
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

OVERCOMING JOINT INTRACTABILITY WITH LOSSLESS
HIERARCHICAL SPECULATIVE DECODING

Anonymous authors
Paper under double-blind review

ABSTRACT

Verification is a key bottleneck in improving inference speed while maintain-
ing distribution fidelity in Speculative Decoding. Recent work has shown that
sequence-level verification leads to a higher number of accepted tokens compared
to token-wise verification. However, existing solutions often rely on surrogate
approximations or are constrained by partial information, struggling with joint
intractability. In this work, we propose Hierarchical Speculative Decoding (HSD),
a provably lossless verification method that significantly boosts the expected num-
ber of accepted tokens and overcomes joint intractability by balancing excess and
deficient mass across accessible branches. Through extensive large-scale experi-
ments, we show that HSD consistently improves acceptance rates, especially with
longer draft sequences. Its strong explainability and generality further highlight
the potential for integration into a wide range of speculative decoding frameworks.
Code is available at anonymous repository.

1 INTRODUCTION

Inference speed has become paramount for Large Language Models (LLMs) Achiam et al. (2023);
Touvron et al. (2023); Bai et al. (2023), which generate text auto-regressively. Recent advances
in test-time scaling OpenAI (2024); Guo et al. (2025) have further underscored its importance.
While techniques like pruning Frankle and Carbin (2018); Sun et al. (2023a) and quantization Shen
et al. (2020); Xiao et al. (2023) improve efficiency but sacrifice performance, Speculative Decoding
Leviathan et al. (2023) achieves speedups while preserving the target model’s distribution, making it
a particularly appealing alternative. It adopts a smaller model to make proposals and a larger model to
select from them with a grounded verification strategy. Most approaches prioritize the drafting phase,
but further gains face diminishing returns. Driven by the verification bottleneck, recent methods Cai
et al. (2024); Zhou et al. (2024); Narasimhan et al. (2024) trade off fidelity for speed, relying on
task-specific tuning; their performance typically remains constrained to carefully curated scenarios.

Recent work Sun et al. (2024); Qin et al. (2025) shows that jointly verifying draft tokens can improve
the expected number of accepted tokens, but faces challenges due to joint intractability—the lack
of access to full joint probabilities. To address this, (Qin et al., 2025) uses a lossy fixed acceptance
threshold, while (Sun et al., 2024) proposes Blockwise Verification, which provably recovers the
target distribution. However, it leaves a gap from the ideal case and its underlying mechanism and
compatibility with other methods remain unclear.

In this work, we propose Hierarchical Speculative Decoding (HSD), a provably lossless verifica-
tion method built upon a novel hierarchical branch resampling strategy. In speculative decoding,
resampling is used to statistically recover portions of the target distribution that exceed the draft
probability. As illustrated in Figure 1, HSD employs multiple resampling distributions arranged
hierarchically across successive levels. Each distribution only recovers the partial target distribution
within its accessible branch, and a single resampling is performed immediately after the accepted
token position. This approach ensures that the full target distribution is recovered in expectation.

Particularly, HSD pushes the limits of lossless verification by increasing the expected number of
accepted tokens. To highlight HSD’s advantages, we adopt the toy example with context-independent
binary distributions from Sun et al. (2024) for illustration. Let p(·) and q(·) denote the target and
draft distributions, respectively, we define: p(A)= 1

3 , p(B)= 2
3 , q(A)= 2

3 , q(B)= 1
3 .

1

https://anonymous.4open.science/r/Hierarchical-Speculative-Decoding-D74B

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Resample with
the probability
of

…

…

Hierarchical
Speculative

Decodingx

 1 +

1x +

x

1 − 
*

1:(|)resP  X

Reject

Backward
Operation

Dropped
Path

Jointly
Accept

1 1h + +

1 1h − −

h 

h 

Acceptance
Length

(b)(a)

…

1x +

1x −

Next
Decoding
Step

Resampled
Token

Draft
Tokens

Figure 1: (a) Empirical CCDF of accepted tokens in the binary toy example Sun et al. (2024), draft length
γ = 10. (b) Overview of HSD. HSD accepts the draft Xτ by scanning backward from γ to τ , and then performs
a single resampling at position τ + 1 using the corresponding distribution from the resampling hierarchy.

With a draft length of 10, we run both algorithms for 10,000 iterations and plot the empirical
complementary CDF of the acceptance length in Figure 1. HSD achieves a higher expected number
of accepted tokens, especially due to the higher acceptance rate of longer drafts. This advantage is
also theoretically proven in Section 5.3. Blockwise verification focuses on independent verification
with unclear potential for integration, while our method is designed to easily combine with other
approaches, such as multi-draft setups.

In summary, our contributions are as follows:

• We introduce Hierarchical Speculative Decoding (HSD), a lossless and explainable verifica-
tion method that integrates smoothly with existing speculative decoding frameworks while
remaining largely orthogonal to them.

• HSD delivers a practical advance for inference scaling, with an average 6.7% improvement in
decoding speed across diverse benchmarks and model sizes, while preserving distributional
fidelity. Efficiency gains reach up to 12.3% on individual datasets.

• In multidraft settings, HSD further improves decoding speed by an average of 4.7%, with
gains as high as 11.1%, demonstrating strong potential for integration with complementary
acceleration techniques.

2 RELATED WORK

Research on speculative decoding Leviathan et al. (2023) can be organized into two main phases:
the drafting phase and the verification phase.

Drafting Phase. Drafting methods can be grouped into three categories: (1) Single-draft. Early
SD methods Leviathan et al. (2023) inspired PaSS Monea et al. (2023) and Draft&Verify Zhang
et al. (2024), improving efficiency via multi-token generation or selective layer skipping. GLIDE Du
et al. (2024) (shared KV-cache) and Eagle Li et al. (2024) (second-to-top feature prediction) offer
further speedups but often require task-specific tuning. (2) Retrieval-based. LLM-A Yang et al.
(2023) and ReST He et al. (2023) generate drafts from reference texts, potentially reducing latency,
but face database limitations, distribution gaps, and reliance on greedy decoding. (3) Multi-draft.
Tree-attention frameworks—SpecInfer Miao et al. (2024), Medusa Cai et al. (2024), and Eagle Li
et al. (2024)—expand many branches, quickly exhausting memory. To improve throughput, Medusa
and Eagle tweak the original verification, compromising exact recovery of the target distribution.

Verification Phase. Verification methods trade fidelity for speed. Lossless approaches Sun et al.
(2023b); Yang et al. (2024); Hu et al. (2025) guarantee exact recovery but are costly. Block Verifi-
cation Sun et al. (2024) partially alleviates this bottleneck but offers limited improvement and low
interpretability and integrity. Lossy methods—including BiLD Kim et al. (2023), MTAD Qin et al.
(2025), DistillSpec Zhou et al. (2024), Medusa-2 Cai et al. (2024) and SpecCascade Narasimhan et al.
(2024) increase speed but compromise distribution fidelity and require task-specific tuning.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 REVISITING TOKENWISE SPECULATIVE DECODING

In tokenwise speculative sampling Leviathan et al. (2023), each token xt is drafted from q(xt) and
verified against p(xt). It is accepted with probability h(xt) = min{1, p(xt)/q(xt)}, or rejected and
replaced from Pres(xt). Thus the probability that xt is finally produced (“yielded”) is:

P (xt yielded) = P (xt drafted and accepted) + P (x̃t drafted and rejected, xt resampled). (1)

Accept term. If xt is proposed by q and accepted,

P (xt drafted and accepted) = q(xt)h(xt) = q(xt) min{1, p(xt)/q(xt)}. (2)

Resampling term. When a draft x̃t is rejected, the verifier resamples from

Pres(xt) =
p(xt)−min{p(xt), q(xt)}∑

x̃t∈V
(
p(x̃t)−min{p(x̃t), q(x̃t)}

) .
The total probability of rejection is

∑
x̃t∈V q(x̃t)(1− h(x̃t)), giving

P (x̃t drafted and rejected, xt resampled) =
[∑
x̃t∈V

q(x̃t)(1− h(x̃t))
]
Pres(xt). (3)

Final distribution. The sum
∑

x̃t∈V q(x̃t) (1−h(x̃t)) corresponds to the total excess mass assigned
by the draft distribution to tokens where it allocates more probability than the target, while the
denominator of Pres(xt) measures the total deficient mass, i.e., the probability assigned by the
target to tokens where it allocates more than the draft. For tokenwise distributions these match
(DLK(q, p) = DLK(p, q)), so they cancel, yielding

P (xt is yielded) = q(xt)h(xt) +DLK(q, p)
p(xt)− q(xt)h(xt)

DLK(p, q)
= p(xt).

4 THEORETICAL FOUNDATIONS OF HIERARCHICAL SPECULATIVE DECODING

For any lossless speculative decoding, the probability of generating an output decomposes into two
parts: (1) the probability a draft is accepted, becoming the final output, and (2) the probability a draft
is rejected, triggering a corrective resampling step. In token-wise speculative decoding, resampling
is straightforward because each token’s probability is directly accessible. In contrast, full joint
probabilities over sequences are intractable for auto-regressive models. Hierarchical Speculative
Decoding (HSD) overcomes this via hierarchical branch resampling, where multiple resampling
distributions at different levels recover partial target distributions, which together statistically recover
the full distribution. This section formalizes the theoretical foundations.

4.1 RECOVERY OF PARTIAL DISTRIBUTIONS

To guide recovery within accessible subsets, we extend the divergence from Leviathan et al. (2023) to
partial distributions. Let ω be a token or sequence, Ω the full sample space, and p(·), q(·) the target
and draft distributions. For Ω′ ⊆ Ω, define the generalized divergence:
Definition 1. Generalized Divergence. Given two distributions p and q over a sample space Ω, and
a subset Ω′ ⊆ Ω, the generalized divergence over Ω′ is defined as:

DΩ′(p, q) =
∑
ω̃∈Ω′

max{p(ω̃)− q(ω̃), 0}. (4)

The generalized divergence DΩ′(p, q) measures the total deficient mass, i.e., how much probability
mass is missing in the draft q relative to the target p within the subset Ω′. The reverse divergence
DΩ′(q, p) measures the corresponding excess mass. In the whole space Ω, this is symmetric (see
Lemma 2 in Section A.1) and reduces to the divergence from Leviathan et al. (2023) (see Lemma 3
in Section A.4), which underpins standard token-wise speculative decoding.

