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ABSTRACT

Adversarial reinforcement learning has been shown promising in solving games
in adversarial environments, while the theoretical understanding is still premature.
This paper theoretically analyses the convergence and generalization of adversar-
ial reinforcement learning under the mean-field optimal control framework. A new
mean-field Pontryagin’s maximum principle is proposed for reinforcement learn-
ing with implicit terminal constraints. Applying Hamilton-Jacobi-Issacs equation
and mean-field two-sided extremism principle (TSEP), adversarial reinforcement
learning is modeled as a mean-field quantitative differential game between two
constrained dynamical systems. These results provide the necessary conditions
for the convergence of the global solution to the mean-field TSEP. The global
solution is also unique when the terminal time is sufficiently small. Moreover,
two generalization bounds are delivered via Hoeffding’s inequality and algorith-
mic stability. Both bounds do not explicitly depend on the dimensions, norms,
or other capacity measures of the parameter, which are usually prohibitively large
in deep learning. The bounds help characterize how the algorithm randomness
facilitates the generalization of adversarial reinforcement learning. Moreover, the
techniques may be helpful in modeling other adversarial learning algorithms.

1 INTRODUCTION

Adversarial reinforcement learning (Uther and Veloso, 1997) has been successfully deployed in
many application areas, including autonomous driving (Behzadan and Munir, 2019; Pan et al., 2019)
and AI gaming (Mandlekar et al., 2017; Pinto et al., 2017; Zhang et al., 2020). Adversarial neural
networks are employed for solving the games in the adversarial environments (Mandlekar et al.,
2017). Moreover, the adversarial neural networks can also improve feature robustness and sam-
ple efficiency (Ma et al., 2018). However, the theoretical understanding of the convergence and
generalization in adversarial reinforcement learning is still premature.

In this paper, we establish the theoretical foundations of adversarial reinforcement learning under the
mean-field optimal control framework (Bensoussan et al., 2013). Our contributions are summarized
as follows.

(i) Reinforcement learning is modeled from the view of the dynamical system. A new mean-field
Pontryagin’s maximum principle (PMP) (Pontryagin, 1987) is proposed to give the necessary
condition for optimality of this dynamical system. This PMP is extended from E et al. (2019) to
cover the dynamical systems with constraints on the terminal time. This extension helps gen-
eralize the applicable domains to cover control problems with constraints, such as controlling
target (e.g., a vehicle) to reach a certain area.

(ii) Adversarial reinforcement learning is modeled as a mean-field quantitative differential game
(Pontryagin, 1985); and thus, its corresponding training process is regarded as how to achieve
the optimal control of this game. The mean-field two-sided extremism principle (TSEP) (Guo
et al., 2005) is then presented, which relies on the loss function and terminal constraints. This
mean-field TSEP serves as the necessary conditions of the convergence (or equivalently, the
optimality) of the mean-field quantitative differential game; when the terminal time is small

1



Under review as a conference paper at ICLR 2022

enough, this mean-field TSEP is also a unique solution, and thus serves as the sufficient con-
ditions of the convergence.

(iii) The learned model of adversarial reinforcement learning is characterized by the viscosity solu-
tion (E et al., 2019) of a mean-field Hamilton-Jacobi-Issacs (HJI) equation (Guo et al., 2005).
We then prove that this viscosity solution is unique. The HJI equation gives a global charac-
terization of adversarial reinforcement learning, while the previously given mean-field TSEP
is a local special case.

(iv) Two generalization error bounds are proved, which characterize the gap between the expected
mean-field solution and the learned model. The two bounds are obtained from Hoeffding’s
inequality (Pinelis and Sakhanenko, 1986) and algorithmic stability (Mou et al., 2018). The
bounds are of order O

(
e−N

)
and O(1/N), respectively, where N is the number of samples.

They do not explicitly rely on the dimensions, norms, or other capacity measures of the net-
work parameter, which are usually prohibitively large in deep learning. Moreover, the latter
bound helps characterize how the randomness in the training algorithms and the aggregated
step sizes influence the generalization.

Some previous works have been devoted to establish the theoretical foundations of deep learning by
dynamical system viewpoint, since E (2017). Based on the PMP and the method of successive ap-
proximation (Kantorovitch, 1939), new optimization methods are developed by Li et al. (2018); Li
and Hao (2018). Sonoda and Murata (2017) study the continuum limit of training neural networks,
and Chang et al. (2018b;a); Haber and Ruthotto (2017) contribute to the design of network archi-
tecture based on dynamical systems and differential equations. E et al. (2019) propose to employ
mean-field optimal control formulation for explaining deep learning. They prove the mean-field op-
timality conditions of both the Hamilton-Jacobi-Bellman type and the Pontryagin type (Pontryagin,
1987). Similar results are given by Persio and Garbelli (2021) through associating deep learning with
stochastic optimal control (Guo et al., 2005) from the perspective of mean-field games (Lasry and
Lions, 2007). These mean-field results reflect the probabilistic nature of the reinforcement learning.

To the best of our knowledge, this is the first work on developing theoretical foundations for ad-
versarial reinforcement learning. Compared with the existing studies on deep learning theory from
the mean-field optimal control view, this work models a machine learning algorithm as a mean-field
quantitative differential game between two dynamical systems, rather than a single dynamical sys-
tem. Our work may inspire novel designs of optimization methods for adversarial reinforcement
learning. Moreover, the techniques may be of independent interest in modeling other adversarial
learning algorithms, including generative adversarial networks (Goodfellow et al., 2020; Liu and
Tuzel, 2016; Mao et al., 2017), and solving partial differential equations (Zang et al., 2020).

2 PRELIMINARIES

In this section, we bridge reinforcement learning with mean-field optimal control problems. We first
present the optimal control formulation of deep learning as introduced in (Li et al., 2018; Li and
Hao, 2018; E, 2017). A deep residual network with K layers can be represented by

x(k + 1) = x(k) + f(x(k), θ(k)), k = 0, · · · ,K − 1, x(0) = x0, θ(k) ∈ Θ, (1)

where we get rid of explicit k dependence in f via the usual trick, x0 ∈ Rn is the input data, and
θ(k) is the collection of the parameters in the k-th layer of the deep residual network. In deep
reinforcement learning, the action a(k) is actually a function of the state x(k) and parameters θ(k),
that is a(x(k), θ(k)). The state and action of each time step will affect the state of the next time step
simultaneously, and will bring a reward functionL(x(k), a(x(k), θ(k))). By absorbing a(·) inL, the
reward can be expressed as L(x(k), θ(k)). The final output x(K) of the network may be constrained
by condition g(x(K)) = 0 in some practical problems, and there might be a terminal cost function
Φ(x(K), y0), where y0 represents some known variables corresponding to x0. In deep learning, the
pair (x0, y0) is usually a data point sampled from a distribution µ. Hence, the reinforcement learning
problem seeks the solution of the following problem

inf
(θ(0),··· ,θ(K−1))∈ΘK

E(x0,y0)∼µ

[
Φ(x(K), y0) +

K−1∑
k=0

L(x(k), θ(k))

]
s.t. x(k + 1) = x(k) + f(x(k), θ(k)), k = 0, · · · ,K − 1, x(0) = x0, g(x(K)) = 0.

