
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REPOFIXEVAL: A REPOSITORY-LEVEL PROGRAM RE-
PAIR BENCHMARK FROM ISSUE DISCOVERING TO
BUG FIXING

Anonymous authors
Paper under double-blind review

ABSTRACT

Automatic Program Repair (APR) aims to automatically fix software bugs, play-
ing an essential role in software development. While current research demon-
strates that Large Language Models (LLMs) excel in file-level program repair,
their effectiveness in repository-level program repair remains unexplored. Real-
world software projects, which often consist of multiple files, present significant
challenges for LLMs in identifying bugs and generating fixes due to the intricate
project structures. To bridge this gap, we introduce REPOFIXEVAL, a repository-
level APR benchmark consisting of 160 real-world bug fixing suites from popular
Python projects. REPOFIXEVAL provides the original buggy programs, associ-
ated issue reports, corresponding fixes, and unit tests to verify the correctness of
each fix. Based on the benchmark, we further propose a three-step evaluation
framework for LLM-based APR tools, encompassing (1) discovering issues from
execution failures, (2) localizing buggy code segments, and (3) generating code
fixes. Experimental results highlight that LLMs struggle with organizing error
messages during the issue discovery phase. We find that longer contexts positively
affect performance, but only a few LLMs can effectively utilize extended context
information at the 128K level. Some open-source LLMs demonstrate competi-
tiveness with closed-source counterparts, yet even the best-performing GPT4-o
only resolves 12.3% of bugs. Our study reveals the capabilities and limitations of
16 LLMs in handling repository-level bugs, providing valuable insights for future
research in this field.

1 INTRODUCTION

Automated Program Repair (APR) aims to automatically detect and generate code fixes (i.e.,
patches) for a given piece of buggy code. APR is crucial in enhancing the overall reliability of
software systems by accelerating the debugging process and reducing the chances of human error.
Over the years, APR tools have evolved from conventional rule-based methods (Huang et al., 2024)
to contemporary data-driven, intelligent approaches. Recent advancements in large language mod-
els (LLMs), such as GPT-4 (OpenAI, 2023) and Llama3.1 (Dubey et al., 2024) offer alternative
solutions for more complicated program bugs without relying on historical code patches.

Despite the numerous efforts in developing APR approaches, their evaluation is limited in an over-
simplified scenario of function-level or file-level bugs (e.g., DebugBench Tian et al. (2024)). Con-
sequently, there remains a gap between these benchmarks and real-world complicated development
environments, where developers often deal with multi-file projects. Resolving project-level program
bugs presents substantial challenges in comprehending the relationships between functions across
multiple files and localizing faults within extensive codebases.

To fill this gap, in this paper, we propose a practical repository-level program repair benchmark,
named REPOFIXEVAL, consisting of 160 repository-level program bugs from 16 GitHub projects.
These bugs are selected from widely-used repositories with executable unit tests in high coverage,
ensuring their quality and reproducibility. Five experienced programmers further manually identify
crucial bug fixes from commit histories. As a result, REPOFIXEVAL collects buggy programs,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Method Repo
Level

Test
Cases

Fault
Localization

Issue
Raised

Issue
Evaluation

DebugBench (Tian et al., 2024) ✗ ✓ ✗ ✗ ✗
EvalGPTFix (Zhang et al., 2023) ✗ ✓ ✗ ✗ ✗

FixEval (Haque et al., 2023) ✗ ✓ ✗ ✗ ✗
HumanEval-Java (Jiang et al., 2023) ✗ ✓ ✗ ✗ ✗

Review4Repair (Huq et al., 2022) ✗ ✗ ✓ ✗ ✗
QuixBugs (Lin et al., 2017b) ✗ ✓ ✗ ✗ ✗
∞Bench (Zhang et al., 2024) ✓ ✗ ✓ ✗ ✗

SWE-bench (Jimenez et al., 2023) ✓ ✓ ✗ ✗ ✗
RepoBugs (Chen et al., 2024) ✓ ✗ ✗ ✗ ✗

REPOFIXEVAL ✓ ✓ ✓ ✓ ✓

Table 1: A comparison of our REPOFIXEVAL with some notable datasets.

my_package/test.py

Right Code Buggy Code

readme.md

def init():

print("Init: ": config)

my_package/mod.py

from . import config

my_package/main.py

my_package/__init__.py

from .mod import init

init()

config = "my_config"

Run ImportError:

Error Message

Repository

"Issue": {
"title": "Circular Import Issue in Package
Initialization",
"description": "An ImportError occurs due to a
circular import in the `my_package` module..."

}

Issue Discovery

my_package/__init__.py

from .mod import init

init()

config = "my_config"

Fault Location

Patch info

--- a/my_package/__init__.py

+++ b/my_package/__init__.py

@@ -1,3 +1,3 @@

+ config = "my_config"

from .mod import init

init()

- config = "my_config"

Patch Generation

Success!

Failed.

Issue Discovery

Fault Location

Patch Generation

test_import.py

import pytest

def test_import():

import my_package

assert my_package.config == "my_config"

LLM

LLM

Step 1: Test Suite

Step 3: Patch Validation

Step 2: RepoFix Workflow

 cannot import
name 'config' ...

Run Unit Test

Figure 1: The overview of REPOFIXEVAL. Given a repository with buggy code, possibly with
error messages, the repository and error messages are input into LLMs. The Repofix workflow then
generates a patch. A fix is considered successful only if the patch passes all unit tests.

related issue reports, unit tests, and corresponding patches (i.e., fixes) for each bug. The differences
between REPOFIXEVAL and the previous benchmarks are shown in Table 1.

REPOFIXEVAL introduces a novel issue-aware scenario for program repair, inspired by bug-
reporting and bug-resolving processes in real-world software development. Rather than fixing “ex-
isting well-described error reports” from clients, as in SWE-Bench (Jimenez et al., 2023), this setting
requires LLMs to autonomously identify and summarize the bug symptoms based on current infor-
mation. As illustrated in Fig. 1 (Step 2), given a buggy repository and associated runtime error
messages, the program repair workflow involves three steps: (1) discovering issues from execution
results, (2) localizing faults within the codebase, and (3) producing patches to fix the bug.

To systematically understand how existing LLMs can resolve repository-level program repair prob-
lems, we assess their performance on each of the aforementioned steps. First, for issue generation,
we use the “LLM-as-a-judge” framework (Zheng et al., 2023a) to assess the reproducibility, rele-
vance, explanation, and overall of the produced issues. Second, we measure the accuracy of the
identified faulty lines against the actual ones for fault localization. Third, we evaluate the bug
patches by verifying whether the patched code passes all unit tests.

We evaluate 16 LLMs, systematically examining the impact of context lengths ranging from 2,000 to
128,000 tokens on performance, and set 14 different input settings for each length. When provided
with error messages, GPT-4o achieved the highest patch pass rate of 11.25%. Notably, we observed
that most LLMs demonstrated performance improvements within a context length of 16K tokens.
However, only selected LLMs maintained their performance capabilities at extended context lengths
of up to 128K tokens. Through rigorous quantitative analysis, we established significant correlations
among the three key tasks: issue discovery, fault localization, and patch generation.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

The contributions are summarized as follows:

• A Repository-Level APR Evaluation Dataset: We propose a novel repository-level APR bench-
mark, named REPOFIXEVAL. We imitates real-world project-based software practices, bridging
the gap between existing single-function bug datasets and complicated development needs.