Next, we formalize the condition under which the partial target distribution is fully recoverable:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Theorem 1. Partial Distribution Recovery. A target distribution over Ω′ ⊆ Ω can be fully recovered
via resampling iff DΩ′(p, q) ≤ DΩ′(q, p). (See proof in Section A.2.)

Intuitively, this ensures the "trigger mass" in the draft is sufficient to compensate for the deficit in the
target distribution. Over the full space Ω, symmetry guarantees full recoverability.

4.2 RESAMPLING WITHIN THE ACCESSIBLE BRANCH

With these definitions, we analyze resampling within accessible branches along a draft sequence.
Although computing full joint probabilities is intractable, the probabilities of all next tokens over the
vocabulary V are accessible given any prefix X1:t−1. We define a branch as:

Branch(X1:t−1) = {X1:t = (X1:t−1, x̃t) | x̃t ∈ V}. (5)

Branch divergence will guide redistribution of excess probability mass to correct local deficits.

Since only joint probabilities p(X1:t) within a given branch Branch(X1:t−1) are available, we
introduce branch divergence to quantify local deficits in the draft:

Definition 2. Branch Divergence
DBranch(p, q | X1:t−1) =

∑
X1:t∈Branch(X1:t−1)

max{p (X1:t)− q (X1:t) , 0} (6)

Branch divergence captures how much probability mass is missing locally. Unlike total divergence, it
is inherently asymmetric, motivating the definition of branch asymmetry:

Definition 3. Asymmetry of Branch Divergence
∆Branch(X1:t−1) = DBranch(p, q | X1:t−1)−DBranch(q, p | X1:t−1) (7)

Asymmetry essentially reflects the probabilistic imbalance within the current branch. Here, ∆Branch >
0 indicates a deficit that cannot be corrected within the branch alone, while ∆Branch < 0 represents
excess mass available to support other branches. It can be computed as follows:

Theorem 2. Quantifying Asymmetry of Branch Divergence (see proof in Section A.3):
∆Branch(X1:t−1) = p (X1:t−1)− q (X1:t−1) , (8)

From Theorem 1 and Theorem 2, we conclude that resampling can fully recover the target distribution
over a branch whenever the draft has enough probability mass to cover the deficit:

Corollary 3. The target distribution over the Branch(X1:t−1) can be recovered via resampling,
under the following condition:

p(X1:t−1) ≤ q(X1:t−1) or, equivalently, r(X1:t−1) ≤ 1 (9)

where r (X1:t−1) =
p(X1:t−1)
q(X1:t−1)

denotes the probability ratio.

For drafts of length γ, the full target distribution cannot be recovered by applying verification solely
within the accessible Branch(X1:γ−1). However, we observe that the unused probability mass in
certain branches can be leveraged to compensate for the unrecoverable mass in other branches, from
a statistical perspective. This motivates the hierarchical branch resampling approach discussed next.

4.3 RESAMPLING IN A HIERARCHY OF ACCESSIBLE BRANCHES

Accessible branch divergences naturally form a hierarchical structure that enables systematic redistri-
bution of excess probability mass. Specifically:

Theorem 4. Hierarchy of Branch Divergence

The total positive asymmetry of branch divergence across child branches is equal to the parent branch
divergence, and vice versa. Specifically:

∑
∆Branch(X1:t−2,x̃t−1)>0

∆Branch(X1:t−2, x̃t−1) = DBranch(p, q | X1:t−2), and vice versa, (10)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where X1:t−2, x̃t−1 ranges over all possible Branches with the shared prefix X1:t−2, and X1:t−2 is
the accessible branch along the draft sequence. (See Section A.5 for the proof.)

This result guarantees that excess mass from overrepresented branches can be aggregated to offset
deficits in underrepresented branches. Thus, hierarchical branch resampling guarantees exact recovery
of the target distribution, even when individual branches cannot. This provides a rigorous theoretical
foundation for deriving Hierarchical Speculative Decoding.

Algorithm 1 Naive HSD
Require: Target probabilities: {p(·), ..., p(·|X1:γ)}
Require: Draft probabilities: {q(·), ..., q(·|X1:γ−1)}
Require: Draft tokens X1:γ = {x1, ..., xγ}
1: Initialize τ = 0
2: for t in γ : 1 do
3: Sample ηt ∼ U(0, 1)
4: if ht ≥ ηt then
5: Set τ = t #accept X1:t

6: break
7: else
8: Set τ = t− 1 #reject xt

9: continue #step back
10: end if
11: end for
12: if τ = γ then
13: Sample token from p(·|X1:γ) #bonus token
14: else
15: for t in τ : γ − 1 do
16: Sample token from Pres(· | X1:t) #resample
17: end for
18: end if
Ensure: [X1:τ , x̃τ+1, . . . , x̃γ]

Algorithm 2 HSD
Require: Target probabilities: {p(·), ..., p(·|X1:γ)}
Require: Draft probabilities: {q(·), ..., q(·|X1:γ−1)}
Require: Draft tokens X1:γ = {x1, ..., xγ}
1: Initialize τ = 0
2: for t in γ : 1 do
3: Sample ηt ∼ U(0, 1)
4: if ht ≥ ηt then
5: Set τ = t #accept X1:t

6: break
7: else
8: Set τ = t− 1 #reject xt

9: continue #step back
10: end if
11: end for
12: if τ = γ then
13: Sample token from p(·|X1:γ) #bonus token
14: else
15: Sample token from P ∗

res(· | X1:τ) #resample
16: end if
Ensure: [X1:τ , token]

5 HIERARCHICAL SPECULATIVE DECODING

Guided by the theoretical foundations, we first develop a naive algorithm (see 5.1) that exactly
recovers the target distribution. The procedure evaluates a candidate sequence X1:γ and scans
backward to identify the longest accepted prefix X1:τ , then recursively resamples positions τ + 1
through γ using the corresponding distributions from the resampling hierarchy.

This naive approach, however, still requires γ − τ + 1 additional calls to the target model, since
the resampled branches are inaccessible. To remove this overhead, we introduce Capped Branch
Resampling, yielding our final Hierarchical Speculative Decoding (HSD). HSD recovers the target
distribution with just one resampling step within the accessible branches. Concretely, after the
resampling step at line 15 in Algorithm 2, HSD only needs to sample from the target distribution to
continue generation until γ, which can be replaced by another speculative decoding step, eliminating
additional target calls.

5.1 NAIVE HIERACHICIAL SPECULATIVE DECODING

Specifically, the acceptance probability is computed according to the following formula:

Acceptance Probability hγ = min{r(X1:γ), 1}, and when t < γ:

ht =
DBranch(p, q | X1:t)

max{DBranch(p, q | X1:t), DBranch(q, p | X1:t)}
, (11)

Branch Resampling Probability (line 17 in Algorithm 1):

Pres (xt | X1:t−1) =
max {p (X1:t)− q (X1:t) , 0}

DBranch(p, q | X1:t−1)
(12)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Branch Divergence DBranch(p, q | X1:t−1) is defined in Definition 2. By construction, the
Branch Resampling Probability is defined within the accessible Branch(X1:t−1), i.e., Pres(X1:t |
Branch(X1:t−1)), which reduces to the token-level form Pres(xt | X1:t−1).

The probability of the Target Model generating a sequence X1:γ can be decomposed into two disjoint
events: (i) full acceptance of the draft, or (ii) at least one rejection followed by resampling:

P
(
X1:γ is yielded

)
= P

(
X1:γ is sampled as draft, X1:γ is accepted

)
+

∑
X̃1:γ ̸=X1:γ

P (X̃1:γ sampled and rejected, X1:γ resampled). (13)

Accept term: probability for the case when X1:γ is sampled as draft and then directly accepted.
P
(
X1:γ is sampled as draft, X1:γ is accepted

)
= q(X1:γ)︸ ︷︷ ︸

sample probability

min{r(X1:γ), 1}︸ ︷︷ ︸
accept probability at γ

(14)

If r(X1:γ) ≤ 1, this equals to the target probability p(X1:γ). Otherwise, it is equal to q(X1:γ), and
the residual probability p(X1:γ)− q(X1:γ) is compensated via resampling.

Resampling term (partially resampled): This term accounts for all cases where X1:γ is obtained by
resampling. Note that the accepted prefix must exactly match the corresponding subsequence of X1:γ

for this contribution to apply. Therefore, we can further decompose it by summing over all possible
positions τ + 1 of the first rejected token, with τ being the length of the longest accepted prefix:

γ∑
τ=0

∑
X̃τ+1:γ

P (X̃1:γ sampled and rejected, X1:γ resampled) =

γ∑
τ=0

∑
X̃τ+1:γ

q(X1:τX̃τ+1:γ) ·
γ∏

t=τ+1

(1− ht) · hτX1:τ ·
γ∏

t=τ+1

Pres(xt)

(15)

Explanation of terms:

1. Sampling: q(X1:τX̃τ+1:γ) is the probability of generating the initial draft sequence.

2. Backward Scan:
∏γ

t=τ+1(1−ht) corresponds to scanning backward from the end, rejecting
tokens until the first accepted prefix is found.

3. Acceptance: hτ is the probability of accepting the longest prefix X1:τ .

4. Resampling:
∏γ

t=τ+1 Pres(xt) resamples the remaining positions to recover exactly the
target probability.

This decomposition defines the procedure underlying Algorithm 1 and provides the basis for its
provable losslessness. The complete proof is given in Section B.2, together with an illustrative
example Section B.1 showing how naive HSD recovers the target distribution.

5.2 HIERARCHICAL SPECULATIVE DECODING WITH CAPPED BRANCH RESAMPLING

To introduce the capped branch sampling, we first define the Maximum Prefix Ratio Index.

Definition 4. Maximum Prefix Ratio Index For candidate tokens X1:t, the Maximum Prefix Ratio
Index m(X1:t) is the position in the prefix X1:t−1 where the joint probability ratio r(X1:i) is
maximized; if no prefix exceeds 1, we set m(X1:t) = 0:

m(X1:t) = arg max
1≤i<t

r(X1:i) or 0 if max
1≤i<t

r(X1:i) ≤ 1.