(2)
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To avoid the repeated compositional structure in the difference equation in equation 2, we introduce
the dynamical systems viewpoint and replace the discrete dynamics equation 1 by a continuous
dynamical system in the following. Consider the dynamical system with terminal constraint, the
state equation and target set are

ẋ = f(x,θ), x(0) = x0 ∈ Rn, S := {x
∣∣g(x(tf )) = 0}, (3)

where θ ∈ Θ ⊂ Rr is a vector. Then we can define the continuous case of the objective function in
equation 2 as follows

J(θ) = E(x0,y0)∼µ

[
Φ(x(tf ), y0) +

∫ tf

0

L(x(t), θ(t))dt

]
, (4)

where f : Rn × Rr → Rn, θ : [0, tf ] → Rr, g : Rn → Rp, p ≤ n, y0 ∈ Rm, Φ : Rn × Rm → R,
L : Rn ×Rr → R and tf is the terminal time. We say θ is admissable if θ(t) ∈ Θ for all t ∈ [0, tf ].
The optimal control problem is

inf
θ
J(θ) s.t. ẋ = f(x, θ), x(0) = x0, g(x(tf )) = 0, (5)

and the optimal strategy is θ∗ = arg infθ∈UJ(θ), where

U := {θ : [0, tf ]→ Θ
∣∣θ is bounded and piecewise continuous, x(tf ; θ) ∈ S}.

3 MEAN-FIELD OPTIMAL CONTROL VIEW OF REINFORCEMENT LEARNING

In this section, we prove the mean-field Pontryagin’s maximum principle with terminal constraints,
which is the necessary condition for the optimality of dynamical systems. Define the Hamilton
function as H(x, θ, ψ) := −L(x, θ) + ψT f(x, θ), where H : Rn × Θ × Rn and ψ ∈ Rn, then we
have the following theorem.

Theorem 3.1 Under the assumption

• f is bounded, and f and L are continuous w.r.t. θ;

• f, L and Φ are continuously differentiable w.r.t x, and µ has bounded support.

Let θ∗ be the optimal strategy, and x∗(t) is the corresponding optimal trajectory, then there exists
ψ∗ : [0, tf ]→ Rn and ξ ∈ Rp such that

ẋ∗(t) = f(x, θ∗(t)), x∗(0) = x0,

ψ̇∗(t) = −∇xH(x∗(t), θ∗(t), ψ∗(t)), ψ∗(tf ) = −∇xΦ(x∗(tf ), y0)− ξT∇xg(x∗(tf )),

E(x0,y0)∼µH(x∗(t), θ∗(t), ψ∗(t)) = sup
θ∈Θ

E(x0,y0)∼µH(x∗(t), θ, ψ∗(t)) a.e. t ∈ [0, tf ].
(6)

Theorem 4.1 provide the necessary condition for optimality, which relies on the loss function and
terminal constraints. There is a feedforward ODE, describing the state dynamics under optimal
controls (θ∗z , θ

∗
d). The evolution of the co-state variable Ψ is defined, characterizing the evolution of

an adjoint variational condition backward in time.

Comparison with existing works. This theorem is a more practical form of Theorem 3 in (E et al.,
2019), which contains implicit terminal constraints. The optimal strategy must globally maximize
the Hamiltonian function for a.e. t ∈ [0, tf ]. In fact, here a.e. t ∈ [0, tf ] represents the set of t that
makes the optimal strategy continuous with respect to t.

Proof sketch. The proof has two parts: (1) transform the problem into an unconstrained problem
by the Lagrange multiplier method; (2) apply Theorem 3 in (E et al., 2019) to the transformed
problem. A detailed proof is omitted here and is given in Appendix A.1.
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4 MEAN-FIELD QUANTITATIVE DIFFERENTIAL GAME OF ADVERSARIAL
REINFORCEMENT LEARNING

In this section, we model adversarial reinforcement learning as a mean-field quantitative differential
game. In addition to the original deep neural network NNz(·; θ̂z) : Rn1 → Rn1 , an adversarial
neural network NNd(·; θ̂d) : Rn2 → Rn2 is usually added in adversarial learning, where θ̂z ∈ Θ̂z

and θ̂d ∈ Θ̂d are parameters of NNz and NNd respectively. Assume that both NNz and NNd
are deep residual networks with K layers, thus θ̂z = (θz(0), · · · , θz(K − 1)) ∈ Θ̂z = ΘK

z and
θ̂d = (θd(0), · · · , θd(K − 1)) ∈ Θ̂d = ΘK

d . Similar to Section 3, define the penalty function
L(xz(k), xd(k), θz(k), θd(k)) and the terminal cost function Φ(NNz(xz0 ; θ̂z), NNd(xd0 ; θ̂d), y0),
where y0 ∈ Rm represents some known variable corresponding to xz0 and xd0 .

4.1 MEAN-FIELD TWO-SIDED EXTREMISM PRINCIPLE

In adversarial reinforcement learning, NNz is trained to maximize the loss, while NNd is trained
to minimize the loss. Assume that both NNz and NNd are deep residual networks with the same
number of layers, thus we can formulate the adversarial learning problem as

inf
θ̂z∈Θ̂z

sup
θ̂d∈Θ̂d

E(xz0 ,xd0
,y0)∼µ

[
Φ(xz(K), xd(K), y0) +

K−1∑
k=0

L(xz(k), xd(k), θz(k), θd(k))

]
subject to

xz(k + 1) = xz(k) + fz(xz(k), θz(k)), k = 0, · · · ,K − 1, xz(0) = xz0 , gz(xz(K)) = 0,

xd(k + 1) = xd(k) + fd(xd(k), θd(k)), k = 0, · · · ,K − 1, xd(0) = xd0 , gd(xd(K)) = 0.
(7)

Now we consider the dynamical systems viewpoint and translate problem equation 7 into a contin-
uous form. Let the objective function is

J(θz, θd) = E(xz0 ,xd0
,y0)∼µ

[
Φ(xz(tf ), xd(tf ), y0) +

∫ tf

0

L(xz(t), xd(t), θz(t), θd(t))dt

]
, (8)

where θz ∈ Θz ⊂ Rr1 , θd ∈ Θd ⊂ Rr2 , xz : [0, tf ] → Rn1 , xd : [0, tf ] → Rn2 ,
θz : [0, tf ] → Rr1 , θd : [0, tf ] → Rr2 , gz : Rn1 → Rp1 , gd : Rn2 → Rp2 , Φ, L and f are all func-
tions of appropriate input and output dimensions. Let x = (xTz , x