• Comprehensive Evaluation Framework: We design a thorough evaluation framework encom-
passing issue discovery, fault localization, and patch generation. To the best of our knowledge,
this is the first framework to focus on summarizing issues from execution results, presenting a
more challenging yet practical scenario for program repair.

• Comprehensive LLM Evaluation and Analysis: Empirical evidence on the performance of
16 state-of-the-art LLMs across issue discovery, fault localization, and patch generation tasks,
revealing their strengths and limitations. We further conducted an analysis of the impact of context
length and input setting on task performance, as well as the correlations between tasks.

2 RELATED WORK

LLMs for Automated Program Repair. Automated Program Repair (APR) seeks to assist devel-
opers by automatically generating patches for software bugs (Gazzola et al., 2018). APR tools pro-
duce patched code based on the original code after identifying buggy locations (Fan et al., 2023; Wei
et al., 2023; Ye et al., 2022a). There are three traditional APR tools types: template-based (Koyuncu
et al., 2020), learning-based (Ye et al., 2022b) and LLM-based methods. While template-based
tools require human-intensive labour to define fixing rules, learning-based tools can generate more
versatile and expressive patches after training on historical bug-fixing data. More recently, LLMs
such as Starcoder (Li et al., 2023), WizardCoder (Luo et al., 2023), mCoder (Chai et al., 2024) and
UniCoder (Sun et al., 2024) have shown potential for APR due to their exceptional performance and
remarkable generalization capabilities across a diverse range of code-related tasks (Prenner et al.,
2022).

Benchmarks for Automated Program Repair Popular APR benchmarks like Defects4j (Just
et al., 2014), QuixBugs (Lin et al., 2017a), DebugBench (Tian et al., 2024) and EvalGPTFix (Zhang
et al., 2023) enable the evaluation of code LLMs’ auto repair ability but mainly focus on function-
level or file-level tasks. CrossCodeEval (Ding et al., 2023) and RepoBench (Liu et al., 2023) have
introduced cross-file tasks to address this limitation, but they only focus on code completion tasks.In
the realm of repository-level code repair, SWE-Bench (Jimenez et al., 2023) stands out by focusing
on resolving issues present in existing GitHub repositories. Nevertheless, its scope is confined to
human-reported issues, lacking an evaluation of large language models’ ability to discover issues
autonomously and fault localization. ReposVul (Wang et al., 2024) has only introduced a repository-
level vulnerability dataset. Similarly, while RepoBugs (Chen et al., 2024) has delved into repository-
level code fix tasks, its evaluation methodology primarily emphasizes the final outcome rather than
the entire issue identification and code localization process. Moreover, RepoBugs relies on human
experts to judge the correctness of code modifications, lacking an automated evaluation mechanism.

3 REPOFIXEVAL: A BENCHMARK FOR REPOSITORY-LEVEL CODE FIX TASK

REPOFIXEVAL is a benchmark containing repository-level program bugs. The task is to discover
issues, localize faults, and ultimately generate a patch that resolves the bug to pass the relevant tests.

3.1 BENCHMARK CONSTRUCTION

We construct REPOFIXEVAL based on the following principles to ensure its representativeness of
bug-fixing practices: (1) Code should originate from real-world and active projects; (2) The project
should contain mature test suites for easier maintenance; and (3) Bug cases should be well-annotated
and of high quality.

Stage I: Real-World Code Repository Collection. Similar to (Li et al., 2024) and (Jimenez
et al., 2023), we searched GitHub for high-quality open-source repositories, focusing on those with

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

well-known organizations and multiple source files to represent mainstream development environ-
ment. We chose Python repositories due to its popularity and robust testing frameworks.

Stage II: Execution-based Filtering. We built a runtime environment for each repository to ex-
ecute unit tests, ensuring the functionality of the code. Repositories without automated test suites
(e.g., pytest, unittest) or with failed tests were excluded to guard the reproducibility of unit
tests in our framework.

Stage III: Annotation & Quality Control. Five experienced software developers annotated is-
sues using two methods: (1) identifying fix-related commits from git history, and (2) manually
injecting bugs to simulate real-world scenarios. Developers proposed issues and solutions for each
bug. Solutions that pass all unit tests are considered correct. An expert reviewed each case for
quality control. The final test case included a buggy codebase, issues, solutions, bug localization,
unit test code, and commands. For each case, issues were proposed from the user’s perspective, and
solutions were provided from the developer’s perspective, serving as reference answers.

In summary, REPOFIXEVAL contains 160 bug cases, covering projects from natural language pro-
cessing, machine learning, database applications, algorithm implementation, and general tools. Ta-
ble 2 shows statistics of the benchmark.

Repo Statistics Star Fork # File File size (KB)
351.08 91.56 27.75 514.15

Dataset Statistics # File # Modify line # Patch token # Issue token
1.91 10.54 256.26 210.34

Table 2: Benchmark Statistics. The Statistics represent the mean results averaged over each reposi-
tory and individual bug case.

3.2 EVALUATION TASKS AND METRICS

3.2.1 TASK 1: ISSUE DISCOVERY

An issue refers to a user-created report of a problem or bug, including a title and a detailed descrip-
tion of the problem and steps to reproduce the bug. When users encounter bugs or identify potential
improvements, they can create such issues in an issue tracking system (e.g., GitHub, Jira) to notify
project maintainers. In this task, the model is asked to simulate the issue creation process based on
bug symptoms.

Model Input & Output Given code repository C and the error message from unit tests E , LLMs
M are required to generate the corresponding issue i = Missue(C, E). The output issue i is struc-
tured in JSON which has title, description and explanation, ensuring a standardized
representation that can be easily disseminated among development tools and teams.

Evaluation Metrics. Given the open-ended nature of proposing and evaluating issues, we employ
the LLM-as-a-judge (Zheng et al., 2023a) method as the standard for evaluation. For the given is-
sues, we primarily assess them from four perspectives: reproducibility Ir, relevance Iv , explanation
Ie and overall Io. Reproducibility (Ir) assesses the presence and quality of step-by-step instructions,
scripts, or code references for reproducing the issue. Relevance (Iv) evaluates the accuracy in iden-
tifying the bug, linking the problem to error messages, and providing an effective solution. Solution
explanation (Ie) examines the clarity and completeness of the proposed solution, including its ra-
tionale and validation. Overall quality (Io) provides a holistic assessment of the issue description’s
comprehensiveness and clarity.

Formally, let i, E represent model-generated issues and error messages respectively, and let P denote
the patch that can fix the bugs. We set the reference score for an answer as 8 points. Ix (where
x ∈ {r, v, e, o}) is evaluated on a scale from 0 to 10: Ix = Meval(i,P, E) The overall evaluation
score IAvg can be defined as IAvg = 1

4 (Ir + Iv + Ie + Io). To align with the subsequent evaluation
metrics, we multiplied the value of I by 10, resulting in a score range of 0 to 100.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2.2 TASK II: FAULT LOCALIZATION

The subsequent step, fault localization, aims to identify the exact code lines for a particular de-
fect. Pinpointing the precise segment of code that leads to a specific issue requires not only a deep
understanding of the codebase but also an ability to effectively navigate the directory structure.

