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Abstract

This paper rigorously shows how over-parameterization dramatically changes the convergence be-
haviors of gradient descent (GD) for the matrix sensing problem, where the goal is to recover an
unknown low-rank ground-truth matrix from near-isotropic linear measurements. First, we con-
sider the symmetric setting with the symmetric parameterization where M* € R™*" is a positive
semi-definite unknown matrix of rank < n, and one uses a symmetric parameterization X X "
to learn M*. Here X € R"** with k > r is the factor matrix. We give a novel Q (1/72) lower
bound of randomly initialized GD for the over-parameterized case (k > r) where 7T is the number
of iterations. This is in stark contrast to the exact-parameterization scenario (k = r) where the
convergence rate is exp (—2 (7). Next, we study asymmetric setting where M* € R"™**"2 js the
unknown matrix of rank r < min{ny,n,}, and one uses an asymmetric parameterization FG' to
learn M* where F € R™** and G € R™2**. We give the first global exact convergence result
of randomly initialized GD for the exact-parameterization case (k = r) with an exp (— (7)) rate.
Furthermore, we give the first global exact convergence result for the over-parameterization case
(k > r) with an exp (fQ (azT)) rate where « is the initialization scale. This linear convergence
result in the over-parameterization case is especially significant because one can apply the asym-
metric parameterization to the symmetric setting to speed up from 2 (1 / T2) to linear convergence.
Therefore, we identify a surprising phenomenon: asymmetric parameterization can exponentially
speed up convergence. Equally surprising is our analysis that highlights the importance of imbal-
ance between F' and G. This is in sharp contrast to prior works which emphasize balance. We
further give an example showing the dependency on « in the convergence rate is unavoidable in
the worst case. On the other hand, we propose a novel method that only modifies one step of GD
and obtains a convergence rate independent of «, recovering the rate in the exact-parameterization
case. We provide empirical studies to verify our theoretical findings.

1. Introduction

A line of recent work showed over-parameterization plays a key role in optimization, especially for
neural networks [1, 6, 10, 12, 14, 22, 24, 28, 35, 51]. However, our understanding of the impact of
over-parameterization on optimization is far from complete. In this paper, we focus on the canonical
matrix sensing problem and show that over-parameterization qualitatively changes the convergence
behaviors of gradient descent (GD).

Matrix sensing aims to recover a low-rank unknown matrix M* from m linear measurements,

yi = Ai(M*) = (A;, M*) = tr(A] M*), fori=1,...,m, (1.1)
where A; is a linear measurement operator and A; is the measurement matrix of the same size as

M*. This is a classical problem with numerous real-world applications, including signal processing
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Figure 1: Experiments on symmetric setting. The first two figures show that the convergence rate
of symmetric matrix factorization in the over-parameterized setting is about ©(1/72),
while the rate of the exact-parameterized setting is linear. Figure 1(c)subfigure shows
that using asymmetric parameterization is exponentially faster than symmetric parame-
terization. See Appendix L for experimental details.

[36] and face recognition [5], image reconstruction [25, 45]. Moreover, this problem can serve as a
test-bed of convergence behaviors in deep learning theory since it is non-convex and retains many
key phenomena [2, 17, 19, 20, 29]. We primarily focus on the over-parameterized case where we
use a model with rank larger than that of M™* in the learning process. This case is particularly
relevant because rank (M *) is usually unknown in practice.

Related Work Matrix sensing has been widely studied via the nuclear norm minimization approach
[3, 21, 26, 37], spectral method [23, 32] and landscape analysis [13, 48]. The most relevant line of
work considered global convergence of gradient descent [29, 30, 32, 50]. We compare our results
with them in Table 1. The detailed discussions are also deferred to Appendix A.

2. Model and Prelimanaries

Norm and Big-O Notations. Given a vector v, we use ||[v|| to denote its Euclidean norm. For
a matrix M, we use || M| to denote its spectral norm and ||M || Frobenius norm. The notations
O(+),0(+), and Q(-) in the rest of the paper only omit absolute constants.

Asymmetric Matrix Sensing. Our primary goal is to recover an unknown fixed rank r matrix
M* € R from data (y;, A;), i = 1,...,m satisfying y; = (A;, M*) = tr(A] M*),i =
1,...,m, orcompactly y = A(M*), where y € R™ and A : R"*"2 — R™ is a linear map
with [A(M)]; = tr(A] M). We further denote the singular values of M* as o1 > --- > 7, >
or4y1 = 0 = --- = oy, the condition number kK = %’ and the diagonal singular value matrix as 3
with (2);; = ;. To recover M*, we minimize the following loss function:

1
Lu(F,G) = S| AFGT) =y, 2.1)

where F, G € R™**, where k > r is the user-specified rank. The gradient descent update rule with
a step size n > 0 with respect to loss (2.1) can be written explicitly as

Fip1 = F, —nA*AEG] — )Gy, Gip1 = Gy — nA*A(E,G] — X)F, (2.2)

where A : R™ — R"™*™ is the adjoint map of A and admits an explicit form: A*(z) = > " z A,.



From [4], if the matrix A; has i.i.d. N (0, %) the operator A has RIP of order 2k + 1 with
constant § € (0,1) when m = Q (2£).
Symmetric Matrix Sensing. When F; = G; = X; are the same at the initialization phase, the
problem above becomes a symmetric matrix sensing problem. In this setting, we should further
assume M™ is symmetric and positive semidefinite. See Appendix B for more details.

3. Symmetric Matrix Sensing with Symmetric Parameterization

We first consider the symmetric matrix sensing setting, where M™* € R™*™ is a positive semi-
definite matrix of rank » < n. A standard approach is to use a factored form X X ' to learn M*
where X € R™*. We call this symmetric parameterization because X X is always symmetric
and positive semi-definite. We will also introduce the asymmetric parameterization soon. We call
the case when k = 7 the exact-parameterization because the rank of X X T matches that of M*.
However, in practice, r is often unknown, so one may choose some large enough k£ > r to ensure
the expressiveness of X X |, and we call this case over-parameterization.

We consider using gradient descent to minimize the standard Lo loss for training: Ly, (X) =

2 . .
ﬁ > (yl —(A;, XX T)) . We use the Frobneius norm of the reconstruction error as the per-

formance metric:
1
L(X) = 5HXXT — M*||%. (3.1)

We note that L(X) is also the matrix factorization loss and can be viewed as a special case of
Ly, when {A;}" | are random Gaussian matrices and the number of linear measurements goes to
infinity.

Contribution 1: Q(1/7?) Lower Bound for Symmetric Over-Parameterization. Our first con-
tribution is a rigorous exponential separation between the exact-parameterization and over-paramete
rization by proving an €(1/72) convergence rate lower bound for the symmetric setting with the
symmetric over-parameterization.

Theorem 1 (Informal Version of Theorem 6) Suppose we initialize X with a Gaussian distribu-
tion with small enough variance that scales with o, and use gradient descent with a small enough
constant step size to optimize the matrix factorization loss (3.1). Let X; denote the factor matrix at
the t-th iteration. Then with high probability over the initialization, there exists T(©) > 0 such that

we have' 2

XX, = M3 > (/1) Ve > T, (3.2)

Technical Insight: We find the root cause of the slow convergence is from the redundant space in
XX T, which converges to 0 at much slower rate compared to the signal space which converges to
M* with a linear rate. To derive the lower bound, we construct a potential function and use some
novel analyses of the updating rule to show that the potential function decreases slowly after a few
rounds. See the precise theorem and more technical discussions in Apepndix C .

1. For clarity, in our informal theorems in Section 1, we only display the dependency on & and 7', and ignore parameters
such as dimension, condition number, and step size.

2. T here and T, T, T4 in theorems below represent the burn-in time to get to a neighborhood of an optimum,
which can depend on initialization scale «, condition number, dimension, and step size.



4. Asymmetric and Symmetric Matrix Sensing with Asymmetric Parameterization

Next, we consider the more general asymmetric matrix sensing problem where the ground-truth
M* € R™X*"2 js asymmetric matrix of rank r. For this setting, we must use the asymmetric
parameterization. Specifically, we use FG ' to learn M* where F' € R™*¥ and G € R"2**. Same
as in the symmetric case, exact-parameterization means £ = r and over-parameterization means
k > r. We still use gradient descent to optimize the Lo loss for training:

LalF,G) = 53 (= (4 FGT)) .0

1=

and the performance metric is still: L(F,G) = ||[FGT — M*|3..

Also note that even for the symmetric matrix sensing problem where M* is positive semi-
definite, one can still use asymmetric parameterization. Although doing so seems unnecessary
at the first glance, we will soon see using asymmetric parameterization enjoys an exponential gain.
Contribution 2: Global Exact Convergence of Gradient Descent for Asymmetric Exact-Parame
terization with a Linear Convergence Rate. Our second contribution is a global exact convergence
result for randomly initialized gradient descent, and we show it enjoys a linear convergence rate.’

Theorem 2 (Informal version of Theorem 9) In the exact-parameterization setting (k = r), sup-
pose we initialize F and G using a Gaussian distribution with small enough variance o and use
gradient descent with a small enough constant step size to optimize the asymmetric matrix sensing
loss (4.1). Let Fy and G denote the factor matrices at the t-the iteration. Then with high probability
over the random initialization, there exists TW > 0 such that we have

IBGT = M3 = exp (—Q(£) ¥t = T, “2)

To our knowledge, this is the first global convergence result for randomly initialized GD. Prior

result either requires initialization to be close to optimal or can only guarantee to find a point with
error of similar scale as the initialization [29]. In contrast, our result only relies on random ini-
tialization and guarantees the error goes to 0 as ¢ goes to infinity. Notably, this convergence rate
is independent of «. See Figure 2(a)subfigure. Technically, unlike the symmetric case, here one
cannot simply combine existing results because one needs an exact balancing of F' and G to apply
the local result in [23], and the result in [29] is not enough.
Contribution 3: Global Exact Convergence of Gradient Descent for Asymmetric Over-Paramet
erization with an Initialization-Dependent Linear Convergence Rate. Our next contribution is
analogue theorem for the over-parameterization case with the caveat that the initialization scale «
also appears in the convergence rate.

Theorem 3 (Informal Version of Theorem 8) In the over-parameterization setting (k > r), sup-
pose we initialize F and G using a Gaussian distribution with small enough variance o and use
gradient descent with a small enough constant step size to optimize the asymmetric matrix sensing
loss (4.1). Let Fy and G denote the factor matrices at the t-the iteration. Then with high probability
over the random initialization, there exists T2 > 0 such that we have

|F,G) — M*||% = exp (—Q (o?t)) vt > T®. (4.3)

3. By exact convergence we mean the error goes to 0 as ¢ goes to infinity in contrast to prior works which only guarantee
to converge to a point with the error proportional to the initialization scale c.
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Figure 2: Curve of asymmetric matrix sensing. Figure 2(a)subfigure shows that the convergence
rate is linear and independent on the initialization scale under the exact-parameterized
case. Figure 2(b)subfigure shows that the convergence rate is linear and dependent on
the initialization scale under the over-parameterized case. When the initialization scale
is larger, the convergence speed is faster. Figure 2(c)subfigure shows the efficacy of our
new method. See Appendix L for experimental details.

This is also the first global exact convergence result of randomly initialized gradient descent in
the over-parameterized case. Recall that for the symmetric matrix sensing problem, even if M*
is positive semi-definite, one can still use an asymmetric parameterization F'G " to learn M*, and
Theorem 3 still holds. Comparing Theorem 3 and Theorem 1, we obtain a surprising corollary:

For the symmetric matrix sensing problem, using asymmetric parameterization is exponentially
faster than using symmetric parameterization.

Also notice that different from Theorem 2, the convergence rate of Theorem 3 also depends on
the initialization scale o which we require it to be small. Empirically we verify this dependency
is necessary. See Figure 2(b)subfigure. We also study a special case in Section D.1 to show the
dependency on the initialization scale is necessary in the worst case.

Technical Insight: Our key technical finding that gives the exponential acceleration is the imbal-
ance of F' and GG. Denote the imbalance matrix A; = FtTFt — GtT G'. We show that the converge
rate is linear when A, is positive definite, and the rate depends on the minimum eigenvalue of A,.
We use imbalance initialization so that the minimum eigenvalue of A is proportional to o, we can
further show that the minimum eigenvalue A, will not decrease too much, so the final convergence
rate is linear. Furthermore, such a connection to « also inspires us to design a faster algorithm.
Contribution 4: A Simple Algorithm with Initialization-Independent Linear Convergence
Rate for Asymetric Over-Parameterization. Our key idea is to increase the degree of imbal-
ance when F' and G are close to the optimum. We develop a new simple algorithm to accelerate
GD. The algorithm only involves transforming the factor matrices F’ and GG in one of iteration to
intensify the degree of imbalance (cf. Equation (E.1)).

Theorem 4 (Informal Version of Theorem 10) In the over-parameterization setting (k > 1),
suppose we initialize F' and G using a Gaussian distribution with small enough variance o, gra-
dient descent with a small enough constant step size, and the procedure described in Section E to
optimize the asymmetric matrix sensing loss (4.1). Let F; and Gy denote the factor matrices at the
t-the iteration. Then with high probability over the random initialization, there exists T > 0 such
that we have

|Gy — M*|)% = exp (—Q (t - T(3>)) V> TO) (4.4)
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Table 1: Comparison of previous representative work. The second row shows that the results hold
for symmetric matrix factorization/sensing or asymmetric matrix factorization/sensing.
The third row lists different types of initialization, where “Random” means the algorithm
uses random initialization (typically Gaussian), “Local” indicates a requirement for initial-
ization to be close to the optimal point. The fourth row “exact-cnvrg” represents whether
the loss will go to zero when round 7" goes to infinity. The fifth row indicates whether the
result applies to over-parameterization case or just the exact-parameterization case. The
last row lists the convergence rate of algorithms with exact-convergence results.

Is Symmetric Init. exact-cnvrg  k Range Rate
[30] Symmetric Random X k>r N/A
[50] Symmetric Local v k>r o(1)T?)
[301+[50] Symmetric Random v k>r o(1/ T2)
[29] Asymmetric ~ Random X k>r N/A
[32] Both Local v k=r exp(—Q(T))
[23] Asymmetric Local v k=r exp(—Q(T))
Theorem 2 (our paper)  Asymmetric ~ Random v k=r exp(—Q(T))
Theorem 3 (our paper)  Asymmetric ~ Random v E>r  exp(—Q(a’T))
Theorem 1 (our paper) ~ Symmetric ~ Random v k>r Q/T%)

Appendix

Appendix A. Related Work

Slow Down Due to Over-parameterization Similar exponential slowdown phenomena caused
by over-parameterization have been observed in other problems beyond matrix recovery, such as
teacher-student neural network training [27, 39] and Expectation-Maximization algorithm on Gaus-
sian mixture model [11, 38].

Matrix Sensing. Matrix sensing aims to recover the low-rank matrix based on measurements. In
earlier years, previous papers [3, 21] propose convex optimization-based algorithms, which mini-
mize the nuclear norm of a matrix, and another work [26] show that projected subgradient methods
can recover the nuclear norm minimizer. The previous work [37] also proposes a mirror descent
algorithm, which guarantees to converge to a nuclear norm minimizer. See [7] for a comprehensive
review.