T
d )T , x(0) = (xTz (0), xTd (0))T ,

f(x, θz, θd) = (fTz (x, θz), f
T
d (x, θd)

T ), g(x(tf )) = (gTz (xz(tf )), gTd (xd(tf )))T . Then the state
equation, target set and objective functionals of quantitative differential game are

ẋ = f(x, θz, θd), x(0) = x0, S := {x
∣∣g(x(tf )) = 0},

J(θz, θd) =E(x0,y0)∼µ

[
Φ(x(tf ), y0) +

∫ tf

0

L(x(t), θz(t), θd(t))dt

]
,

(9)

where x : [0, tf ] → Rn, g : Rn → Rp, n = n1 + n2 and p = p1 + p2. Define Uz (Ud) as the set
of all admissable θz (θd) that satisfy the terminal constraint gz(xz(tf )) = 0 (gd(xd(tf )) = 0). Our
goal is to find the optimal strategy (θ∗z , θ

∗
d) of equation 9 and the corresponding optimal trajectory

x∗(t) satisfies
J(θ∗z , θd) ≤ J(θ∗z , θ

∗
d) ≤ J(θz, θ

∗
d), ∀(θz, θd) ∈ Uz × Ud, (10)

where equation 10 is called the saddle point condition. Now define the Hamilton function of equa-
tion 9 as H(x(t), θz(t), θd(t), ψ(t)) := −L(x(t), θz(t), θd(t)) + ψT (t)f(x(t), θz(t), θd(t)), then
we have the following mean-field TSEP.

Theorem 4.1 Under the assumption,

• f is bounded and f, L are continuous w.r.t. θz, θd;

• f, L and Φ are continuously differentiable w.r.t x, and µ has bounded support.

Let (θ∗z , θ
∗
d) ∈ Uz × Ud is the optimal strategy of problem equation 9, x∗(t) is the corresponding

optimal trajectory, then there exists ψ∗ : [0, tf ]→ Rn and ξ ∈ Rp such that
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i)

ẋ∗(t) = f(x, θ∗z , θ
∗
d), x∗(0) = x0,

ψ̇∗(t) = −∇xH(x∗(t), θ∗z(t), θ∗d(t), ψ∗(t)), ψ∗(tf ) = −∇xΦ(x∗(tf ), y0)− ξT∇xg(x∗(tf )),
(11)

ii)
E(x0,y0)∼µH(x∗(t), θ∗z(t), θ∗d(t), ψ∗(t))

= sup
θz∈Θz

inf
θd∈Θd

E(x0,y0)∼µH(x∗(t), θz, θd, ψ
∗(t))

= inf
θd∈Θd

sup
θz∈Θz

E(x0,y0)∼µH(x∗(t), θz, θd, ψ
∗(t)), a.e. t ∈ [0, tf ].

(12)

Theorem 4.1 introduces the necessary conditions for the convergence of the unique global solution to
the mean-field TSEP, relying on the loss loss function and terminal constraints. Comparing Theorem
4.1 to Theorem 3.1, we can see the main difference is that the maximization condition is turned into
the saddle point condition.

Comparison with existing works. This theorem is a mean-field form of Theorem 7.4.1 in (Guo
et al., 2005) gives general necessary conditions for optimality for our problem.

Proof sketch. The proof has two parts: (1) Fix the optimal strategy θ∗z and θ∗d respectively, and
transform the problem into two optimal control problems; (2) apply Theorem 3.1 to these two trans-
formed problems and use max-min inequality. A detailed proof is omitted here and is given in
Appendix A.2.

4.2 SMALL-TIME UNIQUENESS

Since the necessary condition for optimality has been provided by the TSEP, a natural question is
to understand when the sufficient conditions for optimality can be also provided. In this subsection,
we will establish assumptions which are required for a unique solution of the mean-field TSEP
equations.

Theorem 4.2 Suppose that

• f is bounded, g is continuously differentiable w.r.t x with bounded and Lipschitz partial
derivatives, µ has bounded support in Rn × Rm;

• f , L and Φ are twice continuously differentiable w.r.t x, θz and θd with bounded and
Lipschitz partial derivatives, and ∂f/∂θz∂θd, ∂L/∂θz∂θd ≡ 0;

• H(x, θz, θd, ψ) is strongly concave in θz , strongly convex in θd and uniformly in x ∈ Rn,
ψ ∈ Rn.

Then for sufficiently small tf , if (θ1
z , θ

1
d) and (θ2

z , θ
2
d) are solutions of the mean-field TSEP derived

in Theorem 4.1 and are continuously w.r.t time t, then (θ1
z , θ

1
d) = (θ2

z , θ
2
d).

Theorem 4.2 shows that the small tf roughly corresponds to the regime where the reachable set of the
forward dynamics is small, hence the solution is unique. We assume the continuity of θ1

z , θ
1
d, θ

2
z , θ

2
d

with respect to t in Theorem 4.2. In fact, when θ1
z , θ

1
d, θ

2
z , θ

2
d are discontinuous on at most a set with

zero measure, we can also conclude that (θ1
z(t), θ

1
d(t)) = (θ2

z(t), θ
2
d(t)) for a.e. t ∈ [0, tf ].

Comparison with existing works. To the best of our knowledge, there is no existing method to
prove the uniqueness of TSEP’s solution.

Proof sketch. The proof has two parts: (1) bound the difference of flow-maps driven by two
different controls; (2) apply the first-order optimality condition for (θ1

z(t), θ
1
d(t)) and (θ2

z(t), θ
2
d(t)).

A detailed proof is omitted here and is given in Appendix B.

5



Under review as a conference paper at ICLR 2022

4.3 DERIVATIVE IN WASSERSTEIN SPACE

Now we propose the mean-field Hamilton-Jacobi-Issacs equation, whose solution is a real value
function satisfying the saddle point condition. To begin with, we first introduce the Wasserstein
space and its derivation rules. Let D represent the Fréchet derivative on Banach spaces. Namely, if
F : U → V is a mapping between two Banach spaces (U, ‖ · ‖U ) and (V, ‖ · ‖V ), then DF (x) :
U → V is a linear operator satisfies

‖F (x+ y)− F (x)−DF (x)(y)‖V
‖y‖U

→ 0, as ‖y‖U → 0. (13)

Denote X ∈ Rn+m as a random variable, we use the shorthand L2(Ω,Rn+m) for L2((Ω,F ,P),
Rn+m) to represent the set of Rn+m-valued square integrable random variables with respect to a
probability measure P. Then we equip this Hilbert space with the norm ‖X‖L2 := (E‖X‖2)1/2. As
we assumed in the previous section, x0 ∈ Rn, y0 ∈ Rm are random variables and (x0, y0) ∼ µ ∈
P2(Rn+m), where P2(Rn+m) denotes the integrable probability measure defined on the Euclidean
space Rn+m. The space P2(Rn+m) can be equipped with a metric by 2-Wasserstein distance

W2(µ, ν) := inf

{
‖X − Y ‖L2

∣∣∣∣X,Y ∈ L2(Ω,Rn+m) with PX = µ,PY = ν

}
.