Model Input & Output For the current code repository C, corresponding issue i and error mes-
sage E , we prompt LLMs to pinpoint the code segments l requiring modification: l = Mloc(i, C, E)
In fault localization, we define two location granularities: (1) Filename: Identifies the specific file
containing the error, serving as the initial debugging step. (2) Specific Code: Determining the ex-
act line or code snippet needing change ensures targeted modifications, formatted as ’line number:
content of the current line’.

Evaluation Metrics To evaluate the performance of LLMs in the fault localization task, we em-
ploy a set of comprehensive and multidimensional metrics. These metrics are designed to assess
different aspects of the generated outputs, including the accuracy of the JSON schema, filenames
and specific code content.

• If the model’s output is in the correct JSON format, we will use F1, precision, and recall metrics
for evaluation. We integrate the evaluation content into the form {ID}ˆ{filename}ˆ{line
number}, where ID represents the task identifier, filename is a string, ˆ is the delimiter, and the
line number indicates the specific lines of code to be modified. Each line requiring modification
constitutes a separate evaluation case, collectively forming a set. The ground truth set is denoted
as Sgt, and the model output set is denoted as Spd. We use the proportion of correctly predicted
variables (precision = |Spd∩Sgt|

|Spd|), the proportion of actual variables predicted by the model (recall

= |Spd∩Sgt|
|Sgt|), and their harmonic mean (F1 = 2 · precision·recall

precision+recall).

• Additionally, we evaluate whether the model’s output can be parsed into JSON, termed Loads@k.
This means that the model generates K samples, and if any sample can be successfully parsed, it
is considered a successful parse. Finally, the proportion of successful parses is calculated.

3.2.3 TASK III: BUG FIXING

Unit testing is crucial for detecting errors in pre-deployment period, significantly reducing the effort
required to address bugs in later stages. REPOFIXEVAL amis to generate a code patch that can fix
the identified bug while ensuring all unit tests pass and original functionality is maintained.

Model Input & Output After issue discovery and fault localization, we focus on effective code
repair. Inspired by SWE-Bench, we use LLMs to generate patch files instead of complete code.
Given the code repository C, issue i, fault localization l, and error message E , we prompt LLMs to
produce patch p to resolve the bug: p = Mpatch(i, l, C, E)

Evaluation Metrics We employ a comprehensive evaluation process to assess patch effectiveness.
Initially, we verify the patch’s correctness by integrating it into the codebase without conflicts using
Git. Next, we run unit tests to confirm that the patch successfully resolves the bug.

To prevent potential exploitation where LLMs might modify test code to pass evaluations, we imple-
ment an additional two-step verification process: (1) Code Segregation: We separate the codebase
into functional code and test code. (2) Dual Testing: After applying the patch to the functional code,
we conduct tests using both original original (pre-patch) test code and potentially modified (post-
patch) test code. A patch is deemed valid only if it passes all tests in both scenarios, ensuring that
the fix is genuine and not a result of compromised test code. This rigorous approach guarantees that
patches not only resolve the initial issue but also maintain overall system integrity.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Code LLMs. We evaluate 16 instruct models with sizes ranging from 1.5B to 405B parame-
ters, including open/closed-source LLMs. For general models, we evaluate GPT-4o-2024-05-13,
GPT-4o-mini-2024-07-18 (OpenAI, 2023), Llama3.1 (Dubey et al., 2024), Qwen2 (Yang et al.,
2024) and GLM-4 (GLM et al., 2024). For code models, we evaluate Qwen2.5-Coder (Hui et al.,
2024), DeepSeek-V2.5 (Zhu et al., 2024), Codestral (mistralai, 2024) and CodeGeeX4 (Zheng et al.,
2023b).

Code Retrieval. Given that the content of most code repositories significantly exceeds the context
length limit supported by the models, it is infeasible for the models to read the entire repository
content at once. Therefore, we employ the BM25 (Robertson et al., 2009) retrieval algorithm to
retrieve relevant files. To include potential buggy code in the input for LLMs, we extracted relevant
code segments according to the error messages for each case and referenced issues.

Implementation Details. Our experimental setup utilizes 8 NVIDIA A100 (80G), leveraging the
vLLM (Kwon et al., 2023) as the inference backend. For the DeepSeek and GPT-4 models, we
employed the official APIs. To ensure the diversity of issue generation, we applied a temperature
setting of 0.95 and a top-k sampling of 0.2. To validate the ability of LLMs to correctly generate
JSON format, we adopted Loads@3. This process verifies the model’s output up to three times to
ensure conformity with JSON format. If the output fails to be parsed by json.loads in Python
after the third attempt, we retain the model’s original output.

Input Settings for Evaluation To explore LLM’s ability on code analysis, we input the code-
base with specific prompts to discover potential bugs. Additionally, we consider errors generated
during the execution of unit tests. By inputting the codebase and associated error messages with
comprehensive prompts, we guide LLMs to identify potential bugs. We also require LLMs to output
explanations and solutions from a developer’s perspective for each issue. After discovering issues,
we prompt LLMs to perform fault localization, analyzing each issue to determine its specific fault
location within the codebase. To further verify localization capabilities, we input reference issues
and their solutions. Given a codebase and its issues, we prompt LLMs to generate patches to resolve
identified bugs. To evaluate the impact of localization information, we use two methodologies: one
with only the issues and another with issues and their localization information. Additionally, we
include reference issues and localization information for comprehensive evaluation. As shown in
Table 3, we use various input settings to evaluate LLMs.

Task Type Symbol of Output Input Setting

Issue Discovering
iorigin Pure Repository
imessage Pure Repository and Error Message
ioracle Reference issues, only generate explanation

Fault Localization

lorigin From iorigin
lmessage From imessage

loracle From ioracle
loracle exp Reference issues and explanations

Patch Generation

porigin From iorigin
pmessage From imessage

porigin loc From iorigin and lorigin
pmessage loc From imessage and lmessage

poracle From ioracle
poracle location From ioracle and loracle
poracle exp Reference issues and explanations

Table 3: Input Settings for Issues, Localization, and Patches.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Model Size Issue Task Location Task Patch Task

Rep Avg Loads F1 Apply Pass

GPT-4o µ 56.13 67.32 94.38 27.02 18.75 11.25
DeepSeekV2.5 236B 58.13 67.15 91.88 10.87 19.38 9.38
GPT-4o-mini µ 51.53 63.64 100.00 19.28 5.00 1.88
Meta-Llama-3.1-405B 405B 47.56 59.63 100.00 19.64 6.25 1.88
Codestral-22B-v0.1 22B 28.50 34.36 36.25 7.17 3.13 1.25
Qwen2.5-Coder-7B 7B 28.13 35.01 50.63 6.37 5.00 1.25
CodeGeeX4-All-9B 9B 44.94 54.68 86.88 10.48 1.88 0.63
GLM-4-9B 9B 47.06 56.71 93.13 8.41 1.88 0.63
Meta-Llama-3.1-70B 70B 39.09 54.31 98.75 13.73 3.13 0.63
Meta-Llama-3.1-8B 8B 43.56 55.41 85.63 7.22 2.50 0.63
GLM-4-9B-1M 9B 43.50 54.62 84.38 5.52 13.75 0.00
Qwen2-72B 72B 29.94 35.79 52.50 11.07 0.63 0.00
Qwen2-7B 7B 28.94 35.60 45.63 8.94 0.00 0.00
Qwen2.5-Coder-1.5B 1.5B 19.94 29.70 42.50 6.28 1.25 0.00
Qwen2-57B-A14B 57B 28.63 36.50 41.25 7.10 0.63 0.00
Qwen2-1.5B-Instruct 1.5B 18.38 26.80 0.63 0.00 0.00 0.00

Table 4: Main results of REPOFIXEVAL, where Rep refers to reproducibility in issue discovery task.
The input context lengths for Qwen2-57B-A14B and Qwen2-1.5B-Instruct are 64K and 32K tokens,
respectively. The results are sorted in descending order by the Pass metric in the Patch Task.

