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Abstract

Causal representation learning aims at recovering latent causal variables from
high-dimensional observations to solve causal downstream tasks, such as predict-
ing the effect of new interventions or more robust classification. A plethora of
methods have been developed, each tackling carefully crafted problem settings
that lead to different types of identifiability. The folklore is that these different
settings are important, as they are often linked to different rungs of Pearl’s causal
hierarchy, although not all neatly fit. Our main contribution is to show that
many existing causal representation learning approaches methodologically align
the representation to known data symmetries. Identification of the variables is
guided by equivalence classes across different “data pockets” that are not neces-
sarily causal. This result suggests important implications, allowing us to unify
many existing approaches in a single method that can mix and match different
assumptions, including non-causal ones, based on the invariances relevant to our
application. It also significantly benefits applicability, which we demonstrate by
improving treatment effect estimation on real-world high-dimensional ecological
data. Overall, this paper clarifies the role of causality assumptions in the discovery
of causal variables and shifts the focus to preserving data symmetries.

1 Introduction
Causal representation learning (CRL) [1] posits that many real-world high-dimensional perceptual
data can be described through a simplified latent structure specified by a few interpretable low-
dimensional causally-related variables. Many existing approaches in causal representation learning
carefully formulate their problem settings to guarantee identifiability [2–7]. However, some CRL
works may not perfectly fit within this causal language framework; for instance, the problem setting
of temporal CRL works [8–11] ,domain generalization [12–14] and certain multi-task learning
approaches [15, 16] are sometimes framed as informally related to causal representation learning.
This has resulted in a variety of methods and findings, some of which rely on assumptions that
are not always tailored for practical, real-world applications [17]. This paper contributes a unified
rephrasing of many existing nonparametric CRL works through the lens of invariance. We observe
that many existing causal representation approaches share methodological similarities, particularly
in aligning the representation with known data symmetries, while differing primarily in how the
invariance principle is invoked. We highlight our contributions as follows:

• We propose a unified rephrasing for existing nonparametric CRL approaches leveraging the
invariance principles and prove latent variable identifiability in this general setting (§ 3). We
show that 31 existing identification results can be seen as special cases directly implied by our
framework (Tab. 2).
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• We formalize different definitions of “identifiability" highlighting their connections, and
demonstrating how they can be addressed within our framework (App. C.1)

• We analyze the case of partial graph identification, drawing a distinction between the causal as-
sumptions necessary for graph discovery and those required for variable discovery (App. C.2).

• Our framework is broadly applicable across a range of practical settings, with improved results
on real-world experimental ecology data using the causal inference benchmark of [17] (§ 4).
We demonstrate that existing methods only require a form of distributional invariance for
identification, without needing access to interventions (App. F).

2 Problem Setting
This section defines our problem setting using standard CRL concepts and assumptions (Formal
definitions are deferred to App. B, a comprehensive summary of notations is provided in App. A).
While prior works in CRL typically categorize their settings using established causal language
(e.g. ’counterfactual,’ ’interventional,’ or ’observational’), our approach introduces a more general
invariance principle that aims to unify diverse problem settings. We introduce the following
concepts as mathematical tools to describe our data generating process.

Definition 2.1 (Invariance property). Let A ⊆ [N ] be an index subset of the Euclidean space RN and
let ∼ι be an equivalence relationship on R|A|, with A of known dimension. Let M := R|A| /

∼ι
be

the quotient of R|A| under this equivalence relationship; M is a topological space equipped with the
quotient topology. Let ι : R|A| → M be the projection onto the quotient induced by the equivalence
relationship ∼ι. This projection ι is termed the invariant property of this equivalence relation. Two
vectors a,b ∈ R|A| are invariant under ι if and only if they belong to the same ∼ι equivalence class,
i.e.: ι(a) = ι(b) ⇔ a ∼ι b. and ι(zA) = ι(z̃A) ⇔ zA ∼ι z̃A.

Extending this definition to the whole latent space RN , a pair of latents z, z̃ ∈ RN are non-trivially
invariant on a subset A ⊆ [N ] under the property ι only if (i) the invariance property ι holds on the
indices A ⊆ [N ] in the sense that ι(zA) = ι(z̃A); (ii) for any smooth function h1, h2 : RN → R|A|,
the invariance property between z, z̃ breaks under the h1, h2 transformations if h1 or h2 directly
depends on some other component zq with q ∈ [N ] \A. Taking h1 and z as an example, we have:

∃q ∈ [N ] \A, z∗ ∈ RN , s.t.
∂h1

∂zq
(z∗) exists and is non zero ⇒ ι(h1(z)) ̸= ι(h2(z̃))

i.e. given that the partial derivative of h1 w.r.t. some latent variable zq ∈ z[N ]\A is non-zero at some
point z∗ ∈ RN , h1(z), h2(z) violates invariance principle in the sense that ι(h1(z)) ̸= ι(h2(z̃)).

We denote by Sz := {z1, . . . , zK} the set of latent random vectors with zk ∈ RN and write its
joint distribution as PSz . The joint distribution PSz has a probability density pSz(z

1, . . . , zK). Each
individual random vector zk ∈ Sz follows the marginal density pzk with the non-degenerate support
Zk ⊆ RN , whose interion is a non-empty open set of RN .

Definition 2.2 (Observable of a set of latent random vectors). Consider a set of random vectors
Sz := {z1, . . . , zK} with zk ∈ RN , the corresponding set of observables Sx := {x1, . . . ,xK}
is generated by Sx = F (Sz), where the map F defines a push-forward measure F#(PSz) on the
image of F as: F#(PSz)(x1, . . . , xK) = PSz(f

−1
1 (x1), . . . , f

−1
K (xK)) with the support X :=

Im(F ) ⊆ RK×D. Note that F satisfies the diffeomorphism assumption (Asm. B.1) as each fk is a
diffeomorphism onto its image according to Asm. B.1.

In the following, we denote by I := {ιi : R|Ai| → Mi} a finite set of invariance properties with
their respective invariant subsets Ai ⊆ [N ] and their equivalence relationships ∼ιi , each inducing
as a projection onto its quotient and invariant property ιi (Defn. 2.1). For a set of observables
Sx := {x1, . . . ,xK} ∈ X generated from the data generating process described in § 2, we assume:

Assumption 2.1. For each ιi ∈ I, there exists a unique known index subset Vi ⊆ [K] with at
least two elements (i.e., |Vi| ≥ 2) s.t. xVi = F ([z]∼ιi

) forms the set of observables generated from
an equivalence class [z]∼ιi

:= {z̃ ∈ RN : zAi ∼ιi z̃Ai
}, as given by Defn. 2.2. In particular, if

I = {ι} consists of a single invariance property ι : R|A| → M, we have Sx = F ([z]∼ι
).

Remark: While I does not need to be fully described, which observables should belong to the
same equivalence class is known (denoted as Vi ⊆ [K] for the invariance property ιi ∈ I). This
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is a standard assumption and is equivalent to knowing e.g., two views are generated from partially
overlapped latents [18].

Given a set of observables Sx ∈ X satisfying Asm. 2.1, we show that we can simultaneously
identify multiple invariant latent blocks Ai under a set of weak assumptions. In the best case, if each
individual latent component is represented as a single invariant block through individual invariance
property ιi ∈ I, we can learn a fully disentangled representation and further identify the latent
causal graph by additional technical assumptions.

3 Identifiability Theory via the Invariance Principle
High-level overview. This section presents a general theory for latent variable identification that
brings together many identifiability results from existing CRL works, including multiview, inter-
ventional, temporal, and multitask CRL. Our theory of latent variable identifiability, based on the
invariance principle, consists of two key components: (1) ensuring the encoder’s sufficiency, thereby
obtaining an adequate representation of the original input for the desired task; (2) guaranteeing the
learned representation to preserve known data symmetries as invariance properties. The sufficiency
is often enforced by minimizing the reconstruction loss [8–10, 19, 20] in auto-encoder based
architecture, maximizing the log likelihood in normalizing flows or maximizing entropy [18, 21–23]
in contrastive-learning based approaches. The invariance property in the learned representations
is often enforced by minimizing some equivalence relation-induced pseudometric between a pair
of encodings [6, 10, 18, 22] or by some iterative algorithm that provably ensures the invariance
property on the output [24, 25]. As a result, all invariant blocks Ai, i ∈ [nI] can be identified up
to a mixing within the blocks while being disentangled from the rest. This type of identifiability is
defined as block-identifiability [22] which we restate as follows:

Definition 3.1 (Block-identifiability [22]). A subset of latent variable zA := {zj}j∈A with A ⊆
[N ] is block-identified by an encoder g : RD → RN on the invariant subset A if the learned
representation ẑÂ := [g(x)]Â with Â ⊆ [N ], |A| = |Â| contains all and only information about the
ground truth zA, i.e. ẑÂ = h(zA) for some diffeomorphism h : R|A| → R|A|.

Definition 3.2 (Encoders). The encoders G := {gk : X k → Zk}k∈[K] consist of smooth functions
mapping from the observational support X k to the corresponding latent support Zk (§ 2).

Definition 3.3 (Selection [18]). A selection ⊘ operates between two vectors a ∈ {0, 1}d , b ∈ Rd

s.t. a⊘ b := [bj : aj = 1, j ∈ [d]].

Definition 3.4 (Invariant block selectors). The invariant block selectors Φ := {ϕ(i,k)}i∈[nI],k∈Vi

with ϕ(i,k) ∈ {0, 1}N perform selection (Defn. 3.3) on the encoded information: for any invariance
property ιi ∈ I, any observable xk, k ∈ Vi we have the selected representation:

ϕ(i,k) ⊘ ẑk = ϕ(i,k) ⊘ gk(x
k) =

[
[gk(x

k)]j : ϕ
(i,k)
j = 1, j ∈ [N ]

]
, (3.1)

with
∥∥ϕ(i,k)

∥∥
0
= ∥ϕ(i,k′)∥0 = |Ai| for all ιi ∈ I, k, k′ ∈ Vi.

Constraint 3.1 (Invariance constraint). For any invariance property ιi ∈ I, i ∈ [nI], the selected
representations ϕ(i,k) ⊘ gk(x

k), k ∈ Vi must be ιi-invariant across the observables from the subset
Vi ⊆ [K]:

ιi(ϕ
(i,k) ⊘ gk(x

k)) = ιi(ϕ
(i,k′) ⊘ gk′(xk′

)) ∀i ∈ [nI] ∀k, k′ ∈ Vi (3.2)

Constraint 3.2 (Sufficiency constraint). For any ιi ∈ I, i ∈ [nI], the selected representation
ϕ(i,k) ⊘ gk(x

k), k ∈ Vi must preserve all information of the invariant partition zAi that we aim to
identify, i.e., I(zAi

, ϕ(i,k) ⊘ gk(x
k)) = H(zAi

) ∀i ∈ [nI], k ∈ Vi.

Theorem 3.1 (Identifiability of multiple invariant blocks). Consider a set of observables Sx =
{x1,x2, . . . ,xK} with xk ∈ X k generated from § 2 satisfying Asm. 2.1. Let G,Φ be the set of
smooth encoders (Defn. 3.2) and selectors (Defn. 3.4) that satisfy Constraints 3.1 and 3.2, then the
invariant component zkAi

is block-identified (Defn. 3.1) by ϕ(i,k) ⊘ gk for all ιi ∈ I, k ∈ [K].

What about the variant latents? Intuitively, the variant latents are generally not identifiable, as
the invariance constraint (Constraint 3.1) is applied only to the selected invariant encodings, leaving
the variant part without any weak supervision [26]. This result is formalized as follows:
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Proposition 3.2 (General non-identifiability of variant latent variables). Consider the setup
in Thm. 3.1, let A :=

⋃
i∈[nI]

Ai denote the union of block-identified latent indices and
Ac := [N ] \ A the complementary set where no ι-invariance ι ∈ I applies, then the variant latents
zAc cannot be identified.