For µ ∈ P2(Rn+m), define ‖µ‖L2 := (
∫
Rn+m ‖w‖2µ(dw))1/2. Now the variable X ∈

L2(Ω,Rn+m) if and only if its law PX ∈ P2(Rn+m). For any function u : P2(Rn+m) → R, we
can lift it into its ”extension” U ∈ L2(Ω,Rn+m) (Cardaliaguet, 2012) by U(X) = u(PX),∀X ∈
L2(Ω,Rn+m). In particular, we have that u is C1(P2(Rn+m)), if the lifted function U is Fréchet
differentiable with continuous derivatives. Since L2(Ω,Rn+m) can be identified with its dual, if
the Fréchet derivative DU(X) exists, by Riesz’ theorem, it can be identified with an element of
L2(Ω,Rn+m),

DU(X)(Y ) = E[DU(X) · Y ], ∀Y ∈ L2(Ω,Rn+m).
One may check that the law of DU(X) does not depend on X but only on the law of X , thus the
derivative of u at µ = PX is defined as DU(X) = ∂µu(PX)(X), for some function ∂µu(PX) :
Rn+m → Rn+m.

4.4 MEAN-FIELD HJI EQUATION

Without losing generality, we consider the quantitative differential game (equation 9) with S = Rn.
Motivated by the mean field dynamic programming principle (E et al., 2019) that any last part of
an optimal control is optimal, we consider the quantitative different game with any t0 ∈ [0, tf ] as
initial time

ẋ(t) = f(x(t), θz(t), θd(t)), x(t0) = xt0 ∈ Rn, S = Rn,

JH(θz, θd, t0, µ) = E(xt0 ,y0)∼µ

[
Φ(x(tf ), y0) +

∫ tf

t0

L(x(t), θz(t), θd(t))dt

]
.

(14)

Our goal is to find the optimal strategy (θ∗z , θ
∗
d) ∈ Uz × Ud of equation 14 satisfies

JH(θ∗z , θd, t, µ) ≤ JH(θ∗z , θ
∗
d, t, µ) ≤ JH(θz, θ

∗
d, t, µ), ∀t ∈ [0, tf ], (θz, θd) ∈ Uz × Ud. (15)

Define v∗(t, µ) := JH(θ∗z , θ
∗
d, t, µ), we have the following theorem.

Theorem 4.3 Under the assumption

• f, L and Φ are bounded, and the distribution µ ∈ P2(Rn+m);

• f, L and Φ are Lipschitz continuous w.r.t x and the Lipschitz constant of f and L are
independent of θz, θd.

Suppose the optimal value function v∗(t, µ) of equation 14 exists, then it is the unique viscosity
solution (see definition in appendix C) to the following mean-field HJI equation

∂tv(t, µ) + inf
θz∈Θz

sup
θd∈Θd

{∫
Rn+m

[∂µv(t, µ)(x, y)]T [f(x, θz, θd), 0] + L(x, θz, θd)dµ(x, y)

}
= 0,

v(tf , µ) =

∫
Rn+m

Φ(x, y)dµ(x, y).

(16)
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Theorem 4.3 establishes the uniqueness, in the viscosity sense, of the HJI equation and identifies the
value function for the mean-field optimal control problem as the unique solution of the HJI equation.

Comparison with existing works. This theorem is analogous to Theorem 7.4.2 in (Guo et al.,
2005), the state variables we are dealing with are probability measures rather than Euclidean vectors.

Proof sketch. The proof has two parts: (1) Fix the optimal strategy θ∗z and θ∗d respectively, and
transform the problem into two optimal control problems; (2) apply Theorem 1 and 2 in (E et al.,
2019) to these two transformed problems. A detailed proof is given in Appendix A.2.

4.5 CONNECTION BETWEEN HJI AND TSEP

In what follows, we provide the connection between the HJI equation and TSEP. We will show that
the TSEP can be understood as a local result compared to the global characterization of the HJI
equation. For the value function v(t, µ) in deduced HJI (equation 16), consider the lifted function
V (t,X), where X = (x, y) ∼ µ. We define the Hamiltonian for the lifted HJI equation as
H(X,DXV (t,X)) == inf

θz∈Θz

sup
θd∈Θd

Eµ
[
DXV (t,X)T [f(x, θz, θd), 0] + L(x, θz, θd)

]
. (17)

Suppose θ†z(X,DXV (t,X)) and θ†d(X,DXV (t,X)) are the corresponding optimal strategies and
define P = DXV (t,X), we have

H(X,P ) = Eµ
[
PT [f(x, θ†z(X,P ), θ†d(X,P )), 0] + L(x, θ†z(X,P ), θ†d(X,P ))

]
,

Eµ
[
∇θz,θd [f(x, θ†z(X,P ), θ†d(X,P )), 0]P +∇θz,θdL(x, θ†z(X,P ), θ†d(X,P ))

]
= 0,

(18)

where the last equation follows from the first order optimality condition. Define Xt = (xt, y),
Pt = DXV (t,Xt), we can apply the characteristic evolution equations (Subbotina, 2006)

Ẋt = DPH(Xt, Pt), Ṗt = −DXH(Xt, Pt). (19)

Plugging equation 18 into equation 19, and let θ∗z(t) = θ†z(Xt, Pt), θ∗d(t) = θ†d(Xt, Pt) and pt is the
first n components of Pt, we have

ẋt = f(xt, θ
∗
z(t), θ∗d(t)), ṗt = −∇xf(xt, θ

∗
z(t), θ∗d(t))pt −∇xL(xt, θ

∗
z(t), θ∗d(t)). (20)

If we let ψ = −p, the first two equalities of equation 11 in Theorem 4.1 is converted to equation 20.
The Hamilton equation in TSEP can be regarded as the characteristic equations for the HJI equa-
tion originating from µ0, which justifies the claim that the TSEP constitutes a local condition as
compared to the HJI equation.

5 ESTIMATION OF GENERALIZATION BOUNDS

So far, we have focused on the mean-field quantitative differential game and mean-field TSEP. How-
ever, the solution of the mean-field TSEP requires a saddle point with respect to an underlying sam-
ple distribution. In this section, we will establish generalization bounds from two aspects, global
minimum of the loss function and algorithmic stability. We define the loss function of each training
sample Xi := (xzi , xdi , yi), i = 1, · · · , N as

J0(θz, θd;Xi) = Φ(xz(tf ), xd(tf ), yi) +

∫ tf

0

L(xz(t), xd(t), θz(t), θd(t))dt,

where xz(0) = xzi , xd(0) = xdi . Now J(θz, θd) = EX0∼µJ
0(θz, θd;X0), and we define

JN (θz, θd) =
1

N

N∑
i=1

J0(θz, θd;Xi).