Based on the Maximum Prefix Ratio Index, we define the Capped Prefix Ratio r∗ as follows:

Definition 5. Capped Prefix Ratio

r∗(X1:t) = min{r(X1:m(X1:t)), 1}r(Xm(X1:t)+1:t). (16)

By Definition 5, we have r(X1:m(X1:t)) > 1, and according to Equation 3, this implies the identity
r∗(X1:t) = r

(
Xm(X1:t)+1:t

)
.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Then we define the Capped Branch Divergence:

Definition 6. Capped Branch Divergence

D∗
Branch (p, q | X1:t−1) =

∑
X1:t∈Branch(X1:t−1);

r∗(X1:t)>1

(r∗ (X1:t)− 1) q (X1:t) (17)

D∗
Branch (q, p | X1:t−1) =

∑
X1:t∈Branch(X1:t−1);

r∗(X1:t)≤1

(1− r∗ (X1:t)) q (X1:t) (18)

Finally, the acceptance probability is computed according to the following formula:

Acceptance Probability hγ = min{r∗(X1:γ), 1}, and when t < γ:

ht =
D∗

Branch(p, q | X1:t)

D∗
Branch(q, p | X1:t)

, (19)

Capped Branch Resampling Probability (line 15 in Algorithm 2):

P ∗
res (xt | X1:t−1) =

max {q (X1:t) (r
∗ (X1:t)− 1) , 0}

D∗
Branch (p, q | X1:t−1)

(20)

We refer to the above strategy as Capped Branch Resampling. It plays a central role in enabling effi-
cient resampling within the hierarchical branch resampling framework. The resampling distribution
in Equation (20) enables recovery of the full target distribution with only a single resampling step for
branches with negative asymmetry. The remaining positions can then be directly sampled from the
target model, aligning with the start of the next speculative decoding step and thus incurring no extra
computational cost.

We briefly clarify the core mechanism by which capping preserves the target joint dis-
tribution. From Definition 5 and Definition 6, it follows that D∗

Branch(p, q | X1:t) =∑
X1:t∈Branch(X1:t−1)

max{q
(
X1:m(X1:t)

)
p
(
Xm(X1:t)+1:t

)
− q (X1:t) , 0}. Through the accep-

tance probability and resampling probability at position t, we essentially guarantee that the probability
of obtaining X1:t is equal to q

(
X1:m(X1:t)

)
p
(
Xm(X1:t)+1:t

)
, partially recovering the probability

of the fragment Xm(X1:t)+1:t. And the deficient probability mass p(X1:m(X1:t))− q(X1:m(X1:t))
is statistically recovered from the resampling distributions in higher hierarchies, which corresponds to
the fragments X̃1:m(X1:t) of other trajectories. An illustrative example in Section C.1 demonstrates
how the algorithm recovers loss over the entire path, with a further explanation of the capped ratio
provided in Section C.3.

5.3 EXPECTED NUMBER OF ACCEPTED TOKENS

We conduct efficiency analysis based on the expected acceptance length E[τ]. For a given draft length
γ, the expected number of accepted tokens for the tokenwise speculative decoding Leviathan et al.
(2023), blockwise verification Sun et al. (2024), and our HSD are as follows:

Lemma 1. Expected Number of Accepted Tokens (See Section D for proof.)

E[τ]token =

γ∑
i=1

i∏
k=1

htoken
k ,E[τ]block =

γ∑
i=1

[
1−

γ∏
k=i

(
1− hblock

k

)]
,E[τ]branch =

γ∑
i=1

[
1−

γ∏
k=i

(1− hk)

]
(21)

We establish Theorem 5, which guarantees that HSD is more efficient than other lossless methods:

Theorem 5. HSD Achieves Better Expected Number of Accepted Tokens

E[τ]branch ≥ E[τ]block ≥ E[τ]token (22)

where equality holds in both inequalities if and only if γ = 1. (See Section D for proof.)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 2: The average accep-
tance probability of the entire
draft (τ = γ) on GSM8K.

We reveal that limitations on acceptance probability in each
method directly cause the gap from the ideal case w.r.t.
expected accepted tokens. Let r(xt) = p(xt)

q(xt)
. The

acceptance probability of the entire draft hγ is ideally
min {

∏γ
t=1 r(xt), 1}. In contrast, tokenwise acceptance is

htoken =
∏γ

t=1 min{r(xt), 1}, blockwise adopts hblock =
min{1, rγ , rγ−1rγ , . . . , r1r2 · · · rγ} (see Lemma 11), and HSD uses

hours = min
{
min

{∏m(xγ)
t=1 r(xt), 1

}∏γ
t=m(xγ)+1 r(xt), 1

}
. See

the average acceptance probability hγ on GSM8K in Fig. 2.

6 EXPERIMENTS

In this section, we empirically demonstrate the superiority of HSD with comparison on various
benchmarks and configurations, comprehensive ablation studies, and in-depth analysis of results.

6.1 EXPERIMENT SETTING

Experiments Setup. Experiments are conducted with the widely adopted GPTQ-quantized 8-bit
instruction-tuned Qwen2.5 series Bai et al. (2023). By default, we employ the 0.5B as the draft
model and 72B as the target models, with a temperature of 1. We leverage GSM8K Cobbe et al.
(2021) for mathematical problem-solving, HumanEval Chen et al. (2021) for code generation, and
CNN/DailyMail See et al. (2017) for text summarization. We conduct all experiments on a single
NVIDIA H20 96GB GPU.

Baselines and Metrics. We compare two lossless verification methods—Token-wise Leviathan et al.
(2023) and Block-wise Sun et al. (2024)—using two metrics: Block Efficiency (tokens/step) and
Decoding Speed (tokens/second). Block Efficiency measures the average tokens generated per serial
call to the target model, reflecting intrinsic efficiency independent of hardware. Decoding Speed
indicates tokens produced per second for practical reference, though it depends on hardware and
implementation. Additional details and extended evaluations are in Section E.

6.2 EXPERIMENT RESULTS

Main results. Table 1 summarizes the performance of HSD across datasets and model scales
using the Qwen2.5 suite (0.5B as draft,14B, 32B, and 72B as targets). Overall, HSD consistently
improves both Block Efficiency (BE) and Decoding Speed (DS) relative to Tokenwise and Blockwise
verification. For GSM8K, the gains are stable across scales, with BE improvements of 5.2%–5.4%
at 14B/32B and 3.3% at 72B, accompanied by DS increases of up to 10.7%. On HumanEval,
the effect is more pronounced: BE rises by 9.5% and 12.3% at 14B and 32B, while DS improves

Table 1: Comparison of Block Efficiency (BE) and Decoding Speed (DS) across datasets and model
scales. Values in parentheses show percentage improvement over Tokenwise.

Method Block Efficiency (Token/Step) Decoding Speed (Token/Second)
14B 32B 72B 14B 32B 72B

GSM8K
Tokenwise 5.99 6.14 6.44 82.28 53.87 31.49
Blockwise 6.13 (+2.3%) 6.26 (+2.0%) 6.53 (+1.4%) 86.06 (+4.6%) 54.91 (+1.9%) 31.79 (+1.0%)
HSD (Ours) 6.30 (+5.2%) 6.47 (+5.4%) 6.65 (+3.3%) 91.05 (+10.7%) 57.12 (+6.0%) 32.52 (+3.3%)

HumanEval
Tokenwise 4.83 4.89 5.23 74.21 45.68 26.31
Blockwise 5.11 (+5.8%) 5.15 (+5.3%) 5.34 (+2.1%) 78.14 (+5.3%) 48.15 (+5.4%) 26.96 (+2.5%)
HSD (Ours) 5.29 (+9.5%) 5.49 (+12.3%) 5.40 (+3.3%) 81.09 (+9.3%) 50.88 (+11.4%) 27.48 (+4.4%)

CNN/DailyMail
Tokenwise 2.39 2.36 2.35 37.28 21.89 11.90
Blockwise 2.50 (+4.6%) 2.42 (+2.5%) 2.39 (+1.7%) 38.54 (+3.4%) 22.31 (+1.9%) 12.10 (+1.4%)
HSD (Ours) 2.59 (+8.4%) 2.46 (+4.2%) 2.45 (+4.3%) 39.96 (+7.2%) 22.78 (+4.1%) 12.33 (+3.6%)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Comparison in Multi-draft setting. Hierarchical is compared to Tokenwise, and Hierarchical Multi-draft
is compared to Tokenwise Multi-draft.

Method Block Efficiency (Token/Step) Decoding Speed (Token/Second)
GSM8K HumanEval CNN/DailyMail GSM8K HumanEval CNN/DailyMail

Tokenwise 6.44 5.23 2.35 31.49 26.31 11.90
HSD (Ours) 6.65 (+3.3%) 5.40 (+3.3%) 2.45 (+4.3%) 32.52 (+3.3%) 27.48 (+4.4%) 12.33 (+3.6%)

Tokenwise Multi-draft 8.65 7.96 3.79 37.66 35.72 15.38
HSD Multi-draft (Ours) 8.89 (+2.8%) 8.26 (+3.8%) 4.21 (+11.1%) 38.41 (+2.0%) 36.83 (+3.1%) 16.75 (+8.9%)

Table 3: Evaluation of HSD under multi-draft setup, and ablations on temperature, draft length, and
target model size on GSM8K. Except for the ablation on target model size, we adopt Qwen2.5-0.5B
as the draft model and Qwen2.5-72B as the target model.

(a) Comparison of different sampling temperatures.
The draft length γ is set to 10.

Method Block Efficiency Decoding Speed
t = 0.6 t = 0.8 t = 1 t = 0.6 t = 0.8 t = 1

Tokenwise 6.81 6.70 6.44 32.86 32.18 31.49
Blockwise 6.83 6.74 6.53 33.07 32.33 31.79
Hierarchicial 6.86 6.79 6.65 33.21 32.90 32.52

(b) Comparison of different draft lengths. The temper-
ature is set to 1.