Factorization Approach. The factorization approach models the true matrix as the product of
multiple matrices. For symmetric factorization, under the exact-parameterization setting k& = r,
papers [32, 47] shows the linear convergence of gradient descent when starting at a local point
that is close to the optimal point. This initialization can be implemented by spectral initialization.
However, when Paper [30] shows that with a small initialization, the gradient descent achieves a
small error that is dependent on the initialization scale, rather than the exact-convergence. Paper
[50] shows exact convergence with O(1/7?) convergence rate in the overparamterization setting.
Previous work [41, 42] have an intuitive discussion about why the gradient descent fails to achieve
linear convergence, and provides a new preconditioner to make the gradient descent converge faster.
However, there is no rigorous theoretical result to give a lower bound about the convergence rate.
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In this project, we aim to provide a ©(1/72) lower bound for the vanilla gradient descent for the
over-parameterized symmetric matrix factorization problem.

In recent years, a flurry of works have studied the asymmetric factorization [29, 31, 40]. Many
previous works [9, 13, 31, 32, 34, 40, 43, 44, 46] consider the exact-parameterization setting, where
assume the user-specific rank £ is exactly equal to true rank 7. To be more specific, the papers
[13, 32] adds a balance regularization term % |IFTF-G'G |% to the loss function, to make sure that
F and G are keeping balanced during the process of gradient descent. The paper [9] proves a global
convergence result with a diminishing step size 7, = O(1/+v/t). The paper [40] first proves the
global convergence of the asymmetric matrix factorization problem in the exact-parameterization
setting, with vanilla gradient descent and constant step size. The previous work [31] further consider
the ill-conditioned situation when the condition number x of M* (i.e. kK = o1(M*) /o, (M*)) be-
comes large, and adds a scaled operator after the gradient. The authors show that the new algorithm
can converge with a rate that is independent with x, avoids bad performance in the ill-conditioned
situation. Previous works [34, 43, 44, 46] consider either general problem formulations beyond the
quadratic loss or more complicated algorithms beyond the gradient descent.

Although exact-parameterized asymmetric matrix factorization and matrix sensing problems

have been explored intensively in the last decade, our understanding of the over-parameterization
setting, i.e., k£ > r, remains limited. To our best knowledge, there are two very recent works [15, 29]
consider the gradient descent for the asymmetric matrix sensing problem. Indeed, the recent work
[15] considers the asymmetric matrix factorization setting, and proves that starting with a small
initialization, the vanilla gradient descent sequentially recovers the principled component of the
ground-truth matrix. Paper [29] proves the convergence of gradient descent in the asymmetric
matrix sensing setting. However, both works prove that the gradient descent achieves a small error
when stopped early, and the error depends on the initialization scale. However, whether the gradient
descent can achieve exact-convergence remains open, and we solve this problem by extra techniques
and analyses.
Landscape Analysis of Non-convex Low-rank Problems. There are some works establishing the
general landscape analysis for the non-convex low-rank problems. The previous work [13] pro-
poses a general framework for non-convex low-rank matrix problems using strict saddle property,
and some following works [18, 48, 49] provide geometric analysis for solving general low-rank op-
timizations using the factorization approach. Note these paper on the global convergence requires
injecting noise to the gradient descent dynamics [16] whereas we analyze the vanilla gradient de-
scent. Injecting noise is required if one only uses the landscape analysis alone because there exists
exponential lower bounds for standard GD [8]. One recent work [41] provides geometry landscape
analysis of the over-parameterized non-convex Burer-Monteiro factorization using preconditioned
gradient descent.

Appendix B. Additional Preliminaries

Diagonal Matrix Simplification. Since both the RIP and the loss are invariant to orthogonal trans-
formation, we assume without loss generality that M* = Y in the rest of the paper for clarity,
following prior work [15, 40]. For the same reason, we also assume n; = ng = n to simplify
notations, and our results can be easily extended to ny # no.

To make the problem approachable, we shall make the following standard assumption on .A:
Restricted Isometry Property (RIP) [26].
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Definition 5 (Restricted Isometry Property) An operator A : R™*"2 — R™ satisfies the Re-
stricted Isometry Property of order r with constant § > 0 if for all matrices M : R™ *"2 with rank
at most r, we have (1 — 8)||M||% < [A(M)|* < (1 + 8[| M|)%.

Symmetric Matrix Factorization. In this setting, we further assume M™* is symmetric and positive
semidefinite, and A is the identity map. Since M* admits a factorization M* = F,F,| for some
F, € R™ ", we can force the factor ' = G = X in (2.1) and the loss becomes L(X) = || XX " —
%||%. Here, the factor X € R™**. We shall focus on the over-parameterization setting, i.e., k > r
in the Section C . The gradient descent with a step size 7 > 0 becomes

X1 = X — (X, X, — M) X, (B.1)

Appendix C. Lower Bound of Symmetric Matrix Factorization

We present a sublinear lower bound of the convergence rate of the gradient descent (B.1) for sym-
metric matrix factorization starting from a small random initialization. Our result supports the
empirical observations that overparmetrization slows down gradient descent [41, 42, 50] and Fig-
ure 1.

Theorem 6 Let Xg = o« - X'O, where each entry of f(o is N(0,1/k). For some universal constants
¢, 1 <1 <7, if the gradient descent method (B.1) starting at X with the initial scale o, the search
rank k, and the stepsize ) satisfying that

_ ayor 2 4 c3
0 k> 1 d 0 < C.1
<a< flog(r\f) > o ((r/{) og(r\/al/oz)) , an <n < Zroy (C.1)
then with probability at least 1—2n? exp(—+/cqk)—2n exp(—csk/4), forallt > T©) = CGlog(;#l)/a,
we have

log (/o1 /a)a? >
1%:.XT - S > (‘” Ogé mlt/o‘)o‘ ) > TO), (C2)
0'7»7771

The proof of Theorem 1 demonstrates that, following a rapid convergence phase, the gradient
descent eventually transitions to a sublinear convergence rate. Additionally, the ultimate error is
influenced by the initialization scale . Hence, opting for a smaller initialization scale leads the
method to approach ¥ at a linear rate, up to an error proportional to o, aligning with the findings
in [30].

C.1. Proof Sketch of Theorem 6

We provide a proof sketch of Theorem 6 in this section, deferring the details to §F.

The main intuition of Theorem 6 is that the last n — r rows of X, corresponding to the space
of 0 eigenvalues of X, converge to 0 at speed no faster than T . To make this intuition precise, for
eacht > 0, we let X; € R™* = [z} ... 2!]T where 2! € Rk We let the potential function be
Ay =30, [|2t]|*. We aim to show the following two key 1nequahtles,

2T|* > a?/8, foralli > r, (C.3a)
A1 > A(1 — O(n4y)), forall ¢ > T, (C.3b)
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Suppose (C.3) is true, then it implies that A; > O (i‘—;) forall ¢t > T, Since (X X — %)y =

||i||%, the lower bound (C.2) is established by noting that || X; X, —%||% > max;s, ||zt]|? > A;/n.
We leave the details in checking (C.3) to §F.

Appendix D. Convergence of Asymmetric Matrix Sensing

Here we investigate the dynamic of GD in the context of the asymmetric matrix sensing problem.
Surprisingly, we demonstrate that the convergence rate of gradient descent for asymmetric matrix
sensing problems is linear, so long as the initialization is imbalanced. However, this linear rate is
contingent upon the chosen initialization scale.

D.1. A Toy Example of Asymmetric Matrix Factorization

We first use a toy example of asymmetric matrix factorization to demonstrate the behavior of GD.
If we assume A is the identity map, and the loss and the GD update become

1
L(F,G) =5 |FG = 3% (D.1)
Ft+1 = Ft - n(FtG: - Z)Gt, Gt+1 = Gt - H(FtG;r - Z)TFt (DZ)
The following theorem tightly characterizes the convergence rate for a toy example.

Theorem 7 Consider the asymmetric matrix factorization (D.1), with k = r + 1. Choose n €
[0,1/6] and « € [0,1]. Assume that the diagonal matrix . = diag(oy,...,0,), where o; = 1
for i < r and is 0 otherwise. Also assume that gradient descent (D.2) starts at Iy, Go, where
(Fo)ii = afor1 <i <k and (Gp)iyi = aforl <i<r, (Gy)ii = a/3fori=r—+1,andall other
entries of Fy and G are zero. Then, the iterate (Fy, Gy) of (D.2) satisfies that

Oé4

S (1= 4n0?)* < RG] = I} < dn- (1—na?/4) T, ve > T3,

where Ty = ¢y log(1/a)/n, and c; is a universal constant.

The above initialization implicitly assumes that we know the singular vectors of 3. Such an assump-
tion greatly simplifies our presentations below. Note that we have a different initialization scale for
F; and G. As we shall see, such an imbalance is the key to establishing the convergence of F;G,' .

We introduce some notations before our proof. Denote the matrix of the first » row of F, G
as U,V e R"*F respectively, and the matrix of the last n — 7 row of F,G as J, K e R(—")xk
respectively. Further denote the corresponding iterate of gradient descent as Uy, V4, Ji, and K. The

. T o T uv,m -2, VT
difference F;GG, — X can be written in a block form as F;G, —¥ = T T | where
Uth Jth
¥, € R™" is the identity matrix. Hence, we may bound || ;G — %|| by
1K | < IRG) = SI < UV, = S0l + 19V |+ UK |+ (|2 (D.3)
From (D.3), we shall upper bound | U, V," —%,.||, | V" ||, [|[U: K" ||, and ||.J; K, ||, and lower bound

| J:K¢|| T. Let us now prove Theorem 7.
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Proof With our particular initialization and the formula of gradient descent (D.2), we have the
following equality for all ¢:

UK'=0, JV,'=0, U=V, J=wmA K =bA U =(al,0), (DA4a)

ap=a, by=a/3, o=« (D.4b)
Q41 = Q — natbf, (D.4¢)

bii1 = by — nalb. (D.4d)

a1 = ap(1+n —1ag), (D.4e)

where A € R("7)*k ig the matrix that (A)1x = 1 and other elements are all zero, and ay, by, oy € R.
We leave the detailed verification of (D.4) to §G. By considering (D.3) and (D.4), we see that we
only need to keep track of three sequences a¢, b;, ;. In particular, we have the following inequalities
for at, by, oy forall t > T7:

na?

T2 and fag — 1 < (1= n/2)" " D)

1 o «
a; € {Za,oz} , b e [3(1 — 4na?)t, 5(1
It is then easy to derive the upper and lower bounds. We leave the detail in checking (D.5) to §G.

Our proof is complete. |

Technical Insight. This proof of the toy case tells us why the imbalance initialization in the asym-
metric matrix factorization helps us to break the €2(1/72) convergence rate lower bound of the
symmetric case. Since we initialize Fy and G with a different scale, this difference makes the
norm of K converge to zero at a linear rate while keeping .J larger than a constant. However, in the
symmetric case, we have a; = b, so they must both converge to zero when the loss goes to zero (as
|F,G] — X|| > azby), leading to a sublinear convergence rate. In short, the imbalance property in
the initialization causes faster convergence in the asymmetric case.

D.2. Theoretical Results for Asymmetric Matrix Sensing

Motivated by the toy case in Section D.1, the imbalance property is the key ingredient for a linear
convergence rate. If we use a slightly imbalanced initialization Fy = « - FO, Go = (a/3) - éo,
where the elements of £ and G are N'(0,1/n), we have ||[E) Fy — G Go|| = Q(a?). Then, we
can show that the imbalance property keeps true when the step size is small, and thus, the gradient
descent (2.2) converges with a linear rate similar to the toy case.

Our result is built upon the recent work [29] in dealing with the initial phase. Define the follow-
ing quantities o, 179 according to [29, Theorem 1]:

NG ( VE—r—1 c

Ck
T B max{2n, k- %2\/ma><{2n,k}> T o log (a(jE\/—T%%—J’

Qg (D.6)

where ¢ and C are some numerical constants. Below, we show exact convergence results for both
k=rand k > r.
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Theorem 8 Consider the matrix sensing problem (4.1) and the gradient descent (2.2). For some
numerical constants ¢; > 0, 1 < 1 < 7, if the search rank k satisfiesr < k < %, the initial scale o
and n satisfy

a < min {615_2\/0}, ao} , 1 <min {610/1/0'?,770}, D.7)

where oy, ng are defined in (D.6), and the operator A has the RIP of order 2k + 1 with constant §
satisfying

C1
9 /{3\/777
then the gradient descent (2.2) starting with Fy = o - Fy, Gy = (a/3) - Go, where Fy, Gy € R<k
whose entries are i.i.d. N'(0,1/n), satisfies that

6v/2k +1 < min {cm—ﬁ log~ (o, /(na)) 1/128} : (D.8)

4 2\ t/4
LGT -y < -2 (12 vt > T D9
IRGT - sip < 20 (1-25) L v, ®9)

with probability at least 1 —2e =" —cze =% — (cxv)* =D ywhere T = ¢4 log(\/a, /now) /no,)
and v € |0, 1] is an arbitrary parameter.

Next, we state our results on exact parametrization.

Theorem 9 Consider the same setting as Theorem 8 except assuming k = r, then with probability

at least 1 — 2e2" — cqe—Cak _ c5v, the gradient descent (2.2) achieves
o2 \'
IRG; —2||% < 2no, - (1 — g4;1) , vt>T®@, (D.10)

where T?) = ¢;log(\/a, /naw) /na,) for some numerical constant c;.

Now we highlight two bullet points of Theorem 8 and 9.

Exact Convergence. The main difference between the above theorems and previous convergence
results in [29] is that we prove the exact convergence property, i.e., the loss finally degenerates to
zero when 7T tends to infinity (cf. Table 1). Moreover, we prove that the convergence rate of the
gradient descent depends on the initialization scale o, which matches our empirical observations in
Figure 4.

Discussions about Parameters. First, since we utilize the initial phase result in [29] to guarantee
that the loss degenerates to a small scale, our parameters d, c, and 7 should satisfy the requirement
o = O(H%ﬁ),ozo,no in [29]. We further require 69,1 = O(k7 %), a = O(ﬂ_2@), which
are both polynomials of the conditional number . In addition, the step size 7 has the requirement
n = O(a*/o}), which can be much smaller than the requirements n = O(1/k%07) in [29]. In
Section E, we propose a novel algorithm that allows larger learning rate which is independent of a.

Technical insight Similar to the asymmetric matrix factorization case in the proof of Theorem 7,
the main effort is in characterizing the behavior of .J; K, . In particular, the update rule of K is

Kiy1 = Ki(1 — nF,' F}) +nE, (D.11)
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where E is some error matrix since A is not an identity. Because of our initialization, we know the
following holds for ¢t = 0 and A, = F, F, — G} G4,

ca’l < Ay < Co?I. (D.12)

for some numerical constant ¢, C' > 0. Hence, we can show || K| shrinks towards O so long as
(D.11) is true, £ = 0, and G} is well-bounded. Indeed, we can prove (D.12) and Gy, J; upper
bounded for all ¢ > 0 via a proper induction. We may then be tempted to conclude .J; K, converges
to 0. However, the actual analysis of the gradient descent (2.2) for matrix sensing is much more
complicated due to the error E. It is now unclear whether || K} || will shrink under (D.12). To deal
with it, we further consider the structure of . We leave the details to §H.

Appendix E. A Simple Fast convergence method

As discussed in Section D, the fundamental reason that the convergence rate depends on the ini-
tialization scaling « is that the imlabace between F' and G determines the convergence rate, but
the imbalance between F' and G remains at the initialization scale. This observation motivates
us to do a straightforward additional step in one iteration to intensify the imbalance. Specifi-
cally, suppose at the T} iteration we have reached a neighborhood of an optimum that satisfies:
| A* A(Fp) é;(a) — )| < 7 where the radius ot | Eps) G;<3> |3/4 /8 is chosen for some techni-

cal reasons (cf. Section J). Here we use ﬁt and ét to denote the iterates before we make the change
we describe below and F; and G to denote thE iterates after make the change.