4.2 MAIN RESULTS

Our comprehensive evaluation of LLMs on the REPOFIXEVAL repository-level code fix task reveals
several key insights into their performance across issue discovery, fault localization, and bug fixing.
As depicted in Table 4, we verify the performance of the model at the 128K token level based on the
provided message information(imessage, lmessage, pmessage loc).

Figure 2 provides a holistic view of model performance across representative metrics in issue dis-
covery (e.g., Avg, Rep), fault localization (e.g., Loads, F1), and patch generation (e.g., Apply,
Pass). The radar chart illustrates that while some models excel in certain steps in program repair,
no single model dominates the complete process. Given that the score is on a 100 grading scale,
it is evident that current models still perform unsatisfactory on both localization and patch gen-
eration tasks. The performance discrepancy between different tasks reveals the complexity of the
repository-level debugging problem and suggests the need for multi-task evaluation.

In issue discovery, GPT-4o and DeepSeek-V2.5 demonstrate superior performance with Avgs
scores of 67.32 and 67.15, respectively. These high scores indicate their proficiency in generat-
ing reproducible and well-structured issues. High reproducibility in issue discovery is crucial as it
enables developers to consistently recreate the reported problems, facilitating more efficient debug-
ging processes and minimizing false positives. Moreover, GPT-4o leads with a F1 score of 27.02 in
fault localization, reflecting its robust understanding of directory architecture.

In patch generation, the performance of LLMs shows a significant decline compared to their ef-
fectiveness in issue discovery and fault localization, highlighting the challenges of resolving the
issue without introducing new bugs. GPT-4o also excels with the highest “Pass” score of 11.25.
DeepSeek-V2.5 follows closely, demonstrating significantly outperforming GPT-4o-mini, demon-
strating that open-source models have the potential to surpass closed-source models. Notably, some
models, such as GLM-4-9B-Chat-1M, exhibit a significant discrepancy between the percentage of
applicable patches (13.75%) and the percentage of correct patches after passing all tests (0%).

5 FURTHER ANALYSIS

5.1 CORRELATION ANALYSIS

We further explore the effects of upstream tasks on the subsequent tasks in program repair in Fig. 3.
Specifically, we concentrate on whether a LLM excelling in one upstream task (e.g., issue discovery)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Issue_Reproducibility

Issue_Avg

Loc_Loads

Loc_F1

Patch_Apply

Patch_Pass

0

12

24

36

48

60

0

16

32

48

64

80

0

20

40

60

80

100

0

6

12

18

24

30

0

4

8

12

16

20

0

3

6

9

12

15

GPT-4o
DeepSeekV2.5
GPT-4o-mini
Meta-Llama-3.1-405B
Codestral-22B-v0.1
Qwen2.5-Coder-7B
CodeGeeX4-All-9B
GLM-4-9B
Meta-Llama-3.1-70B
Meta-Llama-3.1-8B
GLM-4-9B-1M
Qwen2-72B
Qwen2-7B
Qwen2.5-Coder-1.5B

Figure 2: Radar chart depicting the perfor-
mance on issue discovery, fault localization,
and patch generation.

0

5

10

15

20

25

30

Issue_Avg
cor: 0.78

p-value: ✔✔

cor: 0.61

p-value: ✔✔

cor: 0.47

p-value: ✔✔

cor: 0.49

p-value: ✔✔

0

20

40

60

80

100

0

10

20

30

40

50

60

Loc_Loads
cor: 0.67

p-value: ✔✔

cor: 0.28

p-value: ✔

cor: 0.26

p-value: ✔

0

5

10

15

20

25

30

0

5

10

15

20

25

30

35

Loc_F1
cor: 0.42

p-value: ✔✔

cor: 0.57

p-value: ✔✔

0

5

10

15

20

0

10

20

30

40

50

Patch_Apply
cor: 0.82

p-value:✔✔

30 40 50 60

0

2

4

6

8

10

12

14

0 20 40 60 80 100 0 5 10 15 20 25 30 0 5 10 15 20 0 2 4 6 8 10 12 14
0

20

40

60

80

100

Patch_Pass

Issue
Dicovery Fault Localization Patch Generation

Figure 3: Pair Plots of five key performance
indicators across three tasks.

will result in better results in the downstream one (e.g., patch generation). Experiment results in
Fig. 3 include all data from the (imessage, lmessage, pmessageloc) task, with token counts ranging
from 2K to 128K. As shown in Fig. 3, the histograms on the main diagonal display the distribution
of each evaluation metrics. The lower triangular portion presents scatter plots between different
evaluation metrics, while the upper triangular portion indicates the Pearson correlation coefficient
(cor) and its p-value for each pair. A single checkmark (✓) denotes significant correlations where
the p-value is less than 0.01, while two checkmarks (✓✓) indicate highly significant correlations
with p-values less than 0.001.

We observed that all metrics demonstrate statistical significance. Notably, the quality of issues
(as measured by Issue Avg) exhibits strong correlations with all other task metrics. In particular,
there is a pronounced relationship between issue quality and Loc Loads. This loading rate, in turn,
influences the F1 score Loc F1. Furthermore, the application rate Patch Apply has a substantial
impact on the final pass rate Patch Pass in the patch generation task.

5.2 CONTEXT LENGTH

To investigate the impact of context length on model performance, we selected 11 LLMs that are
capable of supporting up to a 128K context length. In specific, we extracted text segments using code
retrieval (Section 4.1) with lengths of 1,500, 3,000, 6,500, 13,000, 30,000, 61,000, and 124,000
tokens, corresponding to the context limits of LLMs with 2K, 4K, 8K, 16K, 32K, 64K, and 128K
token, respectively. The experimental results for various context lengths are shown in Fig. 4.

Observation in Issue Discovering. First, the issue discovering performance of most LLMs
slightly improves or remains relatively stable as context length increases, particularly a noticeable
improvement within shorter context lengths up to 16K. However, after the 16K context, Qwen2.5
and Codestral-22B-v0.1 show a significant performance decline, which may be caused by the dis-
tribution of training data. This decline is likely due to insufficient long-text training data during the
training stage. Besides, some open-source models like DeepSeek-V2.5 perform competitively with
commercial models, even surpassing GPT-4o at certain context lengths.