We first estimate the generalization bounds based on the global minimum of the loss function. The
necessary condition of Hamiltonian of sampled version is expressed as

1

N

N∑
i=1

H(xθ
N
z ,θ

N
d ,i(t), θNz (t), θNd (t), ψθ

N
z ,θ

N
d ,i(t))

= inf
θd∈Θd

sup
θz∈Θz

1

N

N∑
i=1

H(xθ
N
z ,θ

N
d ,i(t), θz, θd, ψ

θNz ,θ
N
d ,i(t)), a.e. t ∈ [0, tf ],

(21)

7
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where θNz and θNd are the solution of sampled TSEP. Note that if Θz and Θd are sufficiently large,
e.g. Θz = Rr1 ,Θd = Rr2 , the solution θ∗z , θ

∗
d of TSEP satisfies

F (θ∗z , θ
∗
d)(t) := Eµ0

∇θz,θdH(x
θ∗z ,θ

∗
d

t , ψ
θ∗z ,θ

∗
d

t , θ∗z(t), θ∗d(t)) = 0, a.e. t ∈ [0, tf ], (22)

while the solution θNz , θ
N
d of sampled TSEP satisfies

FN (θNz , θ
N
d )(t) :=

1

N

N∑
i=1

∇θz,θdH(x
θNz ,θ

N
d ,i

t , ψ
θNz ,θ

N
d ,i

t , θNz (t), θNd (t)) = 0, a.e. t ∈ [0, tf ].

(23)
Now, FN is a random approximation of F and EFN (θz, θd)(t) = F (θz, θd)(t) for all θz, θd and a.e.
t ∈ [0, tf ]. Let (U, ‖ · ‖U ), (V, ‖ · ‖V ) be Banach spaces and F : U → V . We first provide the
definition of stability, which is the primary condition that ensures the approximation of FN to F .

Definition 5.1 For ρ > 0 and x ∈ U , Sρ(x) := {y ∈ U : ‖x− y‖U < ρ}. The mapping F is stable
on Sρ(x) if there exists a constant Kρ > 0 such that,

‖y − z‖U ≤ Kρ‖F (y)− F (z)‖V , ∀y, z ∈ Sρ(x).

Notice that here not consider θ∗z and θ∗d correspond to maximum and minimum, we only care
that they both follow the first-order optimality condition. We define θ = (θTz , θ

T
d )T and redefine

F (θ∗z , θ
∗
d)(·) and FN (θNz , θ

N
d )(·) as F (θ)(·), F (θN )(·), respectively. We follow the proof idea of

Theorem 6 in (E et al., 2019) and get similar results stated in 5.1, which describes the convergence
of sampled solution to mean-field solution as the number of samples increases.

Theorem 5.1 Assuming that f, L, and Φ are bounded and Lipschitz continuous with respect to
x and the Lipschitz constant of f and L are independent of θz, θd. Let θ∗z , θ

∗
d be a solution of

F = 0 (equation 22), which is stable on Sρ(((θ∗z)T , (θ∗d)T )T ) for some ρ > 0. Then there ex-
ists positive constants s0, C,K1,K2, ρ1 < ρ and a random variable θN := ((θNz )T , (θNd )T )T ∈
Sρ(((θ

∗
z)T , (θ∗d)T )T ), such that

P
[
‖θ∗z − θNz ‖L∞ ≥ Cs

]
≤ 4 exp

{
− Ns2

K1 +K2s

}
, s ∈ (0, s0],

P
[
‖θ∗d − θNd ‖L∞ ≥ Cs

]
≤ 4 exp

{
− Ns2

K1 +K2s

}
, s ∈ (0, s0],

P
[
|J(θ∗z , θ

∗
d)− J(θNz , θ

N
d )| ≥ s

]
≤ 4 exp

{
− Ns2

K1 +K2s

}
, s ∈ (0, s0],

P
[
FN (θN ) 6= 0

]
≤ 4 exp

{
− Ns2

0

K1 +K2s0

}
.

The loss function is uniformly bounded under the given assumptions, then we can apply the Ho-
effding’s inequality (Corollary 2 in (Pinelis and Sakhanenko, 1986)). Using Theorem 6 in (E et al.,
2019) and rewriting θ as (θTz , θ

T
d )T , this theorem can be proved. Theorem 5.1 basically shows that

the difference between the optimizer over the whole distribution and the optimizer over finite sam-
ples is bounded, and is exponential decay with the total number of samples N . This bound is not
rely on the training algorithms.

Now we estimate the generalization bounds from the view of algorithmic stability. In the rest of this
section, we redefine the integral form in J , JN , J0 as the discrete sum form equation 7 and redefine
r1, r2 as the total dimension of θz, θd. We consider the error by taking expectation with respect to
randomized algorithm and define

er(θz, θd) := EA
[
J(θz, θd)− JN (θz, θd)

]
.

We update θz and θd alternately, i.e. from the initial value (θz,0, θd,0), update θz by Mz,1 steps
to get (θz,Mz,1 , θd,0), then update θz by Md,1 steps to get (θz,Mz,1 , θd,Md,1

). Keep going until the
algorithm converges, we can get (θz,Mz,2

, θd,Md,2
), (θz,Mz,3

, θd,Md,3
) · · · .

8
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Consider Stochastic Gradient Langevin Dynamics (SGLD), which is a popular variant of stochastic
gradient methods which adds isotropic Gaussian noise in each iteration, e.g.

θz,k+1 = θz,k − ηk∇θzJN (θz,k, θd,0) +

√
2ηk
β
N (0, Ir1).

We follow the proof idea of Theorem 8 in (Mou et al., 2018) and get the following generalization
bound in expectation of random draw of training data.

Theorem 5.2 Supposes J0(θz, θd;X) is uniformly bounded by C, and ‖∇θzJ0(θz, θd;X) −
∇θzJ0(θz, θd;X

′)‖ ≤ Lz , ‖∇θdJ0(θz, θd;X) −∇θdJ0(θz, θd;X
′)‖ ≤ Ld ∀X,X ′, then we have

the following generalization bound

E[er(θz,Mz,n
, θd,Md,n

)] ≤ 2

N

n∑
i=1

min(k1,Mz,i −Mz,i−1) +

√
βLzC

N

n∑
i=1

(

Mz,i−Mz,i−1∑
j=k1+1

ηj)
1/2

+
2

N

n∑
i=1

min(k2,Md,i −Md,i−1) +

√
βLdC

N

n∑
i=1

(

Md,i−Md,i−1∑
j=k2+1

ηj)
1/2,

(24)
where Mz,0 = Md,0 = 0, k1 and k2 are chosen to satisfy ηk1 ≤ ln 2/βL2

z , ηk2 ≤ ln 2/βL2
d.