Let the singular value decomposition of F.3 = AY'B with the diagonal matrix ¥’ € RExE
and ¥, = o}, then let ¥;,,, € R**% be a diagonal matrix and (X;,,)i = 3/ o} for some small
constant 5 = O(o,), then we transform the matrix F), Gy ) by

Fr@ = Fro B Sing, Gre = Gpe BE L (E.1)

We can show that, when F' and G have reached a local region of an optimum, their magnitude
will have similar scale as M*. Therefore, the step Equation (E.1) can create an imbalance between
F and G as large the magnitude of M™*, which is significantly larger than the initial scaling ««. The
following theorem shows we can obtain a convergence rate independent of the initialization scaling
a. The proof is deferred to §J.

Theorem 10 With the same setting as Theorem 8, suppose that at the step T'®) we have HA*A(ﬁT(s) é;@) —
)| <~y for some v > 0, and we do one step as in Equation (E.1). Then with probability at least
1 — 22" — cge= % — (cx0) k=) we have for all t > T®),

12 2\ 2(t—T®)
IBeT — sk <2 (1—’”) ,
o] 2

so long as 0 < 6771/60%/3 < B < cgoy, and the step size satisfies n < 0952/0% from the iteration
T®) < ¢19log(y/ar /naw) /no, for some positive numerical constants c;,i = 1, . .., 10.
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Appendix F. Proof of Theorem 6

In this proof, we denote

X e Rk = |72 | (F.1)

S

where z; € R¥*1 is the transpose of the row vector. Since the updating rule can be written as
_ T
Xt+1 = Xt - ’I’](XtXt - E)Xt,

where we choose 7 instead of 27 for the simplicity, which does not influence the subsequent proof.
By substituting the equation (F.1), the updating rule can be written as

n

(@) =@ =n(l2fl? —o)e — Y- n((=h) a5(zh)")

j=1,j#i
where o; = 0 for ¢ > r. Denote
(x]Ta;k)2
0 =max — s
k||l
is the maximum angle between different vectors in z1,--- ,x,. We start with the outline of the
proof.

F.1. Proof outline of Theorem 6

Recall we want to establish the key inequalities (C.3). The updating rule (B.1) gives the following
lower bound of xﬁ“ fori > r:

[ = [ T S 1 R/ N 1 o I (F2)

i<r j>r

where the quantity §Y = Max; j.min{s,j}<r 0ijt and the square cosine 6;;1 = cos? Z(zi,x;). Thus,
to establish the key inequalities (C.3), we need to control the quantity #. Our analysis then consists
of three phases. In the last phase, we show (C.3) holds and our proof is complete.

In the first phase, we show that ||xt||? for i < r becomes large, while ||xt||* for i > r still
remains small yet bounded away from 0. In addition, the quantity 6;;; remains small. Phase 1
terminates when ||z¢||? is larger than or equal to 25;.

After the first phase terminates, in the second and third phases, we show that ¥ converges to 0
linearly and the quantity 6Y 1/ " t]|? converges to zero at a linear rate as well. We also keep

j>r ||:I:j
track of the magnitude of ||x¢||

t|2 and show ||zf|| stays close to o; for i < r, and ||zf||? < 2a2.

The second phase terminates once 6 < O(> isr Ha:§H2 /o1) and we enter the last phase: the
convergence behavior of -, [[#]|%. Note with 6 < O(3_ .., [|#4]|*/o1) and ||z}||* < 20, for
1 < r, we can prove (C.3b). The condition (C.3a) can be proven since the first two phases are quite

short and the updating formula of ; for i > r shows ||z;]|? cannot decrease too much.
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F.2. Phase 1
In this phase, we show that ||z|? for i < r becomes large, while ||zt||? for i > 7 still remains
small. In addition, the maximum angle between different column vectors remains small. Phase 1
terminates when ||zf||? is larger than a constant.

To be more specific, we have the following two lemmas. Lemma 11 states that the initial angle
0o = O(log?(r\/a1/a)(rk)?) is small because the vectors in the high-dimensional space are nearly

orthogonal.

t”2

Lemma 11 For some constant cq and ¢, if k >

cyn®k exp(—Vk), we have

c2 . ey o
T6Tog™ (r /o1 /@) (rr) T with probability at least 1

c
b < logQ(r\/a/a)(?%)2 (E:3)

Proof See §K.1 for proof. |
Lemma 12 states that with the initialization scale , the norm of randomized vector z¥ is ©(a?).
Lemma 12 With probability at least 1 — 2n exp(—csk/4), for some constant ¢, we have

|22 € [a?/2,207).
Proof See §K.2 for the proof. |

Now we prove the following three conditions by induction.

Lemma 13 There exists a constant C1, such that Ty < Ci(log(\/o1/na)/noy) and then during
the first Ty rounds, with probability at least 1 — 2¢4n’k exp(—vV'k) — 2nexp(—csk/4) for some
constant c4 and cs, the following four statements always hold

z}])* < 204 (E4)
/4 < ||lzh? <202 (i >7) (F.5)
20 > 0, (F.6)
Also, if ||2t||> < 30:/4, we have
2P > (1 + noy/4) |l (E7)

x'||? > 30:/4, and Phase 1 terminates.

Moreover, at T rounds,

Proof
By Lemma 11 and Lemma 12, with probability at least 1 —2c4n?k exp(—v/'k) —2n exp(—csk/4),
02 2 2 .
we have ||z;||* € [@®/2,2a7] for i € [n], and 6y < m. Then assume that the three
conditions hold for rounds before ¢, then at the ¢ 4+ 1 round, we proof the four statements above one
by one.
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Proof of Eq.(F.5) For¢ > r, we have

(@)’ = —nz

Then the updating rule of ||x¢||> can be written as

(@2 = (|24 — 2772 2P (@) (e (el Tap) < l2f)?. (E8)
7,k=1
The last inequality in (E.8) is because
() " (2f) T ak(2h) T (@) < (25) Tk (((af) ") + (o) Ta)?) /2 (F.9)
< ou((@) " 25)” + ((2h) " 20)?), (E.10)
and then
Y () (@) e ah) (2 <0 Y oul(ad) " 2h)? + ((af) T2h)?)
J:k=1 gk=1
SR (CHIED)
j=1
<) ((ah) "2h)*. (F.11)

where the last inequality holds because 77 < 1/no;. Thus the ¢3-norm of x;r does not increase, and
the right side of Eq.(F.5) holds.
Also, we have

2
n
2 2 12 — 20 S (@ T 4 | S T )T
j=1 j=1
n
> b1 — a1 - 2060 3 b1 — 2] (F12)

J#i
o1 F ) ()T i<
Equation (F.2) is because TPt = ijt < 0¢. Now by (F.4) and (F.5), we can get

n
Z ||:r3§||2 <r-2014 (n—7) 20 < 201 + 2na?
JF#i
Hence we can further derive
|\x§+1||2 > ||$f||2 . (1 — 200y (2roq + 2na2) —2n- 2a2)
> H:cf”2 . (1 — n(8001 + 4a2)) )
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where the last inequality is because o < /ro1/+y/n. Thus by (1 —a)(1 —b) > (1 — a — b) for
a,b > 0, we can get

|2 > [|29)2 - (1 = n(86,01 + 4a?))™
2
> 5 (1= Tin(8 - (260)o1 +40?)) (F.13)
2
[0
> — F.14
> 2 (F.14)

Equation (F.13) holds by induction hypothesis (F.6), and the last inequality is because of our choice
onTj, a, and Gy < O(WM) from the induction hypothesis. Hence, we complete the proof
of Eq.(F.5).

Proof of Eq.(F.7) Fori < r,if ||z}||? < 30;/4, by the updating rule,

n

413 > (1= n(llfl* — 00)? [l — 2772 2P () = 00) > () Tah)?
JFi J#i
(F.15)
n
> (L= n(llf]|* = o2))||lf]1* — 2772 ] AR N A o
J#i J#i
n
> (L =n(lf]* = )|zt — 20 Y ((2}) "25)* = (no?)|| ]|
J#i
THe last inequality uses the fact that |[|2}]|* — 03| < 207 and [|2%]|* < 207. Then by ((z}) "«%)? <
[} ]|* ]|« - 6, we can further get

n
7P = | 1= 2n()afl® = 00) =20 ) af1?0 — 20 (no?) | ||

J#i
> (14 n0i/2 — 2n*(no?) — no,/16)|f|)? (E.16)
> (1+04(n/2 — n/16 — 1/16))||x}||” (E17)
> (1+noi/4)||lz4|>.

The inequality (F.16) uses the fact § < 26y < 128M and 377, [|2;]1* < 2017+2na” < doyr < 5.
The inequality (F.17) uses the fact that n < 32

O'
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Proof of Eq.(F.4) If ||zt||?> > 30;/4, by the updating rule, we can get

2713 — ool < | 1= 2nlafll® + 0P (lai)® = oo lail® + n? Z ) 25)? | f)? — il
J#
n n
+ 21 (@) e+ | Y ((h) Taf(ah) Tt (at) Tah)

J#i Jk#i

n
< (L= no)lllfll? —oil + 30 Y ((ah) "25)? (E18)

J#i

()
The last inequality holds by Eq.(F.11) and

n
2n|2d]® = n?(|=t)® = o) |l2fl|? — 207> ((2}) Tah)? (F.19)
JFi
> 3ﬂ ‘ 2(9 9 2n2no? F.20
_201 n°(201) - 201 — 2n°noy (F20)
> noi, (F21)

where (F.20) holds by [|zf||? > 2%,

< 207 for all ¢ € [n]. The last inequality (F.21) holds

byn < C (W —) for small constant C The first term of (F.18) represents the main converge part,
and (a) represents the perturbation term. Now for the perturbation term (a), since o < 2 and
0 <20y < W = 2SIZ’Q,wecanget
@= > ((@hTah)y>+ Y (@) ah)? (F22)
J#LIST JAiG>T
< (roy + 2na®)6; - 20, (F.23)
< 2roy-0; 201 (F24)
= dro? - b,
< 0?2/5, (F.25)

where (F.23) holds by (F.4) and (E.5). (F.24) holds by a = O(y/ro1/n), and the last inequality
(F.25) holds by 6 is small, i.e. §; < 20y = O(1/rx?). Now it is easy to get that (z/™) T2/ < 20,
by

3 3Inc2
775UZ < (1 —no;)o; + 77501 < 0. (F.26)

272 = o3l < (1 =noi)(lail* = 03) +

Hence we complete the proof of Eq.(F.4).
Proof of Eq.(F.6) Now we consider the change of 6. For 7 # j, denote

) (a)Tay
-
5 TPl P
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Now we first calculate the (= t+1)T:L'§+1 by the updating rule:

(:Ct+1)'|' t+1

i Ly
= (L=n(llzil* = 03)) (1 = n(llz51 = 05)) (1) "5 —nllefl* (1 = n(ll25l|* — o)) () "5
A B
POl — o) @) 4 S (@) b Tl (e T
C kl#i,5
D
n
—n(2 = n(llef® = o0) = n(ll5l1* = 05)) D (@) Taf(xh) "
ki,
E
+n? Z ) ot (2h) Tl (a)) T2l + n? Z ) Tal(al) Talh
k#i,j k#i,j
F

Now we bound A, B, C, D, E and F respectively. First, by ||zt||? < 20 for any i € [m], we have

A < (1 =n(|fll® = i) = n(ll25]1* = o) + 7° (51 = 00) (25117 = 05))) () "
< (L=n (lll® + [125]1* — 0i — 05) +n* - 407) (2}) ", (F.27)
Now we bound term B. We have
B +C = (—n(|={” + I£5]1*) + * ((HIEH2 — opllhI? + (lfl]* — oo)ll2f]?)) (f)
< (=nl=fl® + [|251?) + 0 - (807)) (x4) Tt (F.28)

Then, for D, by 6; < 1, we have

D= 3 kPl - \/OiktOr0s6050/ 0550 | (2,
k,1#i,5

< (772 -n?. 40% . Ht/\/eij,t) (xi)—rxﬁ (F.29)

For E, since we have

E<2nZ| |+4U17]22] T;

k1,5 k#i,j
<20 D Nkl \/OinaOhja/Oise + doin® > Nl -/ Oikabri /O | (2]) T
k1,5 k#i.j
<20 > Nkl - \/OiniOhja/0ije + dnoin® - (201) - 0,/ /Bijs 4 (F.30)
k#i,j
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Lastly, for F, since («}) "o}, («},) "o} < [|}]|*||2}]|* < 407, we have

J
F < 1%8noi(z}) k. (F31)
Now combining (F.27), (F.28), (F.29), (F.30) and (F.31), we can get
(IE+1)TIE+1 (F.32)
< (1 —n@llzill® + 22 l1* — i = 05) + 20 Y wwll® - \/OuniOhj1 /050 + 307120%772@/\/%)) ()" 5.
o (F.33)

On the other hand, consider the change of ||zt||?. By Eq.(F.15),

n
412 > (= et 2 = o) latl? — 20 3 (@ T + Pt — o) S ()Tt
J#i J#i
n
> (1=2n(lzf] — o) — 20 > _ 1251°6i50 — 4n*nbi0?)[|2}))?
J#i
n
> (1= 2n(lf]| — 05) — 20 ) [|25]1%6ij — 4n*nbro?)||2}]|
k=1

t+1

Hence the norm of z;" " and a;tH can be lower bounded by

e |2

> (1 = 2n(|lfl® = 0i) = 20(ll2511> — 05) — 20 Y awl® Binse + i) — 20l 11 + l|il|*) Bz

k#i,j
n
—ar0m*ot + 3 (eI — o) D a0 + 3 2n(latl? = opPnio? ) )
1=i,j k=1 1=4,j
> (1= 29(Jat)2 = o5) — 20024112 = 03) = 20 3wl Oses + O310) — 205112 + l2:1) 050
k#i,j

—4n?0m2c} — 2 - 4n? - (200)n - (201)0; — 2 - dnoy - 772n20t0%) ||xf\|2||x§||2 (F.34)
> (1 = 2(||25]1 = o3) — 20125 1? = 05) =20 Y Nwwl®Birs + Ojwa) — 20l 1 + llzi]1*) 635
[y
— 6120?07 )|t 25, (F35)

where (F.35) holds by n > 8k > 8 and 2)(||xt||? — o;) < 4noy < 1. Then by (F.33) and (F.35), we
have

; ; ($§+1)T$§-+1 H t+1H ||fL't+1HZ
ijt+1 = Uit -
N T (@) Ty [EAREA
1-A+B
<O.i,- o F.36
=t (1—A—C) (536)
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where

A= 2n(|2}|? = oi + |l25]|* — 01)) < dnon (F.37)

B = 277”1'k||2 . \/Qikvtekﬁt/@ij’t + 307120'%7729,5/\/ 91']‘715 (F.38)

and
C =20 llagll*Osns + Ojr) + 202511 + |21 *)0s5. + 60°n’0po (F.39)
kg
< (8no1 + 2n(2na’® + 2roy) + 6n°n’ol) Oy, (F.40)

where the last inequality uses the fact that
Do llakl® < Ykl + ) llakll® < 2ro + 2na,
k#1,5 k<r k>r

Hence we choose 1 < 1000na to be sufficiently small so that max{A4,C} < 1/100, then by
}zﬁg<1+23+20mnmﬂA(n<1ﬂm

, (1-A+D
P\1—a-c
< Bij1+4n Z 2kl - /Ot 1Ok 10ij0 + 600> 0in* 041/ ;)¢
kg

+ 62 (81701 + 277(2na2 + 2roy) + 61727120%)

2 + 60n202 293/2

< it +4n(2ro1 + 2na )

+ 67 (81701 + 2n(2na? + 2roy) + 6n2n20%>
< 0i54 + 61(2roy + 2na?)6, 02/? + 60n 01n293/ + 800107 + 6n’n?0i07)
< 051 +98n - (ro16; /2)

The last inequality holds by « < /&1 /+/n, and n?01n? < 7 because 1 <
Hence

n201

Oi1 < 0y + 980 (ro )02/ (F41)
The Phase 1 terminates when Hmrl I? > @. Since ||2?]|? > a?/2 and
;1% = (1 + no/4) 23], (F.42)
there is a constant C3 such that T < C(log(y/01/)/n0o;). Hence, before round 717,
07, < 0o + 98Ty - oy - (200)%/% < Oy + 98C17k(200)%/? log (1 /a1 /) < 26p.
This is because
fo = O((log®(rv/a1/a)(rK))?)
by Lemma 11 and choosing k > co((rk)2 log(r/o1/a))* for large enough cs [ |
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F.3. Phase 2

Denote HtU = maXpin{; j}<r Oij¢- In this phase, we prove that 9? is linear convergence, and the
convergence rate of the loss is at least (1/72). To be more specific, we will show that

0%, <0V - (1—n-o./4) <6 (F43)
Hg‘rl 9? nor
< - ( - —) (F44)
Zi>7‘ ||x§+1H2 Zi>r HJI“P 8
1 .
il = ol < Joi (i <) (F45)
] < 207 (i>7) (F.46)

First, the condition (F.45) and (F.46) hold at round 77 . Then, if it holds before round ¢, consider
round ¢ 4 1, similar to Phase 1, condition (F.46) also holds. Now we prove Eq.(F.43), (F.44) and
(F.45) one by one.