Observation in Fault Localization. As the context length increases, most LLMs initially show
performance improvement followed by a decline. However, only a few LLMs like Meta-Llama-3.1
maintain performance beyond 16K tokens, with GPT-4o showing a more noticeable upward trend.
This indicates that while richer contextual information can enhance performance, only select LLMs

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1,5
00

3,0
00

6,5
00

13
,00

0
30

,00
0

61
,00

0

12
4,0

00

Context Length

30.0

40.0

50.0

60.0

70.0

Is
su

e
Sc

or
e

65.51
GPT-4o

66.84
GPT-4o

67.32
DeepSeek-V2.5

67.04
DeepSeek-V2.5

67.73
GPT-4o

67.82
GPT-4o 67.32

GPT-4o

Models
GPT-4o
DeepSeek-V2.5
GPT-4o-mini
Qwen2-72B
Meta-Llama-3.1-405B
Qwen2-7B
Qwen2.5-Coder-7B
Codestral-22B-v0.1
glm-4-9b
Meta-Llama-3.1-70B
CodeGeeX4-All-9B
Meta-Llama-3.1-8B
GLM-4-9B-1M
Qwen2.5-Coder-1.5B

(a) Issue Avg Score

61
,00

0
1,5

00
13

,00
0

12
4,0

00
6,5

00
30

,00
0

3,0
00

Context Length

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

Lo
c

F1
 S

co
re

29.73%
GPT-4o

13.91%
Meta-Llama-3.1-405B

28.34%
GPT-4o

27.02%
GPT-4o

21.68%
Meta-Llama-3.1-405B

24.63%
GPT-4o

16.25%
Meta-Llama-3.1-70B

Models
GPT-4o
Meta-Llama-3.1-405B
GPT-4o-mini
Meta-Llama-3.1-70B
Qwen2-72B
CodeGeeX4-All-9B
Qwen2.5-Coder-7B
DeepSeek-V2.5
Codestral-22B-v0.1
GLM-4-9B
Qwen2-7B
Meta-Llama-3.1-8B
GLM-4-9B-1M
Qwen2.5-Coder-1.5B

(b) Localization F1 Score

61
,00

0
6,5

00
1,5

00
3,0

00

12
4,0

00
30

,00
0

13
,00

0

Context Length

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

Pa
tc

h
Pa

ss

15.89
GPT-4o

7.50
DeepSeek-V2.5

3.31
GPT-4o

7.80
DeepSeek-V2.5

11.03
GPT-4o10.62

GPT-4o

8.45
DeepSeek-V2.5

Models
GPT-4o
DeepSeek-V2.5
Meta-Llama-3.1-70B
Meta-Llama-3.1-405B
Codestral-22B-v0.1
GPT-4o-mini
Qwen2.5-Coder-7B
Qwen2-72B
CodeGeeX4-All-9B
GLM-4-9B-1M
Meta-Llama-3.1-8B
glm-4-9b
Qwen2-7B
Qwen2.5-Coder-1.5B

(c) Patch Pass Rate

Figure 4: Comparison of Issue Avg Score, Localization F1 Score, and Patch Pass Rate vs. Context
Length.

effectively utilize extremely long contexts. And the open-source model Meta-Llama-3.1-405B out-
performs the closed-source GPT-4o in scenarios with context lengths below 8K, and consistently
surpasses GPT-4o-mini across all context lengths. This indicates that open-source LLMs can, to
some extent, serve as alternatives to advanced closed-source LLMs.

Observation in Patch Generation. Apart from GPT-4o and DeepSeek-V2.5, performance fur-
ther improved as the context length increased, demonstrating excellent capability in handling long
contexts. In contrast, other models performed poorly across all token lengths, with pass rates consis-
tently below 4. This stark difference highlights the inherent difficulty of the patch task and suggests
that most LLMs lack the necessary capabilities to effectively utilize contextual information.

5.3 TASK INPUT SETTINGS

To investigate the impact of input information on debugging performance, we conducted a total of
14 different task input setting experiments in Table 3 and the result is shown as Fig. 5.

Feeding error messages does not necessarily lead to the improvement in discovering issues.
The inclusion of error messages appears to improve the reproducibility of model outputs, suggesting
that these messages provide crucial context for generating more consistent and verifiable results.
However, apart from a few top-tier models like GPT-4o, most models did not show significant over-
all performance improvements with the help of error messages. In some cases, performance even
decreased. This unexpected outcome may be attributed to: (a) Limitations in Information Organi-
zation: Most models may over-rely on error messages while neglecting the broader context of the
issue, resulting in problem descriptions that are more technically accurate (as reflected in higher
Reproducibility scores) but less clear in overall expression and structure compared to descriptions
without error messages. (b) Multidimensionality of Evaluation Criteria: The average score of the is-
sue considers multiple dimensions (Relevance, Explanation and Overall) beyond just Reproducibil-
ity. In processing error messages, models may focus excessively on technical details, potentially
compromising performance in other aspects.

Input information quality significantly impacts performance. There is a clear positive correla-
tion between the quality of input setting and model performance. In fault localization, the condition
with reference issues and solutions (loracal exp) typically achieves the highest F1 scores, while us-
ing error message inputs (lmessage) shows significant improvement over inputs consisting solely of

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

01234567

3.39

2.86

3.51

3.76

3.85

5.66

5.51

5.42

5.36

6.01

6.15

6.80

6.01

6.39

3.44

2.97

3.50

3.56

3.58

5.47

5.46

5.67

5.54

5.43

5.96

6.72

6.36

6.73

Average Score

Input Setting
issue_origin
issue_message

Codestral-22B-v0.1

Qwen2.5-Coder-1.5B

Qwen2.5-Coder-7B

Qwen2-7B

Qwen2-72B

CodeGeeX4-All-9B

GLM-4-9B-1M

GLM-4-9B

Meta-Llama-3.1-8B

Meta-Llama-3.1-70B

Meta-Llama-3.1-405B

DeepSeek-V2.5

GPT-4o-mini

GPT-4o

Model Name

0 1 2 3 4 5 6

2.60

1.84

2.56

2.89

2.97

4.49

4.11

4.34

3.94

4.29

4.37

5.31

4.33

5.28

2.85

1.99

2.81

2.89

2.99

4.49

4.35

4.71

4.36

3.91

4.76

5.81

5.15

5.61

Reproducibility Score

Input Setting
issue_origin
issue_message

(a) Issue Avg and Reproducibility Score

0 10 20 30 40 50
Loc F1 Score

Codestral-22B-v0.1

Qwen2.5-Coder-1.5B

Qwen2.5-Coder-7B

Qwen2-7B

Qwen2-72B

CodeGeeX4-All-9B

GLM-4-9B-1M

GLM-4-9B

Meta-Llama-3.1-8B

Meta-Llama-3.1-70B

Meta-Llama-3.1-405B

DeepSeek-V2.5

GPT-4o-mini

GPT-4o

0.35

0.00

1.39

2.58

4.74

1.60

2.01

2.47

1.91

1.33

3.43

4.28

4.79

14.32

7.17

6.28

6.37

8.94

11.07

10.48

5.52

8.41

7.22

13.73

19.64

10.87

19.28

27.02

10.82

2.28

10.31

5.34

25.70

13.97

13.16

15.49

14.79

39.40

44.09

24.04

47.95

47.55

14.64

2.67

8.48

4.29

22.38

16.15

16.20

22.61

16.92

34.67

44.25

24.80

47.37

47.34

Input Setting
location_origin
location_message
location_oracal
location_oracal_exp