Method Block Efficiency Decoding Speed
γ = 5 γ = 10 γ = 15 γ = 5 γ = 10 γ = 15

Tokenwise 4.48 6.44 7.61 12.01 31.49 51.03
Blockwise 4.52 6.53 7.74 12.14 31.79 51.75
Hierarchical 4.59 6.65 7.88 12.35 32.52 52.95

by 9.3% and 11.4%; even at 72B, HSD maintains positive margins (3.3% BE, 4.5% DS). For
CNN/DailyMail, the improvements are moderate but consistent, with BE gains of 4.2%–8.4% and
DS gains of 3.4%–7.2%. Taken together, these results demonstrate that HSD not only outperforms
Tokenwise verification but also provides consistent advantages over Blockwise verification, yielding
average improvements of approximately 6.2% in BE and 6.7% in DS. The consistency of these
gains across datasets and scales highlights the robustness and scalability of the approach.

Multi-draft. To demonstrate the advantage of HSD, we compare it with token-wise speculative
decoding in a multi-draft setting. For simplicity—and without loss of generality—we adopt Recursive
Reject Sampling (RRS) with replacement Yang et al. (2024) as the baseline for its scalability and
independence from complex tree attention mechanisms. Notably, since it is not straightforward
to extend blockwise verification to the multi-draft setup, we omit it from our comparison. We
evaluated multi-draft generation with 11 candidate drafts in Table 2, and HSD yields an average
5.9% improvement in Block Efficiency and 4.7% improvement in Decoding Speed over token-wise
decoding. These results further underscore the strong potential of HSD to improve performance when
combined with complementary or orthogonal techniques.

Ablation on Temperature. We conduct a systematic evaluation of sampling temperature’s effect
on decoding efficiency, with t ∈ {0.6, 0.8, 1.0} (Table 3(a)). HSD consistently outperforms other
approaches across all temperature settings, demonstrating its robustness to temperature variations.

Ablation on Draft Length. We evaluate draft lengths γ ∈ {5, 10, 15} tokens, where HSD consistently
outperforms baselines with increasing efficiency gains (Table 3(b)). At γ = 15, HSD achieves peak
performance with 7.88 tokens/step in block efficiency and 52.95 steps/second in decoding speed,
representing improvements of 3.58% and 3.88% over Tokenwise, respectively. The consistent
performance advantage across all draft lengths demonstrates HSD’s robust scalability.

7 CONCLUSION

We have introduced Hierarchical Speculative Decoding (HSD), a novel, lossless verification algo-
rithm that significantly boosts the expected number of accepted tokens while preserving the target
distribution. This approach is backed by rigorous theoretical analysis and extensive empirical vali-
dation. HSD’s design is broadly compatible with existing speculative decoding frameworks, and it
demonstrates especially strong scalability benefits for longer draft sequences.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal ex-
perimentation was involved. All datasets used, including GSM8K, CNN/DailyMail, and Human
Eval, were sourced in compliance with relevant usage guidelines, ensuring no violation of privacy.
We have taken care to avoid any biases or discriminatory outcomes in our research process. No
personally identifiable information was used, and no experiments were conducted that could raise
privacy or security concerns. We are committed to maintaining transparency and integrity throughout
the research process.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. The
experimental setup, model configurations, and hardware details are described in detail in the paper.
We have also provided a full description of HSD to assist others in reproducing our experiments.
Additionally, GSM8K, CNN/DailyMail, and Human Eval are publicly available, ensuring consistent
and reproducible evaluation results. We believe these measures will enable other researchers to
reproduce our work and further advance the field.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri
Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads. In
International Conference on Machine Learning, pages 5209–5235. PMLR, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas
Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher
Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford,
Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language
models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.org/
abs/2110.14168.

Cunxiao Du, Jing Jiang, Xu Yuanchen, Jiawei Wu, Sicheng Yu, Yongqi Li, Shenggui Li, Kai Xu,
Liqiang Nie, Zhaopeng Tu, et al. Glide with a cape: a low-hassle method to accelerate speculative
decoding. In Proceedings of the 41st International Conference on Machine Learning, pages
11704–11720, 2024.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

10

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee, and Di He. Rest: Retrieval-based speculative
decoding. arXiv preprint arXiv:2311.08252, 2023.

Zhengmian Hu, Tong Zheng, Vignesh Viswanathan, Ziyi Chen, Ryan A Rossi, Yihan Wu, Dinesh
Manocha, and Heng Huang. Towards optimal multi-draft speculative decoding. arXiv preprint
arXiv:2502.18779, 2025.

Sehoon Kim, Karttikeya Mangalam, Suhong Moon, Jitendra Malik, Michael W Mahoney, Amir
Gholami, and Kurt Keutzer. Speculative decoding with big little decoder. Advances in Neural
Information Processing Systems, 36:39236–39256, 2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pages 19274–19286. PMLR, 2023.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: speculative sampling requires
rethinking feature uncertainty. In Proceedings of the 41st International Conference on Machine
Learning, pages 28935–28948, 2024.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating large
language model serving with tree-based speculative inference and verification. In Proceedings of
the 29th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 3, pages 932–949, 2024.

Giovanni Monea, Armand Joulin, and Edouard Grave. Pass: Parallel speculative sampling. arXiv
preprint arXiv:2311.13581, 2023.

Harikrishna Narasimhan, Wittawat Jitkrittum, Ankit Singh Rawat, Seungyeon Kim, Neha Gupta,
Aditya Krishna Menon, and Sanjiv Kumar. Faster cascades via speculative decoding. arXiv
preprint arXiv:2405.19261, 2024.

OpenAI. Openai o1 system card. https://arxiv.org/abs/2412.16720, 2024. Accessed:
2025-05-12.

Zongyue Qin, Ziniu Hu, Zifan He, Neha Prakriya, Jason Cong, and Yizhou Sun. Optimized multi-
token joint decoding with auxiliary model for llm inference. In The Thirteenth International
Conference on Learning Representations, 2025.

Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point: Summarization with
pointer-generator networks. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1073–1083, Vancouver, Canada, July
2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1099. URL https:
//www.aclweb.org/anthology/P17-1099.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W Mahoney,
and Kurt Keutzer. Q-bert: Hessian based ultra low precision quantization of bert. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 34, pages 8815–8821, 2020.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for
large language models. arXiv preprint arXiv:2306.11695, 2023a.

Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami, Himanshu Jain, and Felix
Yu. Spectr: Fast speculative decoding via optimal transport. Advances in Neural Information
Processing Systems, 36:30222–30242, 2023b.

Ziteng Sun, Uri Mendlovic, Yaniv Leviathan, Asaf Aharoni, Ahmad Beirami, Jae Hun Ro, and
Ananda Theertha Suresh. Block verification accelerates speculative decoding. arXiv preprint
arXiv:2403.10444, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

11

https://arxiv.org/abs/2412.16720
https://www.aclweb.org/anthology/P17-1099
https://www.aclweb.org/anthology/P17-1099

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural language
processing. In Qun Liu and David Schlangen, editors, Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations, pages 38–45, Online,
October 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-demos.6.
URL https://aclanthology.org/2020.emnlp-demos.6/.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pages 38087–38099. PMLR, 2023.

Nan Yang, Tao Ge, Liang Wang, Binxing Jiao, Daxin Jiang, Linjun Yang, Rangan Majumder, and
Furu Wei. Inference with reference: Lossless acceleration of large language models. arXiv preprint
arXiv:2304.04487, 2023.

Sen Yang, Shujian Huang, Xinyu Dai, and Jiajun Chen. Multi-candidate speculative decoding. arXiv
preprint arXiv:2401.06706, 2024.

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen, Gang Chen, and Sharad Mehrotra. Draft&
verify: Lossless large language model acceleration via self-speculative decoding. In Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 11263–11282, 2024.

Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat, Aditya Krishna Menon, Afshin Rostamizadeh, San-
jiv Kumar, Jean-François Kagy, and Rishabh Agarwal. Distillspec: Improving speculative decoding
via knowledge distillation. In The Twelfth International Conference on Learning Representations,
2024.

APPENDIX

A THEORETICAL FOUNDATION

A.1 SYMMETRY OF TOTAL DIVERGENCE

Lemma 2. Symmetry of Total Divergence.
DΩ(p, q) = DΩ(q, p). (A.1)

Proof. From Definition 1, we know:

DΩ(p, q)−DΩ(q, p) =
∑
ω̃∈Ω

max{p(ω̃)− q(ω̃), 0} −
∑
ω̃∈Ω

max{q(ω̃)− p(ω̃), 0}

=
∑
ω̃∈Ω

p(ω̃)≥q(ω̃)

(p(ω̃)− q(ω̃))−
∑
ω̃∈Ω

q(ω̃)>p(ω̃)

(q(ω̃)− p(ω̃))

=
∑
ω̃∈Ω

p(ω̃)−
∑
ω̃∈Ω

q(ω̃)

= 0 (since both p and q sum to 1 over the full sample space Ω)

(A.2)

Thus, DΩ(p, q) = DΩ(q, p), completing the proof.

A.2 PARTIAL DISTRIBUTION RECOVERY

Proof of Theorem 1. Let P (w is yielded) denote the total probability of producing w ∈ Ω′. By
construction, this can be decomposed as

P (w is yielded) = P (w is drafted & accepted) + P (w is drafted & rejected, w is resampled),
(A.3)

12

https://aclanthology.org/2020.emnlp-demos.6/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

where acceptance occurs with probability h(w) = min{p(w)/q(w), 1}, and resampling follows the
distribution Pres(· | Ω′) with total trigger mass DΩ′(q, p). Here, the total trigger mass represents the
sum of probabilities of all draft outcomes in Ω′ that are rejected. Hence,

P (w is yielded) = h(w) q(w) +DΩ′(q, p)Pres(w | Ω′). (A.4)

Noting that h(w) q(w) = min{p(w), q(w)}, we have

P (w is yielded) = min{p(w), q(w)}+DΩ′(q, p)Pres(w | Ω′). (A.5)

To match the target distribution exactly (P (w is yielded) = p(w)), we require

Pres(w | Ω′) =
p(w)−min{p(w), q(w)}

DΩ′(q, p)
=

max{p(w)− q(w), 0}
DΩ′(q, p)

. (A.6)

Summing over all w ∈ Ω′ gives ∑
w∈Ω′

Pres(w | Ω′) =
DΩ′(p, q)

DΩ′(q, p)
. (A.7)

For Pres(· | Ω′) to be a valid probability distribution, this sum must not exceed 1. Therefore, the
necessary and sufficient condition is

DΩ′(p, q) ≤ DΩ′(q, p), (A.8)

which completes the proof.