Although variant latent variables are generally non-identifiable, they can be identified under certain
conditions. The following demonstrates that variant latent variables can be identified under invertible
encoders when the variant and invariant partitions are mutually independent.

Proposition 3.3 (Identifiability of variant latent under independence). Consider an optimal encoder
g ∈ G∗ and optimal selector ϕ ∈ Φ∗ from Thm. 3.1 that jointly identify an invariant block zA (we
omit subscriptions k, i for simplicity), then zAc(Ac := [N ] \A) can be identified by the complemen-
tary encoding partition (1− ϕ)⊘ g only if: (i) g is invertible in the sense that I(x, g(x)) = H(x);
(ii) zAc is independent on zA.

4 Experiments
This section demonstrates the real-world applicability of causal representation learning under the
invariance principle, evidenced by superior treatment effect estimation performance on the high-
dimensional causal inference benchmark [17] using a loss for the domain generalization literature
that utilizes the invariance principle [13] (§ 4). Additionally, we provide ablation studies on existing
interventional causal representation learning methods [2, 3, 27], showcasing that non-trivial distri-
butional invariance is needed for latent variable identification. This distributional invariance could,
but does not have to arise from a valid intervention in the sense of causality (App. F).

Case Study: ISTAnt This experiment focuses on ISTAnt [17], a recent real-world ecological
benchmark designed for treatment effect estimation. ISTAnt consists of video recordings of ants
triplets with occasional grooming behavior. The goal is to extract a per-frame representation for
supervised behavior classification (grooming or not) to estimate the Average Treatment Effect of
an intervention (exposure to a chemical substance). Further details about this dataset and problem
setting is provided in App. G.1
Experiment settings. Different videos in ISTAnt are considered different experiments as the
experiment settings and treatments vary. We consider hard annotation sampling criteria (more non-
annotated than annotated) for both experiments (videos) and positions, as described by [17]. For
the training, we adopt a domain generalization objective that utilizes the invariance principle [13],
which is restated as follows:

RV-REx(w ◦ g) = λINV Var({R1(w ◦ g), . . . ,RK(w ◦ g)})︸ ︷︷ ︸
invariance

+
∑

k∈[K] Rk(w ◦ g)︸ ︷︷ ︸
sufficiency

. (4.1)

We vary the strength of the invariant component in eq. (4.1) by setting the invariance regularization
multiplier λINV from 0 (ERM) to 10 000. We repeat 20 independent runs for each λINV to estimate
the statistical error. All other implementational details follow [17]. We evaluate the performance
with both balanced accuracy and Treatment Effect Relative Bias (TERB). TERB is defined in [17]
as the ratio between the bias in the predictions across treatment groups and the true average
treatment effect estimated with ground-truth annotations over the whole trial.
Results. Fig. 1 depicts the model performance regarding varying invariance regularization strength
λINV. As expected, the balanced accuracy initially increases with the invariance regularization
strength λINV, as our prediction problem benefits from the invariance, until the sufficiency com-
ponent is not sufficiently balanced with the invariance, and performance decreases. Similarly,
the TERB improves positively, weighting the invariance component until a certain threshold. In
particular, on average with λINV = 100 the TERB decreases to 20% (from 100% using ERM) with
experiment subsampling. In agreement with [17], a naive estimate of the TEB on a small validation
set is a reasonable (albeit not perfect) model selection criterion. Although it performs slightly worse
than model selection based on ERM loss in the position sampling case, it proves to be more reliable
overall. This experiment underscores the advantages of flexibly enforcing known invariances in the
data, corroborating our identifiability theory (§ 3).

5 Conclusions
In this paper, we take a closer look at the wide range of CRL methods. Interestingly, we find many
CRL approaches share methodological similarities in aligning the representation to known data sym-
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(a) Experiment Sampling
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(b) Position Sampling

Figure 1: TERB and Balanced Accuracy with standard deviation over 20 different seeds varying the
invariance weight λINV of V-REx [13] on ISTAnt dataset [17]. With stars, the TERB of the model is
selected by different model selection criteria on a small but heterogeneous validation set.

metries. We identified two components involved in identifiability results: preserving information of
the data and a set of known invariances (§ 3). Our results help clarify the role of causal assumptions
in causal variable identification, shifting the focus from a characterization of specific assumptions
for identifiability, which are not necessarily satisfied in real-world scenarios, to a general recipe that
allows practitioners to specify known invariances in their problem and learn representations that
align with them. We successfully exemplified the real-world applicability of CRL on ecological
data, as shown in § 4. Nevertheless, our paper leaves out certain settings concerning identifiability
that may be interesting for future work, such as discrete variables and finite sample guarantees.
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A Notation and Terminology
[N ] is used as a shorthand for {1, . . . , N}. We use bold lower-case z for random vectors and normal
lower-case z for their realizations. A vector z can be indexed either by a single index i ∈ [dim(z)]
via zi or a index subset A ⊆ [dim(z)] with zA := {zi : i ∈ A}. Pz denotes the probability
distribution of the random vector z and pz(z) denotes the associated probability density function.
By default, a "measurable" function is measurable w.r.t. the Borel sigma algebras and defined w.r.t.
the Lebesgue measure. A comprehensive list of notation follows:

f Mixing function

g Smooth encoder

G Ground truth causal graph

x Entangled observables

z Ground truth latent variables

D Dimensionality of observable x
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N Dimensionality of latents z

A Subset of latent indices with invariance properties (A ⊆ [N ])

ι Projector which maps the latents to the space where the invariance property holds

∼ι The latent equivalence relation

I A set of invariance properties

X Support of a set of observables Sx

Z Support of a set of latent vectors Sz

G A set of smooth encoders

Φ A set of selectors

TC Transitive closure

B Preliminaries
In this subsection, we revisit the common definitions and assumptions in identifiability works from
causal representation learning. We begin with the definition of a latent structural causal model:

Definition B.1 (Latent SCM [2]). Let z = {z1, . . . , zN} denote a set of causal “endogenous"
variables with each zi taking values in R, and let u = {u1, . . . ,uN} denotes a set of mutually
independent “exogenous" random variables. The latent SCM consists of a set of structural equations

{zi := mi(zpa(i)),ui}Ni=1, (B.1)

where zpa(i) are the causal parents of zi and mi are the deterministic functions that are termed
“causal mechanisms". We indicate with Pu the joint distribution of the exogenous random variables,
which due to the independence hypothesis is the product of the probability measures of the individual
variables. The associated causal diagram G is a directed graph with vertices z and edges zi → zj iff.
zi ∈ zpa(j); we assume the graph G to be acyclic.

The latent SCM induces a unique distribution Pz over the endogenous variables z as a pushforward
of Pu via eq. (B.1). Its density pz follows the causal Markov factorization:

pz(z) =

N∏
i=1

pi(zi | zpa(i)). (B.2)

Instead of directly observing the endogenous and exogenous variables z and u, we only have access
to some “entangled" measurements x of z generated through a nonlinear mixing function:

Definition B.2 (Mixing function). A deterministic smooth function f : RN → RD mapping the
latent vector z ∈ RN to its observable x ∈ RD, where D ≥ N denotes the dimensionality of the
observational space.

Assumption B.1 (Diffeomorphism). The mixing function f is diffeomorphic onto its image, i.e. f
is C∞, f is injective and f−1|I(f) : I(f) → RD is also C∞.

Remark: Settings with noisy observations (x = f(z) + ϵ, z ⊥ ϵ) can be easily reduced to our de-
noised version by applying a standard deconvolution argument as a pre-processing step, as indicated
by Buchholz et al. [5], Lachapelle et al. [8].

C Identifiability Theory
In addition to the general results for latent variable identification presented in § 3, we compare
in App. C.1 different granularity of latent variable identification and show their transitions through
certain assumptions on the causal model or mixing function. Afterward, App. C.2 discusses the
identification level of a causal graph depending on the granularity of latent variable identification
under certain structural assumptions. Detailed proofs are deferred to App. E.
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Figure 2: Relations between different identification classes (Defns. 3.1 and C.1 to C.3). Some CRL
works proposed a more fine-grained classification of identifiability concepts with slightly different
terminology, which we omit here for readability.

C.1 On the granularity of identification
Different levels of identification can be achieved depending on the degree of underlying data sym-
metry. Below, we present three standard identifiability definitions from the CRL literature, each
offering stronger identification results than block-identifiability (Defn. 3.1).

Definition C.1 (Block affine-identifiability). Let ẑ be the learned representation, for a subset A ⊆
[N ] it satisfies that:

ẑπ(A) = D · zA + b, (C.1)

where D ∈ R|A|×|A| is an invertible matrix, π(A) denotes the index permutation of A, then zA is
block affine-identified by ẑπ(A).

Definition C.2 (Element-identifiability). The learned representation ẑ ∈ RN satisfies that:

ẑ = Pπ · h(z), (C.2)

where Pπ ∈ RN×N is a permutation matrix, h(z) := (h1(z1), . . . hN (zN )) ∈ RN is a is an
element-wise diffeomorphism.

Definition C.3 (Affine-identifiability). The learned representation ẑ ∈ RN satisfies that:

ẑ = Λ ·Pπ · z+ b, (C.3)

where Pπ ∈ RN×N is a permutation matrix, Λ ∈ RN×N is a diagonal matrix with nonzero diagonal
entries.

Remark: Block affine-identifiability (Defn. C.1) is defined by Ahuja et al. [3], stating that the
learned representation ẑ is related to the ground truth latents z through some sparse matrix with
zero blocks. Defn. C.2 indicates element-wise identification of latent variables up to individual
diffeomorphisms. Element-identifiability for the latent variable identification together with
the graph identifiability (Defn. C.4) is defined as ∼CRL-identifiability [2, Defn. 2.6], perfect
identifiability [7, Defn. 3]. Affine identifiability (Defn. C.3) describes when the ground truth
latent variables are identified up to permutation, shift, and linear scaling. In many CRL works,
affine identifiability (Defn. C.3) is also termed as follows: perfect identifiability under linear
transformation [25, Defn. 1], CD-equivalence [6, Defn. 1], disentanglement [8, Defn. 3].

Proposition C.1 (Granularity of identification). Affine-identifiability (Defn. C.3) implies element-
identifiability (Defn. C.2) and block affine-identifiability (Defn. C.1) while element-identifiability
and block affine-identifiability implies block-identifiability (Defn. 3.1).

Proposition C.2 (Transition between identification levels). The transition between different levels
of latent variable identification (Fig. 2) can be summarized as follows:

(i) Element-level identifiability (Defns. C.2 and C.3) can be obtained from block-wise identifi-
ability (Defns. 3.1 and C.1) when each individual latent constitutes an invariant block;

(ii) Identifiability up to an affine transformation (Defns. C.1 and C.3) can be obtained from
general identifiability on arbitrary diffeomorphism (Defns. 3.1 and C.2) by additionally
assuming that both the ground truth mixing function and decoder are finite degree polyno-
mials of the same degree.
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Discussion. We note that the granularity of identifiability results is primarily determined by
the strength of invariance and parametric assumptions (such as those on mixing functions or
causal models) rather than by the specific algorithmic choice. For example, for settings that can
achieve element-identifiability [2], affine-identifiability results can be obtained by additionally
assuming finite degree polynomial mixing function (proof see App. E). Similarly, one reaches
element-identifiability from block-identifiability by enforcing invariance properties on each
latent component [18, Thm. 3.8] instead of having only one fat-hand invariant block [22]. Tab. 2
provides an overview of recent identifiability results along with their corresponding invariance
and parametric assumptions, illustrating the direct relationship between these assumptions and
the level of identifiability they achieve.

C.2 Identifying the causal graph
In addition to latent variable identification, another goal of causal representation learning is to infer
the underlying latent dependency, namely the causal graph structure. Hence, we restate the standard
definition of graph identifiability in causal representation learning.

Definition C.4 (Graph-identfiability). The estimated graph Ĝ is isomorphic to the ground truth G
through a bijection h : V (G) → V (Ĝ) in the sense that two vertices zi, zj ∈ V (G) are adjacent in G
if and only if h(zi), h(zj) ∈ V (Ĝ) are adjacent in Ĝ.