(b) Localization F1 Score

0 2 4 6 8 10

Codestral-22B-v0.1

Qwen2.5-Coder-1.5B

Qwen2.5-Coder-7B

Qwen2-7B

Qwen2-72B

CodeGeeX4-All-9B

GLM-4-9B-1M

GLM-4-9B

Meta-Llama-3.1-8B

Meta-Llama-3.1-70B

Meta-Llama-3.1-405B

DeepSeek-V2.5

GPT-4o-mini

GPT-4o

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.62

0.62

0.00

2.50

0.00

3.75

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.62

0.00

1.88

0.00

6.88

0.00

0.00

0.62

0.00

0.00

0.62

0.62

0.00

0.62

0.62

3.75

10.00

0.00

11.25

1.25

0.00

1.25

0.00

0.00

0.62

0.00

0.62

0.62

0.62

1.88

9.38

1.88

11.25

Input Setting of Patch Origin

Input Setting
patch_origin
patch_origin_loc
patch_message
patch_message_loc

0.0 2.5 5.0 7.5 10.0 12.5

0.00

0.00

0.00

0.00

0.00

0.00

1.25

0.62

0.62

0.62

1.25

9.38

0.00

8.12

0.00

0.00

1.25

0.00

0.62

0.00

2.50

0.62

0.62

3.75

0.62

8.75

2.50

12.50

0.62

0.00

1.25

0.00

0.00

0.62

2.50

1.25

0.00

0.62

2.50

9.38

1.25

9.38

Input Setting of Patch Oracle

Input Setting
patch_oracle
patch_oracle_exp
patch_oracle_location

(c) Patch Pass Rate

Figure 5: Comparison of Issue Avg, Reproducibility Score, Localization F1 Score and Patch
Pass Rate vs. Input Setting.

the codebase (lorigin). This highlights the crucial role of error messages in enhancing the fault lo-
calization capabilities of LLMs. Similarly, in patch generation, inputs that integrate detailed error
messages and precise fault localization demonstrate better results than those relying on the basic
codebase. The pmessage loc condition consistently yields the highest pass rate for most models,
indicating that the combination of all available contextual information leads to the most effective
patch generation. Advanced models like DeepSeek-V2.5 and GPT-4o demonstrate superior per-
formance across all patch types, suggesting a higher capacity to utilize diverse input setting. The
enhanced performance of poracal exp and poracal location compared to poracal alone further under-
scores the importance of explanations and precise fault localization. Additionally, the performance
gap between models with and without oracle information indicates potential areas for improvement
in unsupervised patch generation scenarios.

6 CONCLUSION

In this work, we propose a novel repository-level APR evaluation dataset, REPOFIXEVAL, cre-
ated through an annotation and verification process conducted by professional developers. This
dataset contains 160 bug suites, including buggy code, comprehensive unit tests, related issues, and
bug-fixing patches. We are the first to introduce a full-process evaluation mimicking human bug
resolution, where models initially propose relevant issues and subsequently generate patches for
solutions. Systematic evaluations of existing LLMs on REPOFIXEVAL reveal performance dispar-
ities between open-source and closed-source models. Additionally, our findings highlight current
LLM deficiencies in discovering issues, localizing faults, and generating patches, suggesting direc-
tions for improvement. This marks a significant advancement for developers using AI techniques to
understand and debug effectively in real-world software development environments.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

CODE OF ETHICS AND ETHICS STATEMENT

REPOFIXEVAL is developed using data from public code repositories, ensuring all contributions
comply with the respective license requirements. All repositories used in this study comply with
the usage requirements of their respective licenses: MIT license, Apache-2.0 license, and BSD-
3-Clause license.We do not collect personal information of repository users, and REPOFIXEVAL
does not use any data beyond the GitHub public API and website. The selection of repositories for
REPOFIXEVAL is based on objective popularity metrics, without involving any discriminatory or
biased criteria.

To ensure transparency, we plan to release the REPOFIXEVAL dataset, its collection and evalua-
tion infrastructure and experimental results. Following established best practices, we will provide
detailed documentation for all components and establish open communication channels to gather
feedback for improving REPOFIXEVAL.

REPRODUCIBILITY

In our submission, we have uploaded a complete source code archive that has been appropriately
anonymized. The source code contains inline documentation detailing the purpose and usage of
various parts of the codebase. Additionally, we provide the complete set of REPOFIXEVAL task
instances discussed in the paper.

We plan to formally release REPOFIXEVAL as an open-source codebase to the public. This release
will include exhaustive details on benchmarking, code structure, and usage instructions. One of the
core components of REPOFIXEVAL, the data collection framework, will also be part of the open-
source release. Due to its easily maintainable design, as described in the main paper, we believe
REPOFIXEVAL will have high reproducibility.

REFERENCES

Linzheng Chai, Shukai Liu, Jian Yang, Yuwei Yin, Ke Jin, Jiaheng Liu, Tao Sun, Ge Zhang,
Changyu Ren, Hongcheng Guo, et al. Mceval: Massively multilingual code evaluation. arXiv
preprint arXiv:2406.07436, 2024.

Yuxiao Chen, Jingzheng Wu, Xiang Ling, Changjiang Li, Zhiqing Rui, Tianyue Luo, and Yanjun
Wu. When large language models confront repository-level automatic program repair: How well
they done? In Proceedings of the 2024 IEEE/ACM 46th International Conference on Software
Engineering: Companion Proceedings, pp. 459–471, 2024.

Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad, Hantian Ding, Ming Tan, Nihal Jain, Murali Kr-
ishna Ramanathan, Ramesh Nallapati, Parminder Bhatia, Dan Roth, and Bing Xiang. Cross-
codeeval: A diverse and multilingual benchmark for cross-file code completion, 2023. URL
https://arxiv.org/abs/2310.11248.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Zhiyu Fan, Xiang Gao, Martin Mirchev, Abhik Roychoudhury, and Shin Hwei Tan. Automated
repair of programs from large language models. In 45th IEEE/ACM International Conference
on Software Engineering, ICSE 2023, Melbourne, Australia, May 14-20, 2023, pp. 1469–1481.
IEEE, 2023. doi: 10.1109/ICSE48619.2023.00128. URL https://doi.org/10.1109/
ICSE48619.2023.00128.

Luca Gazzola, Daniela Micucci, and Leonardo Mariani. Automatic software repair: a survey. In
Michel Chaudron, Ivica Crnkovic, Marsha Chechik, and Mark Harman (eds.), Proceedings of
the 40th International Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden,
May 27 - June 03, 2018, pp. 1219. ACM, 2018. doi: 10.1145/3180155.3182526. URL https:
//doi.org/10.1145/3180155.3182526.

11

https://arxiv.org/abs/2310.11248
https://doi.org/10.1109/ICSE48619.2023.00128
https://doi.org/10.1109/ICSE48619.2023.00128
https://doi.org/10.1145/3180155.3182526
https://doi.org/10.1145/3180155.3182526

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu
Feng, Hanlin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun, Jiajie Zhang, Jiale Cheng,
Jiayi Gui, Jie Tang, Jing Zhang, Juanzi Li, Lei Zhao, Lindong Wu, Lucen Zhong, Mingdao Liu,
Minlie Huang, Peng Zhang, Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shudan Zhang, Shulin Cao,
Shuxun Yang, Weng Lam Tam, Wenyi Zhao, Xiao Liu, Xiao Xia, Xiaohan Zhang, Xiaotao Gu,
Xin Lv, Xinghan Liu, Xinyi Liu, Xinyue Yang, Xixuan Song, Xunkai Zhang, Yifan An, Yifan
Xu, Yilin Niu, Yuantao Yang, Yueyan Li, Yushi Bai, Yuxiao Dong, Zehan Qi, Zhaoyu Wang,
Zhen Yang, Zhengxiao Du, Zhenyu Hou, and Zihan Wang. Chatglm: A family of large language
models from glm-130b to glm-4 all tools, 2024.