A.3 QUANTIFICATION ANALYSIS OF ASYMMETRY

Proof. From Definition 3 and Definition 2, we obtain:

∆Branch(X1:t−1) =
∑

X1:t∈Branch(X1:t−1)

max {p (X1:t)− q (X1:t) , 0}

−
∑

X1:t∈Branch(X1:t−1)

max {q (X1:t)− p (X1:t) , 0}

=
∑

X1:t∈Branch(X1:t−1)

p (X1:t)−
∑

X1:t∈Branch(X1:t−1)

q (X1:t)

=
∑
xt∈V

p (X1:t−1) p (xt | X1:t−1)−
∑
xt∈V

q (X1:t−1) q (xt | X1:t−1)

= p (X1:t−1)− q (X1:t−1) (since
∑
xt∈V

p(xt | X1:t−1) = 1)

(A.9)

A.4 RELATION TO THE DIVERGENCE IN LEVIATHAN ET AL. (2023)

Lemma 3. The total divergence is equivalent to the divergence defined in Leviathan et al. (2023) for
token distributions over the full sample space.

Proof. Following Leviathan et al. (2023), let x̃ denote a token, and omit conditions in the token
probabilities for simplicity. From Definition 3.2 in Leviathan et al. (2023), we have:

DLK(p, q) =
∑
x̃∈Ω

∣∣∣∣p(x̃)− q(x̃)

2

∣∣∣∣
=

1

2

(∑
x̃∈Ω

max{p(x̃)− q(x̃), 0}+
∑
x̃∈Ω

max{q(x̃)− p(x̃), 0}

) (A.10)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

From Lemma 2, we know that DΩ(p, q) = DΩ(q, p), so we can write:

DΩ(p, q) =
DΩ(p, q) +DΩ(q, p)

2

=
1

2

(∑
x̃∈Ω

max{p(x̃)− q(x̃), 0}+
∑
x̃∈Ω

max{q(x̃)− p(x̃), 0}

) (A.11)

Therefore, DΩ(p, q) = DLK(p, q), completing the proof.

A.5 HIERARCHY OF DIVERGENCE

Proof. Proof of Theorem 4.

From Theorem 2, we recall that:
∆Branch(X1:t−2, x̃t−1) = p(X1:t−2, x̃t−1)− q(X1:t−2, x̃t−1). (A.12)

Therefore, summing over the cases where this difference is positive gives:∑
∆Branch(X1:t−2,x̃t−1)>0

∆Branch(X1:t−2, x̃t−1) =
∑

x̃t−1∈V
max {p(X1:t−2, x̃t−1)− q(X1:t−2, x̃t−1), 0} .

(A.13)

By Definition 2, this is precisely the branch divergence one level higher DBranch(p, q | X1:t−2), thus
completing the proof.

B LOSSLESS OF NAIVE HIERARCHICAL SPECULATIVE DECODING

B.1 ILLUSTRATIVE EXAMPLE

For example, consider the case where r(X1:γ) > 1, r(X1:γ−1) > 1, and r(X1:γ−2) ≤ 1. The
accept term is simply equal to q(X1:γ), so we only need to check whether the resampling term equals
p(X1:γ)− q(X1:γ). According to Equation (12), we know Pres(xγ−2 | X1:γ−1) = 0. Consequently,
contributions from positions earlier than γ − 1 in the sum above vanish, which implies that the
resampling term for X1:γ arises solely from resampling at positions γ and γ − 1 as follows:∑

x̃γ

P
(
sample X1:γ−1x̃γ , reject x̃γ , accept X1:γ−1, resample xγ

)
+

∑
X̃γ−1:γ

P
(
sample X1:γ−2x̃γ−1:γ , reject X̃γ−1:γ , accept X1:γ−2, resample Xγ−1:γ

)
=
∑
x̃γ

q(X1:γ−1x̃γ)︸ ︷︷ ︸
draft probability

· (1− hγ)︸ ︷︷ ︸
reject backwards at τ + 1 = γ

· hγ︸︷︷︸
accept X1:γ−1

· Pres(xt)︸ ︷︷ ︸
resample at τ + 1 = γ

+

∑
x̃γ−1

∑
x̃γ

q(X1:γ−2x̃γ−1x̃γ)︸ ︷︷ ︸
draft probability

· (1− hγ)(1− hγ−1)︸ ︷︷ ︸
reject backwards at τ+1=γ−1

· hγ−2︸ ︷︷ ︸
accept X1:γ−1

·Pres(xγ−1)Pres(xγ)︸ ︷︷ ︸
resample at τ + 1 = γ

(A.14)

From Definition 2 that the excess probability mass that triggers resampling DBranch(q, p | X1:γ−1) =∑
x̃γ

q(X1:γ−1x̃γ)(1− hγ). Then we have:

=DBranch(q, p|X1:γ−1) · 1 ·
p(X1:γ)− q(X1:γ)

DBranch(p, q|X1:γ−1)
+∑

x̃γ−1

DBranch(q, p|X1:γ−2x̃γ−1)(1−
DBranch(p, q|X1:γ−2x̃γ−1)

DBranch(q, p|X1:γ−2x̃γ−1)
)Pres(xγ−1)Pres(xγ)

(A.15)

From Definition 3 and Theorem 4, we know that
∑

x̃γ−1
DBranch(q, p|X1:γ−2x̃γ−1) −

DBranch(p, q|X1:γ−2x̃γ−1) = DBranch(q, p|X1:γ−2). Then we have:

=
DBranch(q, p|X1:γ−1)

DBranch(p, q|X1:γ−1)
· (p(X1:γ)− q(X1:γ))+

DBranch(q, p|X1:γ−2) ·
p(X1:γ−1)− q(X1:γ−1)

DBranch(p, q|X1:γ−2)
· p(X1:γ)− q(X1:γ)

DBranch(p, q|X1:γ−1)

(A.16)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

We know from Definition 3 and Theorem 2 that p(X1:γ) − q(X1:γ) = DBranch(p, q|X1:γ−1) −
DBranch

(
q, p|X1:γ−1

)
. Then we have:

=
DBranch(q, p|X1:γ−1)

DBranch(p, q|X1:γ−1)
· (p(X1:γ)− q(X1:γ))+(

DBranch(p, q | X1:γ−1)−DBranch(q, p | X1:γ−1)
)

DBranch(p, q | X1:γ−1)
· (p(X1:γ)− q(X1:γ))

= p(X1:γ)− q(X1:γ)

(A.17)

∑
x̃γ

P
(
X1:γ−1x̃γ is sampled, x̃γ is rejected,X1:γ−1 is accepted, xγ is resampled

)
+ (A.18)

∑
X′

γ−1:γ

P
(
X1:γ−2X̃γ−1:γ is sampled, X̃γ−1:γ is rejected,X1:γ−2is accepted,Xγ−1:γ is resampled

)
(A.19)

=
∑
x̃γ

q(X1:γ−1x̃γ)︸ ︷︷ ︸
draft probability

· (1− hγ)︸ ︷︷ ︸
reject backwards at τ + 1 = γ

· hγ︸︷︷︸
accept X1:γ−1

· Pres(xt)︸ ︷︷ ︸
resample at τ + 1 = γ

+ (A.20)

∑
x̃γ−1

∑
x̃γ

q(X1:γ−2x̃γ−1x̃γ)︸ ︷︷ ︸
draft probability

· (1− hγ)(1− hγ−1)︸ ︷︷ ︸
reject backwards at τ + 1 = γ − 1

· hγ−2︸ ︷︷ ︸
accept X1:γ−1

·Pres(xγ−1)Pres(xγ)︸ ︷︷ ︸
resample at τ + 1 = γ

(A.21)

From Definition 2 that the excess probability mass that triggers resampling DBranch(q, p | X1:γ−1) =∑
x̃γ

q(X1:γ−1x̃γ)(1− hγ). Then we have

= DBranch(q, p|X1:γ−1) · 1 ·
p(X1:γ)− q(X1:γ)

DBranch(p, q|X1:γ−1)
+ (A.22)∑

x̃γ−1

DBranch(q, p|X1:γ−2x̃γ−1)(1−
DBranch(p, q|X1:γ−2x̃γ−1)

DBranch(q, p|X1:γ−2x̃γ−1)
)Pres(xγ−1)Pres(xγ) (A.23)

From Definition 3 and Theorem 4, we know that
∑

x̃γ−1
DBranch(q, p|X1:γ−2x̃γ−1) −

DBranch(p, q|X1:γ−2x̃γ−1) = DBranch(q, p|X1:γ−2). Then we have

=
DBranch(q, p|X1:γ−1)

DBranch(p, q|X1:γ−1)
· (p(X1:γ)− q(X1:γ))+ (A.24)

DBranch(q, p|X1:γ−2) ·
p(X1:γ−1)− q(X1:γ−1)

DBranch(p, q|X1:γ−2)
· p(X1:γ)− q(X1:γ)

DBranch(p, q|X1:γ−1)
(A.25)

We know from Definition 3 and Theorem 2 that p(X1:γ) − q(X1:γ = DBranch(p, q|X1:γ−1) −
DBranch

(
q, p|X1:γ−1

)
. Then we have

=
DBranch(q, p|X1:γ−1)

DBranch(p, q|X1:γ−1)
· (p(X1:γ)− q(X1:γ))+ (A.26)(

DBranch(p, q | X1:γ−1)−DBranch(q, p | X1:γ−1)
)

DBranch(p, q | X1:γ−1)
· (p(X1:γ)− q(X1:γ)) (A.27)

= p(X1:γ)− q(X1:γ) (A.28)

B.2 GENERAL PROOF

Lemma 4 (Rejection-Resampling Sum Reduction (Tokenwise)). Let 0 < m < γ be such that the
acceptance ratios satisfy:

r(xγ) > 1, r(xγ−1) > 1, . . . , r(xγ−m+1) > 1, r(xγ−m) ≤ 1. (A.29)
Then, the total probability of obtaining the output via resampling over the last m positions is:

m−1∑
i=0

P (xγ−i is rejected)
i∏

j=0

P (X1:γ−j is resampled) = p(X1:γ)− q(X1:γ). (A.30)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Proof. We begin by defining auxiliary quantities to simplify the notation. For i = 0, 1, . . . ,m, let

∆+
i := DBranch(q, p | X1:γ−i),

∆−
i := DBranch(p, q | X1:γ−i),

(A.31)

where ∆−
i quantifies the probability mass to be corrected due to overestimation by q, and ∆+

i
represents the mass available to be allocated from alternate paths.

