
in spurious short-term segments as shown in Fig. 3 (b). Moreover, RED-SDS is able to recover the
duration models associated with the different modes (Fig. 4). These results demonstrate that explicit
duration models can better identify the time-dependent switching patterns in the data and can leverage
prior knowledge about the switch durations imparted via the dmin and dmax hyperparameters.

0
1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
d

2

(a) True duration model

0
1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
d

2

(b) Learned duration model

Figure 4: The ground truth duration model for the 3 mode system
dataset (top) and the duration model learned by RED-SDS (bottom).
The x-axis represents the durations from 1 to 20 and the y-axis
represents the duration probabilities of the 3 modes ρ0(d), ρ1(d),
and ρ2(d).

Dancing bees. We used the publicly-
available dancing bees dataset [40]—a
challenging dataset that exhibits long-
term temporal patterns and has been
studied previously in the context of
time series segmentation [41, 39, 18].
The dataset comprises trajectories of
six dancer honey bees performing
the waggle dance. Each trajectory
consists of the 2D coordinates and
the heading angle of a bee at every
timestep with three possible types of
motion: waggle, turn right, and turn
left. Fig. 3 (c) shows that RED-SDS
is able to segment the complex long-
term motion patterns quite well. In
contrast, ED-SDS identifies the long
segment durations but often infers the
mode inaccurately while SNLDS strug-
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Table 2: CRPS metrics (lower is better). Mean and standard deviation are computed over 3 independent runs.
The method achieving the best result is highlighted in bold.

exchange solar electricity traffic wiki

DeepAR 0.019±0.002 0.440±0.004 0.062±0.004 0.138±0.001 0.855±0.552
DeepState 0.017±0.002 0.379±0.002 0.088±0.007 0.131±0.005 0.338±0.017
KVAE-MC 0.020±0.001 0.389±0.005 0.318±0.011 0.261±0.016 0.341±0.032
KVAE-RB 0.018±0.001 0.393±0.006 0.305±0.022 0.221±0.002 0.317±0.013
RSGLS-ISSM 0.014±0.001 0.358±0.001 0.091±0.004 0.206±0.002 0.345±0.010
ARSGLS 0.022±0.001 0.371±0.007 0.154±0.005 0.175±0.008 0.283±0.006
RED-SDS (ours) 0.013±0.001 0.419±0.010 0.066±0.002 0.129±0.002 0.318±0.006

gles to learn the long-term motion patterns resulting in oversegmentation. This limitation of SNLDS is
particularly apparent in the “waggle” phase of the dance which involves rapid, shaky motion. We also
observed that sometimes ED-SDS and RED-SDS combined the turn right and turn left motions into a
single switch, effectively segmenting the time series into regular (turn right and turn left) and waggle
motion. This results in another reasonable segmentation, particularly in the absence of ground-truth
supervision. We thus reevaluated the results after combining the turn right and turn left labels into a
single label and present these results under dancing bees(K=2) in Table 1. Empirically, RED-SDS
significantly outperforms ED-SDS and SNLDS on both labelings of the dataset. This suggests that
real-world phenomena are better modeled by a combination of state- and time-dependent modeling
capacities via state-to-switch recurrence and explicit durations, respectively.

5.2 Forecasting

We evaluated RED-SDS in the context of time series forecasting on 5 popular public datasets available
in GluonTS [4], following the experimental set up of [30]. The datasets have either hourly or daily
frequency with various seasonality patterns such as daily, weekly, or composite. In Appendix C.1 we
provide a detailed description of the datasets. We compared RED-SDS to closely related forecasting
models: ARSGLS and its variant RSGLS-ISSM [30]; KVAE-MC and KVAE-RB, which refer to the original
KVAE [19] and its Rao-Blackwellized variant (as described in [30]) respectively; DeepState [42];
and DeepAR [44], a strong discriminative baseline that uses an autoregressive RNN (cf. Appendix
C.4 for a discussion on these baselines).

0 5 10 15
0.0

0.5

1.0

0 5 10 15 0 5 10 15 0 5 10 15

Target Median Prediction 50% Prediction Interval 90% Prediction Interval

(a) K = 2

0 5 10 15
0.0

0.5

1.0

0 5 10 15 0 5 10 15 0 5 10 15

Target Median Prediction 50% Prediction Interval 90% Prediction Interval

(b) K = 3

Figure 5: Segmentation and forecasting on an electricity time
series for (a) K = 2 and (b) K = 3 switches. The black vertical
line indicates the start of forecasting. The plots at the second row
of each figure indicate the duration model at the timestep marked
by the corresponding vertical dashed lines.

We used data prior to a fixed forecast
date for training and test the forecasts
on the remaining unseen data; the
probabilistic forecasts are conditioned
on the training range and computed
with 100 samples for each method.
We used a forecast window of 150
days and 168 hours for datasets with
daily and hourly frequency, respec-
tively. We evaluated the forecasts us-
ing the continuous ranked probability
score (CRPS) [37], a proper scoring
rule [22] (cf. Appendix C.2). The re-
sults are reported in Table 2; RED-SDS
compares favorably or competitively
to the baselines on 4 out of 5 datasets.

Figure 5 illustrates how RED-SDS can
infer meaningful switching patterns
from the data and extrapolate the
learned patterns into the future. It
perfectly reconstructs the past of the
time series and segments it in an inter-
pretable manner without an imposed
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seasonality structure, e.g., as used in DeepState and RSGLS-ISSM. The same switching pattern is
consistently predicted into the future, simplifying the forecasting problem by breaking the time series
into different regimes with corresponding properties such as trend or noise variance. Further, the
duration models at several timesteps (the duration model is conditioned on the control ut) indicate
that the model has learned how long each regime lasts and therefore avoids oversegmentation which
would harm the efficient modeling of each segment. Notably, the model learns meaningful regime
durations that sum up to the 24-hour day/night period for both K = 2 and K = 3 switches. Thus,
RED-SDS brings the added benefit of interpretability—both in terms of the discrete operating mode
and the segment durations—while obtaining competitive quantitative performance relative to the
baselines.

6 Conclusion and future work

Many real-world time series exhibit prolonged regimes of consistent dynamics as well as persistent
statistical properties for the durations of these regimes. By explicitly modeling both state- and
time-dependent switching dynamics, our proposed RED-SDS can more accurately model such data.
Experiments on a variety of datasets show that RED-SDS—when equipped with an efficient inference
algorithm that combines amortized variational inference with exact inference for continuous and
discrete latent variables—improves upon existing models on segmentation tasks, while performing
similarly to strong baselines for forecasting.

One current challenge of the proposed model is that learning interpretable segmentation sometimes
requires careful hyperparameter tuning (e.g., dmin and dmax). This is not surprising given the flexible
nature of the neural networks used as components in the base dynamical system. A promising future
research direction is to incorporate simpler models that have a predefined structure, thus exploiting
domain knowledge. For instance, many forecasting models such as DeepState and RSGLS-ISSM
parametrize classical level-trend and seasonality models in a non-linear fashion. Similarly, simple
forecasting models with such structure could be used as base dynamical systems along with more
flexible neural networks. Another interesting application is semi-supervised time series segmentation.
For timesteps where the correct regime label is known, it is straightforward to condition on this
additional information rather than performing inference; this may improve segmentation accuracy
while providing an inductive bias that corresponds to an interpretable segmentation.
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