Theorem 5.2 obtains a bound of O(1/N), which matches the generalization bounds of stochastic
gradient descent ascent (SGDA) for minimax problems in (Lei et al., 2021). This bound relies on
the aggregated step sizes and do not explicitly depend on the dimensions, norms, or other capacity
measures of the parameter.

Comparison with existing works. Unlike the existing methods to analyze the algorithms with
Mz,i−Mz,i−1 = 1,Md,i−Md,i−1 = 1, e.g. SGDA, we analyzed the case of taking anyMz,i,Md,i.
As {ηi} is usually monotonically non-increasing, we find that set Mz,1 − Mz,0 = Mz , Mz,i −
Mz,i−1 = 0, i > 1 and Md,1 −Md,0 = Md, Md,i −Md,i−1 = 0, i > 1 will lead to the smallest
bound for fixed Mz,n = Mz , Md,n = Md in equation 24. This finding gives an inspiration to the
training method, training one network to make it converge before training the other one.

Proof sketch. The proof is based on the uniform stability of the loss function and standard sym-
metrization argument (Hardt et al., 2016). Using Theorem 8 in (Mou et al., 2018) alternately in the
training process of the two networks, this theorem can be proved. See details in Appendix D.

6 CONCLUSION

In this paper, adversarial reinforcement learning was considered as the mean-field quantitative dif-
ferential game and the convergence and generalization were analyzed under this framework. We first
proposed a new mean-field PMP for reinforcement learning with terminal constraints in Theorem
3.1. Then we bridged adversarial reinforcement learning to the mean-field quantitative differential
game and proved a mean-field TSEP in Theorem 4.1, which provides the necessary condition for the
convergence to the global optimality. Moreover, the uniqueness of the solution to mean-field TSEP
is shown in Theorem 4.2, where a sufficient small terminal time is required. After that, the mean-
field HJI equation for calculating the optimal loss function is derived in Theorem 4.3. Furthermore,
we have shown that the TSEP is actually a local special case compared to the global characteriza-
tion of the HJI equation. Lastly, we proved two generalization error bounds of order O(e−N ) and
O(1/N), which characterize the gap between the expected solution and the learned model. The two
bounds are obtained from Hoeffding’s inequality (Theorem 5.1) and algorithmic stability (Theorem
5.2). Both bounds do not explicitly rely on the dimensions, norms, or other capacity measures of
the network parameter. Moreover, the latter bound characterizes the influence of randomness in the
training algorithms and aggregated step sizes on generalization. Our results allow the possibility
to develop a learning algorithm without referring to the classical methods of deep learning such as
the SGD. A further direction of our ongoing research is based on the study of the TSEP and HJI
equation from a discrete-time perspective in order to relate the theoretical framework directly to the
applications.
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A APPENDIX

Proof A.1 (Proof of Theorem 3.1) As the ordinary differential equation equation 3 is subject to
terminal constraint g(x(tf ), tf ) = 0, we transform it into an unconstrained problem by introducing
Lagrangian multiplier vectors ξ ∈ Rp, thus the objective functionals equation 4 transforms into

J2(θ) = E(x0,y0)∼µ

[
Φ(x(tf ), y0) + ξT g(x(tf )) +

∫ tf

0

L(x(t), θz(t), θd(t))dt

]
. (25)

Then by Mean-field Pontryagin’s maximum principle (Theorem 3 in (E et al., 2019)), the conclusion
can be proved.

Proof A.2 (Proof of Theorem 4.1) When (θ∗z , θ
∗
d) exists, we can split problem equation 9 into the

following two optimal control problems.

Problem 1:
ẋ = f(x, θz, θ

∗
d), x(0) = x0,

S := {x
∣∣g(x(tf )) = 0},

J(θz, θ
∗
d) =E(x0,y0)∼µ

[
Φ(x(tf ), y0) +

∫ tf

0

L(x(t), θz(t), θ
∗
d(t))dt

]
,

(26)

11
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find θ∗z = arg infθz∈Uz J(θz, θ
∗
d).

The Hamilton function of Problem 1 is
H1(x(t), θz(t), θ

∗
d(t), ψ1(t)) := −L(x(t), θz(t), θ

∗
d(t)) + ψT1 (t)f(x(t), θz(t), θ

∗
d(t)).

Problem 2:
ẋ = f(x, θ∗z , θd), x(0) = x0,

S := {xz
∣∣g(x(tf )) = 0},

J(θ∗z , θd) =E(x0,y0)∼µ

[
Φ(x(tf ), y0) +

∫ tf

0

L(x(t), θ∗z(t), θd(t))dt

]
,

(27)

find θ∗d = arg supθd∈Ud J(θ∗z , θd).

The Hamilton function of Problem 2 is
H2(x(t), θ∗z(t), θd(t), ψ2(t)) := −L(x(t), θ∗z(t), θd(t)) + ψT2 (t)f(x(t), θ∗z(t), θd(t)).

(θ∗z , θ
∗
d) is the optimal strategy of Problem 1 and Problem 2. From the definition of

H1(x, θz, θ
∗
d, ψ1, t) and H2(x, θ∗z , θd, ψ2, t), by Theorem 3.1, there exists Lagrangian multiplier

ξ1, ξ2 ∈ Rp such that
ψ̇1(t) = −∇xH1(x∗(t), θz(t), θ

∗
d(t), ψ1(t)),

ψ̇2(t) = −∇xH2(x∗(t), θ∗z(t), θd(t), ψ2(t)),

ψ∗1(tf ) = −∇xΦ(x∗(tf ), y0)− ξT1 ∇xg(x∗(tf )),

ψ∗2(tf ) = −∇xΦ(x∗(tf ), y0)− ξT2 ∇xg(x∗(tf )).

(28)

Here both ξ1 and ξ2 are determined by g(x∗(tf ), tf ) = 0, so ξ1 = ξ2. Then it can be obtained from
the uniqueness of linear differential terminal value problem’s solution that

ψ1(t) = ψ2(t), ∀t ∈ [0, tf ].

Now let ψ(t) ≡ ψ1(t), ∀t ∈ [0, tf ] we have
H(x∗(t), θ∗z(t), θ∗d(t), ψ(t)) = H1(x∗(t), θ∗z(t), θ∗d(t), ψ(t)),

= H2(x∗(t), θ∗z(t), θ∗d(t), ψ(t)),

H(x∗(t), θz, θ
∗
d(t), ψ(t)) =H1(x∗(t), θz, θ

∗
d(t), ψ(t)),

H(x∗(t), θ∗z(t), θd, ψ(t)) =H2(x∗(t), θ∗z(t), θd, ψ(t)).