Define also the recursive product term:

Pi :=

i∏
j=0

∆+
j −∆−

j

∆+
j+1

, for 0 ≤ i ≤ m− 1. (A.32)

Using these, the rejection-resample contribution becomes:

m−1∑
i=1

P (xγ−i is rejected)
i∏

j=0

P (X1:γ−j is resampled)

=

m−1∑
i=1

∆−
i Pi + (∆+

m−1 −∆−
m−1)Pm−1.

(A.33)

Now observe the recurrence:
∆+

k+1Pk+1 = (∆+
k −∆−

k)Pk, (A.34)

which implies:
(∆+

k −∆−
k)Pk = ∆+

k+1Pk+1. (A.35)

We apply this recurrence in reverse to simplify equation (1) by telescoping the sum:

m−1∑
i=1

∆−
i Pi + (∆+

m−1 −∆−
m−1)Pm−1 =

m−2∑
i=1

∆−
i Pi +∆+

m−1Pm−1

=

m−3∑
i=1

∆−
i Pi +∆+

m−2Pm−2

...

= ∆+
1 P1

= ∆+
0 −∆−

0

= p(X1:γ)− q(X1:γ),

(A.36)

where the final equality follows from the definition:

∆+
0 −∆−

0 = DBranch(q, p | X1:γ)−DBranch(p, q | X1:γ) = p(X1:γ)− q(X1:γ). (A.37)

This completes the proof.

Lemma 5 (No Resampling of Earlier Prefixes (Tokenwise)). Let X1:γ = [x1, x2, . . . , xγ] be a token
block, and suppose that for some index m, the acceptance ratios satisfy:

r(xγ) > 1, r(xγ−1) > 1, . . . , r(xγ−m+1) > 1, r(xγ−m) ≤ 1. (A.38)

Then for all t ≤ γ −m, the resampling probability satisfies:

P (X1:t is resampled) = 0. (A.39)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Proof. We use the resampling probability formula:

Pres(X1:t) =
max {p(X1:t)− q(X1:t), 0}

max {DBranch(p, q | X1:t), DBranch(q, p | X1:t)}
. (A.40)

At position t = γ −m, we are given that the acceptance probability

r(xγ−m) = min

{
1,

p(X1:γ−m)

q(X1:γ−m)

}
≤ 1, (A.41)

implying p(X1:γ−m) < q(X1:γ−m). Therefore,

p(X1:γ−m)− q(X1:γ−m) ≤ 0, (A.42)

and hence:

Pres(X1:γ−m) = 0. (A.43)

This completes the proof.

Theorem 6 (Lossless).
P (yield X1:γ) = p(X1:γ). (A.44)

Proof. The total probability is the sum of the acceptance and resampling paths. We analyze two cases
based on the relative probabilities.

Case 1: p(X1:γ) < q(X1:γ) In this case, the acceptance probability for the draft is p(X1:γ)
q(X1:γ)

. The
probability of generating X1:γ via resampling is 0, as there is no probability deficit to recover.

P (yield X1:γ) = P (X1:γ is accepted) + P (X1:γ is resampled)

= q(X1:γ) ·
p(X1:γ)

q(X1:γ)
+ 0

= p(X1:γ).

(A.45)

Case 2: p(X1:γ) ≥ q(X1:γ) Here, the acceptance probability for the draft is 1. The resampling path
must compensate for the probability deficit. Per lemma 4 and lemma 5, the total probability of all
relevant resampling paths is exactly p(X1:γ)− q(X1:γ).

P (yield X1:γ) = P (X1:γ is accepted) + P (X1:γ is resampled)

= q(X1:γ) · 1 +
(
p(X1:γ)− q(X1:γ)

)
= p(X1:γ).

(A.46)

These two cases cover all probability events. In both cases, the total probability correctly recovers
p(X1:γ), proving the method is lossless.

C LOSSLESS OF HIERARCHICAL SPECULATIVE DECODING

C.1 ILLUSTRATIVE EXAMPLE

Let p(·) be the target and q(·) the draft. For a prefix X1:t,

r(X1:t) :=
p(X1:t)

q(X1:t)
, r(Xa+1:b | X1:a) :=

p(Xa+1:b | X1:a)

q(Xa+1:b | X1:a)
,

so r(X1:b) = r(X1:a) r(Xa+1:b | X1:a). Let m be the last (largest) index < γ at which the running
maximum of r(X1:t) is attained and exceeds 1; let n < m be the previous such index (two-peak
case).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

As definition 4, define the capped ratio at the end of the draft as

r∗(X1:γ) := min{r(X1:m), 1} r(Xm+1:γ | X1:m) = r(Xm+1:γ | X1:m) ≤ 1,

and the accept term
Aγ := q(X1:γ) r

∗(X1:γ).

We will also use three resample contributions: Tγ (at level γ), Tm (at level m), and Tn (at level n).

two-peak example: n < m < γ From definition 4, we have r(X1:n) > 1, then r(X1:m) >
r(X1:n), and no larger value occurs in (m, γ). This forces r(Xn+1:m | X1:n) > 1; otherwise m
could not be a new maximum.

Step 1: accept + top-level resample Since r∗(X1:γ) = r(Xm+1:γ | X1:m) ≤ 1,

Aγ = q(X1:γ) r(Xm+1:γ | X1:m) = q(X1:m) p(Xm+1:γ | X1:m), Tγ = 0,

so
H1 := Aγ + Tγ = q(X1:m) p(Xm+1:γ | X1:m).

Intuition. The suffix Xm+1:γ is now under p; the prefix X1:m is still under q.

Step 2: add the m-term Let Rn→m := r(Xn+1:m | X1:n) > 1. The resample at level m
contributes

Tm := q(X1:m) (Rn→m − 1) p(Xm+1:γ | X1:m),

hence

H2 := H1 + Tm = Rn→m q(X1:m) p(Xm+1:γ | X1:m) = q(X1:n) p(Xn+1:γ | X1:n).

Intuition. The block Xn+1:m is converted to p; only X1:n remains under q.

Step 3: add the n-term If r(X1:n) > 1,

Tn := q(X1:n) (r(X1:n)− 1) p(Xn+1:γ | X1:n), H3 := H2 + Tn = p(X1:γ).

If instead r(X1:n) ≤ 1, then Tn = 0 and H2 = p(X1:γ) already.

Intuition. Each nonzero term “tops up” the exact deficit of q on its block until the whole path is
under p. Thus

Aγ + Tγ + Tm + Tn = p(X1:γ)

in this two-peak case, exhibiting the (lossless) invariance of the total probability under the HSD
accept–resample rule.

C.2 GENERAL PROOF

Definition 7 (Sequence of Unique Capping Indices). For a given maximum sequence length γ,
the sequence of maximum prefix ratio indices (m(1),m(2), . . . ,m(γ)) is generated according to
Definition 4. Let U be the set of unique values in the sequence of capping indices:

U = {m(t) | 1 < t ≤ γ} (A.47)

The Sequence of Unique Capping Indices, denoted by M∗, is the ordered sequence of the elements
in U :

M∗ = (m∗
1, . . . ,m

∗
L) (A.48)

where m∗
1 < . . . < m∗

L and L is the total number of unique capping points.

With these definitions, we can now establish the key properties of the prefix-capped joint ratio:

Lemma 6 (Property of r∗(X1:i) between neighboring unique capping indices). Let m∗
l and m∗

l+1
be two consecutive unique capping indices, and suppose

m∗
l < i < m∗

l+1. (A.49)

For every such i, we have r∗(X1:i) ≤ 1.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Lemma 7 (Property of r∗(X1:m∗
l
) at unique capping indices). Let m∗

l−1 and m∗
l be two consecutive

unique capping indices, we have

r∗(X1:m∗
l
) = r(Xm∗

l−1+1:m∗
l
) > 1

.

We now define the acceptance and resampling probability masses:

Definition 8 (Accepted Probability Mass). The probability mass for accepting the full sequence
X1:γ is:

P (X1:γ is accepted) = min(1, r∗(X1:γ)) q(X1:γ), (A.50)

Definition 9 (Resampling Probability Mass). Let X1:γ be a full sequence of length γ, and let
M∗ = (m∗

1,m
∗
2, . . . ,m

∗
L) be its Sequence of Unique Capping Indices. The total probability mass

under the draft q and target p of generating this sequence can be decomposed as:

Total Generation Probability

P
(
X1:γ is generated

)
= P

(
X1:γ is accepted

)
+ P

(
X1:γ is resampled

)
= min

(
1, r∗(X1:γ)

)
q(X1:γ)

+

L∑
l=1

max
(
0, r(Xm∗

l−1+1:m∗
l
)− 1

)
q(X1:m∗

l
) p(Xm∗

l +1:γ | X1:m∗
l
)

+ max
(
0, r∗(X1:γ)− 1

)
q(X1:γ−1) p(xγ | X1:γ−1)

(A.51)

We now establish the key lemma that characterizes the resampling probability mass:

Lemma 8 (Hierarchical Resampling Probability Mass). The total generation probability can be
decomposed into acceptance and resampling masses as stated in Definition 9. Only unique capping
indices contribute to resampling mass, and the explicit form for the resampling mass at each unique
capping index is:

P
(
X1:m∗

l
is resampled

)
p
(
Xm∗

l +1:γ | X1:m∗
l

)
= max

(
0, r(Xm∗

l−1+1:m∗
l
)− 1

)
q(X1:m∗

l
) p(Xm∗

l +1:γ | X1:m∗
l
)

(A.52)

To prove the lossless property, we introduce the segmented probability function:

Definition 10 (Segmented Probability Function). For each l ∈ {1, . . . , L}, we define the segmented
probability function Fl as:

Fl = q
(
X1:m∗

l

)
p
(
Xm∗

l +1:γ | X1:m∗
l

)
=
[m∗

l∏
i=1

q(xi | X1:i−1)
][γ∏

i=m∗
l +1

p(xi | X1:i−1)
]
,

(A.53)

This function represents a hybrid probability measure that uses the draft distribution q up to position
m∗

l and the target distribution p for the remaining positions, where X1:0 is equal to the prefix.