Proof of Eq.(F.45) Fori < r,if ||zt||?> > 30:/4, by Eq.(F.18)

n
i3 = sl < (1= noa)ll|24]|* = ail + 30 > ((«}) T})? (F47)
J#i
Hence by (F.45) and (F.46), we can get

n

D(EhTah)?< Y (@) + Yo ((ah)Taf)?

J#i JALI<T LG
< (roy + 4n01a2)9tU
< 2ro10Y (E.48)
< 270169, (E.49)
< 2roy - 20y < 03/20. (E.50)

The inequality (F.48) is because o < ﬁ, the inequality (F.49) holds by induction hypothesis

. . . 1
(F.43), and the last inequality (F.50) is because of (F.6) and 6y < Sorre-

Hence if |||2t]|? — 0| < 0;/4, by combining (F.47) and (F.50), we have
it I? = o3l < (1= noa)[l[af]] — oil + 3n04/20 < 77/4.

Now it is easy to get that |[|x!||? — ;] < 0.250; for t > T} by induction because of |||m;‘F1 1?2 —0i] <
0.250;. Thus we complete the proof of Eq.(F.45).

Proof of Eq.(F.43) First, we consider i < r,j # i € [n] and 0;;; > 6Y /2, since (F.4) and (F.5)
still holds with (F.45) and (F.46), similarly, we can still have equation (F.36), i.e.

1-A-B
9ij,t+1 = 9z‘j,t ' (1—A—C> .
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where
A = 2(|zf]]* = o) + 2n([[25]1* — o) > =2n(2 - (03/4)) > —1/100.

B = 2([lf|* + 1251%) — 20 Y llakl? - \/Oikabhse/0iie — 30n° 0P oty 0F [/ Bz

k#i,j
> 2(||=f)1” + [|24)%) — 4n Y [lakl|*VOU — dnna® — 40n*n’o] (FS1)
k<r
3 .
>2n- ZZ — 8nroi1+/20r1, — dnna’ — 40n27720% (F.52)
> 10y (F.53)

The inequality Eq.(F.51) holds by 0;;; > 91{] /2, the inequality (F.52) holds by (F.43), and (F.53)
holds by

01, = O ( L ) . a=0(K/o./n), n=0(01/n*koy). (E54)

r2R2

The term C is defined and can be bounded by

C =20 Nkl Gies + Osx) + 20(ill® + ll2;]1*)6s5. + 60°0n’ot
ki

< 4772 |23 ]|20Y 4 4nna6, + 6020,n30?
k<r

< 87“7)019? + 4dnna® + 6n*n’c?
< 8rnoy b, + 4nma® + 6n°n’o? (E.55)
<n-o/2. (F.56)

The inequality (F.55) holds by (F.43), and the inequality (F.56) holds by (F.54).
Then fori < r,j # i € [n] and 6;;; > 0F /2, we can get

1-A-B
owist <0 (=5 c)
2—n-o,
<biit | /=
- (2_77'Jr/2>
1—n-0./2
< eij,t' (1_7707”/4> < 9ij¢‘(1_77‘0r/4) (E.57)

Fori <r,j € [n] and 6, < 6Y /2, we have

B> =20 |lkl*0] //0ije — 20> Nlakl®\/ 07 //Bij — 30nPn03\/0F /\/0ij  (F.58)

k<r k>r

> —dnra10Y /\/0i;1 — (dnna® + 30n20*0i)\/0Y /\/iji (F.59)
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1-A-B
Oiji+1 < O3 - <1—A—C>
<6 (1—2B+20)
< Omt + 8’/]7“0'191{] Hij,t + (4m7a2 + 307L2772O'%)\/ QtUHijyt + 2001‘3‘7,5

U

0
< o+ 8wrond] + (4nna® + 30n%701)60; + 10,0

S (F.60)

The last inequality is because 8nroy + 4nna® + 30n’*n*c? + no, < L by n < O(1/noy) and

n < O(1/na?). Hence by Eq.(F.57) and (F.60) and the fact that no,. /4 < 1/4,
3
atﬂlgef-max{zg—n-ar/zi}:(1—n-ar/4)9tU. (E61)

Thus we complete the proof of Eq.(F.43)
Proof of Eq.(F.44) Also, for i > r, denote 6;; ; = 1, then

n
T T T
112 = Nlafl® = 20 ) (@) Ta)? +o | D () Taj(af)
j=1

n
> [P =20 ) l|25]1%6is.) (F.62)
j=1
> ||zi)*(1 = 2nro167 — 2nna?)
> lzil* (1 =7~ 0r/8)
The last inequality holds because

0V <6y < O(1/rk) (F.63)
a<+/o/n (F.64)

Hence the term 8 /||x;||? for i > r is also linear convergence by

0 00 l-mo/4_ 0 '<1_@>
Yoo l2iH2 T X I 1=n-00/8 7 i, Ml 8

Hence we complete the proof of Eq.(F.44).

F.4. Phase 3: lower bound of convergence rate

Now by (F.44), there are constants cg and ¢7 such that, if we denote Ty = T1+c7(log(\/ro1/a) /noy) =
ce(log(y/ro1/a) /noy), then we will have

0%, <> a2 /ron (F.65)

i>r
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because of the fact that 6%, / 3, ||z [|? < —%5 < 4/a?. Now after round 75, consider i > r, we
can have

n
1
Izt P = 1P =20 ) 1125 1%6350)
j=1

> |laf|*(1 = 20ro16] — 207y ||l

J>r
Hence by Eq.(F.62), we have
Dol E = (DN ) | L 20r0u6) — 20 |l (F.66)
j>r j>r >r
=N D T N EEUD P E e (F.67)

j>r j>r

where the second inequality is derived from (F.65).
Hence we can show that ) HxﬁHz = Q(1/T?). In fact, suppose at round T3, we denote

T:
DT2 = Zj>7‘ H.le]2 2, then by

j>r

n
Y2 > (2P (1= 20 [k P0i))
k=1
> ||xf||2(1 — 2777"019U — 2nna2)
we can get
2212 > (|2 1P(1 = 297016, — 2nna®)>~T
> |21 (1 = es(log(ry/o1/a) /nor) - (2nro167, + 2nna®))
> ||zt ? - (1 — eslog(ry/ar/a) - (4rky + 2na? /o))
1
> Sl 2 (F.68)

a2

8

Y

where the inequality (F.68) is because

1
=0 (i) e
2 Vor
o <0 <nlog(r (71/04)> . (F.70)
Hence
a? a?
ToDp, > To - (n — T)§ > c7(log(y/roi/a)/noy) - 3 (F.71)
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by n > r. Define Dp, 411 = Drp,+i(1 — 4nDp,+;), by Eq.(F.67), we have

Dryqi < Dy, =Y [|22]|* < 200,
i>r

On the other hand, if n(T% + i) Dp,+; < 1/8, and then

77(T2 + 14 1).DT2+Z'+1 == T2 + 14 1)DT2+i(1 - 477DT2+’L')

15 + i) D1y i — nD1y4i/2 + D1y 40/ 2

n(
n( )
(T + i) Dryri — (To + 0)4n° D3, + 1D1,1/2
n( )
n(T> + i) Dy,

AVARAVARY]

where (F.73) holds by nDr,+; < 2nna? < 1/8.
If n(Ty + i) Dryyi > 1/8, since nDr,; < 1/8, we have nDr, < 2nna? < 1/8.

n(T2 +i+1)Dpyyitr 2 0(T2 + 1) Dpyi(1 — 49D 1y44) + 1D 1p4i(1 — 49 D1y )

1 1 1
Z§'§+nDT2+i'§
1
> —.
— 16

Thus by the two inequalities above, at round ¢ > T5, we can have
ntDy > min{nT>Dr,,1/16}.
Now by (F.71),

crlog(y/ror/a)a?

8a,

NIy D, >

)

then for any ¢ > 75, we have

1 2
ntDy > min{c7 og(v/roi/a)a ,1/16}

8o,

Now by choosing v = O(4/7;) so that er log(yTror/aja” W < 1/16, we can derive

D, > ey log(w/ral/a)aQ'
Sopnt

Since for j > r, (X; X, — %)j; = ||$§

2, we have || X; X, — %|| > max;, |%]|* and

2 2\ ?
log(\/ro1/a)a
X, 32> (m H2y) = pEm> (2 :
| X X, = (J;i?({‘.f]H }) = Di/n" > So,mnt
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Ty + i) Dryvi — (To + )40 Dy s + 1015 4i(1 — 40Dy 1)

(FE.73)

(F74)

(E.75)

(F76)



Appendix G. Proof of Theorem 7

Denote the matrix of the first  row of F, G as U, V respectively, and the matrix of the last n —r row
of F,G as J, K respectively. Hence U,V € R™* J K € R(™=")%k n this case, the difference
F,G] — ¥ can be written in a block form as

T e (Ui =% LV,
Fth E — < UthT JthT 9 (G.l)
where ¥, = I € R"*". Hence the loss can be bounded by
17K < IRGT =S < UV =Sl + [ JV |+ UK |+ ([ TeE - (G.2)

The updating rule for (U, V, J, K) under gradient descent in (D.2) can be rewritten explicitly as
U1 = U + 05, Ve = UV, Vi + K[| )
Vgt = Vi + 02, Up — V(U Uy + T )
Jirr = Je —n (V' Vi + K[ Ky)
K1 = Ky — KU U + J ).
Note that with our particular initialization, we have the following equality for all ¢:
UK =0,2,V,;' =0, and U, =V, (G.3)
Indeed, the conditions (G.3) are satisfied for ¢ = 0. For £ + 1, we have
Uprr = Up + (S = UV, Wi = Vi +0(Sr = UV, U = Vi, Keor = Ko — 1G] g
U Koy = UK +0(S, — UV, UK, — Vi LK —n*(S, — UV,)UJ LK, =0

The last equality arises from the fact that U; K, = 0,.J;V;" = 0 and U; = V;. Similarly, we can get
Jit1 V;L = 0. Hence we can rewrite the updating rule of J; and K; as

Jis1 = Jy — nJi K, K; (G.4)
Kiy1 = Ky — K J, J;. (G.5)

Let us now argue why the convergence rate can not be faster than Q((1 — 6na?)?). Denote A €
R(=7)%k a9 the matrix that (A)1x = 1 and other elements are all zero. We have that Jy = aA and
Ky = (a/3) - A. Combining this with Eq.(G.4) and Eq.(G.5), we have J; = a; A, K; = by A, where

apg = a,bp = a/3, (G.6a)
ar41 = ap — nagby, (G.6b)
bt+1 = bt - na?bt. (G6C)

It is immediate that 0 < a1 < a4,0 < byyq < by, max{ay, b;} < a because of nb? < nbg =
na? < 1 and similarly na? < 1. Now by na? < 1/4,

11 Kl = areabers = (1—naf) (1 —nbf)arby > (1 —2na®)2ab; > (1 — dna®)azhy.
(G.7)

32



By Eq.(G.2) that | ;G — %|| > ||J;
faster than agby(1 — 4na?)t > %2(1 — 4na?)t.

Next, we show why the convergence rate is exactly ©((1 — ©(na?))?) in this toy case. By
Eq.(G.3), the loss | F;G} — %|| < ||U:U," — .|| + ||J: K" ||. First, we consider the norm ||U;U," —
Y., ||. Since in this toy case, >, = I, and U; = V, for all ¢, the updating rule of U; can be written as

U1 = Uy — n(UU," — T)U; (G.8)

G/ — Y| can not be

Note that Uy = (al,,0) € R"™*. By induction, we can show that U; = (a;I,,0) and o1 =
oy —n(a? — 1)ay forall t > 0. If o, < 1/2, we have
a1 = o(1+n—nai) > a(1+1/2).

Then there exists a constant ¢; and 77 = ¢; (log (1/a)/n) such that after T} rounds, we can get
a; > 1/2. By the fact that a1 = (1 +n(1 —a?)) < max{ay, 2} when i < 1, it is easy to show
ay < 2forallt > 0. Thus when 1 < 1/6, we can get 1 — n(a; + 1)a; > 0 and then

|1 — 1) = [(r = 1) = (e — 1) (e + 1)y
= oy — 1|(1 = n(ae + 1))
<oy — 1(1 = n/2).

we know that ||U;U," — %, || = a? — 1 converges at a linear rate
@
00 =2 < (1=n/2)"" < (1= na?/4)t"T2, (G.9)

where (a) uses the fact that
1-na/4>1-n>(1-n/2)° (G.10)

Hence we only need to show that ||.J;K," || converges at a relatively slower speed O((1 —
O(na?))?). To do this, we prove the following statements by induction.

a>a; > af2, by <b(1—na®/4) (G.11)

Using by = «/3, we see the above implies that || K, || = a:b; < O((1 — ©(na?))?).
Let us prove (G.11) via induction. It is trivial to show it holds at £ = 0 and the upper bound of
a; by (G.6). Suppose (G.11) holds for ¢’ < ¢, then at round ¢ + 1, we have

bip1 = 07 (1 —na7)® < bF(1 —na®/4)* < b7 (1 —na’/4). (G.12)
Using a1 = a;(1 — nb?), we have
! (a)

Gp11 —aOH 1—7752) > ag (1—nzb2> > - < = .77042> > /2. (G.13)
b

>(1—(a+b))fora,be (0,1),and

where the step (a) holds by recursively using ( )(1
1- ) and the sum formula for geometric

the step (b) is due to b7 < b3 - (1 — na?/4)t < % - (
series. Thus the induction is complete, and

| K, || = abe < (@2/3) - (1 —na?/4)? < (1 —na?/4)? < (1 —na?/4)ETV2 (G.14)
Combining (G.9) and (G.14), with || A|]2 < ||A||r < rank(A) - ||A||2, we complete the proof.
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Appendix H. Proof of Theorem 8

We prove Theorem 8 in this section. We start with some preliminaries.

H.1. Preliminaries

In the following, we denote dor1 1 = v/ 2k + 1J. Also denote the matrix of the first r row of F, G
as U,V respectively, and the matrix of the last n — r row of F,G as J, K respectively. Hence
UV e R”k, J K € R(=7)%k We denote the corresponding iterates as Uy, V4, Jy, and Kj.