We remark that the “faithfulness" assumption [28, Defn. 2.4.1] is a standard assumption in the CRL
literature, commonly required for graph discovery. We restate it as follows:

Assumption C.1 (Faithfulness (or Stability)). Pz is a faithful distribution induced by the la-
tent SCM (Defn. B.1) in the sense that Pz contains no extraneous conditional independence;
in other words, the only conditional independence relations satisfied by Pz are those given by
{zi ⊥ znd(i) | zpa(i)} where znd(i) denotes the non-descends of zi.

As indicated by Defn. C.4, the preliminary condition of identifying the causal graph is to have an
element-wise correspondence between the vertices in the ground truth graph G (i.e., the ground truth
latents) and the vertices of the estimated graph. Therefore, the following assumes that the learned
encoders G (Defn. 3.2) achieve element-identifiability (Defn. C.2), that is, for each zi ∈ z, we have
a differmorphism hi : R → R such that ẑi = hi(zi). However, to identify the graph structure,
additional assumptions are needed: either on the source of invariance or on the parametric form of
the latent causal model.

Graph identification via interventions. Under the element-identifiability (Defn. C.2) of the latent
variables z, the causal graph structure G can be identified up to its isomorphism (Defn. C.4), given
multi-domain data from paired perfect interventions per-node [2, 7]. Using data generated from
imperfect interventions is generally insufficient to identify the direct edges in the causal graph, it can
only identify the ancestral relations, i.e., up to the transitive closure of G [4, 6]. Unfortunately, even
imposing the linear assumption on the latent SCM does not provide a solution [24]. Nevertheless,
by adding sparsity assumptions on the causal graph G and polynomial assumption on the mixing
function f , Zhang et al. [6] has shown isomorphic graph identifiability (Defn. C.4) under imperfect
intervention per node. In general, access to the interventions is necessary for graph identification if
one is not comfortable making other parametric assumptions about the graph structure. Conveniently,
in this setting, the graph identifiability is linked with that of the variables since the latter leverages
the invariance induced by the intervention.

Graph identification via parametric assumptions. It is well known in causal discovery that the
additive noise model [29] is identifiable under certain mild assumptions [30, 31]. In the following,
we assume an additive exogenous noise in the latent SCM (Defn. B.1):

Assumption C.2 (Additive noise). The endogenous variable zi ∈ R in the previously defined latent
SCM (Defn. B.1) relates to the corresponding exogenous noise variable ui ∈ R through additivity.
Namely, the causal mechanism (eq. (B.1)) can be rewritten as:

{zi = mi(zpa(i)) + ui}. (C.4)

As a generalization of the additive noise model, the post-nonlinear acyclic causal model [30, Sec. 2]
allows extra nonlinearity on the top of the additive causal mechanism, providing additional flexibility
on the latent model assumption:
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Definition C.5 (Post-nonlinear acyclic causal model). The following causal mechanism describes a
post-nonlinear acyclic causal model:

zi = hi(mi(zpa(i)) + ui), (C.5)
where hi : R → R is a diffeomorphism and mi is a non-constant function.

Assume the latent variable zi is element-wise identified through a bijective mapping hi : R → R
for all i ∈ [N ], define the estimated causal parents ẑpa(i) := {hj(zj) : zj ∈ zpa(i)}, then the latent
SCM (Defn. B.1) is translated to a post-nonlinear acyclic causal model (Defn. C.5) because

ẑi = hi(zi) = hi(mi(zpa(i)) + ui)

= hi(mi({h−1
j (ẑj) : zj ∈ zpa(i)}) + ui)

= hi(m̃i(ẑpa(i)) + ui),

(C.6)

where
m̃i(ẑpa(i)) := mi({h−1

j (ẑj) : zj ∈ zpa(i)}).
Thus, the underlying causal graph G can be identified up to an isomorphism (Defn. C.4) following
the approach given by Zhang and Hyvärinen [31, Sec. 4]

What happens if variables are identified in blocks? Consider the case where the latent variables
cannot be identified up to element-wise diffeomorphism; instead, one can only obtain a coarse-
grained version of the variables (e.g., as a mixing of a block of variables (Defn. 3.1)). Nevertheless,
certain causal links between these coarse-grained block variables are of interest. These block vari-
ables and their causal relations in between form a “macro" level of the original latent SCM, which is
shown to be causally consistent under mild structural assumptions [32, Thm. 11]. In particular, the
macro-level model can be obtained from the micro-level model through an exact transformation [33,
Defn. 3.4] and thus produces the same causal effect as the original micro-level model under the
same type of interventions, providing useful knowledge for downstream causal analysis. More
formal connections are beyond the scope of this paper. Still, we see this concept of coarse-grained
identification on both causal variables and graphs as an interesting avenue for future research.

D Related Works
This section reviews related causal representation learning works and frames them as specific
instances of our theory (§ 3). These works were originally categorized into various causal
representation learning types (multiview, multi-domain, multi-task, and temporal CRL) based on
the level of invariance in the data-generating process, leading to varying degrees of identifiability
results (App. C.1). While the implementation of individual works may vary, the methodological
principle of aligning representation with known data symmetries remain consistent, as shown in § 3.
We begin with revisiting the data-generating process of each category and explain how they can be
viewed as specific cases of the proposed invariance framework (§ 2). We then present individual
identification algorithms from the CRL literature as particular applications of our theorems based
on the implementation choices needed to satisfy the invariance and sufficiency constraints (Con-
straints 3.1 and 3.2). A more detailed overview of the individual works is provided in Tab. 2.

D.1 Multiview Causal Representation Learning
High-level overview. The multiview setting in causal representation learning [18, 23] considers
multiple views that are concurrently generated by an overlapping subset of latent variables, and
thus having non-independently distributed data. Multiview scenarios are often found in a partially
observable setup. For example, multiple devices on a robot measure different modalities, jointly
monitoring the environment through these real-time measurements. While each device measures a
distinct subset of latent variables, these subsets probably still overlap as they are measuring the same
system at the same time. In addition to partial observability, another way to obtain multiple views is
to perform an “intervention/perturbation" [4, 19, 20, 22] and collect both pre-action and post-action
views on the same sample. This setting is often improperly termed “counterfactual"1 in the CRL

1Traditionally, counterfactual in causality refers to non-observable outcomes that are “counter to the
fact” [34]. In the works we refer to here, they rather represent pre- and post- an action that affect some
latent variables but not all. This can be mathematically expressed as a counterfactual in a SCM, but is con-
ceptually different as both pre- and post- action outcomes are realized [35]. The “counterfactual” terminology
silently implies that this is a strong assumption, but nuance is needed and it can in fact be much weaker than an
intervention.
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literature, and this type of data is termed “paired data". From another perspective, the paired setting
can be cast in the partial observability scenario by considering the same latent before and after an
action (mathematically modelled as an intervention) as two separate latent nodes in the causal graph,
as shown by von Kügelgen et al. [22, Fig. 1]. Thus, both pre-action and post-action views are partial
because neither of them can observe pre-action and post-action latents simultaneously. These works
assume that the latents that are not affected by the action remain constant, an assumption that is
relaxed in temporal CRL works. See App. D.3 for more discussion in this regard.

Data generating process. In the following, we introduce the data-generating process of a multi-
view setting in the flavor of the invariance principle as introduced in § 2. We consider a set of views
{xk}k∈[K] with each view xk ∈ X k generated from some latents zk ∈ Zk. Let Sk ⊆ [N ] be the
index set of generating factors for the view xk, we define zkj = 0 for all j ∈ [N ] \ Sk to represent
the uninvolved partition of latents. Each entangled view xk is generated by a view-specific mixing
function fk : Zk → X k:

xk = fk(z
k) ∀k ∈ [K] (D.1)

Define the joint overlapping index set A :=
⋂

k∈[K] Sk, and assume A ⊆ [N ] is a non-empty interior
of [N ]. Then the value of the sharing partition zA remain invariant for all observables {xk}k∈[K]

on a sample level. By considering the joint intersection A, we have one single invariance property
ι : R|A| → R|A| in the invariance set I; and this invariance property ι emerges as the identity
map id on R|A| in the sense that id(zkA) = id(zk

′

A ) and thus zkA ∼ι zk
′

A for all k, k′ ∈ [K]. Note
that Defn. 2.1 (ii) is satisfied because any transformation hk that involves other components zq with
q /∈ A violates the equity introduced by the identity map. For a subset of observations Vi ⊆ [K]
with at least two elements |Vi| > 1, we define the latent intersection as Ai :=

⋂
k∈Vi

⊆ [N ], then
for each non-empty intersection Ai, there is a corresponding invariance property ιi : R|Ai| → R|Ai|

which is the identity map specified on the subspace R|Ai|. By considering all these subsets V :=
{Vi ⊆ [K] : |Vi| > 1, |Ai| > 0}, we obtain a set of invariance properties I := {ιi : R|Ai| → R|Ai|}
that satisfy Asm. 2.1.

Identification algorithms. Many multiview works [18, 22, 23] employ the L2 loss as a regular-
izer to enforce sample-level invariance on the invariant partition, cooperated with some sufficiency
regularizer to preserve sufficient information about the observables (Constraint 3.2). Aligned with
our theory (Thm. 3.1), these works have shown block-identifiability on the invariant partition of
the latents across different views. Following the same principle, there are certain variations in the
implementations to enforce the invariance principle, e.g. Locatello et al. [19] directly average the
learned representations from paired data g(x1), g(x2) on the shared coordinates before forwarding
them to the decoder; Ahuja et al. [20] enforces L2 alignment up to a learnable sparse perturbation δ.
As each latent component constitutes a single invariant block in the training data, these two works
element-identifies (Defn. C.2) the latent variables, as explained by Proposition C.2.

D.2 Multi-environment Causal Representation Learning
High-level overview. Multi-environment / interventional CRL considers data generated from mul-
tiple environments with respective environment-specific data distributions; hence, the considered
data is independently but non-identically distributed. In the scope of causal representation learning,
multi-environment data is often instantiated through interventions on the latent structured causal
model [5–7, 22, 24, 25, 36]. Recently, several papers attempt to provide a more general identi-
fiability statement where multi-environment data is not necessarily originated from interventions;
instead, they can be individual data distributions that preserve certain symmetries, such as marginal
invariance or support invariance [37] or sufficient statistical variability [38].

Data generating process The following presents the data generating process described in most
interventional causal representation learning works. Formally, we consider a set of non-identically
distributed data {Pxk}k∈[K] that are collected from multiple environments (indexed by k ∈ [K])
with a shared mixing function f : xk = f(zk) (Defn. B.2) satisfying Asm. B.1 and a shared latent
SCM (Defn. B.1). Let k = 0 denote the non-intervened environment and Ik ⊆ [N ] denotes the set
of intervened nodes in k-th environment, the latent distribution Pzk is associated with the density

pzk(zk) =
∏
j∈Ik

p̃(zkj | zkpa(j))
∏

j∈[N ]\Ik

p(zkj | zkpa(j)), (D.2)
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where we denote by p the original density and by p̃ the intervened density. Interventions natu-
rally introduce various distributional invariance that can be utilized for latent variable identifica-
tion: Under the intervention Ik in the k-th environment, we observe that both (1) the marginal
distribution of zA with A := [N ] \ TC(Ik), with TC denoting the transitive closure and (2) the
score [S(zk)]A′ := ∇zk

A′
log pzk on the subset of latent components A′ := [N ] \ pa(Ik) with

pa(Ik) := {j : j ∈ Ik ∪ pa(Ik)} remain invariant across the observational and the k-th interven-
tional environment. Formally, under intervention Ik, we have

• Marginal invariance:

pz0(z0A) = pzk(zkA) A := [N ] \ TC(Ik); (D.3)

• Score invariance:

[S(z0)]A′ = [S(zk)]A′ A′ := [N ] \ pa(Ik). (D.4)

According to our theory Thm. 3.1, we can block-identify both zA, z
′
A using these invariance princi-

ples (eqs. (D.3) and (D.4)). Since most interventional CRL works assume at least one intervention
per node [2, 3, 5–7, 24, 36], more fine-grained variable identification results, such as element-wise
identification (Defn. C.2) or affine-identification (Defn. C.3), can be achieved by combining multiple
invariances from these per-node interventions, as we elaborate below.