Md Mahim Anjum Haque, Wasi Uddin Ahmad, Ismini Lourentzou, and Chris Brown. Fixeval:
Execution-based evaluation of program fixes for programming problems. In 2023 IEEE/ACM
International Workshop on Automated Program Repair (APR), pp. 11–18. IEEE, 2023.

Kai Huang, Zhengzi Xu, Su Yang, Hongyu Sun, Xuejun Li, Zheng Yan, and Yuqing Zhang. Evolv-
ing paradigms in automated program repair: Taxonomy, challenges, and opportunities. ACM
Computing Surveys, 2024.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Faria Huq, Masum Hasan, Md Mahim Anjum Haque, Sazan Mahbub, Anindya Iqbal, and Toufique
Ahmed. Review4repair: Code review aided automatic program repairing. Information and Soft-
ware Technology, 143:106765, 2022.

Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan. Impact of code language models on automated
program repair. In 2023 IEEE/ACM 45th International Conference on Software Engineering
(ICSE), pp. 1430–1442. IEEE, 2023.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023. URL https://arxiv.org/abs/2310.06770.

René Just, Darioush Jalali, and Michael D Ernst. Defects4j: A database of existing faults to enable
controlled testing studies for java programs. In Proceedings of the 2014 international symposium
on software testing and analysis, pp. 437–440, 2014.

Anil Koyuncu, Kui Liu, Tegawendé F. Bissyandé, Dongsun Kim, Jacques Klein, Martin Monperrus,
and Yves Le Traon. Fixminer: Mining relevant fix patterns for automated program repair. Empir.
Softw. Eng., 25(3):1980–2024, 2020. doi: 10.1007/S10664-019-09780-Z. URL https://
doi.org/10.1007/s10664-019-09780-z.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Bowen Li, Wenhan Wu, Ziwei Tang, Lin Shi, John Yang, Jinyang Li, Shunyu Yao, Chen Qian,
Binyuan Hui, Qicheng Zhang, et al. Devbench: A comprehensive benchmark for software devel-
opment. arXiv preprint arXiv:2403.08604, 2024.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozh-
skii, Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier,
João Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee,
Logesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang,
Rudra Murthy V, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan
Dey, Zhihan Zhang, Nour Moustafa-Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh,
Sasha Luccioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee,
Nadav Timor, Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank
Mishra, Alex Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish

12

https://arxiv.org/abs/2310.06770
https://doi.org/10.1007/s10664-019-09780-z
https://doi.org/10.1007/s10664-019-09780-z

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferran-
dis, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. StarCoder:
May the source be with you! arXiv preprint arXiv:2305.06161, abs/2305.06161, 2023. doi:
10.48550/arXiv.2305.06161. URL https://doi.org/10.48550/arXiv.2305.06161.

Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama. Quixbugs: A multi-lingual
program repair benchmark set based on the quixey challenge. In Proceedings Companion of
the 2017 ACM SIGPLAN international conference on systems, programming, languages, and
applications: software for humanity, pp. 55–56, 2017a.

Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama. Quixbugs: a multi-lingual
program repair benchmark set based on the quixey challenge. In Proceedings Companion of
the 2017 ACM SIGPLAN international conference on systems, programming, languages, and
applications: software for humanity, pp. 55–56, 2017b. URL https://dl.acm.org/doi/
abs/10.1145/3135932.3135941.

Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level code
auto-completion systems, 2023. URL https://arxiv.org/abs/2306.03091.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. WizardCoder: Empowering code large language models with
evol-instruct. arXiv preprint arXiv:2306.08568, 2023. URL https://arxiv.org/abs/
2306.08568.

mistralai. Codestral, 2024. URL https://huggingface.co/mistralai/
Codestral-22B-v0.1.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023. URL https://arxiv.
org/abs/2303.08774.

Julian Aron Prenner, Hlib Babii, and Romain Robbes. Can openai’s codex fix bugs?: An eval-
uation on quixbugs. In 3rd IEEE/ACM International Workshop on Automated Program Re-
pair, APR@ICSE 2022, Pittsburgh, PA, USA, May 19, 2022, pp. 69–75. IEEE, 2022. doi:
10.1145/3524459.3527351. URL https://doi.org/10.1145/3524459.3527351.

Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends® in Information Retrieval, 3(4):333–389, 2009.

Tao Sun, Linzheng Chai, Jian Yang, Yuwei Yin, Hongcheng Guo, Jiaheng Liu, Bing Wang, Liqun
Yang, and Zhoujun Li. Unicoder: Scaling code large language model via universal code. arXiv
preprint arXiv:2406.16441, abs/2406.16441, 2024. doi: 10.48550/ARXIV.2406.16441. URL
https://doi.org/10.48550/arXiv.2406.16441.

Runchu Tian, Yining Ye, Yujia Qin, Xin Cong, Yankai Lin, Zhiyuan Liu, and Maosong Sun.
Debugbench: Evaluating debugging capability of large language models. arXiv preprint
arXiv:2401.04621, 2024. URL https://arxiv.org/abs/2401.04621.

Xinchen Wang, Ruida Hu, Cuiyun Gao, Xin-Cheng Wen, Yujia Chen, and Qing Liao. Reposvul: A
repository-level high-quality vulnerability dataset. In Proceedings of the 2024 IEEE/ACM 46th
International Conference on Software Engineering: Companion Proceedings, pp. 472–483, 2024.

Yuxiang Wei, Chunqiu Steven Xia, and Lingming Zhang. Copiloting the copilots: Fusing large
language models with completion engines for automated program repair. In Satish Chandra,
Kelly Blincoe, and Paolo Tonella (eds.), Proceedings of the 31st ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE
2023, San Francisco, CA, USA, December 3-9, 2023, pp. 172–184. ACM, 2023. doi: 10.1145/
3611643.3616271. URL https://doi.org/10.1145/3611643.3616271.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai

13

https://doi.org/10.48550/arXiv.2305.06161
https://dl.acm.org/doi/abs/10.1145/3135932.3135941
https://dl.acm.org/doi/abs/10.1145/3135932.3135941
https://arxiv.org/abs/2306.03091
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://huggingface.co/mistralai/Codestral-22B-v0.1
https://huggingface.co/mistralai/Codestral-22B-v0.1
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.1145/3524459.3527351
https://doi.org/10.48550/arXiv.2406.16441
https://arxiv.org/abs/2401.04621
https://doi.org/10.1145/3611643.3616271

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
technical report. arXiv preprint arXiv:2407.10671, 2024.

He Ye, Matias Martinez, Xiapu Luo, Tao Zhang, and Martin Monperrus. Selfapr: Self-supervised
program repair with test execution diagnostics. In 37th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2022, Rochester, MI, USA, October 10-14, 2022, pp. 92:1–
92:13. ACM, 2022a. doi: 10.1145/3551349.3556926. URL https://doi.org/10.1145/
3551349.3556926.

He Ye, Matias Martinez, and Martin Monperrus. Neural program repair with execution-based
backpropagation. In 44th IEEE/ACM 44th International Conference on Software Engineer-
ing, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022, pp. 1506–1518. ACM, 2022b. doi:
10.1145/3510003.3510222. URL https://doi.org/10.1145/3510003.3510222.