We establish the telescoping property of resampling mass:

Lemma 9 (Telescoping of Resampling Mass). For each l ∈ {1, . . . , L}, the mass of the resampling
at the unique capping index m∗

l can be expressed as:

P
(
X1:m∗

l
is resampled

)
= Fl−1 − Fl . (A.54)

Proof. we need to show that the resampling mass at the unique capping index m(l) equals Fl−1 −Fl.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

1. EXPRESS Fl−1 IN TERMS OF Fl . We have

P
(
X1:m∗

l
is resampled

)
=
(
r(Xm∗

l−1+1:m∗
l
)− 1

)
q(X1:m∗

l
) p(Xm∗

l +1:γ | X1:m∗
l
)

First note
q
(
X1:m∗

l+1

)
= q
(
X1:m∗

l

)
q
(
Xm∗

l +1:m∗
l+1

| X1:m∗
l

)
,

and
p
(
Xm∗

l +1:m∗
l+1

| X1:m∗
l

)
= r
(
Xm∗

l +1:m∗
l+1

)
q
(
Xm∗

l +1:m∗
l+1

| X1:m∗
l

)
.

Hence

Fl−1 = q
(
X1:m∗

l

)
p
(
Xm∗

l +1:γ | X1:m∗
l

)
= q
(
X1:m∗

l

)
p
(
Xm∗

l +1:m∗
l+1

| X1:m∗
l

)
p
(
Xm∗

l+1+1:γ | X1:m∗
l+1

)
= q
(
X1:m∗

l

) [
r(Xm∗

l +1:m∗
l+1

) q(Xm∗
l +1:m∗

l+1
| X1:m∗

l
)
]
p
(
Xm∗

l+1+1:γ | X1:m∗
l+1

)
= r
(
Xm∗

l +1:m∗
l+1

) [
q(X1:m∗

l
) q(Xm∗

l +1:m∗
l+1

| X1:m∗
l
)
]
p
(
Xm∗

l+1+1:γ | X1:m∗
l+1

)
= r
(
Xm∗

l +1:m∗
l+1

)
q
(
X1:m∗

l+1

)
p
(
Xm∗

l+1+1:γ | X1:m∗
l+1

)
= r
(
Xm∗

l +1:m∗
l+1

)
Fl.

2. COMPUTE THE DIFFERENCE Fl−1 − Fl .

Fl−1 − Fl =
[
r(Xm∗

l +1:m∗
l+1

) Fl

]
− Fl

=
(
r(Xm∗

l +1:m∗
l+1

)− 1
)
Fl

=
(
r(Xm∗

l +1:m∗
l+1

)− 1
)
q
(
X1:m∗

l+1

)
p
(
Xm∗

l+1+1:γ | X1:m∗
l+1

)
=
(
r(Xm∗

l−1+1:m∗
l
)− 1

)
q(X1:m∗

l
) p(Xm∗

l +1:γ | X1:m∗
l
).

This completes the proof that the resampling mass at segment l equals Fl−1 − Fl.

Theorem 7 (Lossless Recovery). Under the prefix-adaptive speculative decoding scheme, the total
probability of generating any sequence X1:γ equals the target distribution probability:

P
(
X1:γ is generated

)
= p(X1:γ). (A.55)

Proof. From Lemma 8, we have the total generation probability decomposition:

P
(
X1:γ is generated

)
= P

(
X1:γ is accepted

)
+ P

(
X1:γ is resampled

)
+ P

(
xγ is resampled

)
= min

(
1, r∗(X1:γ)

)
q(X1:γ)

+

L∑
l=1

max
(
0, r(Xm∗

l−1+1:m∗
l
)− 1

)
q(X1:m∗

l
) p(Xm∗

l +1:γ | X1:m∗
l
)

+ max
(
0, r∗(X1:γ)− 1

)
q(X1:γ−1) p(xγ | X1:γ−1)

(A.56)

From Lemma 9, we know that for each l ∈ {1, . . . , L}:

Fl−1 − Fl =
(
r(Xm∗

l−1+1:m∗
l
)− 1

)
q(X1:m∗

l
) p(Xm∗

l +1:γ | X1:m∗
l
) (A.57)

Therefore, we can rewrite the generation probability as:

P
(
X1:γ is generated

)
= min

(
1, r∗(X1:γ)

)
q(X1:γ)

+

L∑
l=1

(Fl−1 − Fl)

+ max
(
0, r∗(X1:γ)− 1

)
q(X1:γ−1) p(xγ | X1:γ−1)

(A.58)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Since r∗(X1:γ) = min{r(X1:m∗
L
), 1}r(Xm∗

L+1:γ) and r(X1:m∗
L
) > 1, we have r∗(X1:γ) =

r(Xm∗
L+1:γ).

Case 1: If r(Xm∗
L+1:γ) ≤ 1, then:

min
(
1, r∗(X1:γ)

)
q(X1:γ) + max

(
0, r∗(X1:γ)− 1

)
q(X1:γ−1) p(xγ | X1:γ−1)

= r(Xm∗
L+1:γ) q(X1:γ) + 0

= r(Xm∗
L+1:γ) q(X1:γ)

= q(X1:m∗
L
) p(Xm∗

L+1:γ | X1:m∗
L
)

= FL

(A.59)

Case 2: If r(Xm∗
L+1:γ) > 1, then there would be another unique capping index beyond m∗

L,
contradicting the definition of m∗

L as the last unique capping index. Therefore, we must have
r(Xm∗

L+1:γ) ≤ 1, and thus:

min
(
1, r∗(X1:γ)

)
q(X1:γ) + max

(
0, r∗(X1:γ)− 1

)
q(X1:γ−1) p(xγ | X1:γ−1) = FL (A.60)

Therefore, we have:

P
(
X1:γ is generated

)
= FL +

L∑
l=1

(Fl−1 − Fl)

= FL + (F0 − F1) + (F1 − F2) + · · ·+ (FL−1 − FL)

= FL + F0 − FL

= F0

(A.61)

Now we evaluate F0. From Definition 10, we have:

F0 = q(X1:m∗
0
) p(Xm∗

0+1:γ | X1:m∗
0
) (A.62)

By our convention, m∗
0 = 0, so:

F0 = q(X1:0) p(X1:γ | X1:0) = 1 · p(X1:γ) = p(X1:γ) (A.63)

Therefore:
P
(
X1:γ is generated

)
= p(X1:γ) (A.64)

This completes the proof of lossless recovery.

C.3 A EXTENDED EXPLAINATION OF CAPPED RATIO

Let r(x1), r(x2 | x1), . . . , r(xt | X1:t−1) ∈ R>0 be a sequence of ratios.

Define the cumulative product up to index t as:

r(X1:t) =

t∏
i=1

r(xi | X1:i−1), (A.65)

where X1:0 is equal to the prefix.

Let j∗ be the last index (up to k) such that:

j∗ = max

{
j ≤ k

∣∣∣∣∣ r(xj | X1:j−1) > 1 and
j∏

i=1

r(xi | X1:i−1) > 1

}
(A.66)

Then the capped cumulative product R̃k is given by:

r ∗ (X1:t) =

 j∗∏
i=1

r(xi | X1:i−1)

 ·

 k∏
i=j∗+1

r(xi | X1:i−1)

 (A.67)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

This ensures that the cumulative product is capped at the last index j∗ such that the individual ratio
r(xj∗|X1:j∗−1

) > 1 and the cumulative product up to that point also exceeds 1.

When γ is 3, lets show simplest example to show the recovery of target probability.

P (X1:3 is accepted) = q(X1:3) (A.68)

P (X1:3 is resampled) =
γ=3∑
i=0

P (xγ , xγ−1, . . . , xγ−i are resampled | Xγ−i+1)

= D∗
Branch (q, p | X1:3) ·

max((r(x3)− 1)q(X1:3), 0)

D∗
Branch (q, p | X1:3)

+D∗
Branch (q, p | X1:2) ·

max((r(x2)− 1)q(X1:2), 0)

D∗
Branch (q, p | X1:2)

· p(x3|X1:2)

+D∗
Branch (q, p | x1) ·

max((r(x1)− 1)q(x1), 0)

D∗
Branch (q, p | x1)

· p(x3|X1:2)p(x2|x1)

(A.69)

Let’s take γ = 3 as an example, only if r(X1:3) > 1, the resampled portion of probability mass is
needed. Suppose r(X1:2) > 1 with r(x1) > 1 and r(x2) < 1:

= p(x3|X1:2)p(x2|x1)q(x1)− q(X1:3) + 0

+ p(x1)p(x2|x1)p(x3|X1:2)− q(x1)p(x2|x1)p(x3|X1:2)

= p(X1:3)− q(X1:3)

(A.70)

D EXPECTED TOKEN LENGTH DERIVATION

Let τ ∈ {0, 1, . . . , γ} denote the number of accepted tokens in a decoding attempt. Since τ is a
non-negative, integer-valued random variable, the tail-sum identity applies with lattice spacing a = 1.

Lemma 10 (Tail Expectation). Let X be a non–negative random variable with values in {na : n =
0, 1, 2, . . . } for some a > 0. Then:

E[X] = a

∞∑
k=1

Pr(X ≥ k). (A.71)

Proof. Start with the right-hand side:

a

∞∑
k=1

Pr(X ≥ ka) = a

∞∑
k=1

∑
ℓ≥k

Pr(X = ℓa)

= a

∞∑
ℓ=1

Pr(X = ℓa)

ℓ∑
k=1

1

=

∞∑
ℓ=1

ℓa · Pr(X = ℓa) = E[X].