Identifiability with one intervention per node. By applying Thm. 3.1, we demonstrate that latent
causal variables z can be identified up to element-wise diffeomorphism (Defn. C.2) under single
node imperfect intervention per node, given the following assumption.

Assumption D.1 (Topologically ordered interventional targets). Specifying Asm. 2.1 in the inter-
ventional setting, we assume there are exactly N environments {k1, . . . , kN} ⊆ [K] where each
node j ∈ [N ] undergoes one imperfect intervention in the environment kj ∈ [K]. The interven-
tional targets 1 ⪯ · · · ⪯ N preserve the topological order, meaning that i ⪯ j only if there is a
directed path from node i to node j in the underlying causal graph G.

Remark: Asm. D.1 is directly implied by Asm. 2.1 as we need to know which environments fall into
the same equivalence class. We believe that identifying the topological order is another subproblem
orthogonal to identifying the latent variables, which is often termed “uncoupled/non-aligned prob-
lem" [2, 7]. As described by Zhang et al. [6], the topological order of unknown interventional targets
can be recovered from single-node imperfect intervention by iteratively identifying the interventions
that target the source nodes. This iterative identification process may require additional assumptions
on the mixing functions [3, 6, 24, 25, 36] and the latent structured causal model [5, 24], or on the
interventions, such as perfect interventions that eliminate parental dependency [7], or the need for
two interventions per node [2, 7].

Corollary D.1. Given N environments {k1, . . . , kN} ⊆ [K] satisfying Asm. D.1, the ground truth
latent variables z can be identified up to element-wise diffeomorphism (Defn. C.2) by combining
both marginal and score invariances (eqs. (D.3) and (D.4)) under our framework (Thm. 3.1).

Proof. We consider a coarse-grained version of the underlying causal graph consisting of a block-
node z[N−1] and the leaf node zN with z[N−1] causing zN (i.e., z[N−1] → zN ). We first select a
pair of environments V = {0, kN} consisting of the observational environment and the environment
where the leaf node zN is intervened upon. According to eq. (D.3), the marginal invariance holds
for the partition A = [N − 1], implying identification on z[N−1] from Thm. 3.1. At the same time,
when considering the set of environments V ′ = {0, k1, . . . , kN−1}, the leaf node N is the only
component that satisfy score invariance across all environments V ′, because N is not the parent
of any intervened node (also see [36, Lemma 4]). So here we have another invariant partition
A′ = {N}, implying identification on zN (Thm. 3.1). By jointly enforcing the marginal and score
invariance on A and A′ under a sufficient encoder (Constraint 3.2), we identify both z[N−1] as a
block and zN as a single element. Formally, for the parental block z[N−1], we have:

ẑk[N−1] = g:N−1(x
k) ∀k ∈ {0, k1, . . . , kN} (D.5)

where g:N−1(x
k) := [g(xk)]:N−1 relates to the ground truth z[N−1] through some diffeomorphism

h[N−1] : RN−1 → RN−1 (Defn. 3.1). Now, we can remove the leaf node N as follows: For each
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environment k ∈ {0, k1, . . . , kN−1}, we compute the pushforward of Pxk using the learned encoder
g:N−1 : X k → RN−1:

Pẑk
[N−1]

= g#(Pxk)

Note that the estimated representations Pẑk
[N−1]

can be seen as a new observed data distribution for
each environment k that is generated from the subgraph G−N without the leaf node N . Using an
iterative argument, we can identify all latent variables element-wise (Defn. C.2), concluding the
proof.

Upon element-wise identification from single-node intervention per node, existing works often pro-
vide more fine-grained identifiability results by incorporating other parametric assumptions, either
on the mixing functions [3, 6, 36] or the latent causal model [5] or both [24]. This is explained
by Proposition C.2, as element-wise identification can be refined to affine-identification (Defn. C.3)
given additional parametric assumptions. Note that under this milder setting, the full graph is not
identifiable without further assumptions, see [6].

Identifiability with two interventions per-node Current literature in interventional CRL targeting
the general nonparametric setting [2, 7] typically assumed a pair of sufficiently different perfect in-
terventions per node. Thus, any latent variable zj , j ∈ [N ], as an interventional target, is uniquely
shared by a pair of interventional environment k, k′ ∈ [K], forming an invariant partition Ai = {j}
constituting of individual latent node j ∈ [N ]. Note that this invariance property on the interven-
tional target induces the following distributional property:

[S(zk)− S(zk
′
)]j ̸= 0 only if Ik = Ik′ = {j}. (D.6)

According to Thm. 3.1, each latent variable can thus be identified separately, giving rise to element-
wise identification, as shown by [2, 7].

Identifiability under multiple distributions. More recently, Ahuja et al. [37] explains previous
interventional identifiability results from a general weak distributional invariance perspective. In a
nutshell, a set of variables zA can be block-identified if certain invariant distributional properties
hold: The invariant partition zA can be block-identified (Defn. 3.1) from the rest by utilizing the
marginal distributional invariance or invariance on the support, mean or variance. Ahuja et al.
[37] additionally assume the mixing function to be finite degree polynomial, which leads to block-
affine identification (Defn. C.1), whereas we can also consider a general non-parametric setting; they
consider one single invariance set, which is a special case of Thm. 3.1 with one joint ι-property.

Identification algorithm. Instead of iteratively enforcing the invariance constraint across the
majority of environments as described in Cor. D.1, most single-node interventional works develop
equivalent constraints between pairs of environments to optimize. For example, the marginal
invariance (eq. (D.3)) implies the marginal of the source node is changed only if it is intervened
upon, which is utilized by Zhang et al. [6] to identify latent variables and the ancestral relations
simultaneously. In practice, Zhang et al. [6] propose a regularized loss that includes Maximum
Mean Discrepancy(MMD) between the reconstructed "counterfactual" data distribution and the
interventional distribution, enforcing the distributional discrepancy that reveals graphical structure
(e.g., detecting the source node). Similarly, by enforcing sparsity on the score change matrix,
Varici et al. [36] restricts only score changes from the intervened node and its parents. In the
nonparametric case, von Kügelgen et al. [2] optimize for the invariant (aligned) interventional
targets through model selection, whereas Varici et al. [7] directly solve the constrained optimization
problem formulated using score differences. Considering a more general setup, Ahuja et al. [37]
provides various invariance-based regularizers as plug-and-play components for any losses that
enforce a sufficient representation (Constraint 3.2).

D.3 Temporal Causal Representation Learning
High-level overview. Temporal CRL [8–11, 39–43] focuses on retrieving latent causal structures
from time series data, where the latent causal structured is typically modeled as a Dynamic Bayesian
Network (DBN) [44, 45]. Existing temporal CRL literature has developed identifiability results
under varying sets of assumptions. A common overarching assumption is to require the Dynamic
Bayesian Network to be first-order Markovian, allowing only causal links from t−1 to t, eliminating
longer dependencies [9–11, 40]. While many works assume that there is no instantaneous effect,
restricting the latent components of zt to be mutually dependent [10, 11, 40], some approaches have
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lifted this assumption and prove identifiability allowing for instantaneous links among the latent
components at the same timestep (Lippe et al. [9]).

Data generating process. We present the data generating process followed by most temporal
causal representation works and explain the underlying latent invariance and data symmetries. Let
zt ∈ RN denotes the latent vector at time t and xt = f(zt) ∈ RD the corresponding entangled
observable with f : RN → RD the shared mixing function (Defn. B.2) satisfying Asm. B.1. The
actions at with cardinality |at| = N mostly only target a subset of latent variables while keeping
the rest untouched, following its default dynamics [8, 10, 11, 41]. Intuitively, these actions at can
be interpreted as a component-wise indicator for each latent variable ztj , j ∈ [N ] stating whether
zj follows the default dynamics p(zt+1

j | zt) or the modified dynamics induced by the action atj .
From this perspective, the non-intervened causal variables at time t can be considered the invariant
partition under our formulation, denoted by ztAt

with the index set At defined as At := {j : aj = 0}.
Note that this invariance can be considered as a generalization of the multiview case because the
realizations ztj , z

t+1
j are not exactly identical (as in the multiview case) but are related via a default

transition mechanism p(zt+1
j | zt). To formalize this intuition, we define z̃t := zt | at as the

conditional random vector conditioning on the action at at time t. For the non-intervened partition
At ⊆ [N ] that follows the default dynamics, the transition model should be invariant:

p(ztAt
| zt−1) = p(z̃tAt

| zt−1), (D.7)

which gives rise to a non-trivial distributional invariance property (Defn. 2.1). Note that the invari-
ance partition At could vary across different time steps, providing a set of invariance properties
I := {ιt : R|At| → Mt}Tt=1, indexed by time t. Given by Thm. 3.1, all invariant partitions ztAt

can be block-identified; furthermore, the complementary variant partition can also be identified
under an invertible encoder and mutual independence within zt (Proposition 3.3), aligning with the
identification results without instantaneous effect [8, 10, 40, 41]. On the other hand, temporal causal
variables with instantaneous effects are shown to be identifiable only if “instantaneous parents” (i.e.,
nodes affecting other nodes instantaneously) are cut by actions [9], reducing to the setting without
instantaneous effect where the latent components at t are mutually independent. Upon invariance,
more fine-grained latent variable identification results, such as element-wise identifiability, can
be obtained by incorporating additional technical assumptions, such as the sparse mechanism
shift [8, 41, 43] and parametric latent causal model [40, 46, 47].

Identification algorithm. From a high level, the distributional invariance (eq. (D.7)) indicates
full explainability and predictability of ztAt

from its previous time step zt−1, regardless of the
action at. In principle, this invariance principle can be enforced by directly maximizing the
information content of the proposed default transition density between the learned representation
p(ẑtAt

| ẑt−1) [9, 10]. In practice, the invariance regularization is often incorporated together with
the predictability of the variant partition conditioning on actions, implemented as a KL divergence
between the observational posterior q(ẑt | xt) and the transitional prior p(ẑt | zt−1,at) [8, 11, 39–
41, 46], estimated using variational Bayes [48] or normalizing flow [49]. We additionally show that
minimizing this KL-divergence DKL(q(ẑ

t | xt) ∥ p(ẑt | zt−1,at)) is equivalent to maximizing the
conditional entropy p(ẑtAt

| ẑt−1) in App. D.

D.4 Multi-task Causal Representation Learning
High-level overview. Multi-task causal representation learning aims to identify latent causal
variables via external supervision, in this case, the label information of the same instance for
various tasks. Previously, multi-task learning [50, 51] has been mostly studied outside the scope of
identifiability, mainly focusing on domain adaptation and out-of-distribution generalization. One
of the popular ideas that was extensively used in the context of multi-task learning is to leverage
interactions between different tasks to construct a generalist model that is capable of solving all
classification tasks and potentially better generalizes to unseen tasks [52, 53]. Recently, Lachapelle
et al. [15], Fumero et al. [16] systematically studied under which conditions the latent variables can
be identified in the multi-task scenario and correspondingly provided identification algorithms.