(29)

By Theorem 3.1,
E(x0,y0)∼µH(x∗(t), θ∗z(t), θ∗d(t), ψ∗(t))

= sup
θz∈Θz

E(x0,y0)∼µH(x∗(t), θz, θ
∗
d(t), ψ∗(t))

= inf
θd∈Θd

E(x0,y0)∼µH(x∗(t), θ∗z(t), θd, ψ
∗(t)), a.e. t ∈ [0, tf ]

(30)

Thus
inf

θd∈Θd

sup
θz∈Θz

E(x0,y0)∼µH(x∗(t), θz, θd, ψ
∗(t))

≤E(x0,y0)∼µH(x∗(t), θ∗z(t), θ∗d(t), ψ∗(t))

≤ sup
θz∈Θz

inf
θd∈Θd

E(x0,y0)∼µH(x∗(t), θz, θd, ψ
∗(t)). a.e. t ∈ [0, tf ]

(31)

On the other hand, from the well known max-min inequality,
sup
θz∈Θz

inf
θd∈Θd

E(x0,y0)∼µH(x∗(t), θz, θd, ψ
∗(t))

≤ inf
θd∈Θd

sup
θz∈Θz

E(x0,y0)∼µH(x∗(t), θz, θd, ψ
∗(t)). a.e. t ∈ [0, tf ]

(32)

Consequently,
E(x0,y0)∼µH(x∗(t), θ∗z(t), θ∗d(t), ψ∗(t))

= inf
θd∈Θd

sup
θz∈Θz

E(x0,y0)∼µH(x∗(t), θz, θd, ψ
∗(t))

= sup
θz∈Θz

inf
θd∈Θd

E(x0,y0)∼µH(x∗(t), θz, θd, ψ
∗(t)), a.e. t ∈ [0, tf ]

(33)

we have finished the proof.
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B APPENDIX

Before proving Theorem 4.2, we write the express in Theorem 4.1 more compactly. For each control
process θz ∈ L∞([0, tf ],Θz) and θd ∈ L∞([0, tf ],Θd), we denote by xθz,θd := {xθz,θdt : 0 ≤ t ≤
tf} and ψθz,θd := {ψθz,θdt : 0 ≤ t ≤ tf} the solutions of Hamilton’s Equation equation 11, i.e.

ẋθz,θdt = f(x
θz(t),θd(t)
t , θz, θd), xθz,θd0 = x0,

ψ̇θz,θdt = −∇xH(xθz,θd , θz(t), θd(t), ψ
θz,θd
t ), ψθz,θdtf

= −∇xΦ(xθz,θdtf
, y0)− ξ∇xg(xθz,θdtf

).

We have the following lemma, which provides an estimate of the difference between xθ
1
z,θ

1
d , ψθ

1
z,θ

1
d

and xθ
2
z,θ

2
d , ψθ

2
z,θ

2
d .

Lemma B.1 Let θ1
z , θ

2
z ∈ L∞([0, tf ],Θz) and θ1

d, θ
2
d ∈ L∞([0, tf ],Θd). Then there exists a con-

stant T0 such that for all tf ∈ [0, T0), it holds that:

‖xθ
1
z,θ

1
d − xθ

2
z,θ

2
d‖L∞ + ‖ψθ

1
z,θ

1
d − ψθ

2
z,θ

2
d‖L∞ ≤ C(tf )(‖θ1

z − θ2
z‖L∞ + ‖θ1

d − θ2
d‖L∞),

where C(tf ) > 0 satisfies C(tf )→ 0 as tf → 0.

Proof B.1 (Proof of Lemma B.1) Denote δθz := θ1
z − θ2

z , δθd := θ1
d − θ2

d, δx := xθ
1
z,θ

1
d − xθ2z,θ2d

and δψ := ψθ
1
z,θ

1
d − ψθ2z,θ2d . The first two assumptions of Theorem 4.2 leads to

‖δxt‖ ≤
∫ t

0

‖f(x
θ1z,θ

1
d

s , θ1
z(s), θ

1
d(s))− f(x

θ2z,θ
2
d

s , θ2
z(s), θ

2
d(s))‖ds

≤ K
∫ tf

0

‖δxs‖ds+K

∫ tf

0

‖δθz(s)‖ds+K

∫ tf

0

‖δθd(s)‖ds,

and so
‖δx‖L∞ ≤ Ktf‖δx‖L∞ +Ktf‖δθz‖L∞ +Ktf‖δθd‖L∞ .

If tf ≤ T0 := 1/K, we have

‖δx‖L∞ ≤
Ktf

1−Ktf
(‖δθz‖L∞ + ‖δθd‖L∞). (34)

Similarly,

‖δψt‖ ≤ K‖δxtf ‖+K

∫ tf

t

‖δxs‖+ ‖δψs‖+ ‖δθz(s)‖+ ‖δθd(s)‖ds,

‖δψ‖L∞ ≤ (K +Ktf )‖δx‖L∞ +Ktf (‖δψ‖L∞ + ‖δθz‖L∞ + ‖δθd‖L∞),

hence

‖δψ‖L∞ ≤
K(1 + tf )

1−Ktf
‖δx‖L∞ +

Ktf
1−Ktf

(‖δθz‖L∞ + ‖δθd‖L∞),

which combined with equation 34 proves the lemma.

We can now prove Theorem 4.2.

Proof B.2 (Proof of Theorem 4.2) By uniform strong concavity and the second assumption of The-
orem 4.2, there exists a λ0 > 0 such that

λ0‖θ1
z(t)− θ2

z(t)‖2 ≤
[
Eµ0∇θzH(x

θ1z,θ
1
d

t , θ2
z(t), θ

2
d(t), ψ

θ1z,θ
1
d

t )

− Eµ0∇θzH(x
θ1z,θ

1
d

t , θ1
z(t), θ

1
d(t), ψ

θ1z,θ
1
d

t )
]
· (θ1

z(t)− θ2
z(t)),

λ0‖θ1
d(t)− θ2

d(t)‖2 ≤
[
Eµ0
∇θdH(x

θ1z,θ
1
d

t , θ2
z(t), θ

2
d(t), ψ

θ1z,θ
1
d

t )

− Eµ0
∇θdH(x

θ1z,θ
1
d

t , θ1
z(t), θ

1
d(t), ψ

θ1z,θ
1
d

t )
]
· (θ2

d(t)− θ1
d(t)).

