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Abstract. Pan-cancer screening is challenging due to the difficulty of lo-
calizing tiny tumors within large CT volumes. The efficiency also plays an
important role in large-scale routine physical examination. To this end,
we propose an accurate and efficient framework for pan-cancer screening.
Our model employs a classification model to localize the diseased regions
and a segmentation model to precisely segment the lesions. Specifically,
we first crop a group of sub-volumes from the whole CT volume and se-
lect those with lesions for segmentation. We lead the MICCAI FLARE25
pan-cancer challenge, with 59% DSC and 52% NSD on the validation
leaderboard.
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1 Introduction

Cancer is the leading cause of death. AI-driven screening using large-scale com-
puted tomography (CT) scans [14,32,31,28,37,17] has gained growing clinical
interest, owing to the wide availability and low cost of CT in routine health
examinations. In particular, pan-cancer screening seeks to develop a universal
model capable of detecting and segmenting diverse lesions across large CT vol-
umes, offering substantial potential for clinical impact.

Although recent studies have achieved promising results in cancer detec-
tion [14,4,13,21,33,34], developing effective pan-cancer screening models remains
challenging [19,2]. Current approaches typically train segmentation models to
identify cancerous regions. However, lesions often occupy only minute regions
within large CT volumes, leading to severe foreground-background imbalance.
This issue complicates the accurate localization of diverse lesion types across
multiple organs.

In contrast to AI models, radiologists typically scan an entire CT volume
before concentrating on specific regions for detailed analysis. Inspired by this
diagnostic strategy, we propose a novel two-stage framework for pan-cancer
screening. Our approach first uses a classification model to coarsely localize po-
tentially diseased regions, then employs a segmentation model for precise lesion
delineation, with both components working synergistically. Specifically, candi-
date sub-volumes are extracted from the full CT scan, and the system learns to
identify those containing lesions for further segmentation. This design ensures
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both high accuracy and efficiency in pan-cancer screening. Notably, our method
achieved leading results in the MICCAI FLARE25 challenge, with scores of 59%
DSC and 52% NSD, significantly outperforming the FLARE 2024 champion so-
lution.

2 Method

2.1 Preprocessing

All experiments were implemented using PyTorch [22] and MONAI [5]. We used
the AdamW optimizer with an initial learning rate of 3e-4 and a cosine decay
scheduler. A batch size of 4 was used, with 4 sub-volumes cropped from each
CT volume. The model is trained for 500 epochs.

For pre-processing, we followed the FLARE 2025 guidelines by splitting the
dataset into chest and abdomen CT scans. Hounsfield Unit (HU) values were
windowed and normalized to the range [0, 1]. The clipping ranges were set to
[−900, 650] for chest CT and [−175, 250] for abdomen CT. Each sub-volume
was cropped to a size of [96, 96, 64]. During inference, we employed a sliding-
window strategy with an overlap ratio of 0.25 to partition each CT volume into
sub-volumes, in line with common practice.

Table 1. Pre-processing details and Training settings.

Clipped HU for chest CT [-900, 650]
Clipped HU for abdomen CT [-175, 250]
Crop Size [96, 96, 64]
Spacing [1.0, 1.0, 3.0]
Normalized value [0, 1]

Segmentation model SwinUNETR [8]
Network Parameters 104M
Segmentation model Loss Dice-CE
Optimizer AdamW
Batch size 4
Scheduler Cosine
Learning rate 3e-4
Training epochs 500

2.2 Proposed Method

We did not use the partial labels. Unlabeled images were not used. We did not
use the pseudo labels generated by the FLARE23 winning algorithm.

Segmentation [14,17,25,29,30,27,26,16,9,18] plays a vital role in medical im-
age analysis. Nevertheless, in whole-body CT scans, lesions often occupy only
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Fig. 1. Network architecture. We use SwinUNETR [8] as the segmentation model.

tiny regions, resulting in extreme foreground-background imbalance and making
it difficult to accurately localize diverse lesions across multiple organs.