Also, define E(X) = A*A(X)— X. We also denote I'(X ) = A*A(X). By Lemma 17, we can
show that || E(X)|| < dox+1 - | X|| for matrix X with rank less than 2k by Lemma 17. Decompose
the error matrix £'(X) into four submatrices by

Fy(X) Fa(X)
B = () B0

where E1(X) € R™7", Fy(X) € R™("") E3(X) € Ry (X) € R®=7)X("=7) Then the
updating rule can be rewritten in this form:

U1 = Up + 03V = Uy (V" Vi + K[ Kp) + nEW(BGY = 2)V; + 1B (RG] — $)K; (H.1)
Vigr = Vi + 02U — V(U Uy + I Jy) + nE] (RG] — ©)U, + nE (RG] —%)J;, (H.2)
Jio1 = Jp — i (V,"Vi + K] K}) + nE3(F,G] — )V, + nEy(F,G] — ©)K, (H.3)
Kiyr = K = KU Up + ] Jy) + B3 (RG] = £)U; + B (F,G] —%)J;. (H.4)

Since the submatrices’ operator norm is less than the operator norm of the whole matrix, the matrices
Ei(F,G] —%),i=1, ..., 4satisfy that

IE(RG] —2)| < |BE(RG) —D)| < ouwnllBG -2, i=1, ..., 4

Imbalance term An important property in analyzing the asymmetric matrix sensing problem is
that F'TF - G'G =U'U +J'"J - V'V — K"K remains almost unchanged when step size
7 is sufficiently small, i.e., the balance between two factors F' and G are does not change much
throughout the process. To be more specific, by

Fiy1 = F, — (RG] —%)G; — E(F,G] — )Gy (H.5)
Gi1 =Gy —n(EG] =)' F, — (BE(F,G] —%)TF, (H.6)

we have

|(FiaFin = GLaGun) = (FTF - 6T G| < 202 |RGT = 22 - max{|I Rl |Gl
(H.7)

In fact, by the updating rule, we have

T T
Fi B — GG

= F/F = G} G+ (G (RG] - %) (RG] - )G, - F (RG] - 2)(RG] %) F),
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so that - + T T
HFt+1Ft+1 - Gt+1Gt+1 - (Ft Fi — Gt Gt)”

<2?| RIP|Gel* | G — =7 (H.8)
<2? - | RG] — B - max{||F||%, | Ge|*}

Thus, we will prove that, during the proof process, the following inequality holds with high proba-
bility during all ¢ > 0:

2
2021 > U, Uy + J J, = V,'V, — K, K, > %I. (H.9)
Next, we give the outline of our proof.

H.2. Proof Outline

In this subsection, we give our proof outline.

eRecall Ay = F,' F, - G/ G, = U U+ J,' J, — V,TV; — K,' K;. In Section H.3, we show that
with high probability, Ag has the scale o, i.e., Ca?l > Ag > cal, where C' > c are two constants.
Then we apply the converge results in [29] to argue that the algorithm first converges to a local point.
By the previous work [29], this converge phase takes at most Ty = O((1/no,v)log(y/o1/na))
rounds.

e Then, in Section H.4 (Phase 1), we mainly show that M; = max{||U;V," =S|, |U:K, ||, || 7.V, ||}
converges linearly until it is smaller than

M; < O(016 + )| K[| (H.10)

This implies that the difference between estimated matrix U;V," and true matrix 3, ||U;V," — %],
will be dominated by ||.J; K, ||. Moreover, during Phase 1 we can also show that A; has the scale a.
Phase 1 begins at 7j rounds and terminates at 77 rounds, and 7 may tend to infinity, which implies
that Phase 1 may not terminate. In this case, since M; converges linearly and M; > Q(016 +
a?)||JuK," ||, the loss also converges linearly. Note that, in the exact-parameterized case, i.e., k = 7,
we can prove that Phase 1 will not terminate since the stopping rule (H.10) is never satisfied as
shown in Section L.

e The Section H.5 (Phase 2) mainly shows that, after Phase 1, the ||U; — V;|| converges linearly
until it achieves

1U: = Vil < O(a?/v/1) + O(Sapa | e || /v/0).

Assume Phase 2 starts at round 7 and terminates at round 7%. Then since we can prove that ||U; —
V;|| decreases from * O(o1) to Q(a?), Phase 2 only takes a relatively small number of rounds, i.e.
at most T, — T1 = O(log(y/0, /) /no;,) rounds. We also show that M; remains small in this phase.

e The Section H.6 (Phase 3) finally shows that the norm of K; converges linearly, with a rate
dependent on the initialization scale. As in Section D.2, the error matrix in matrix sensing brings
additional challenges for the proof. We overcome this proof by further analyzing the convergence
of (a) part of K, that aligns with Uy, and (b) part of K; that lies in the complement space of U,.
We also utilize that M; and ||U; — V4| are small from the start of the phase and remain small. See
Section H.6 for a detailed proof.

4. The upper bound O(o1) of ||Uy — V4| is proved in the first two phases.
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H.3. Initial iterations

We start our proof by first applying results in [29] and provide some additional proofs for our future
use. From [29], the converge takes at most Ty = O((1/no,v)log(,/o1/n«)) rounds.
Let us state a few properties of the initial iterations using Lemma 18.

Initialization By our imbalance initialization Fy = « - 150, Go = (a/3) - éo, and by random
matrix theory about the singular value [33, Corollary 7.3.3 and 7.3.4], with probability at least 1 —

2 exp(—cn) for some constant ¢, if n > 8k, we can show that [omin (F0), Omax(F0))] < [@, %},
[Fmin(Go), Fmax(Go)] € [V2%, 5] and
3a? T T T T T T a’
TIZFOFO_GOG0:U0U0+JOJO_VO ‘/O_KDKOZ?I (Hl])

As we will show later, we will prove the (H.9) during all phases by (H.7) and (H.11).
First, we show the following lemma, which is a subsequent corollary of the Lemma 18.

Lemma 14 There exist parameters (o, dg, g, Mo such that, if we choose o < vy, Fy = oz-ﬁb, Gy =
(o/2) - Go, where the elements of Fy, G is N'(0,1),% and suppose that the operator A defined in
Eq.(1.1) satisfies the restricted isometry property of order 2r + 1 with constant 6 < g, then the
gradient descent with step size n < 19 will achieve

IEG] — 3| < min{o,/2,a'/? . o*/") (H.12)

within Ty = c2(1/no,) log(\/o1 /na) rounds with probability at least 1 — (y and constant c3 > 1,
where (o = c1 exp(—cak) + exp(—(k — r + 1)) is a small constant. Moreover, during t < Ty
rounds, we always have

max{||F, |Gt} < 2y/o1 (H.13)
406 3/2
|0 = Vil < 4+ 220260171 (H.14)
Sas107 * log (/@1 /na)
| < O 20+ =EH ) (H.15)
Or
1 2 2
L 3%1 (H.16)

Proof Since the initialization scale o < O(,/071), Eq.(H.13), Eq.(H.14), Eq.(H.15) and Eq.(H.16)
hold for t = 0. Assume that Eq.(H.12), Eq.(H.13), Eq.(H.14), Eq.(H.15) and Eq.(H.16) hold for
t'=t—1.
Proof of Eq.(H.12) and Eq.(H.13)

First, by using the previous global convergence result Lemma 18, the Eq.(H.12) holds by
a3/5az/10 < 0,/2 because a < (’)(05/3 az/ﬁ) = O(k7/%,/5,). Also, by Lemma 18, Eq.(H.13)
holds for all ¢ € [Tp].

Proof of Eq.(H.16)

5. Note that in work [29], the initialization is Fy = « - Fb and Go = « - éo, while Lemma 18 uses an imbalance
initialization. It is easy to show that their results continue to hold with this imbalance initialization.
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Recall A; = UtTUt + JtTJt — V;TVt — KtTKt, then for all t < T}, we have
|A:—Ag|| < 20%-250% Ty-4oy < 2¢9log(v/o1/na)(2003m/0,) = 200cankas log(y/o1/na) < o?/8.

The first inequality holds by Eq.(H.7) and ||F;G; — X|| < [[F||IGt|| + ||Z|| < 5o1. The last
inequality uses the fact that n = O(a?/ko? log(y/o1/na)). Thus at t = T, we have Amin (A7) >
Amin(A0) — a?/8 > a?/2 — a?/8 = 3a?/8 and || A, || < || Aol + 3a2/2 + o?/8 = 13a2/8.
Proof of Eq.(H.14)

Now we can prove that ||[U — V|| keeps small during the initialization part. In fact, by Eq.(H.1)
and Eq.(H.2), we have

[(Ut+1 = Vi)
< U = VIl = 0% = n(V," Vi + K EK)) | + 0l VAU, U + 31 Ty = VT Vi = K[ B
+ dndo 1 | RG] — Sl max{ || U] Vel 17, | K1}

< (1= n0n) U = Vil + 2002 - 2y/a1 + 4ndas1 - (IEGell + 112]]) - 2/o0

< (1= 10,)[Us = Vil| + 2n0* - 20/ + 400811 - 07
The second inequality uses the inequality (H.9), while the third inequality holds by max{|| F;||, || G¢||} <
2,/01. Thus since o = 0(521434_10'?/2/0'7-), we can get || Uy — Vo] < 4o < 4a + %52“10:1)’/2. If
WU — Vi|| < da+ %5%“0?/2, we know that

40
[Ut+1 = Vil < (1 —nov) <4a * 052k+10:13/2> + dna® /o1 + 40ndak41 - Uf/Q
T

40 40
< (1 —no,) <4a + 052"7“0?/2) +4no,a + 0—52;“_10?/2
T T

40
< 4o+ *52k+10f/2
Oy

Hence ||U; — V|| < 4a + 3*?52/%10:13/ *fort < Tp by induction. The second inequality holds by

a = 0(o,/\/01)
Proof of Eq.(H.15)

Now we prove that .J; and K, are bounded for all ¢ < Tj. By Eq.(H.3) and max{||Fy||, ||G¢||} <
2,/01, denote Cy = max{21cy, 32} > 32, we have

To—1

1976l < 1ol Y~ max{|[F]l, [|Gull} - 28241 - (IFMNGell + 1)
t=0

< ||Jol|l +nTo - QOUf/Q - O2k+1

< [[Joll + 20cs log(v/1 /na) (G241 - 77 % )
< 20 + 205 log(/a1 /na) (St - 0 % )
= 20 + Cplog(\/o1/na) (baks1 - 03 o).

Similarly, we can prove that || K7, || < 2« 4+ Calog(y/o1/na)(dok1 af/Q/ar). We complete the
proof of Eq.(H.15). |
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H.4. Phase 1: linear convergence phase.

In this subsection, we analyze the first phase: the linear convergence phase. This phase starts
at round Ty, and we assume that this phase terminates at round 77. In this phase, the loss will
converge linearly, with the rate independent of the initialization scale. Note that 77 may tend to
infinity, since this phase may not terminate. For example, when k = 7, we can prove that this
phase will not terminate (§1), and thus leading a linear convergence rate that independent on the
initialization scale. In this phase, we provide the following lemma, which shows some induction
hypotheses during this phase.

Lemma 15 Denote M; = max{|[UV;" — S|, UK, ||, |7V, |}. Suppose Phase 1 starts at Ty
and ends at the first time T such that

770'th_1/6401 < (17770152k+1 +7]0¢2)HJ15_1K;|—_1H H.17)

During Phase 1 that Ty <t <11, we have the following three induction hypotheses:

max{|| U, [[Vi[[} < 2v/o1 (H.18)
|UV," — || < o,/2. (H.19)
max{|| 4], | K¢ |} < 2v/ao1* + 205 log(y/a1 /na) (Saps1 - K2v/a1) < /o1 (H.20)
7iﬂ] > Ay > 0‘721 (H.21)
4 sl t — 4 .

The induction hypotheses hold for ¢ = Tj due to Lemma 14. Let us assume they hold for ¢’ < ¢,
and consider the round ¢. Let us first prove that the r-th singular value of U and V' are lower bounded
by poly(o,,1/01) at round ¢, if Eq.(H.19) holds at round ¢. In fact,

21 -0, (U) > 0,(U)o1 (V) > 0,(UVT) > 0,/2. (H.22)
which means
o, (U) > 0, /4\/07. (H.23)

Similarly, o, (V) > 0, /4,/01.
Proof of Eq.(H.19) First, since ||U;—1V,"; — 3|| < 0,./2, by Eq.(H.23), we can get

Oy

min{o,(U;—1),0,(Viz1)} > NG (H.24)
Define M; = max{||U;V," — S|, UK, ||, ||.J:V;"||}. By the induction hypothesis,
max{||[Up1], [|Vi-1[I} <2/o1,
max{ | e[, |1 Kema|}} < 2va01"" +2Cs log(v/a1/na) (Gai 4107 /o).
Then by the updating rule and C5 > 1, we can get
UK; = (1= U U DU K1 (1=K 1 K ) +n(2 = Ui VL) VKT
+ U1 J, T K+ Ay (H.25)
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where A; is the perturbation term that contains all O(E;(FGT — X)) terms and O(n?) terms such
that

ALl < 4nbor i1 | PGy — Sl max{|| |1, [|Gel1*} + 807 | RG — S max{[|Fy|1%, |G:[1*}
+ 0 max{|| F|*, |Ge[*}? - | RGy — |
< dndo |G — S| max{|| FL|*, [|GlI*} + 8n*| F.G[ — 2| - 501 - 4oy
+n%- 1607 - |Gy — X
< Andor i1 BMy1 + |1 KL )40y + na®(BMy + |1 KL )

Using the similar technique for J;V," and U;V," — ¥, we can finally get

M < <1 - ;?i) My + 2nMi—y - 2¢/o1 - max{||Je—1 ||, [| Ke—1 ||} (H.26)
+ A1 (BMy—y + || Ji—1 K, ) - 4oy + ne®(3My—y + || Ji—1 K, |) (H.27)

< <1 - 177623) My_y + 20M;_y - 2,/o7 - (a +Cy log(\/a/na)égkﬂai’ﬂ/a?«) (H.28)

+ 4n0ok 11 (3Mi—1 + | Je-1 K |]) - 4ot + na® (BMy—1 + || Je-1 KL ) (H.29)

< (1 - 1776(;31> My_1+0 (nm- (a +Cy log(\/a/na)a%ﬂof/z/ar)) M1 (H.30)

+ (1790109141 + no?) | T 1 K, || (H.31)

< (1 — ;72‘7;) M1 + (190102541 + 102 || -1 K, 4. (H.32)

The last inequality holds by dor 11 = O(02 /o3 log(y/a1/na)) and o = O(af/ai’ﬂ) = O(/a,k73/?).
During Phase 1, we have

no M1 /6401 > (1Tno a1 + no?)|| T K4,

then

2
M, < (1=2% ) . (H.33)
640‘1

Hence [|U;V," — || < M; < My, < ||Fp, G, — | < Gop41-
Proof of Eq.(H.18) Now we bound the norm of U; and V;. First, note that

(U = Vi)ll < (1 = nop)[Us-1 = Viea || + - 202 - 20/7 + 400 - g1 - 07

Hence ||U; — Vi|| < 4o+ 40(52“10?/ 2 /o still holds using the same technique in the initialization
part.
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Thus by the induction hypothesis Eq.(H.19) and o1 > do14.1, we have
201 > o1+ dopp1 = |2 + UV, =S| > |GV, = (VYT + (U = V)V, |
> [ViV,' = U = Vil VA
4052k+10?/2)

r

> |[Vell* = [IVall - (4a+
> |[Vel|* = [Vl

Then we can get ||V;|| < 2,/07. Similarly, ||U:|| < 2,/07.