Quanjun Zhang, Tongke Zhang, Juan Zhai, Chunrong Fang, Bowen Yu, Weisong Sun, and Zhenyu
Chen. A critical review of large language model on software engineering: An example from
chatgpt and automated program repair. arXiv preprint arXiv:2310.08879, 2023. URL https:
//arxiv.org/abs/2310.08879.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo Hao, Xu Han, Zhen
Thai, Shuo Wang, Zhiyuan Liu, and Maosong Sun. ∞Bench: Extending long context evaluation
beyond 100K tokens. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 15262–15277, Bangkok, Thailand, August 2024. Association for Computational Lin-
guistics. doi: 10.18653/v1/2024.acl-long.814. URL https://aclanthology.org/2024.
acl-long.814.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023a.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei Shen,
Andi Wang, Yang Li, Teng Su, Zhilin Yang, and Jie Tang. Codegeex: A pre-trained model for
code generation with multilingual benchmarking on humaneval-x. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 5673–5684, 2023b.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li,
Huazuo Gao, Shirong Ma, et al. Deepseek-coder-v2: Breaking the barrier of closed-source models
in code intelligence. arXiv preprint arXiv:2406.11931, 2024.

A APPENDIX

A.1 REPOFIXEVAL’S FEATURE

In contrast to the previous APR benchmarks, which suffer from limitations such as limited scope,
lack of end-to-end evaluation, and inadequate performance metrics, our REPOFIXEVAL offers sev-
eral distinctive features that address these issues comprehensively in Tab.1.

Unlike the above APR datasets, REPOFIXEVAL introduces several distinctive features:

• Repository-Level Program Repair: REPOFIXEVAL expands the scope of traditional APR
benchmarks by encompassing multi-file projects from real-world repositories. This requires mod-
els to identify and repair bugs across various modules and components within a repository, sim-
ulating a more interconnected and interdependent software system environment. Unlike conven-
tional datasets that focus on single-file or single-function tasks, this approach provides a more
realistic and challenging evaluation framework, highlighting the necessity for models to under-
stand and analyze code spanning multiple files.

14

https://doi.org/10.1145/3551349.3556926
https://doi.org/10.1145/3551349.3556926
https://doi.org/10.1145/3510003.3510222
https://arxiv.org/abs/2310.08879
https://arxiv.org/abs/2310.08879
https://aclanthology.org/2024.acl-long.814
https://aclanthology.org/2024.acl-long.814

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

• Offer Unit Test-Based Evaluation: REPOFIXEVAL utilize unit tests as a primary metric for eval-
uation. This methodology ensures that the generated patches not only syntactically integrate with
the existing code but also maintain functional correctness. By using unit tests, REPOFIXEVAL
closely mimics real-world software development practices.

• Adapt Issue-aware Debugging Pipeline: REPOFIXEVAL places significant emphasis on the dis-
covery and assessment of issues in the repositories. Just as the issue reports bridge the customer
usage failures and the software development team’s repair efforts, we have similarly adapted such
an issue-aware pipeline for debugging. This feature ensures that the models are capable of identi-
fying and resolving issues, which can demonstrate very well to humans.

These unique characteristics of REPOFIXEVAL aim to bridge the gap between theoretical APR re-
search and practical application, extending the capabilities of APR systems within real-world soft-
ware development settings. By encouraging models to handle complex, cross-file projects, RE-
POFIXEVAL contributes to the advancement of more robust and effective APR methodologies.

A.2 THE DIFFERENCE OF BUGS FROM MULTIPLE STRUCTURAL LEVELS.

producer.py

class Producer:

def produce(self, item):

for i in range(10):

time.sleep(1)

item = random.randint(1, 100)

+ self.empty_slots.acquire()

+ self.mutex.acquire()

self.queue.put(item)

+ self.mutex.release()

+ self.full_slots.release()

consumer.py

class Consumer:

def consume(self):

while True:

+ self.full_slots.acquire()

+ self.mutex.acquire()

if not self.queue.empty():

item = self.queue.get()

+ self.mutex.release()

+ self.empty_slots.release()

time.sleep(2)

Function-level

def remove_item(my_list, key):

+ to_remove = []

for i, item in enumerate(my_list):

if item == key:

- my_list.remove(item)

+ to_remove.append(i)

+ for index in reversed(to_remove):

+ del my_list[index]

my_list = [10, 20, 30, 30, 40, 50]

remove_item(my_list, 30)

print(my_list)

File-level

class Human:

def __init__(self, id: int):

- self.id = id

+ self.id = str(id)

class Teacher(Human):

def __init__(self, id: int):

- self.id = "teacher_" + id

+ self.id = "teacher_" + str(id)

class Student(Human):

def __init__(self, id: int):

- self.id = "student_" + id

+ self.id = "student_" + str(id)

Repository-level

Figure 6: Examples of code bugs across different structural levels.

For instance in Fig. 6, debuggers must comprehend the interrelationships between functions across
multiple files and localize faults within extensive codebases.

A.3 MORE INFORMATION OF THE DATASET

The main types of bugs include logic errors, import errors, reference errors, assignment errors, etc.
The average token of error message is 797.28.

The details of repository is in Tab. 5.

A.4 AN EXAMPLE OF REPOFIXEVAL

An example of REPOFIXEVAL is shown in 1.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Repository Name Repository URL
python-asserts https://github.com/srittau/python-asserts
sqlitedict https://github.com/piskvorky/sqlitedict
ddt https://github.com/datadriventests/ddt
janus https://github.com/aio-libs/janus
ArxivDigest https://github.com/AutoLLM/ArxivDigest
chakin https://github.com/chakki-works/chakin
geotext https://github.com/elyase/geotext
hone https://github.com/chamkank/hone
lice https://github.com/licenses/lice
particle-swarm-optimization https://github.com/nathanrooy/particle-swarm-optimization
readtime https://github.com/alanhamlett/readtime
cachier https://github.com/python-cachier/cachier
munch https://github.com/Infinidat/munch
pandarallel https://github.com/nalepae/pandarallel
sklearn-pandas https://github.com/scikit-learn-contrib/sklearn-pandas
ordered-set https://github.com/rspeer/ordered-set

Table 5: URL of Repository.

1 {
2 "RepoName": "https://github.com/piskvorky/sqlitedict.git",
3 "FilteredCode": [
4 {
5 "path": "piskvorky_sqlitedict/sqlitedict.py",
6 "content": "1 #!/usr/bin(...truncated)"
7 },
8 "ErrorMessage": "(...truncated) Ran 88 tests in 1.156s
9 FAILED (failures=5, errors=1)",

10 "Issue": {
11 "title": "Autocommit Feature Not Working Correctly and Minor
12 Bugs in Test Cases",
13 (...truncated)
14 },
15 "Patch": "--- a/piskvorky_sqlitedict/sqlitedict.py\n+++
16 b/piskvorky_sqlitedict/sqlitedict.py\n@@ -311,7 +311,8 @@
17 (...truncated)
18 - self.commit()\n
19 + if self.autocommit:\n
20 + self.commit()\n \n
21 (...truncated)",
22 }

Listing 1: An example of REPOFIXEVAL

16

	Introduction
	Related Work
	RepoFixEval: A Benchmark for Repository-level Code Fix Task
	Benchmark Construction
	Evaluation Tasks and Metrics
	Task 1: Issue Discovery
	Task II: Fault Localization
	Task III: Bug Fixing

	Experiments
	Experiment Setup
	Main Results

	Further Analysis
	Correlation Analysis
	context length
	Task Input Settings

	Conclusion
	Appendix
	RepoFixEval's Feature
	the difference of bugs from multiple structural levels.
	More information of the Dataset
	An Example of RepoFixEval