To address these challenges, we propose a two-stage framework that combines
efficiency with accuracy. Our approach consists of a classification module that
identifies whether a sub-volume contains lesions, and a segmentation module that
precisely delineates lesion boundaries—both of which can incorporate state-of-
the-art network architectures. In this work, we use a lightweight 3D ResNet-18
as the classifier and SwinUNETR [8] as the segmentation model.

During training, randomly cropped sub-volumes are processed by both mod-
els. The segmentation model is trained with a combination of binary cross-
entropy and Dice loss, supervised by ground-truth masks. The classifier is trained
using segmentation results as pseudo-labels. During inference, the input volume
is divided into sub-volumes via a sliding window. The classifier first filters out
healthy regions, and only candidate sub-volumes containing lesions are forwarded
to the segmentation module. This strategy introduces minimal overhead but
significantly reduces computation by avoiding redundant processing of healthy
areas. Consequently, our method not only improves inference efficiency but also
reduces false positives by focusing primarily on diseased regions.

2.3 Post-processing

No post-processing technique is used.

3 Experiments

3.1 Dataset and evaluation measures

The segmentation targets cover various lesions. The training dataset is cu-
rated from more than 50 medical centers under the license permission, including
TCIA [6], LiTS [3], MSD [24], KiTS [10,12,11], and FLARE 2023 [20], COVID-
19-20 [23], CHOS [15], and LIDC [1]. The training set includes more than 5,000+
abdomen and chest CT scans. The validation and testing sets cover various can-
cer types. The lesion annotation process used ITK-SNAP [36], nnU-Net [14],
MedSAM [17,18], and Slicer Plugins [7,18].
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The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside two efficiency
measures—running time and area under the GPU memory-time curve. These
metrics collectively contribute to the ranking computation. Furthermore, the
running time and GPU memory consumption are considered within tolerances
of 45 seconds and 4 GB, respectively.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 2.

Table 2. Development environments and requirements.

System e.g., Ubuntu 18.04.5 LTS or Windows 11
CPU e.g., Intel(R) Core(TM) i9-7900X CPU@3.30GHz
RAM 16×4GB; 2.67MT/s
GPU (number and type) Four NVIDIA V100 16G
CUDA version 11.8
Programming language e.g., Python 3.10
Deep learning framework torch 2.0, torchvision 0.2.2

4 Results and discussion

Table 3. Quantitative evaluation results.)

Methods Public Validation Online Validation Testing
DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD (%)

Algorithm1 56.4±1.0 48.1±1.2 59 52

4.1 Quantitative results on validation set

The results are shown in Table 3. We achieve 59% DSC and 52% NSD in the
validation leaderboard.

4.2 Qualitative results on validation set

4.3 Results on final testing set

This is a placeholder. We will send you the testing results during MICCAI.
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Fig. 2. Visualization results.
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Table 4. Quantitative evaluation of segmentation efficiency in terms of the run-
ning them and GPU memory consumption. Total GPU denotes the area under GPU
Memory-Time curve. Evaluation GPU platform: NVIDIA QUADRO RTX5000 (16G).
Note: if you didn’t make validation docker submissions during the challenge, you can
obtain these metrics on your local GPU. Our evaluation code has been released at
https://github.com/JunMa11/FLARE/tree/main/FLARE23. You could use a similar ta-
ble format for ablation studies. Please don’t change the case IDs. The organizer pro-
vided the results of these two cases to us.

Case ID Image Size Running Time (s) Max GPU (MB) Total GPU (MB)
0001 (512, 512, 55) 31 14044 -
0051 (512, 512, 100) 23 14724 -
0017 (512, 512, 150)
0019 (512, 512, 215)
0099 (512, 512, 334)
0063 (512, 512, 448)
0048 (512, 512, 499)
0029 (512, 512, 554)

4.4 Limitation and future work

This is a brief technical report for the FLARE 2025 challenge, and we will extend
it to a better method with more thorough discussions.
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