Proof of Eq.(H.20) Since during Phase 1,

o2 1

- g Mt : )
6401(170152k+1 + 042) 1088%252k+1 + 640&2,%/07«

LK/ || < M, -

by Gors1 < 1/128 and Eq.(H.33),

1
RG] — 3| < 4 LK, M} < 4M, - {1, }
156Gy = Xl < dmas{lJK |, Moy < AMe-maxy L, q5eg o  6ia?n/a,

< ||Pr,Gr, — B (1 = no?/6401)" " /(1088K2621.41 + 640K/ 0,).

Thus, the maximum norm of J;, K; can be bounded by

t—1

1l < 1l + 20 2/oi001 - S 1G-S

t'=Ty
4n\/0102k+1
<2+ Oyl Sopr1 - 0?
< 2a+ Co Og(\/O'»l/’I’LOé)( 2k+1 " 01 /0-7”)7L 1088%252]“_1—'—640(2/@/0'1"
3/2

o
= 2a + Cylog(v/o1/na)(dak+1 - U?/Z/O'T) + 4;202 || Fr, G, — 2]

9/4
041/201/
252
4k4oz

< 2\/&01/4 + Cy log(v/o1 /na) (Sops1 - K2\/01)
< 2v/ao)t + 20y log(\/o1 /na) (st - K2/T7).-

< 2a + Cylog(y/o1/na) (0241 03/2/@) +

1/4
ao‘l

The last inequality uses the fact that 2cc 4 *—1— < 2\/&0i/4 by a = O(,/0,). Similarly,
2\/501/4 + 2Cs log(/o1 /na) (Sp41 - K2 - \/1). We complete the proof of Eq.(H.20).
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(H.34)

640 1

2
Or

K| <




Proof of Eq.(H.21) Last, for ¢ € [Ty, T1), we have

T1—1
1A= Al < ) 20 - | BG/ — SII” - max{|| F|, |G.]|}?)
t=Top
e’} 770_2 2(t—T0)
2 2 r
< 20*| Pr,Gr, — 3 D (1 — 1601> 4oy
t=Top
16
< 2?2507 - —oL 4o,
g

r

< 3200nK20%

<o’/
where the last inequality arises from the fact that n = O(a?/k?0?). By %I < Ap < %I , We
can have ||A]] < 13a?/8 + a?/8 < 7a?/4 and A\pin(A¢) > 3a%/8 — a?/8 = a?/4. Hence the

inequality Eq.(H.21) still holds during Phase 1. Moreover, by Eq.(H.34), during the Phase 1, for a
round ¢t > 0, we will have

t
|Feery Gy, — S| < |1 Pry Gy — 2| (1 — no2/6401) /(1088K%62p,41 + 640k /0

t g
<\\Pr,Gr, — Z|| (1 — no?/6401)" - m
Or 2 t Oy
<7 (1= no?/640y)t - 27—
< 5 (L=nop/6dor) -
I 640, )" H.35
- 1280425( 1oy /6401) . (H.35)

The conclusion (H.35) always holds in Phase 1. Note that Phase 1 may not terminate, and then the
loss is linear convergence. We assume that at round 77, Phase 1 terminates, which implies that

JEMT1_1/6401 < (170162k+1 + OéQ)HJTl_lKZ—El_lH, (H.36)

and the algorithm goes to Phase 2.

H.S. Phase 2: Adjustment Phase.

In this phase, we prove U — V' will decrease exponentially. This phase terminates at the first time
T5 such that

8a2\ﬁ + 640254+1+/01 || JTz—lK’l—l‘—z—l I

Ur,_1 — V1] <
H Tp—1 T21||— o

(H.37)

By stopping rule (H.37), since ||Ur, — V7, || < O(071), this phase will take at most O (log (/o /a) /o)
rounds, i.e.

Ty — Ty = O(log(v/ay /) /noy). (H.38)
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We use the induction to show that all the following hypotheses hold during Phase 2.

max{|[Fi_1]], [|Gi—1} < 2y/o1 (H.39)
M; < (1088209541 + 6402k /0,) || K || < ||J:K[ || (H.40)
max{||Ji_1], | Ki—1]]} < 2v/ao)’* + (2Cs + 16C3) log(y/a1/n) (ax41 - K2/a1) < 07 /4/o1
(H.A41)
KT < (14 27 KT (H.42)

el = 1285, ) 17t17 -1 ‘
U = Vil < (1 = nor/2)|Up—1 — Vi (H.43)

2 2

%-ISAtS%O‘ 1. (H.44)

Proof of (H.41) To prove this, we first assume that this adjustment phase will only take at most
C3(log()/noy) rounds. By the induction hypothesis for the previous rounds,

t—1
el < Iz, + Y ndarsr - |FGL = X
i=T1

t—1
< 2va0y* + 200 log(y/o1 /na) (bars1 - 07 2 for) + D ndasr - |BGT — 2
=T

< 2v/aoy’* + 20, log(\/a1/na) (dans1 - 0}/ Jor) + Ca(log(y/a1 /na) [n,) - n8asr - 4| i K |
< 2v/aoy* + 20, log(\/a1/na) (2us1 - 01 [o,) + Ca(log(y/a1 /na) /10,) - nd2p111607
< 2/a0y* + (205 + 16C3) log(v/o1 /na) (Sar41 - 01 [0).

Similarly, due to the symmetry property, we can bound the || K;|| using the same technique. Thus
max{ | J|, | Kill} < 2vaey* + (20, + 16C5) log(y/a1/na) (Gaus - 01 /o).
Proof of (H.40) First, we prove that during ¢ € [T1,T5),
My < (108825011 + 6402k /0 )| LK || < |K] || < daktor + Sopro1.  (HAS)

in this phase.
Then by 691,01 < O(1/log(,/a1/na)k?) and a < O(o,./\/71), choosing sufficiently small
coefficient, we can have

JthtT =(I~- th—ljll)Jt—lell(I - UKt—thTA) + 772Jt—1JtT71Jt—1KtT71Kt—1KtT71
— iVl Vi KLy — nhU UK + G, (H.46)

where C; represents the relatively small perturbation term, which contains terms of O(8) and O(n?).
By (H.39), we can easily get

Cry > — <477(52k+1 NEGL, — 3 -401> (H.47)
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Thus combining (H.46) and (H.47), we have

[ JeK |
> = ndea T = 0K K Jea K2 || = 40 My - 4o
— 4Anbopi1 || Ji—1 K1 - 201 — n*640°
> (1 — 2nmax{[|Jy_1 |, [ K1 }* — 16 - 10880k 0op1101 — 102400’k — 8naki1 - 01) || Je—1 K, ||

2
noy T
> (11— Ji 1K .
- ( 12801) i1 Ko |

The second inequality is because M;_1 < (1088k%89;11 + 640’k /0,)|| Ji—1 K, 4
inequality holds by Eq.(H.41) and

, and the last

opsr = O(k™), 0 = O(k™32/5,) (H.48)

Then, note that by Eq.(H.32), we have

0.2
M; < <1 - ;72;1> M;_1 + (170016211 + 10?) || Jem1 K4 ).

Then by M; 1 < (1088k269541 + 640’k /0, - ||Jt,1KtT_1|| and denote L = 170109341 + o2, we
have

o2
M,; < (1 - ;72;1> M1 + (1Tno16o41 + 1) || i1 K| ||
o2
< <1 - ;72;1) (108826511 + 6407k /0, )| Tt Ky ||+ L]l T K |
2
no 64Lk
=|1-- )" [ Je—1 KL ||+ Ll Je— KL |
3207 o
64LkK
< (B2 - 20r) s
Or
64Lk no? T
< — 1— r
< (% -anr) /(1= o) 10T
64LkK
< K|

Hence
64Lk

Or

M, < 1K< 1 TA |

for all ¢ in Phase 2. The last inequality is because da1 1 = O(1/k%log(y/a1/na)). Moreover, by
Sokr1 < O(1/k%log(y/o1/na)?) and (a + b)? < 2a? + 2b? we have

2
LK || < ||| K| < (2\/&7%/4 + (203 + 16C5) log(v/o1/na) (O2k+1 - ff2\/071)> (H.49)
< dartol? + Soppr0v. (H.50)

We complete the proof of Eq.(H.40).
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Proof of Eq.(H.42) Moreover, by the updating rule of J; and Ky, (H.46) and (H.47) we have

17K | (H.51)
< (I - th—ljzil)Jt—lK£1<I - UKt—lKll)” + ||ﬁ2(Jt—1J;1)Jt—1K£1(Kt—lKll)H
(H.52)
+ 4nM;_ - 4oy + Ao || T 1 K, || - 201 (H.53)
a4 P (/2 A |+ AT T KL - o+ Snodoran | e 1B |
' (H.54)
= | Jm1 K || (1 + 507 /16 + 10241k + 801 62)11) - (H.55)

The last inequality uses the fact that || J;—1|| < \/01/2, | Ki—1|| < \/o1/2and M;_; < 64€”|]Jt,1KtT_1||.

g

Now by the fact that L = 17016941 + o = (9(0‘172 ), we can choose small constant so that

52
n20?/16 < O ooaret < O 8010911 < o (H.56)
20 = 38404 = 3840, = 3840, ‘
Thus we can have
T T noy
19T < sl - (14 o). 57

We complete the proof of (H.42)

Proof of (H.43) Hence, similar to Phase 1, by ||U;V," — X| < M, < 404&40}/2 + dog+101 and
3/2
|0 = Vil < |Un, = Vi || < 4o+ 220

Or

max{[|Ut[], [V[|} < 2v/o1

, we can show that

Also, consider
U -V
= (I =S =V, Vi = K] K))(Ur-1 = Vi1) — Vi,
+- (El(Ft_thil — Wit + Ea(Fr Gy — E)Kt_1>
- (EI(thlG:—l — U1 + B3 (F1G_y — E)thl) :
Hence by the RIP property and A; 1 < 221 ((H.44)), we can get

[T = V)|l € (1 = nop) |Ui—1 — Viea || + 2na? - 2/07 + 4nboger1 - 207 - |[Fio1 Gy — 3|
(1= non) |01 = Viea || + 2na® - 24/01 + 80y - Vo1 - 4]l T KL |
(1= nop)||Ui—1 — Vi || + 2002 - 2/o1 + 3200011 - /o1 - | Je—1 54 |

VAR VAN

Since

80&2\/0'1 + 6409511/01 J?lKT_
HUt_l - %_1H 2 + H t t 1||

Or
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for all ¢ in Phase 2, we can have
U = Vill < (1 —noy/2)| U1 — Vil

during Phase 2.
Moreover, since Phase 2 terminates at round 75, such that
8a2\/a1 + 6402141/ | Iy -1 K7, 4 |

1Ur,—1 — Vil < p ,

it takes at most

Cslog(y/or/a)/no, =5 (H.58)
rounds for some constant C'3 because (a) (H.43), (b) and U; — V; decreases from ||Ur, — V|| <

4,/a1 to at most |Ug, — V|| = Q(a?,/a1/0,). Also, the changement of A; can be bounded by

Tp—1
1AL = Aq || < > 20 - |RG] = 3| - 40y)

t=T}

< 2(n?) - 10003 - (Ty —T1)

2(n*) - 10007 - C3log(y/o1/na)(1/n0,)
10C3 log (/a1 /na)(nro?)
a?/16.
The last inequality holds by choosing 7 < a?/160C5k02. Then Amin(A¢) > Amin A7, — a?/16 >

a?/4 — a?/16 = 3a2/16 and ||A¢]| < [|Ap || + a?/16 < 7a?/4 + a?/16 < 29a2/16. Hence
inequality (H.9) still holds during Phase 2.

VAN VAN VAN

H.6. Phase 3: local convergence

In this phase, we show that the norm of K; will decrease at a linear rate. Denote the SVD of Uy as
Uy = AWy, where Xy € R™", W; € R™*, and define W; | € R*~")** is the complement of
Wh.

We use the induction to show that all the following hypotheses hold during Phase 3.

max{|| ], [ K¢} < O@2vao + dop1log(v/a1/na) - £2/a1) < \/o1/2 (H.59)
64Lk

My < ——[lhK | < [l7K] | (H.60)
Wkl < (14 7 KT (61

el = 1280, ) 171 ‘

2 T
||Ut _ WH S 8« \/O1 +64(52k+1\/01”Jth || (H62)
Or
a2
5 I <Ay <200 (H.63)
1| < 21 KW | (.64
T T no’

KWl < v - (1 7). H.65)
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Assume the hypotheses above hold before round ¢, then at round ¢, by the same argument in
Phase 1 and 2, the inequalities (H.60) and (H.62) still holds, then max{||U|, ||V¢]|} < 2, /01 and

min{o,(U),0.(V)} > o,/4,/071.
Last, we should prove the induction hypotheses (H.59) , (H.63), (H.64) and (H.65).

Proof of Eq.(H.61) Similar to the proof of (H.42) in Phase 2, we can derive (H.61) again.
Proof of Eq.(H.64) First, to prove (H.64), note that we can get

M, > |UKY| = [|ASW K] | = SV, K[|

KW Nlow KW /o

> o, U) - || KW >
2 or(U) - KW, || 2 N N
Hence

6401 L\/k 32LK5%/? 32LK?
W, | < 4vEM /o, < TR 1K || < TR K]l - Vor <

1K

T‘

(H.66)
Thus
1K < KW+ (1K

64Lk
<KW |+ —— p (hae|

< IR+ il

The last inequality uses the fact that 0oz = O(o} /0}) Hence || KW, || > ||K;||/2, and (H.64)
holds during Phase 3.

Proof of Eq.(H.63) To prove the (H.63), by the induction hypothesis of Eq.(H.65), note that

t—1
1A = Agy || <20 ) | FuGy — S|P 4or
t—1
<29 > 1601 || Jp K |

t'=Th

oo
< 6dov? - Y | JelPIKe W LI

/=Ty
8
< 6407 - 1° <01 : ||KT2W7T2,¢H2 : na2> (H.67)
512no? 5
< ipie
= 062 H TQH
2
< 128201 o
o

< a?/16
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The Eq.(H.67) holds by the sum of geometric series. The last inequality holds by n < O(a*/0?)

Then we have

2902  o? 9
— < 20”.

6 16"
302 a? o

)\minA 2)\minA — A — A > — = —.

1Al < AD [ + 1A = Agy[] <

Hence (H.63) holds during Phase 3.
Proof of Eq.(H.59) To prove the (H.59), note that

3/2
| Kl < 20 B WL || < 20 Kn W, L || < 2 Kn, || < 062111 log(v/a1/na) - 072 o).

On the other hand, by A; < 201, we have
Wi J| W, — Wy K KW, =W VTV <207 T
Hence, denote L; = ||J; K, || < 01/4,

Wi J W, <2021+ W, | K KW, + W, V' VW[,
=202 T + Wi LK KGW, ) + W, (Vi — Uy) T (Ve = U)W,

8a2 /a7 + 640 L\’
§2a2I+Wt,J_KtTKtWt1+< a®\/o1 + 64095 1+14/01 t) T

Or

8a’ 640 Lo\ 2
=Wy K] KW, + (2a+ a”\/o1 + 6402k414/01 t> .

Or
Also, by inequality (H.69), we have
[ TW, 12 = 1w 12
[PATAR RS A AN
<2a 4 8a2\/a+6i52k+1\/aLt)2

T

1 TeW, LIl — 1W<

<
2| KW, I+ (1w, I = Wl
(2 o+ 8a2\/aﬁ+6i62k+1\/am>2

WL = Wl

Thus by L; < 01/4, we can get

8a2,/a1 + 64951 1+/01L
T < KW || + 20 4 — VLT 20k v LT

Or

8\ /o1 + 6409411/01 Ly

Oy

< 02vaoi™ + op1 log(y/a1/na)k2/a7).