Data generating process. The multi-task causal representation learning considers a supervised
setup: Given a latent SCM as defined in Defn. B.1, we generate the observable x ∈ RD through
some mixing function f : RN → RD satisfying Asm. B.1. Given a set of task T = {t1, . . . , tk},
and let yk ∈ Yk denote the corresponding task label respect to the task tk. Each task only directly
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depends on a subset of latent variables Sk ⊆ [N ], in the sense that the label yk can be expressed as
a function that contains all and only information about the latent variable zSk

:

yk = rk(zSk
), (D.8)

where r : R|Sk| → Yk is some deterministic function which maps the latent subspace R|Sk| to the
task-specific label space Yk, which is often assumed to be linear and implemented using a linear
readout in practice [15, 16]. For each task tk, k ∈ [K], we observe the associated data distribution
Px,yk . Consider two different tasks tk, tk′ with k, k′ ∈ [K], the corresponding data x,yk and
x,yk′

are invariant in the intersection of task-related features zA with A = Sk ∩ Sk′ . Formally, let
r−1
k ({yk}) denotes the pre-image of yk, for which it holds

r−1
k ({yk})A = r−1

k′ ({yk′
})A, (D.9)

showing alignment on the shared partition of the task-related latents. In the ideal case, each latent
component j ∈ [N ] is uniquely shared by a subset of tasks, all factors of variation can be fully
disentangled, which aligns with the theoretical claims by Lachapelle et al. [15], Fumero et al. [16].

Identification algorithms. We remark that the sharing mechanism in the context of multi-task
learning fundamentally differs from that of multi-view setup, thus resulting in different learning
algorithms. Regarding learning, the shared partition of task-related latents is enforced to align
up to the linear equivalence class (given a linear readout) instead of sample level L2 alignment.
Intuitively, this invariance principle can be interpreted as a soft version of the that in the multiview
case. In practice, under the constraint of perfect classification, one employs (1) a sparsity constraint
on the linear readout weights to enforce the encoder to allocate the correct task-specific latents
and (2) an information-sharing term to encourage reusing latents across various tasks. Equilibrium
can be obtained between these two terms only when the shared task-specific latent is element-wise
identified (Defn. C.2). Thus, this soft invariance principle is jointly implemented by the sparsity
constraint and information sharing regularization [16, Sec. 2.1].

D.5 Domain Generalization
High-level overview. Domain generalization aims at out-of-distribution performance. That
is, learning an optimal encoder and predictor that performs well at some unseen test domain
that preserves the same data symmetries as in the training data. At a high level, domain gen-
eralization representation learning [12, 13, 54–56] considers a similar framework as introduced
for interventional CRL, with independent but non-identically distributed data, but additionally
incorporated with external supervision and focusing more on model robustness perspective. While
interventional CRL aims to identify the true latent factors of variations (up to some transformation),
domain generalization learning focuses directly on out-of-distribution prediction, relying on some
invariance properties preserved under the distributional shifts. Due to the non-causal objective,
new methodologies are motivated and tested on real-world benchmarks (e.g., VLCS [57], PACS
[58], Office-Home [59], Terra Incognita [60], DomainNet [61]) and could inspire future real-world
applicability of causal representation learning approaches.

Data generating process. The problem of domain generalizations is an extension of supervised
learning where training data from multiple environments are available Blanchard et al. [62]. An
environment is a dataset of i.i.d. observations from a joint distribution Pxk,yk of the observables
xk ∈ RD and the label yk ∈ R. The label yk ∈ Rm only depends on the invariant latents through
a linear regression structural equation model [14, Assmp. 1], described as follows:

yk = w∗zkA + ϵk, z
k
A ⊥ ϵk

xk = f(zk)
(D.10)

where w∗ ∈ RD×m represents the ground truth relationship between the label yk and the invariant
latents zkA. ϵk is some white noise with bounded variance and f : RN → RD denotes the
shared mixing function for all k ∈ [K] satisfying Asm. B.1. The set of environment distributions
{Pxk,yk}k∈[K] generally differ from each other because of interventions or other distributional
shifts such as covariates shift and concept shift. However, as the relationship between the invariant
latents and the labels w∗ and the mixing mechanism f are shared across different environments, the
optimal risk remains invariant in the sense that

R∗
k(w

∗ ◦ f−1) = R∗
k′(w∗ ◦ f−1), (D.11)
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where w∗ denotes the ground truth relation between the invariant latents zkA an the labels yk and
f−1 is the inverse of the diffeomorphism mixing f (see eq. (D.10)). Note that this is a non-trivial ι
property as the labels yk only depend on the invariant latents zkA, thus satisfying Defn. 2.1 (ii).

Identification algorithm. Different distributional invariance are enforced by interpolating and ex-
trapolating across various environments. Among the countless contribution to the literature, mixup
[54] linearly interpolates observations from different environments as a robust data augmentation
procedure, Domain-Adversarial Neural Networks [55] support the main learning task discouraging
learning domain-discriminant features, Distributionally Robust Optimization (DRO) [12] replaces
the vanilla Empirical Risk objective minimizing only with respect to the worst modeled environ-
ment, Invariant Risk Minimization [56] combines the Empirical Risk objective with an invariance
constraint on the gradient, and Variance Risk Extrapolation [13, V-REx], similar in spirit combines
the empirical risk objective with an invariance constraint using the variance among environments.
For a more comprehensive review of domain generalization algorithms, see Zhou et al. [63].

D.6 Further Explanations for Tab. 2
General clarification. Tab. 2 summarizes all special cases of our invariance framework. For each
work, we present their technical assumptions, the type of invariance, the implementation for the
invariance and the sufficiency regularizers (to satisfy Constraints 3.1 and 3.2), and the type of
identifiability they achieve. Note that this table is by no means exhaustive. Also, we omit some
additional results and technical assumptions of individual papers for readability. For each line
of work, we provide an additional paragraph elaborating on their practical implementation of the
invariance principle.

(a) Single-node intervention and parametric assumptions. Many existing CRL works that
consider single node intervention per node require additional parametric assumptions, either on
the mixing function [6, 36] or the latent causal model [5] or both [24], thus achieving (at least)
element-wise identifiability (Defn. C.2). Although some proposed algorithms did not directly
focus on solving our invariance-based constrained optimization problem (Thm. 3.1) to achieve
identifiability, their theoretical identifiability results can be explained using the invariance principle
in our framework, as explained in App. D.2.

(b) Multi-node intervention and linear mixing. Recently, [25] extends previous interventional
CRL works to unknown multi-node interventions and achieves identifiability under the assumption
of a linearly independent intervention signature matrix Mint ∈ {0, 1}N×K with each column k
represents the intervened node in this environment k. The row-wise linear independence of Mint
implies that each latent variable must have been intervened at least once. Let M ∈ {0, 1}N×N

represent a submatrix of Mint with linearly independent columns. By performing the change of basis
on M such that only one component is non-zero in each column and projecting the score changes
using the corresponding change of basis matrix, the setting becomes similar to the other interven-
tional case (unknown single node intervention per node). This similarity allows it to be intuitively
explained using the same distributional invariance principle introduced earlier (App. D.2).

(c) Paired single-node intervention per node under nonparametric assumptions. In the
nonparametric settings, several works von Kügelgen et al. [2], Varici et al. [7] have shown
element-wise latent variable identification under sufficiently different paired perfect intervention
per node. By having two sufficiently different interventions per node, one introduces invariance on
the interventional target across these paired interventional environments. This invariance property
can be enforced using the score differences [7] or algorithmically by performing model selection [2],
see App. D.2 for more details.

(d) Variant latents identification under independence. While some papers states main identifi-
cation results on the variant partition, it can be explained by Thm. 3.1 and Proposition 3.3 stating
that the variant block can be identified under independence and invertible encoder. For example,
Wendong et al. [27, Thm. 4.5] shows block-identifiability on the intervened (variant) latents
under [27, Assumption 4.4] of block-wise independence between the invariant and variant blocks.

(e) Invariance regularizers in temporal CRL. As explained in App. D.3, instead of directly
maximizing the information content of the transition model H(ztA | zt−1) on the invariant partition
A, most temporal CRL minimizes the KL divergence between the observational posterior q(zt | xt)
and the transitional prior p(zt | zt−1,at) [8, 11, 39, 41, 46]. In the following, we show that
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minimizing the KL-divergence DKL(q(z
t | xt) ∥ p(zt | zt−1,at)) also maximizes the conditional

entropy H(ztA | zt−1).

First, note that the KL-Divergence can be decomposed given the mutual dependence between the
invariant and variant latent partitions:

DKL(q(z
t | xt) ∥ p(zt | zt−1,at))

=DKL(q(z
t
A | xt) ∥ p(ztA | zt−1)) ·DKL(q(z

t
Ac | xt) ∥ p(ztAc | zt−1,at)),

(D.12)

where Ac : [N ]\A denotes the variant latent indices. Since KL-divergence is non-negative, the joint
KL-divergence is minimized when both additive terms are minimized. Hence, from now on, we
focus on the first term DKL(q(z

t
A | xt) ∥ p(ztA | zt−1)) where only the invariant partition is involved,

which can be rewritten as:

DKL(q(z
t
A | xt) ∥ p(ztA | zt−1)) = Ext

Ezt
A | xt

[
log

q(ztA | xt)

p(ztA | zt−1)

]
=Ext

[
H(q(ztA | xt), p(z

t
A | zt−1))−H(ztA | zt−1)

]
=Ext

[
H(q(ztA | xt), p(z

t
A | zt−1))

]
−H(ztA | zt−1).

(D.13)

Therefore, minimizing DKL(q(z
t
A | xt) ∥ p(ztA | zt−1)) is equivalent to maximizing H(ztA | zt−1).

Consequently, the commonly used DKL(q(z
t | xt) ∥ p(zt | zt−1,at)) in the temporal CRL literature

is justified as a valid invariance regularizer, enforcing the transitional invariance (eq. (D.7)).

(f) Invariance regularizers in domain generalization. While Sagawa et al. [12] directly optimize
for the worst-case risk, a link can be drawn between this objective and the risk invariance:
Given a pair of linear head w and encoder g shared across [K] domains, let the order of risks
be Rπ1 ≥ Rπ2 . . .RπK . Since Rπ1 is lower bounded by Rπ2 the minimum of the training
objective in Sagawa et al. [12] (maxk∈[K] Rk(w, g)) is obtained when Rπ1 = Rπ2 . Then we have
Rπ1 = Rπ2 ≥ · · · ≥ RπK , and the next minimum will be obtained when Rπ1 = Rπ2 = Rπ3 , and
so on so forth. The optimization procedure stops when the risks are the same across all domains.

[13] minimizes variance between environment risks to enforce the risk invariance, and the we
formally show in the following these two are equivalent. Note that the invariance principle for
risk alignment can be formulated as:

Ek,k′

[
∥Rk −Rk′ ∥22

]
(D.14)

Now we show that minimizing the variance regularizer proposed by Sagawa et al. [12] is equivalent
to minimizing the risk alignment term eq. (D.14)

minVar [Rk] ≡ minEk

[
(Rk)

2
]
− Ek [Rk]

≡ minEk,k′

[
(Rk)

2 − 2 · Rk · Rk′ + (Rk′ )
2

2

]
≡ minEk,k′

[
(Rk −Rk′ )

2
]
≡ min eq. (D.14)

D.7 Notable Cases Not Directly Covered by the Theory
There are some works are not listed in Tab. 2 that cannot yet be directly explained by our invariance
frameworks but are rather loosely connected. One representative line of work [8, 41, 64, 65] relies on
the sparsity assumption in the latent dependency to achieve latent variable and graph identification.
This assumption is closely related to the sparse mechanism shift hypothesis in causal representation
learning [1], stating small distributional changes should not affect all causal variables but only a
small subset of these. Note that the sparsity constraint is often formulated as the estimator (either for
the graph [15, 41] or of the latents [65]) should be at least sparse as the ground truth one, maximizing
the cardinality of the unaffected (invariant) part. Some theoretical results do not rely on multiple
data pockets that share certain invariance properties but directly employ specific properties within
the observational data, such as independent support [3], or shared cluster membership [47, 66].
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E Proofs
E.1 Assumption Justification
We justify the Defn. 2.1 (ii) by showing a negative results under violation of the assumption, i.e.,
trivially invariant latent variables are not identifiable.

Proposition E.1 (General non-identifiability of trivially invariant latent variables). Consider the
setup in Thm. 3.1, w.l.o.g we assume I = {ι} and ι is trivial in the sense that assumption (ii)
in Defn. 2.1 is violated. Then, the corresponding invariant partition zkA is not identifiable for any
k ∈ [K].