13
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Note that Eµ0∇θz,θdH(x
θ1z,θ

1
d

t , θ1
z(t), θ

1
d(t), ψ

θ1z,θ
1
d

t ) = Eµ0∇θz,θdH(x
θ2z,θ

2
d

t , θ2
z(t), θ

2
d(t), ψ

θ2z,θ
2
d

t ) =
0, ∀t ∈ [0, tf ] due to the optimality and continuity, then combining the two inequalities above we
have

λ0(‖θ1
z(t)− θ2

z(t)‖2 + ‖θ1
d(t)− θ2

d(t)‖2)

≤
[
Eµ0
∇θzH(x

θ1z,θ
1
d

t , θ2
z(t), θ

2
d(t), ψ

θ1z,θ
1
d

t )

− Eµ0
∇θzH(x

θ2z,θ
2
d

t , θ2
z(t), θ

2
d(t), ψ

θ2z,θ
2
d

t )
]
· (θ1

z(t)− θ2
z(t))

+
[
Eµ0∇θdH(x

θ1z,θ
1
d

t , θ2
z(t), θ

2
d(t), ψ

θ1z,θ
1
d

t )

− Eµ0∇θdH(x
θ2z,θ

2
d

t , θ2
z(t), θ

2
d(t), ψ

θ2z,θ
2
d

t )
]
· (θ2

d(t)− θ1
d(t))

≤Eµ0
‖∇θzH(x

θ1z,θ
1
d

t , θ2
z(t), θ

2
d(t), ψ

θ1z,θ
1
d

t )

−∇θzH(x
θ2z,θ

2
d

t , θ2
z(t), θ

2
d(t), ψ

θ2z,θ
2
d

t )‖‖θ1
z(t)− θ2

z(t)‖

+Eµ0‖∇θdH(x
θ1z,θ

1
d

t , θ2
z(t), θ

2
d(t), ψ

θ1z,θ
1
d

t )

−∇θdH(x
θ2z,θ

2
d

t , θ2
z(t), θ

2
d(t), ψ

θ2z,θ
2
d

t )‖‖θ1
d(t)− θ2

d(t)‖
≤K(‖δx‖L∞ + ‖δψ‖L∞)(‖δθz‖L∞ + ‖δθd‖L∞).

Combining the above with Lemma B.1, we have

‖δθz‖2L∞ + ‖δθd‖2L∞ ≤
KC(tf )

λ0
(‖δθz‖L∞ + ‖δθd‖L∞)2 ≤ 2KC(tf )

λ0
(‖δθz‖2L∞ + ‖δθd‖2L∞).

C(tf ) → 0 as tf → 0, by taking tf sufficiently small, so that 2KC(tf ) < λ0, which implies
‖δθz‖L∞ = ‖δθd‖L∞ = 0.

C APPENDIX

Now we introduce the definition of viscosity solution. Consider a function v(t,PX) : [0, tf ] ×
P2(Rn+m) → R, the Hamiltonian H(X, ∂PX

v(t,PX)(X)) : L2(Ω,Rn+m) × L2(Ω,Rn+m)→ R
and Ψ : L2(Ω,Rn+m)→ R, where v satisfies

∂v

∂t
+H(X, ∂PX

v(t,PX)(X)) = 0, on [0, tf )× L2(Ω,Rn+m),

v(tf ,PX) = Ψ(X), on L2(Ω,Rn+m).
(35)

Then the lifted function V (t,X) = v(t,PX) satisfies

∂V

∂t
+H(X,DXV (t,X)) = 0, on [0, tf )× L2(Ω,Rn+m),

V (T,X) = Ψ(X), on L2(Ω,Rn+m).
(36)

We say that a bounded, uniformly continuous function u : [0, tf ] × P2(Rn+m) → R is a viscosity
solution to equation 35 if its lifted function U : [0, tf ]× L2(Ω,Rn+m)→ R defined by

U(t,X) = u(t,PX),

is a viscosity solution to the lifted equation equation 36, namely:

i) U(tf , X) ≤ Ψ(X) and for any test function γ ∈ C1,1([0, tf ] × L2(Ω,Rn+m)) such that the
map U − γ has a local maximum at (t0, X0) ∈ [0, tf )× L2(Ω,Rn+m), one has

∂tγ(t0, X0) +H(X0, Dγ(t0, X0)) ≥ 0.

ii) U(tf , X) ≥ Ψ(X) and for any test function γ ∈ C1,1([0, tf ] × L2(Ω,Rn+m)) such that the
map U − γ has a local minimum at (t0, X0) ∈ [0, tf )× L2(Ω,Rn+m), one has

∂tγ(t0, X0) +H(X0, Dγ(t0, X0)) ≤ 0.

For further details we refer the interested readers to (E et al., 2019).
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Proof C.1 (Proof of Theorem 4.3) Suppose v′(t, µ) is a viscosity solution to equation 16 and
(θ′z, θ

′
d) is the corresponding optimal strategy.

We first fix θ′z , consider

∂tv1(t, µ) + sup
θd∈Θd

{∫
Rn+m

[∂µv(t, µ)(x, y)]T [f(x, θ′z, θd), 0] + L(x, θ′z, θd)dµ(x, y)

}
= 0,

v1(tf , µ) =

∫
Rn+m

Φ(x, y)dµ(x, y).

(37)
By Theorem 1 and Theorem 2 in (E et al., 2019), v′(t, µ) is the unique viscosity solution to equa-
tion 37 satisfies

v′(t, µ) = sup
θd∈Ud

E(x,y)∼µ

[ ∫ tf

t

Φ(x(tf ), y) + L(x(t), θ′z(t), θd(t))dt

]
. (38)

Then fix θ′d, similarly we have

v′(t, µ) = inf
θz∈Uz

E(x,y)∼µ

[ ∫ tf

t

Φ(x(tf ), y) + L(x(t), θz(t), θ
′
d(t))dt

]
. (39)

Now for (θ′z, θ
′
d), equation 15 is satisfied, thus v′(t, µ) = v∗(t, µ).

D APPENDIX

Proof D.1 (Proof of Theorem 5.2) We first give a lemma, then use it alternatively in the training
process of the two networks to prove the theorem.

Define the generalization bound taking expectation with respect to randomized algorithm

er(w) := EA(El(w; z)− ÊN l(w; z)),

where ÊN l(w; z) is the average loss at N sample points.

Lemma D.1 (Theorem 8 in (Mou et al., 2018)) Consider n rounds of SGLD with parameters β and
{ηi}. Suppose the loss function l(w; z) is uniformly bounded by C, and ∀z, z′, there is ‖∇l(w; z)−
∇l(w; z′)‖ ≤ L. By setting k0 such that ηk0 ≤ ln 2/βL2, then we have the following generalization
bound in expectation

E[er(wn)] ≤ 2k0

N
+

√
βLC

N
(

n∑
i=k0+1

ηi)
1/2.

Now let l(w; z) = J0(θz, θd;X). During the training process, θz and θd are updated alternately,
and the generalization error is accumulating. Using Lemma D.1 alternatively, we can finish the
proof.
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