< ||KT2H + 200+
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The second inequality holds by HKtWt,TLH < || K, W;Q 1 < [l K1,]|- On the other hand, note that

el < W+ 1w, |
< LU/ or(U) + 1| JW,L |
<N TVill/or (U) + | 7:(U; = Vi)l Jor(U) + || W, |
< My /o (U) + | JlII(Us = Vi)l /o (U) + W]l

64Lk 4,/01 802, /a1 + 64001\ /a1|| K, || 4y/T1
< (BAlrE + || J¢]] Lo + HJtWt,TJ_H
r r Oy r
3/2 2
6407 "L 32a°071 + 25652k+10'1 - 01
< (13 Vo + 5 [PAEPAAN|
o; logs
1 T
< Sl + 119w - (H.70)

The last inequality holds because
bors1 = Ok log ™! (o /na)), a < O(o,/ /o)
Hence by the inequality (H.70), we can get
L7l < 201 W, L || = O@2vaoy + Gar41 log (/a1 /na) - 52 /o). (H71)
Thus (H.59) holds during Phase 3.

Proof of Eq.(H.65) Now we prove the inequality (H.65). We consider the changement of K;. We
have

K= Ki(I - UtTUt - JtTJt) + Eg(FthT —X)Us + E4(FthT —X)J;
Now consider Ky 1 th, we can get

KW, = Ki(I = qW S2W, = JTIOW,] | +nEs (RG] — SUW, | +nBEyf(FG, - X)JW,]
= KW,[| —niJ| W, +nEy(F,G] — X)W,
= KW, — KW, Wy 1, W, — nKW, Wl W, + nEyf(RG] — X)W,

Hence by the Eq.(H.66),
T T T T 64n L5/ T T T
K1 We || < IEW (T =W 1 Iy JeWe DI+ =Ky |- (1 JeWe L1 Je]] + 4ndan 0 Mil[ JeW 4 |
Or
647 L3/
< NEWL (I =W ) TW O+ =55 IR 1AW
Or
1601 L
+ g K ] JeW L
0-7’
80n Lx>

<KW, (I — oWy L g W) | + [BA:eR R PATAN|

T
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The second inequality uses the fact that do51 < 1/16 and (H.66). The last inequality uses the fact
that || J;|| < \/o1. Note that Apin(A¢) > a?/8 - I, then multiply the th, we can get

2

(0%
Wi J W - W VTVW - W KR > < I.
Hence
Oz2
Wi J, JW, — Wy K KW, > < I.

Thus, define ¢; = W, | JtTJtth — Wt7LKtTKtWt1, then we can get

80Lk2

T

1K a WL || < IEGWTL (= Wa ) W)+ T 11 TeW L

80L k>

T

< ||KW,' (T — Wy K KW, —ney) || + [BA:on R PATAN|

Define loss L; = ||J; K, ||. Note that

Ly = || Tk, |
= |W, W, K + 3w, W K] |
< IW,L Wi L K+ W, WK |

64 LK3/2

< HJtWt,TJ_WtJ-KtTH VoL 5
Or

| K, || (H.72)

Ly

SRRV S

The Eq.(H.72) holds by Eq.(H.66) and ||W," || = 1, and the last inequality holds by dox 1 = O(k*).

Hence
IJW, Wi KT || > Le /2. (H.73)
Similarly,
| JeW,[ Wy L K| < 2L (H.74)
Then

160nLk>

T

1K Wil || < (1EW (= W L KT KW, — )|+ 1 TeW, L W L] (1T L -

If HJtthH < 10ka, we can get
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160n Lk>
T
160nLk?

r

KW, | < (KW, (T — W L K KW, — o) || + 1w, Wy LK 1wl

< KW T = nWe LK KWyl — i)l + 1 TeWel, We, LK |- 11T L |

na?

160n Lx?
< v (1= 70 ) 4 O0E

r

[EATAmIl e o R PAYAN

>\ | 160nLx?
< | KWl (1— = >+ 100870 | KW |

8 .
T na’
< I (1- 2 ®.75)
[l JW, |l
<KW, |- (1 ~ T 1600m2 (H.76)

by choosing dax11 < O(k7°). Now if | tW,]| || > 10ka,

Wi L) W, — Wy K KW, W VTV <207 T
Wi Jy IW, - Wi K KW, < 202 T+ W, (U, — Vi) (U, — V)W,

Hence
If || ;W7 || > 10kq, then

| J:We 1 ||* = HWt,J_JtTJtWt,TJ_H

802 646 L\ 2
20 4 B3¢ Vo1 + 64025+1+/01 t)

Oy

< Wil KT KW, + (

Oy

2
80&21/0'1 + 64(52]€+11/0'1”JtWT H - /01
< |[Wy K KW, | + <2a + b
<\ Wi L K KW, || 4 (100 4 6465y 4151 W [])?
< HWt,J-KtTKtWt,TL” + (1/10k + 6402511 5) - ”JtWt,TLHQ
<\ Wi LK KW+ (1/2) - (1] )12
Thus ||KtWt,TJ_H > HJtWtTﬂ|/\/§ > ||JtWt,TJ_”/2'
160nLk?
'
160 Lk>

r

Then if we denote K’ = K;W," |, then we know || K'(1 — n(K")TK')|| < (1 — n@)ﬂf(’u. Let
K — AW/ ’

1K Wil || < (1EW L (= W L KT KW, — )|+ 1TeW L We LK |- (1T L

<KW =W, LK KWL =) + 1 TeWl We, LK |- 11T L

1K' (1 = n(K") K| = AW (L= (W) T ()W)
=121 = n(=)?)ll
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Let X, = (;fori < r,then X/(I—n(¥)?);; = (;—n¢?, then by the fact that (; = al(Ktth) <1,
we can have (1 — n¢} = maxi<;<, ¢ — n{f’ and then

IS =n32)] = (1 = nll&'|*) | K.

Hence

160n Lr>

T

1 TeWl, We, LK |- 11T |

[ K aW, | < (KW, (T — W K KW, — o) || + LW, Wy LK 1wl

160nLk2
ﬂmm¢1nmu¥mmnn—ibf

T

Nk 1600 Lk2
1_ 77 tJ_ n U

< | KW | [EATANIl1we o R PAYAN|

r

r

(AL ||2 160n L k2
<%Mﬂ@n W LW LK WL
IIJt Nk
< KW, (1 et (H.77)
<KW, || (1 — 4nsPa ) (H.78)

The fifth inequality is because dog 11 = 0(5_4). Thus for all cases, by Eq.(H.75), (H.76), (H.78)
and (H.77), we have

: no nll W, L |12
HKtHWt,TJ_H < HKtWt,TJ_H - min { (1 - 4) ) <1 W (H.79)

< | EW, || - 1_ﬂ 1= M (H.80)
= I, L 8 3200k2 |’ ‘

where we use the inequality max{a, b} < v/ab. Now we prove the following claim:
I Wil < KWLl (14 Omdaan |l WL IP/02)) . 8D
First consider the situation that ||.J; 1V, J_ || < 10k We start at these two equalities:

Ky = Kt-i-th,Tth,J_ + KW, Wy
K1 = Kept Wil Wi 1 + Kepd W Wi,

Thus we have

T T Tov o T T
K a Wy )W a Wi 1+ Kot Wy WiWig | = KepdWig o
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Consider

IWaW, Ly = W LWl
= |Wir LU (T2
= [Werr LUMIN@US) 2
< Wi U1 = Ul - o0 (U) !

4. /0
< Tl 0+ (2001 - My + 20011 - (L + 3My) - 2,/57)
4. /c
< Tl'n'(3¢a'Mt+252k+1'Lt)

T

4,/c 48LK+\/o

< = S| + 20T - L)

oy oy
< On(Sopir1r* + a2k fo,) | T |-

for some constant C. Also, note that | ; G} — || < Ly + 3M; < 4Ly,

KW, || = [|(Kio1 — KW, || + | KW,
< |InKy(U Uy + J," T)W,T || + 0ok - (4Ly) - 2/a1 + | KW, |

< |nKedy W] + 8y/aindak1 - Ly + 64[;5;’/2&
Or
< nLel| W, || + 8v/a1mdogi1 - Le + 6453/;;;”/2Lt
;
< Lu- (0 Vi + Sy + 5
;
< 4\;071%
< Sl

and

1K a WL 2> WL = (K — KW |

> I~ | KU U+ I JOW] |~ 8yndos - Lo
> LIl = LTV 8y - L

> 1Kal5 = nll il IFT |~ 8ymndosa - 1)

> K05~ nor — 8ndaia0n)

1
> —||K,
> K|
> (| Ko W |
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Here we use the fact that ) < 1/01, do+1 < 1/32 and || J¢|| < \/o1. Hence we have
T T T T T
[ K a Wiy 1 | < 1K W s HIWe i Wy ol + G W HIWaeW ol
<[ Kea W, |+ [ Kea WL |- Cn(Sapqa s + o®K% o) Ly
S (1 + 077(62k+1"f4 + Oé2l<&2/0'7«)Lt> HKt+1WtTJ_H
< (1 + 20N (k416" + QQHQ/JT)HJI?WJJ_WLJ-K;H) [ KW, |

< (1+ 200G + 026 o) |FWLL W B B WL

The inequality on the fourth line is because Eq.(H.73).
Note that

2

(87
Wi J W — Wy K KW > 3 1.

Thus HKtWtTJ_H < ”JtWtTJ_H and
1K Wk < (14 200001k + a262/00) | FWTL W LK) 1B WL
SOAQCM@HN#+a%me%WiJﬂHKHNKLH (H.82)

By inequalities (H.80) and (H.82), we can get

1K1 Wi Ll (H.83)
< (14 20(@aki1r® + 0212 /o) |TWLLIP) KWL | (H.84)
T 2
< (120t + a2/ AR - (1~ ”’f) - (1 - W) ||
(H.85)
s(«fﬁﬁumwgw (H.86)
The last inequality is because
2t + o ) | WP < o]
by choosing
Sokr1 = O(k°) (H.87)
and
a=0k2 o). (H.88)

Thus we can prove || K;W,' || decreases at a linear rate.
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Now we have completed all the proofs of the induction hypotheses. Hence,

IBG] — 2| < 2|| 7K |
<A - Vo
< A| KW /o

T na’ T
<l |- v (1- 1)
062 t—T5
<l v (1- 75

770[2 t—T5

Now combining three phases (H.35), (H.58) and (H.89), if we denote t5+Ty = T" = (5(1/1707«),
then for any round 7' > 47", Phase 1 and Phase 3 will take totally at least 7 — 7" rounds. Now we
consider two situations.

Situation 1: Phase 1 takes at least 222 rounds. Then by (H.35), suppose Phase 1 starts at Tj

rounds and terminates at 73 rounds, we will have

2 2\ Th—To
|FrGE, — 5 < =2 (1 ”"T)

= 12802 | 6doy
2 2\ T/2

97 noy
1— . H.90
~ 1282k < 6401> (H.90)

The last inequality uses the fact that 7" > 47" and
3(T -1
T1—T027( )ZT/Q

Then by (H.42), (H.40), (H.60) and (H.61), we know that
1FrGt — 2| < 4| JrK7 |

T 7702 h
<l i, - =1 (1+ )

2

no T-T
<alFn e, -l (14 )

no? T/2
< 4||FT1G£ =X <1 + 128;1> (H.91)
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The last inequality uses the fact that 77 — Ty > 3(T4_T/) > %, which implies that % > T —T7 Then

combining with (H.90), we can get

2 2\ 7/2 5 \T/2
||FTG;E _EH < 12gr (1 770'r> . (1_|_ no,. >

a2k \© 640y 12804
2 2\ 71/2
a; noy
1-— H.92
~ 128k ( 12801> (H.92)
2 o\ T/2
o nao
1 , H.93
~ 128a%k ( 8 > (H.93)

(H.92) uses the basic inequality (1 — 2x)(1 + =) < (1 — z), and (H.93) uses the fact that @ =
O(k2%/a,) = O(\/Ro,).
T-T'

Situation 2:  Phase 3 takes at least ~—— rounds. Then by (H.89), suppose Phase 3 starts at round
T5, we have

o\ t=T1»
IPrGy — 3| < 204 <1 - "g)
423 T-T)/4
< 20, <1 - 778>
o2 na? T/8
< r 1-— . H.94
~ 128a2k < 8 > (H.94)

The last inequality uses the fact that « = O(k~2\/7,) = O(k~'\/7,) and L5 > T%M > T/8.
Thus by ||FrGJ — X||? < n - |FrG. — X||?, we complete the proof by choosing 47" = T() and
cr = 1/1282

Appendix I. Proof of Theorem 9

By the convergence result in [29], the following three conditions hold for ¢ = Tj.

a1 1 K} < © (m L ”‘”) an
max{ U], |Vill} < 2y/7 12)

and
IEGT — 5| < o' 26%* < 0,/2. (L3)

Then we define M; = max{||U;V;" — ||, |U:K, ||, 1|J:V;" ||}, by the same techniques in Sec-
tion H.4, if we have

U%Mt71/640‘1 > (170152k+1 + a2)HJt,1KtT_1||, (1.4)
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we can prove that

2

no,
M, <|(1- M;_1.
t_< 640‘1) =1

and

max{ |||, [ K|} < 2v/aoy’! + 23 log (Vo1 /na) (darss - 52/a1) < Vo1

IRG! — 2| < 0,/2
max{[|U¢, [Vi[} < 2¢/01.

Now note that

U1 5 | 2 Ain(Ue-1) - 1Ky | = 00 (Uen) - 1L > 4\ﬁ

Bl

1.5)

(L6)
(L7)
(L8)

1.9)

Now since dor 11 = O(k3) and @ = O(k~1,/7,) are small parameters, we can derive the M;’s

lower bound by

My > HUt VG|

> K,
> 1 el
o Ji
> T HKt—l” . H t 1H
4./01 /o1

170152k+1 + a?

> 6407 - | Je— 1Kt 1l

T‘

Hence (1.4) always holds for ¢ > Tj, and then by (1.5), we will have

1702 t—To
M, <[|1- s M
b= < 1601) To

770_2 t—To
(1- 1) IFnGh)

Ty
<o (yo )
- 2 1601

IBG) =S| < UV =Sl + BV, |+ U |+ 1 FE |
< 3M; + || LK |

IN

Thus we can bound the loss by

4
< 3M; + O(2a + d9p1k+/01 log(y/o1/na) - ;/aMt

T

< 4M;

2 t—To
< %, - (1— gﬂl) .

1.10)

111

(L12)

(L13)

(L14)

1.15)



where Eq.(I.15) uses the fact that dop; < O(k™2 log’l(\/al/na)) and « < O(o,/\/01). Now
we can choose T'(?) = 2Ty, and then by t — Ty > ¢/2 for all t > T(Q), we have

2\ t—To 2 /2
no no
|RGY — 2% < n|EG] - 2|2 < 2no, - (1 — 640’“1) < 2no, - (1 - 640’"1> . (L16)

We complete the proof.

Appendix J. Proof of Theorem 10

During the proof of Theorem 10, we assume [ satisfy that
max{cwl/ﬁai/g cdléil 1/60f/12} < B < cgr\/or J.1

for some large constants c7, ¢ and small constant cg. In particular, this requirement means that
v < o,/4. Then, since ||.A* A(FT<3>GT(3) - > QHFT(3)GT<3) Y|l by RIP property and
dok+1 < 1/2, we can further derive || s GT(3> — 3| = | Fre GT@ -3 <o,/2.

To guarantee (J.1), we can use choose v to be small enough, i.e., ¥ < o1x~2, so that (J.1) holds
easily. In the following, we denote do+1 = 2k + 16.