Proof. We provide a counter example as follows: Define a trivial ι-property as “if the first compo-
nent is greater than zero on A = {1} of some two dimensional latents z". Formally,

ι(z1) = 1[z1 > 0].

Consider a mixing function f = id and an invertible encoder g(x) = g(f(z)) = [z1 + z2, z2]
satisfying the sufficiency constraint (Constraint 3.2). Define h1 = h2 = [g ◦ f ]A. Then for some
realizations z, z̃ with z1+ z2 > 0 and z̃1+ z̃2 > 0 we have ι(h(z)) = ι(h(z̃)). However, h1, h2 can
not disentangle z1, showing non-identifiability for the invariant partition zA.

Link between Defn. 2.1 (ii) and interventional discrepancy. In the following, we elaborate
how Defn. 2.1 (ii) resembles the most common assumption in interventional causal representation
learning, the interventional discrepancy [7, 27]. Note that this assumption may termed differently
as sufficient variability [2, 10], interventional regularity [25, 36], but the mathematical formulation
remain the same. We begin with restating this assumption:

Assumption E.1 (Interventional discrepancy [27]). Given k ∈ [K], let ptk denote the causal mech-
anism of the intervened variable ztk with tk ∈ [N ]. We say a stochastic intervention p̃k satisfies
interventional discrepancy if

∂ log ptk
∂ztk

(ztk | zpa(tk)) ̸=
∂ log p̃tk
∂ztk

(ztk | zpa(tk)) almost everywhere (a.e.).

Proof. We show that any cases violating the interventional discrepancy assumption also vio-
lates Defn. 2.1 (ii) and vice versa. Suppose for a contradiction that there exists tk ∈ [N ] that is
intervened in environment k ∈ [K], and there is a non-empty interior U ⊂ R with non-zero measure
where the interventional discrepancy is violated, i.e., for all ztk ∈ U , it holds

∂ log ptk
∂ztk

(ztk | zpa(tk)) =
∂ log p̃tk
∂ztk

(ztk | zpa(tk)) (E.1)

Note that the invariant partition under a single node imperfect intervention yields the complementary
set of the transitive closure of tk, i.e., A := [N ] \TC(tk) because the (joint) marginal distributional
invariance holds in the sense that

ι(zA) = pzA
= p̃zA

.

W.l.o.g, we assume A = {1, . . . , tk − 1}, define a function h : RN → R|A| with

h(z) = [z1, . . . , ztk−2, ztk ]

that omits the tk − 1 component of z but includes the variant component tk. Note that the marginal
of ztk after intervention remains invariant within U because

p(ztk) =

∫
ptk(ztk | zpa(tk))p(zpa(tk))dzpa(tk) pa(tk) ∈ A

=

∫
ptk(ztk | zpa(tk))p̃(zpa(tk))dzpa(tk) eq. (E.1) and both pk, p̃k pdfs

=

∫
p̃tk(ztk | zpa(tk))p̃(zpa(tk))dzpa(tk)

= p̃(ztk).
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Therefore, we have ι(h(z)) = ι(h(z̃)) (with z̃ noting the latent vectors under intervention) contra-
dicting Defn. 2.1 (ii). The other direction (violating Defn. 2.1 (ii) implies violating Asm. E.1) can
be proved using the same example.

E.2 Proof for Thm. 3.1
Our proof consists of the following steps:

1. We construct the optimal encoders G∗ (Defn. 3.2) and selectors Φ∗ (Defn. 3.4) that solves
the constrained optimization problem in Thm. 3.1.

2. We show that, for any invariance property ιi ∈ I and any observation xk in the correspond-
ing ιi-equivalent subset xVi

, the selected representation ϕ(i,k)⊘gk(x
k) cannot contain any

other information than the invariant partition zkAi
.

3. Lastly, we prove that selected representation ϕ(i,k) ⊘ gk(x
k) relates to the ground truth

invariant partition zkAi
through a diffeomorphism hk : R|Ai| → R|Ai| for all invariance

property ιi ∈ I and for any observable xk from the ιi-equivalent subset xVi
; in other

words, ϕ(i,k) ⊘ gk(x
k) block-identifies zkAi

in the sense of Defn. 3.1.

Lemma E.1 (Existence of optimal encoders and selectors). Consider a set of observables Sx =
{x1,x2, . . . ,xK} ∈ X generated from § 2 satisfying Asm. 2.1, then there exists optimal encoders
G (Defn. 3.2) and selectors Φ (Defn. 3.4) which satisfy both Constraints 3.1 and 3.2.

Proof. The optimal encoders can be constructed as the set of the inverse of the ground truth mixing
functions:

G∗ = {f−1
k }k∈[K], (E.2)

f−1
k is smooth and invertible following Asm. B.1. By definition, for each k ∈ [K], we have:

f−1
k (xk) = zk ∈ Zk. (E.3)

Next, we define the optimal selector Φ∗ = {ϕ(i,k)}i∈[nI],k∈[K] such that for all i ∈ nI, k ∈ [K], it
holds

ϕ(i,k) ⊘ zk = zkAi
. (E.4)

Thus, the invariance constraint (Constraint 3.1) is trivially satisfied as given by § 2. The optimal en-
coder f−1

k is smooth and invertible following Asm. B.1 so the sufficiency constraint (Constraint 3.2)
is also satisfied. Hence, we have shown the existence of the optimum to the constrained optimization
problem in Thm. 3.1.

Lemma E.2 (Invariant component isolation). Consider the same set of observables Sx as intro-
duced in Lemma E.1, then for any set of smooth encoders G (Defn. 3.2), Φ (Defn. 3.4) that satisfy
the invariance condition (Constraint 3.1), the learned representation ϕ(i,k) ⊘ gk(xk) can only be
dependent on the invariant latent variables zkAi

:= {zki : i ∈ Ai}, not any non-invariant variables
zkj with j ∈ Ac

i := [N ] \Ai.

Proof. This proof directly follows the second assumption (ii) in Defn. 2.1. Define

hk := ϕ(i,k) ⊘ gk ◦ fk k ∈ [K]. (E.5)

By Constraint 3.1 and the fact that f and g are diffeomorphisms, we have

ι(hk(z
k)) = ι(hk′(zk

′
)) a.s. ∀k < k′ ∈ [K]. (E.6)

According to (ii) in Defn. 2.1, hk, k ∈ [K] cannot directly depends on any other latent component
zq with q /∈ A. Therefore, we have shown that hk is a function of zkAi

, for all k ∈ [K], ιi ∈ I.

Theorem 3.1 (Identifiability of multiple invariant blocks). Consider a set of observables Sx =
{x1,x2, . . . ,xK} with xk ∈ X k generated from § 2 satisfying Asm. 2.1. Let G,Φ be the set of
smooth encoders (Defn. 3.2) and selectors (Defn. 3.4) that satisfy Constraints 3.1 and 3.2, then the
invariant component zkAi

is block-identified (Defn. 3.1) by ϕ(i,k) ⊘ gk for all ιi ∈ I, k ∈ [K].

24



Proof. Lem. E.1 verifies that there exists such optimum which satisfies both invariance and suffi-
ciency conditions (Constraints 3.1 and 3.2). Following Lem. E.2, the composition ϕ(i,k) ⊘ gk can
only encode information related to the invariant latent subset Ai specified by the invariance property
ιi ∈ I for all k ∈ Vi. As given by Constraint 3.2, all smooth encoders gk ∈ [K] contain at least
as much information as the ground truth invariant latents zAi for i with k ∈ Vi. Therefore, the
selected representation ϕ(i,k) ⊘ gk(x

k) relates to the ground truth invariant partition zAi
through

some diffeomorphism, i.e., zAi
is blocked-identified by ϕ(i,k) ⊘ gk(x

k) for all invariance property
ιi ∈ I and observable k ∈ Vi, .

E.3 Proofs for Generalization of Variant Latents

Proposition 3.2 (General non-identifiability of variant latent variables). Consider the setup
in Thm. 3.1, let A :=

⋃
i∈[nI]

Ai denote the union of block-identified latent indices and Ac :=

[N ] \ A the complementary set where no ι-invariance ι ∈ I applies, then the variant latents zAc

cannot be identified.

Proof. We provide a simple counter example with two latent variables z = [z1, z2], with the mixing
function f being the identity map id. W.l.o.g. we assume the invariant partition to be A = {1}.
According to Thm. 3.1, the invariant latent variable can be identified up to a certain bijection h :
R → R. Let ẑ be the estimated representation:

ẑ = [h(z1), z2 − z1] (E.7)

with the estimated mixing function f̂ : R2 → R2:

f̂(ẑ) = [h−1(ẑ1), ẑ2 + h−1(ẑ1)], (E.8)

then we obtain the same observations f̂(ẑ) = f(z) whereas ẑ2 consists of a mixing of z1 and z2,
showing the variant latent variable z2 can not be identified.

Proposition 3.3 (Identifiability of variant latent under independence). Consider an optimal encoder
g ∈ G∗ and optimal selector ϕ ∈ Φ∗ from Thm. 3.1 that jointly identify an invariant block zA (we
omit subscriptions k, i for simplicity), then zAc(Ac := [N ] \A) can be identified by the complemen-
tary encoding partition (1− ϕ)⊘ g only if: (i) g is invertible in the sense that I(x, g(x)) = H(x);
(ii) zAc is independent on zA.

Proof. Consider the mutual information between the observation x ∈ Sx and the optimal encoder
g ∈ G∗ from Thm. 3.1:

I(x; g(x)) = I (x;ϕ⊘ g(x), (1− ϕ)⊘ g(x))

= I (x;ϕ⊘ g(x)) + I (x; (1− ϕ)⊘ g(x)) .
(E.9)

This decomposition is valid because ϕ ⊘ g(x) disentangles zA from the rest of the encodings, as
given by the definition of block-identifiability Defn. 3.1. Therefore, ϕ ⊘ g(x) is independent on
(1− ϕ)⊘ g(x).

Writing ϕ⊘ g(x) = h(zA) (Thm. 3.1) and x = f(zA, z[N ]\A) with h : R|A| → R|A| some bijection
and f the mixing diffeomorphism Defn. B.2, we have:

I(x; g(x)) = I (x;ϕ⊘ g(x), (1− ϕ)⊘ g(x))

= I (x;ϕ⊘ g(x)) + I (x; (1− ϕ)⊘ g(x))

= I (f(zA, zAc);h(zA)) + I (x; (1− ϕ)⊘ g(x))

= H(zA) + I (x; (1− ϕ)⊘ g(x)) .

(E.10)

Given by condition (i), we have

I(x; g(x)) = H(f(x)) = H(f(zA, zAc)) = H(zA) +H(zAc), (E.11)

cancelling H(zA) from both eqs. (E.10) and (E.11), we obtain the following equality:

25



I (x; (1− ϕ)⊘ g(x)) = H(zAc), (E.12)

which implies that (1− ϕ)⊘ g(x) = h̃(z[N ]\A) for some bijection h̃ : RN−|A| → RN−|A|. That is,
the independent complementary block zAc is identified by the (1− ϕ)⊘ g(x).

E.4 Proofs for Granularity of Latent Variable Identification

Proposition C.1 (Granularity of identification). Affine-identifiability (Defn. C.3) implies element-
identifiability (Defn. C.2) and block affine-identifiability (Defn. C.1) while element-identifiability
and block affine-identifiability implies block-identifiability (Defn. 3.1).

Proof. The diagonal matrix Λ in eq. (C.3) is invertible and thus also a diffeomorphism ϕ (eq. (C.2));
Diagonal Λ of affine identifiability is a special instance of Λ̃ in eq. (C.1) where all non-diagonal
entries are zero. Hence, affine-identifiability implies element-identifiability and block affine-
identifiability. On the other hand, block affine-identifiability is block-identifiability with affine bi-
jection h and element-identifiability defines a special case of block-identifiability where each latent
component zi is an individual block.

Proposition C.2 (Transition between identification levels). The transition between different levels
of latent variable identification (Fig. 2) can be summarized as follows:

(i) Element-level identifiability (Defns. C.2 and C.3) can be obtained from block-wise identifi-
ability (Defns. 3.1 and C.1) when each individual latent constitutes an invariant block;

(ii) Identifiability up to an affine transformation (Defns. C.1 and C.3) can be obtained from
general identifiability on arbitrary diffeomorphism (Defns. 3.1 and C.2) by additionally
assuming that both the ground truth mixing function and decoder are finite degree polyno-
mials of the same degree.

Proof. The proof for (i) is trivial in the sense that identification of block with size one boils down
to the identification on the element level. The proof for (ii) is based on Ahuja et al. [3, Thm. 4.4]
and Zhang et al. [6, Lem. 1], stating that when both ground truth mixing function and decoder are
finite degree polynomials of the same degree, the invertible encoder learns a representation that is
affine linear to the ground truth latents, i.e., ẑ = L · z+ b with L ∈ RN×N .

F Synthetic Ablation with “Ninterventions”
This subsection presents identifiability results under controversial (non-causal) conditions using sim-
ulated data. We consider the synthetic setup with full control over the latent space and the data-
generating process. We consider a simple graph of three causal variables as z1 → z2 → z3. The
corresponding joint density has the form of pz(z1, z2, z3) = p(z3 | z2)p(z2 | z1)p(z1)
The goal of this experiment is to demonstrate that existing methods for interventional CRL rely pri-
marily on distributional invariance, regardless of whether this invariance arises from a well-defined
intervention or some other arbitrary transformation. To illustrate this, we introduce the concept of
a “nintervention," which has a similar distributional effect to a regular intervention, maintaining
certain conditionals invariant while altering others, but without a causal interpretation.

Definition F.1 (Ninterrventions). We define a “nintervention” on a causal conditional as the process
of changing its distribution but cutting all incoming and outgoing edges. Child nodes condition
on the old, pre-intervention, random variable. Formally, we consider the latent SCM as defined
in Defn. B.1, an nintervention on a node j ∈ [N ] is gives rise to the following conditional factoriza-
tion p̃z(z) = p̃(zj)

∏
i∈[N ]\{j} p(zi | zold

pa(i))

Note that the marginal distribution of all non-nintervened nodes Pz[N]\j remain invariant after nin-
tervention. In previous example, we perform a nintervention by replacing the conditional density
p(z2 | z1) using a sufficiently different marginal distribution p(z̃2) that satisfies Defn. 2.1 (ii), which
gives rise to the following new factorization: p̃z(z1, z2, z3) = p(z3 | zold

2 )p̃(z2)p(z1). Note that
z3 conditions on the random variable z2 before nintervention, whose realization is denoted as zold

2 .
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S

Figure 3: Causal Model for generic partially an-
notated scientific experiment: T treatment, W
experimental settings, X high-dimensional ob-
servation, Y outcome, S annotation flag. Figure
and caption adapted from [17, Fig. 1]

(a) Grooming (blue to focal) (b) No Action

Figure 4: Examples of high-dimensional obser-
vations X with corresponding annotated social
behaviour Y (grooming). Figure and caption
adapted from [17, Fig. 2]

Differing from a causal intervention, we cut both the incoming and outgoing links of z2 and keep
the marginal distribution of z3 the same. Clearly, this is a non-sensical intervention from the causal
perspective because we eliminates the causal effect from z2 to its descendants.

Experiment settings. As a proof of concept, we choose a linear Gaussian additive noise model and
a nonlinear mixing function implemented as a 3-layer invertible MLP with Leaky-ReLU activation.
We average the results over three independently sampled ninterventional densities p̃(z2) while guar-
anteeing all ninterventional distributions satisfy Defn. 2.1 (ii). As the marginal distribution of both
z1, z3 remains the same after a nintervention, we expect z1, z3 to be block-identified (Defn. 3.1)
according to Thm. 3.1. In practice, we enforce the marginal invariance constraint (Constraint 3.1)
by minimizing the MMD loss, as implemented by the interventional CRL works [6, 37] and train an
auto-encoder for a sufficient representation (Constraint 3.2). Further details are included in App. G.

Results. To validate block-identifiability, we perform Kernel-Ridge Regression between
the estimated block [ẑ1, ẑ3] and the ground truth latents z1, z2, z3 respectively. Both z1, z3 are
block-identified, showing a high R2 score of 0.863 ± 0.031 and 0.872 ± 0.035, respectively. By
contrast, the latent variable z2 is not identified, evidenced by a low R2 of 0.065± 0.017.

G Implementation Details
G.1 Case Study: ISTAnt
Problem. Despite the majority of causal representation learning algorithms being designed to en-
force the identifiability of some latent factors and tested on controlled synthetic benchmarks, there
are a plethora of real-world applications across scientific disciplines requiring representation learn-
ing to answer causal questions [67–70]. Recently, Cadei et al. [17] introduced ISTAnt, the first
real-world representation learning benchmark with a real causal downstream task (treatment effect
estimation). This benchmark highlights different challenges (sources of biases) that could arise from
machine learning pipelines even in the simplest possible setting of a randomized controlled trial.
Videos of ants triplets are recorded, and a per-frame representation has to be extracted for super-
vised behavior classification to estimate the Average Treatment Effect of an intervention (exposure
to a chemical substance). Beyond desirable identification result on the latent factors (implying that
the causal variables are recovered without bias), no clear algorithm has been proposed yet on min-
imizing the Treatment Effect Bias (TEB) [17]. One of the challenges highlighted by Cadei et al.
[17] is that in practice, there is both covariate and concept shifts due to the effect modification from
training on a non-random subset of the RCT because, for example, ecologists do not label individual
frames but whole video recordings.

Solution. Relying on our framework, we can explicitly aim for low TEB by leveraging known data
symmetries from the experimental protocol. In fact, the causal mechanism (P (Y e|do(Xe = x))
stays invariant among the different experiment settings (i.e., individual videos or position of the
petri dish). This condition can be easily enforced by existing domain generalization algorithms.
For exemplary purposes, we choose Variance Risk Extrapolation [13, V-REx], which directly
enforces both the invariance sufficiency constraints (Constraints 3.1 and 3.2) by minimizing the the
Empirical Risk together with the risk variance inter-enviroments.
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Table 1: Training setup for synthetic ablations in App. F.
Parameter Value
Mixing function 3-layer MLP
Encoder 3-layer MLP
Decoder 3-layer MLP
Hidden dim 128
Activation Leaky-ReLU
Optimizer Adam
Adam: learning rate 1e-4
Adam: beta1 0.9
Adam: beta2 0.999
Adam: epsilon 1e-8
Batch size 4000
Sample size 200,000
# Epochs 500

G.2 Synthetic Ablation with “Ninterventions"
The numerical data is generated using a linear Gaussian additive noise model as follows:

p(z1) = N (µ1, σ
2
1)

p(z2 | z1) = N (α1 · z1 + β1, σ
2
2)

p(z3 | z2) = N (α2 · z2 + β2, σ
2
3)

p̃(z2) = N (µ̃2, σ̃
2
2)

(G.1)

We choose µ1 = 10.5, σ1 = 0.8, α1 = 0.02, β1 = 0, σ2 = 0.5, α2 = 1, β2 = 3, σ3 = 1, σ̃2 =
0.02. We sample three independent µ̃2 according to a uniform distribution Unif[2, 5] to validate the
consistency of the identification results.

For the training, we employ a simple auto-encoder architecture implementing both encoder and
decoder as 3-Layer MLP. We enforce the marginal invariance using the Max Mean Discrepancy loss
(MMD) on the first and last component ẑ1, ẑ3. Formally, the objective function writes

L(g, f̂) = Ex,x̃

[∥∥∥f̂(g(x))− x
∥∥∥2
2
+
∥∥∥f̂(g(x̃))− x

∥∥∥2
2

]
+ MMD(g(x)[1,3], g(x̃)[1,3]),

where x, x̃ denote the observational and ninterventional data, respectively.

Further training details are summarized in Tab. 1

H Further Discussions and Connections to Other Fields
In this paper, we take a closer look at the wide range of causal representation learning methods.
Interestingly, we find that the differences between them may often be more related to “semantics"
than to fundamental methodological distinctions. We identified two components involved in iden-
tifiability results: preserving information of the data and a set of known invariances. Our results
have two immediate implications. First, they provide new insights into the “causal representation
learning problem," particularly clarifying the role of causal assumptions. We have shown that while
learning the graph requires traditional causal assumptions such as additive noise models or access
to interventions, identifying the causal variables may not. This is an important result, as access to
causal variables is standalone useful for downstream tasks, e.g., for training robust downstream pre-
dictors or even extracting pre-treatment covariates for treatment effect estimation [71], even without
knowledge of the full causal graph. Second, we have exemplified how causal representation can lead
to successful applications in practice. We moved the goal post from a characterization of specific
assumptions that lead to identifiability, which often do not align with real-world data, to a general
recipe that allow practitioners to specify known invariances in their problem and learn represen-
tations that align with them. In the domain generalization literature, it has been widely observed
that invariant training methods often do not consistently outperform empirical risk minimization
(ERM). In our experiments, instead, we have demonstrated that the specific invariance enforced by
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V-REx [13] entails good performance in our causal downstream task (§ 4). Our paper leaves out
certain settings concerning identifiability that may be interesting for future work, such as discrete
variables and finite samples guarantees.

One question the reader may ask, then, is “so what is exactly causal in causal representation learn-
ing?”. We have shown that the identifiability results in typical causal representation learning are
primarily based on invariance assumptions, which do not necessarily pertain to causality. We hope
this insight will broaden the applicability of these methods. At the same time, we used causality as a
language describing the “parameterization” of the system in terms of latent causal variables with as-
sociated known symmetries. Defining the symmetries at the level of these causal variables gives the
identified representation a causal meaning, important when incorporating a graph discovery step or
some other causal downstream task like treatment effect estimation. Ultimately, our representations
and latent causal models can be “true” in the sense of [72] when they allow us to predict “causal
effects that one observes in practice”. Overall, our view also aligns with “phenomenological” ac-
counts of causality [73], that define causal variables from a set of elementary interventions. In our
setting too, the identified latent variables or blocks thereof are directly defined by the invariances at
hand. From the methodological perspective, all is needed to learn causal variables is for the sym-
metries defined over the causal latent variables to entail some statistical footprint across pockets of
data. If variables are available, learning the graph has a rich literature [74], with assumptions that
are often compatible with learning the variables themselves. Our general characterization of the
variable learning problem opens new frontiers for research in representation learning:

H.1 Representational Alignment and Platonic Representation
Several works ([75–78]) have highlighted the emergence of similar representations in neural models
trained independently. In [78] is hypothesized that neural networks, trained with different objectives
on various data and modalities, are converging toward a shared statistical model of reality within
their representation spaces. To support this hypothesis, they measure the alignment of representa-
tions proposing to use a mutual nearest-neighbor metric, which measures the mean intersection of
the k-nearest neighbor sets induced by two kernels defined on the two spaces, normalized by k. This
metric can be an instance to the distance function in our formulation in Thm. 3.1. Despite not be-
ing optimized directly, several models in multiple settings (different objectives, data and modalities)
seem to be aligned, hinting at the fact that their individual training objectives may be respecting
some unknwon symmetries. A precise formalization of the latent causal model and identifiability in
the context of foundational models remains open and will be objective for future research.

H.2 Environment Discovery
Domain generalization methods generalize to distributions potentially far away from the training,
distribution, via learning representations invariant across distinct environments. However this can
be costly as it requires to have label information informing on the partition of the data into envi-
ronments. Automatic environment discovery ([79–81]) attempts to solve this problem by learning
to recover the environment partition. This is an interesting new frontier for causal representation
learning, discovering data symmetries as opposed to only enforcing them. For example, this would
correspond to having access to multiple interventional distributions but without knowing which sam-
ples belong to the same interventional or observational distribution. Discovering that a data set is a
mixture of distributions, each being a different intervention on the same causal model, could help
increase applicability of causal representations to large obeservational data sets. We expect this to
be particularly relevant to downstream tasks were biases to certain experimental settings are unde-
sirable, as in our case study on treatment effect estimation from high-dimensional recordings of a
randomized controlled trial.