J.1. Proof Sketch of Theorem 10
First, suppose we modify the matrix ﬁT(g), C~¥T(3> to Fip) and Gpesy at t = T®), then | Eres ||? =
Amax((Fp@) " Fre) = (% and HUT(3>H2 < 2. Also, by ||[Fre)| < 201, we can get that
Il 2 o
IGr@ | < G |- 42 < [|Gre -2 Vewll < Vel 252
and || K3 || < HKT(3)H Lis still bounded With these conditions, define S; = max{HUthTH, [EA:4N

and P, = max{||;}V," ||, HUtV; min (F}| F}) > 3% /2 for
all t > T'3) using induction, with the updating rule, we can bound || K; 1| as the following

1s still bounded. Similarly,

1K1 ]| < 1K1 = nE] B+ 200041 - | BGY — S| max{ | U, || Je[|} (J.2)

<K - <1 _ 775) - (40as1B - P+ AB St 1K) - 13)

The first term of (J.3) ensures the linear convergence, and the second term represents the perturba-
tion term. To control the perturbation term, for P;, with more calculation (see details in the rest of
the section), we have

Pip1 < (1 —no2/88%) P +n||Ki| - O <<52k+101 + \/aaf/“) /ﬁ) . (J.4)

The last inequality uses the fact that S; < || K| - max{||Ug|[, | ]|} < K| - |1 F3ll < V28 - || K-

Combining (J.4) and (J.3), we can show that P; + /o7 ||K¢|| converges at a linear rate (1 —
O(np?)), since the second term of Eq. (J.4) and Eq.(J.3) contain doz 1 or o, which is relatively
small and can be canceled by the first term. Hence || ;G — X|| < 2P, + 2S; < 2P, + 28|/ K|
converges at a linear rate.
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J.2. Proof of Theorem 10

At time t > TG), we have omin(Upe Vie) > omin(3) — HUT(g)VqT(s) — 3| > o, —al/?.

0:13/4 > 0,./2. The last inequality holds because & = O(x~%/2 - | /5,). Then given that || Fpe ||2 =
)\max((FT(S))TFT(S)) = 52, we have HUT(3>H2 < ﬁQ. Hence by O’1(U) : O'T(V) > O’r(UVT), we

have
or(Upe Vi) S Or

o(Upe) = 268
Also, by o} = ||ﬁT(3) | <2,/01, we can get

Or (VT(3)) >

2./01

muv B

!
~ _ ~ O' ~
|G || < 11Gre [IBELL < G | - ﬁl <|Gre |-

Similarly, ||[Vy || < [[Vie || - 257 and [|Kpe || < [Kpe | - 25
Denote S; = max{||U:K," ||, |: K, ||}, P, = max{||J;V;"|,[|U:V," — %||}. Now we prove

the following statements by induction:

2 1 S 252 4 7/4
mﬁé_ﬂyﬂwv<ﬂﬁwm$mlﬁ% 0.s)
6 'f]ﬁQ t+1—7(3)
|1F1Gl — 2 < 55 <1 - > < 0,/2 (1.6)
o7 2
max{||Fi1|, [Gerall} < 401/8 .7
2
ST < FiF <268°1 J.8)
2
1K < O@vVaoi"™ + 6y1log(v/o1/na) - K2/a7) - \gﬁ (1.9)

Proof of Eq.(J.5) First, since || F}[|? = Amax((F}) T F;) < 232, we have ||U;]|> < 26%. Then
because Tuin (Ui Vi) > omin(Z) — UV, — 2| > 0,./2, by 01(U) - 0,.(V) > 0,,(UV "), we have

O'T(Ut‘/t) > Oy

Ur(‘/;f) > W > %

we write down the updating rule as

URSYARED)
= (1= U0 )(UV," =)0 = nViV,") = nU K KV, = nUJ BV, + By

where B; contains the O(n?) terms and O(E;(F;G, — X)) terms

1Bell < 4n8ar41 (FG[ — B) max{|[F[|%, |Ge|*} + O |FGy — X|1* max{|| B[, |G ]1*})
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Hence we have

[l AR (1.10)
2
no;
<(1- W)HUMT — S| + 0l U BV |+ 0l eV IO+ 1Bl (J.11)
2
< ( 4@)Pt + 0S| K [[[VEl + nPel[ Tl | Uell + (| Bell (J.12)
no; 4oy 1/4 2
<(1- 452)3 +nS; - 52 O (2v/ao;”" + ba+110g(y/o1/na) - K*\/o1 ) - 2/o1 + P - B
(J.13)
4
+ 4nSo 1 - 2(Pr + Sp) - o - 62 + O (P + )% - o - %) (1.14)
2 log (/o1 /na)dop 1 k207 + ao /4
§< g62)Pt+775 (9( (vo/ )26*; L+ vao, (.15)
The last inequality uses the fact that
8 =0(0}/?) (1.16)
Sppp1 = O(k7?) d.17)
P+ S, <2|EG] —%| <0(c}/6%) < 1/n. (J.18)

Similarly, we have

1 Te1 Vil
< (1 - nJTJ) JVTIA-nVTV) K KV —qJUT @0V — %)+ C,

where C; satisfies that

ICe]l < 4ndop i1 (RG] — 2) max{|| B[, [|Ge)I*} + O(P | BG — S| max{[| F1%, | Ge]|*})
1607
32
Thus similar to Eq.(J.15), we have

7702) B +nS:- O <10g(ﬁ/”a)52k+1520% + \/aaz/4>
t :

+ O (Pi+5) - o1 - 20).

< 4Andokt1 - 2(Pp + St) - 52

.
vl < (1- 2% e

Hence we have

7703) Pi+nS- O <log(\/a/na)52k+m20% + \/&az/4>
t t: .

P <|1-
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Proof of Eq.(J.6) We have S; < || K| - max{||U||, |¢]|} < 1| - || Fell € V28 - || K¢|. So the
inequality above can be rewritten as

O (1 8/32) P+ V28 - | Kil| - O (log(r/ m)é%gf +f07/4> (1.19)
_ <1 - ’72> Py + || K¢ - <log(\/a/ ne)daki 10t + ‘/EUIM) (1.20)
832 p
Also, for K1, we have
1K1l = KL = nF F)| + 200541 - | F:G; — S max{ | U, [| e[|} d.21)
< [ Kl (1 = L”BQ) + 206041 - (P + St) - V28 (1.22)
< 1K1 - @> + 2002k 41 - Py - V2B + 20041 - V2B KL - V28 (J.23)
= || K[|(1 - @) + dnboi1 - B+ 487 ndak 1 - || Ky (J.24)
Thus we can get
Pt + Vo[ K ||
< max1 - 2% 1= T4 )

1 0
+ nmax {(’) ( 08(V/71/n0) ok 14" 01 T+ f > =+ 45252k+1745\/a<52k+1}

(P + o || Kell)

< (1= ") (P 4 el i),

The last inequality uses the fact that 5 < O(o, Y 2) and

dok+1 < O(B/+/o1log(y/o1/na)). (J.25)
Hence
ng?\' "
I3 < (Pron VT + gl (1- 5 (126)
< | Kroll + RG] —Z[l/v/or .27
< (9(\/&7%/4 + dop41 log(v/o1/na) - RQ\/E) +al/2. ai/4 J.28)
= 0(\/501/4 + Oopy1 log(y/o1 /na) - K2\ /o7) J.29)
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Hence P; + /o1 ||K¢|| is linear convergence. Hence by 3 < /071,

|Fi41Gq — 2| < 2Py + 25641 (1.30)
< 2Py + V28| K| A.31)
< 2+ V28/v/01) (Pt + Vori | Kera ) (J.32)
o\ t+1-T0)
< A(Pre) + Vo[ Kre ) - (1 - 775) (J.33)

Last, note that by § > 07(71/60%/3) and § > cé%éilml/ﬁoi)/lz log(y/a1/na)'/6, by choosing for

some constants ¢; and ¢, by choosing large ¢’ and c; = 26, we can get

6 6
VS ds VT Ollop(Var ny @b o} o) - (2V/) <
1 1
and
Prey + Vo[ Kpe || < 7+ Va1 - Olog(v/ar/nva)dapy - 0y > Jor) - (2y/a1/8) < 8°/o?
we have
6 'f]ﬁQ t+1-T7®3)
\BH@L—EHS<2>@—) (J.34)
o7 2

Proof of Eq.(J.7) Note that we have max{||Fye) ||, [|Gre ||} < 4/01 - /o1/8 = 401/5. Now
suppose max{||Fy ||, |Gy ||} < 4y/01 - \/a1/B = 401 /B for all t' € [T3),¢], then the changement
of F;+1 and Gt can be bounded by

t 6 3 2
o 2 4o 16 8c
|Firi — Froll <n 3 2Hthth—zuHGﬂHsn-z-(/32+’“) 2 100

H=T(3) 01 2 ) ng*t B T o F
t—1
1683 807
HGt - GT(S)H <1 Z 2HFt’Gt’ - EHHFt'H < 71 + 731
t'=T()

Then by the fact that 5 < O(o; Y 2), we can show that

201 1683 80?7 4oy
Fooill < | o Fo1 — Fpw || < 222 + 22 < —,
[Evill < [[Fpe || + [[Frar — Fre || < 3 + o1 t 3 =B
201  16¢® 802 4oy
[Geaall < G |+ [Grar = Gon | < 34 + =+ =L < L.

Proof of Eq.(J.8) Moreover, we have

ox(Fiy1) > 0k(Fpe) — Omax(Fir1 — Fre)
= ok(Fre) — 1Fiv1 — Fro ||
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and
16ﬂ3
IE < [|Fre || + | Py — Froll < B+ —— < V28

The last inequality is because 8 < O(o; Y 2). Hence since Fy 1 € R™"*¥, we have

2
%I < Fl Fy1 <268°1 (1.35)

Thus, we complete the proof.

Appendix K. Technical Lemma

K.1. Proof of Lemma 11
Proof We only need to prove with high probability,

c
;0 < . K.1
e I SIS D
In fact, since cos? O; 2y, = sinz(g — Oy 0,) < (/2 — ijyxk)z, we have
)| 2 P oo 0> ()|
P 2—04. 2.1 >0 >P Oy o, > O .
N o 00 brsan > O\ iogZ(r o fa) (rm 2
(K.2)

Moreover, for any m > 0, by Lemma 16,

(sm(§ — m))k_2 >

Il
a

P[|r/2 = 0 n] >m] <O < (\/k: ~3(cos m)k_2> (K.3)

1VE—2
<o (VR -m¥/4"?) K4
<0 <\/Eexp < :’Z)) . (K.5)

The second inequality uses the fact that cos z < 1 — x? /4. Then if we choose

_ Ve
log(ry/o1/a)rk

and let k > 16/m* = 16log4(r\{§/a)(m)4, we can have

P [(3082 O 2y > m2] <P [|7r/2 — Oz 2| > m] (K.6)

2
<0 <k exp <_m4k>> (K.7)

<0 (k: exp (—x/%)) (K.8)
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Thus by taking the union bound over j, k € [n], there is a constant ¢ such that, with probability at
least 1 — ¢4n’k exp(—v/'k), we have

C
"= g o ) "

K.2. Proof of Lemma 12

Proof Since z; = a/\/k - #;, where each element in #; is sampled from A(0, 1). By Theorem 3.1
in work [33], there is a constant ¢ such that

P [[[|Z7]15 — k| > t] < 2exp(—ct) (K.10)
Hence choosing t = (1 — %)k, we have
PI120]13 € [k/V3, VK] < P03 — k| > ] < 2exp(—ct) < 2exp(—ch/4)
Hence
P[llaf? € [02/2,20%]] = P[IG0I° € [b/v2, V2H]| < 2exp(~ck/4). (KD

By taking the union bound over i € [n], we complete the proof. |

Lemma 16 Assume x,y are two random vectors in R", then define 0 as the angle between x,y, we

have
T 3my/n — 2(sin(r/2 —m))" 2
_T < < . .
]P’(‘H 2’_m>_ ™ (K.12)
Proof Note that € [0, 7], and the CDF of 6 is
I'(n/2)sin"2(6)
f(0) = — (K.13)
Var ("3
Then we have
p(lg_T _1 f://;jr? sin" "2 fdf B f07r/2—m sin" 2 0do ”
(‘ - 5‘ > m) T fﬂsin”_29d9 o /2 -2 (K.14)
0 fo sin 0deo
< (m/2) -sin"2(7/2 — m) (K.15)
B fow/ ? cos"—2 b
- (/2 (x/2 = m)™?) o
TR - 22y
(7/2) - (7/2 —m)"~?
< i (K.17)
_ 3mvn — 2(sin(m/2 — m))" 2 (K.18)
VG : .
|
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Lemma 17 (Lemma 7.3 (1) in [30]) Let A is a linear measurement operator that satisfies the RIP
property of order 2k + 1 with constant §, then we have for all matrices with rank no mora than 2k

I = A A)(X)]| < V2k - 6] X]. (K.19)

Lemma 18 ([29]) There exist parameters (o, (50, Q0,10 such that, if we choose a < g, Fy =
a-Fy,Go = (a/3)-Go, where the elements of Fy, G is N'(0,1/n),° and suppose that the operator
A defined in Eq.(1.1) satisfies the restricted isometry property of order 2r + 1 with constant § < g,
then the gradient descent with step size 1 < g will achieve

7/10
1

|RG -2 <P 0 (K.20)

within T = O(1/nc,) rounds with probability at least 1 — (o, where (s = c1 exp(—cok) +
(cs,v)k_’”rl is a small constant. Moreover, during T rounds, we always have

max{ || Fi[|, |G|} < 2/01. (K.21)

The parameters g, dg and 1y are selected by

) VE- =1\~
@ =0 <k5 max{Qn k}2 < max{2n, /{:}) (K22
1
do < (9 /@3\/77) (K.23)
n<o |2 ! (K.24)

Appendix L. Experiment Details

In this section, we provide experimental results to corroborate our theoretical observations.

Symmetric Lower Bound In the first experiment, we choose n = 50,7 = 2, three different
k = 5,3, 2 and learning rate = 0.01 for the symmetric matrix factorization problem. The results
are shown in Figure 1, which matches our (1/72) lower bound result in Theorem 6 for the over-
parameterized setting, and previous linear convergence results for exact-parameterized setting.

Asymmetric Matrix Sensing In the second experiment, we choose configuration n = 50,k =
4,7 = 2, sample number m = 700 ~ nk? and learning rate = 0.2 for the asymmetric matrix
sensing problem. To demonstrate the direct relationship between convergence speed and initializa-
tion scale, we conducted multiple trials employing distinct initialization scales o = 0.5, 0.2,0.05.
The experimental results in Figure 4 offer compelling evidence supporting three key findings:

e The loss exhibits a linear convergence pattern.

e A larger value of « results in faster convergence under the over-parameterization setting

e The convergence rate is not dependent on the initialization scale under the exact-parameterization
setting.

6. Note that in [29], the initialization is Fy = « - Fo and Gy = o - éo, while Lemma 18 uses a slightly imbalance
initialization. It is easy to show that their techniques also hold with this imbalance initialization.
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These observations highlight the influence of the initialization scale on the algorithm’s perfor-
mance.

In the last experiment, we run our new method with the same n and r but two different & = 3, 4.
Unlike the vanilla gradient descent, at the midway point of the episode, we applied a transformation
to the matrices F}; and G} as specified by Eq. (E.1). As illustrated in Figure 2(c)subfigure, it is evi-
dent that the rate of loss reduction accelerates after the halfway mark. This compelling observation
serves as empirical evidence attesting to the efficacy of our algorithm.
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