H.3 Connection with Geometric Deep Learning
Geometric deep learning (GDL) ([82, 83]) is a well estabilished learning paradigm which involves
encoding a geometric understanding of data as an inductive bias in deep learning models, in order
to obtain more robust models and improve performance. One fundamental direction for these pri-
ors is to encode symmetries and invariances to different types of transformations of the input data,
e.g. rotations or group actions ([84, 85]), in representational space. Our work can be fundamentally
related with this direction, with the difference that we don’t aim to model explicitly the transforma-
tions of the input space, but the invariances defined at the latent level. While an initial connection
has been developed for disentanglement [86, 87], a precise connection between GDL and causal
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representation learning remains a open direction. We expect this to benefit the two communities in
both directions: (i) by injecting geometric priors in order to craft better CRL algorithms and (ii) by
incorporating causality into successful GDL frameworks, which have been fundamentally advancing
challenging real-world problems, such as protein folding ([88]).
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Table 2: A non-exhaustive summary of existing identifiability results for Causal Representation Learning. All of the listed works assume injectivity of the
mixing function and causal sufficiency (Markovianity) for the causal latent variables. Many listed papers depend on further technical assumptions and could yield
additional results. For clarity, these are omitted; see references for details. In the table, “not assigned" means that the practical method did not directly enforce the
invariance principle but considered other algorithmic designs that still implicitly preserve the data symmetries..

Work Causal
Model

Mixing
Function Invariance Source of invari-

ance, Inv. subset A
Invariance reg. Sufficiency reg. Identifiability Expl.

Squires
et al. [24,
Thms. 1
& 2]

linear linear distributional perfect interven-
tion per node

rank(H⊺∆kH)
!
=1 for

source nodes; linear
encoder g(x)=Hx, where
∆k:=B

⊺
k
Bk−B

⊺
0 B0,z=

B−1
k

ϵ

g invertible by assump-
tion

affine-id. and
partial order
preserving
graph-id.

(a)

Ahuja
et al. [37,
Thm. 2]

nonparam.
finite-
deg.
poly.

marginal
single-node imper-
fect interventions
on variant latents

∑
k,k′

∑
j∈A

MMD(pk[g(x)]j
,pk

′
[g(x)]j

)
∑

k E
xk∥f̂(g(xk))−xk∥2

2

block affine-
id. -

Ahuja
et al. [37,
Thm. 3]

nonparam.
finite-
deg.
poly.

marginal
multi-node imper-
fect interventions
on variant latents

∑
k,k′

∑
j∈A

MMD(pk[g(x)]j
,pk

′
[g(x)]j

)
∑

k E
xk∥f̂(g(xk))−xk∥2

2

block affine-
id. -

Ahuja
et al. [37,
Thm. 4]

nonparam.
finite-
deg.
poly.

marginal
support

imperfect interven-
tions on variant la-
tents

∑
k,k′

∑
j∈A∥∥∥bnd(Ẑk
j )−bnd(Ẑk′

j )
∥∥∥2

2

∑
k E

xk∥f̂(g(xk))−xk∥2

2

block affine-
id. -

Buchholz
et al. [5]

linear
Gaussian nonparam. marginal perfect interven-

tion per node
−El∼U({0,k})Exl

ln

(
e1l=kgk(xl)

) El∼U({0,k})Exl

ln

(
egk(xl)+1

) affine id. +
graph id. (a)
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Work Causal
Model

Mixing
Function Invariance Source of invari-

ance, Inv. subset A
Invariance reg. Sufficiency reg. Identifiability Expl.

Varici
et al. [36,
Thm. 16]

nonparam. linear distributional perfect interven-
tion per node

∥∆s
x(U⊺)∥

0
. For all

j,k∈[N ], its element
[∆s

x(U⊺)]j,k=

1([U⊺S(x0)]j

P
x0,k

̸= [U⊺S(xk)]j),

g(x):=U+x

g invertible by assump-
tion

affine-id. +
graph-id. (a)

Varici
et al. [36,
Thm. 13]

nonparam. linear distributional imperfect interven-
tion per node

∥∆s
x(U⊺)∥

0
. For all

j,k∈[N ], its element
[∆s

x(U⊺)]j,k=

1([U⊺S(x0)]j

P
x0,k

̸= [U⊺S(xk)]j),

g(x):=U+x

g invertible by assump-
tion

block affine-
id. + graph-
id.

(a)

Varici
et al. [7,
Thm. 3]

nonparam. nonparam. interventional
target

paired perfect inter-
vention per node

min∥∆s(g)∥0 s.t. it is
diagonal. ∆s(g)j,k=

E
[
|[S(g(xk))−S(g(xk′

))]j |
] g invertible by assump-

tion
element-id. +
graph-id. (c)

Varici
et al. [25,
Thm. 1]

nonparam. linear distributional

linearly indepen-
dent multi-node
perfect interven-
tion

Linear encoder g(x)=Hx,

H∗
i ∈im(∆sxwi)\span(H∗

[i−1])

such that the dim of

proj
null

(
H∗

[i−1]

) im(∆Sxwi)

equals one.

g invertible by assump-
tion

affine id. +
graph id. (b)
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Work Causal
Model

Mixing
Function Invariance Source of invari-

ance, Inv. subset A
Invariance reg. Sufficiency reg. Identifiability Expl.

Varici
et al. [25,
Thm. 2]

nonparam. linear distributional

linearly indepen-
dent multinode
imperfect interven-
tion

Linear encoder g(x)=Hx,

H∗
i ∈im(∆sxwi)\span(H∗

[i−1])

such that the dim of

proj
null

(
H∗

[i−1]

) im(∆Sxwi)

equals one.

g invertible by assump-
tion

block affine-
id. + graph
id.

(b)

Zhang
et al. [6] nonparam.

finite-
deg.
poly.

distributional imperfect interven-
tion per node

−
∑

k MMD(q
x̃k ,p

xk )

where x̃k the generated
“counterfactual" pair
through VAE

−
∑

k E
xk log p(xk|g(xk))

affine-id. +
graph id. (a)

Wendong
et al. [27,
Thm. 4.5]

nonparam. nonparam. marginal

marginal invari-
ance from multiple
fat-hand interven-
tions on the same
set of interven-
tional targets I,
invariant partition
A:=[N ]\I

model selection −
∑

k log pkθ(xk)

block-id.
(known
graph)

(d)

von
Kügel-
gen
et al. [2,
Thm. 4.1]

nonparam. nonparam. interventional
target

paired perfect inter-
vention per node model selection −

∑
k log pkθ(xk))

element-id. +
graph-id (c)

von
Kügel-
gen et al.
[22]

nonparam. nonparam.

sample
level on
all real-
izations
of zkA

one imperfect fat-
hand intervention ∥g(x1)

Â
−g(x2)

Â∥2
−

∑
k H(g(xk)

Â
), k∈{1,2} block-id. -
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Work Causal
Model

Mixing
Function Invariance Source of invari-

ance, Inv. subset A
Invariance reg. Sufficiency reg. Identifiability Expl.

Daunhawer
et al. [23] nonparam. nonparam.

sample
level on
all real-
izations
of zkA

one imperfect fat-
hand intervention, ∥g1(x1)

Â
−g2(x

2)
Â∥2

−
∑

k H(gk(x
k)

Â
),

k∈{1,2}
block-id. -

Ahuja
et al. [20] nonparam. nonparam.

sample
level on
all real-
izations
of zkA

one imperfect fat-
hand intervention ∥g(x1)

Â
−g(x2)

Â
+δ∥

2

−
∑

k E
xk log p(xk|g(xk)),

k∈{1,2}
block-id. -

Locatello
et al. [19] nonparam. nonparam. sample

level
one imperfect fat-
hand intervention avg. encoding −

∑
k E

xk log p(xk|g(xk)) ,
k∈{1,2}

block-id. -

Yao
et al. [18,
Thm. 3.2]

nonparam. nonparam.

sample
level on
all real-
izations
of zkA

partial observabil-
ity

∑
k,k′∈[K]

∥gk(x)Â−gk′ (x̃)Â∥2

−
∑

k∈[K] H(gk(x)Â) block-id. -

Yao
et al. [18,
Thm. 3.8]

nonparam. nonparam.

sample
level on
all real-
izations
of zkAi

partial observabil-
ity, k∈Vi

∑
k,k′∈Vi∥∥∥gk(x)Â(i,k)−gk′ (x̃)

Â(i,k′)

∥∥∥
2

−
∑

k∈[K] H(tk◦gk(x)) block-id -

Brehmer
et al. [4] nonparam. nonparam. sample

level
perfect interven-
tion per node

DKL(q(I,ẑ1,2 | x1,2)∥p(I,ẑ1,2))
where ẑk:=g(xk),k∈{1,2}

−
∑

k E
xk log p(xk|g(xk)),

k∈{1,2}
element-id. -

Lippe
et al. [10] nonparam. nonparam.

transitional
invari-
ance on
a distri-
butional
level

known-target inter-
ventions It, invari-
ant partition A:=

[N ]\It

−H(ẑt
Ât | ẑt−1) where

ẑt:=g(xt)
−p(xt|xt−1,It) block-id. -
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Work Causal
Model

Mixing
Function Invariance Source of invari-

ance, Inv. subset A
Invariance reg. Sufficiency reg. Identifiability Expl.

Lippe
et al. [9] nonparam. nonparam.

transitional
invari-
ance on
a distri-
butional
level

known-target, par-
tially perfect inter-
ventions It, invari-
ant partition A:=

[N ]\It

−H(ẑt
Ât | ẑt−1) where

ẑt:=g(xt)
−p(xt|xt−1,It) block-id. -

Lippe
et al. [11] nonparam. nonparam.

transitional
invari-
ance on
a distri-
butional
level

binary interven-
tions (interven-
tional target
unknown)

DKL(q(ẑ
t | xt) ∥ p(ẑt | ẑt−1,rt)),

rt observed regime vari-
able

− log p(xt|ẑt) block-id. -

Lachapelle
et al. [15] nonparam. nonparam. task sup-

port

task distribution,
overlapping task
supports, number
of causal variables
known

∑
t∥ŵ(t)∥

2,1

∑
t R(ŵ(t)◦g) affine-id. (e)

Fumero
et al. [16] nonparam. nonparam. task sup-

port

task distribution,
overlapping task
supports

H(w̃)+
∑

t∥ŵ(t)∥
1

∑
t R(ŵ(t)◦g) element-id. (e)

Sagawa
et al. [12] nonparam. nonparam. risk

invariant rela-
tionship between
label and invariant
features, preserved
under covariate
shift

maxk∈[K] R
k(w◦g) maxk∈[K] R

k(w◦g) NA (f)
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Work Causal
Model

Mixing
Function Invariance Source of invari-

ance, Inv. subset A
Invariance reg. Sufficiency reg. Identifiability Expl.

Arjovsky
et al. [56] nonparam. nonparam. risk

invariant rela-
tionship between
label and invariant
features, preserved
under covariate
shift

∥∇w,w=1Rk(w◦g)∥2 ∑
k∈[K] R

k(w◦g) NA -

Krueger
et al. [13] nonparam. nonparam. risk

invariant rela-
tionship between
label and invariant
features, preserved
under covariate
shift

Var({Rk(w◦g)}k∈[K])
∑

k∈[K] R
k(w◦g) NA (f)

Ahuja
et al. [14] nonparam. nonparam. risk

invariant rela-
tionship between
label and invariant
features, preserved
under covariate
shift

∥∇w,w=1Rk(w◦g)∥2 ∑
k∈[K] R

k(w◦g)+Var(R) NA -36
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