(A.72)

TOKEN WISE SPECULATIVE DECODING

Referring to Block-wise Verification Sun et al. (2024), the authors prove that it achieves a longer
expected token length than the token-wise verification Leviathan et al. (2023) (see Appendix B.2 in
Sun et al. (2024)).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

HIERARCHICAL SPECULATIVE DECODING

Let η1, . . . , ηγ ∼ U(0, 1) be the random draws used in verification. The accepted length is defined
as:

τ := max {i ≤ γ : ηi ≤ hi} , (A.73)

where hi is the acceptance probability at step i. By the tail-sum identity:

E[τ] =
γ∑

i=1

Pr(τ ≥ i). (A.74)

If we define the event Si := {ηi ≤ hi}, and assume independence of the draws, then:

Pr(τ ≥ i) = 1−
γ∏

k=i

(1− hk). (A.75)

Substituting into Equation (A.74), we obtain:

E[τ] =
γ∑

i=1

[
1−

γ∏
k=i

(1− hk)

]
. (A.76)

BLOCKWISE VERIFICATION

In Algorithm 2 (blockwise decoding), the decoding continues even if some ηi > hblock
i ; the resampling

happens only at the end. Therefore, the token count τ still satisfies the same form.

Let hblock
i be the acceptance probability at step i computed via blockwise rules, and define events:

Si := {ηi ≤ hblock
i }, so Pr(Si) = 1− hblock

i . (A.77)

We then have:

Pr(τ ≥ i) = 1−
γ∏

k=i

(1− hblock
k), (A.78)

and hence the expected number of accepted tokens under blockwise decoding is:

E[τ]block =

γ∑
i=1

[
1−

γ∏
k=i

(1− hblock
k)

]
(A.79)

TOKEN LENGTH COMPARISON

We re-express the acceptance probability to compare token length between block-wise speculative
decoding and our method (Equation (19)). This yields a more precise comparison via the directional
divergence expressions Equation (17) and Equation (18).

Capped Branch Divergence Difference The difference of capped branch divergence is calculated
as:

D∗
Branch (p, q | X1:t)−D∗

Branch (q, p | X1:t)

=
∑
xt+1

(r∗(X1:t+1)− 1) q(X1:t)

=
∑
xt+1

(
min{r(X0:m(t+1)), 1}r(Xm(t+1)+1:t+1)− 1

)
q(X0:m(t+1))q(Xm(t+1)+1:t+1)

=
∑
xt+1

(
r(Xm(X1:t+1)+1:t+1)− 1

)
q(X1:t+1) (A.80)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Branch Acceptance Probability Combine equations (A.80), the acceptance ratio of hierarchical
speculative decoding is:

hbranch
t =

D∗
Branch (p, q | X1:t)

D∗
Branch (q, p | X1:t)

=
D∗

Branch (p, q | X1:t)

D∗
Branch (p, q | X1:t) +

∑
(1− r(Xm(X1:t+1)+1:t+1))q(X1:t+1)

=

∑
[r(Xm(X1:t+1)+1:t+1)− 1]+∑

[r(Xm(X1:t+1)+1:t+1)− 1]+ +
∑

(1− r(Xm(X1:t+1)+1:t+1))

(A.81)

where [a]+ is equal to max{a, 0}

Blockwise Acceptance Ratio Algorithm 2 (blockwise decoding), blockwise keeps an internal
clamp pt = min{pt−1 r(xt|X1:t−1), 1}, which could be simplified based on Suffix–minimum
characterization of pt
Lemma 11 (Suffix–minimum characterization of pt). Let {ri}∞i=1 ⊆ [0,∞) and define the sequence
{pt}t≥0 recursively by

p0 = 1, pt = min
{
pt−1 rt, 1

}
, t ≥ 1. (A.82)

Then for every t ≥ 0

pt = min
0≤s≤t

t∏
i=s+1

ri, (with the empty product for s = t equal to 1). (A.83)

Equivalently,
pt = min

{
1, rt, rt−1rt, . . . , r1r2 · · · rt

}
. (A.84)

Proof. We prove (A.83) by induction on t.

Base case (t = 0). For t = 0 the right–hand side becomes

min
0≤s≤0

(empty product) = 1 = p0, (A.85)

so the claim holds.

Inductive step. Assume (A.83) holds for some t− 1 ≥ 0. Using the recurrence,

pt = min
{
1, pt−1 rt

}
. (A.86)

By the induction hypothesis,

pt−1 = min
0≤s≤t−1

t−1∏
i=s+1

ri. (A.87)

Substituting,

pt = min
{
1,
[

min
0≤s≤t−1

t−1∏
i=s+1

ri
]
rt

}
. (A.88)

Multiplying every candidate product in the inner minimum by rt and then taking the outer minimum
yields exactly all suffix products

t∏
i=s+1

ri (A.89)

for s = 0, . . . , t − 1, together with the empty product 1 for s = t. Hence (A.83) holds for t,
completing the induction. And obviously, pt < r(Xstart:t), where start ∈ (1, t− 1)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

hblock
t =

∑
xt+1

(ptr(xt+1|X1:t)− 1)+ q(xt+1 | X1:t)∑
xt+1

(ptr(xt+1|X1:t)− 1)+ q(xt+1 | X1:t) + 1− pt

=

∑
xt+1

(min
{
r(xt+1),r(Xt:t+1),r(Xt−1:t+1), . . . ,r(X1:t+1)

}
−1)+q(xt+1 |X1:t)∑

xt+1

(min
{
r(xt+1), r(Xt:t+1), r(Xt−1:t+1),. . .,r(X1:t+1)

}
−1)+q(xt+1 |X1:t)+1−pt

(A.90)

Since min
{
r(xt+1), r(Xt:t+1), r(Xt−1:t+1), . . . , r(X1:t+1)

}
≤ r(Xm(X1:t+1)+1:t+1),

hblock
t ≤

∑
xt+1

(r(Xm(X1:t+1)+1:t+1)− 1)+ q(xt+1 | X1:t)∑
xt+1

(r(Xm(X1:t+1)+1:t+1)− 1)+ q(xt+1 | X1:t) + 1− pt

≤

∑
xt+1

(r(Xm(X1:t+1)+1:t+1)− 1)+∑
xt+1

(r(Xm(X1:t+1)+1:t+1)− 1)+ + 1− pt

(A.91)

From equation A.81:∑
xt+1

(1− r(Xm(X1:t+1)+1:t+1)) = q(Xm(t+1)+1:t)− p(Xm(t+1)+1:t)

= (1− r(Xm(t+1)+1:t))q(Xm(t+1)+1:t)

≤ (1− pt)q(Xm(t+1)+1:t)

≤ (1− pt)

(A.92)

Since

hbranch
t =

∑
xt+1

[r(Xm(X1:t+1)+1:t+1)− 1]+∑
xt+1

[r(Xm(X1:t+1)+1:t+1)− 1]+ +
∑

xt+1
(1− r(Xm(X1:t+1)+1:t+1))

≥
∑

xt+1
[r(Xm(X1:t+1)+1:t+1)− 1]+∑

xt+1
[r(Xm(X1:t+1)+1:t+1)− 1]+ + 1− pt

≥ hblock
t

(A.93)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Question: Argo has 200 toys. He gives 40 toys to Alyssa, 80 to Bonnie, and 30 to Nicky. How many toys does Argo have now?

To determine how many toys ArgoArg

Argo starts with 2 0 0 started

Argo started with 2 0 0 toys..

Argo started with 2 0 0 toys. He gave away - 4

Argo started with 2 0 0 toys. He gave away 4 0 toys to Alyssa,

Argo started with 2 0 0 toys. He gave away 4 0 toys to Alyssa, 8 0 toys to Bonnie, and to

Argo started with 2 0 0 toys. He gave away 4 0 toys to Alyssa, 8 0 to Bonnie, and 3 0 to Nick

Argo started with 2 0 0 toys. He gave away 4 0 toys to Alyssa, 8 0 to Bonnie, and 3 0 to Nicky. So, the total number ln

Argo started with 2 0 0 toys. He gave away 4 0 toys to Alyssa, 8 0 to Bonnie, and 3 0 to Nicky. In total, he gave away 4 0

Argo started with 2 0 0 toys. He gave away 4 0 toys to Alyssa, 8 0 to Bonnie, and 3 0 to Nicky. In total, he gave away 4 0 + 8 0 + 3 0

Argo started with 2 0 0 toys. He gave away 4 0 toys to Alyssa, 8 0 to Bonnie, and 3 0 to Nicky. In total, he gave away 4 0 + 8 0 + 3 0 = 1 5 0 toys. Sub

Argo started with 2 0 0 toys. He gave away 4 0 toys to Alyssa, 8 0 to Bonnie, and 3 0 to Nicky. In total, he gave away 4 0 + 8 0 + 3 0 = 1 5 0 toys. Subtracting the number of toys he given

Argo started with 2 0 0 toys. He gave away 4 0 toys to Alyssa, 8 0 to Bonnie, and 3 0 to Nicky. In total, he gave away 4 0 + 8 0 + 3 0 = 1 5 0 toys. Subtracting the given toys from his original count, Ar amount

Argo started with 2 0 0 toys. He gave away 4 0 toys to Alyssa, 8 0 to Bonnie, and 3 0 to Nicky. In total, he gave away 4 0 + 8 0 + 3 0 = 1 5 0 toys. Subtracting the given amount, we get 2 0 0Ar

Argo started with 2 0 0 toys. He gave away 4 0 toys to Alyssa, 8 0 to Bonnie, and 3 0 to Nicky. In total, he gave away 4 0 + 8 0 + 3 0 = 1 5 0 toys. Subtracting the given amount, Argo has 2 0 0 -

Argo started with 2 0 0 toys. He gave away 4 0 toys to Alyssa, 8 0 to Bonnie, and 3 0 to Nicky. In total, he gave away 4 0 + 8 0 + 3 0 = 1 5 0 toys. Subtracting the given amount, Argo has 2 0 0 - 1 5 0 = 5 0 toys

Argo started with 2 0 0 toys. He gave away 4 0 toys to Alyssa, 8 0 to Bonnie, and 3 0 to Nicky. In total, he gave away 4 0 + 8 0 + 3 0 = 1 5 0 toys. Subtracting the given amount, Argo has 2 0 0 - 1 5 0 = 5 0 toys left. The answer is 5 0

Figure A.1: Example of HSD when γ = 7. Each iteration shows the draft model (Qwen-2.5 0.5B),
making suggestions that are either accepted (green tokens) or rejected. When rejected, the target
model (Qwen-2.5 72B) provides corrections (shown as red and blue tokens).

Table A.1: Comparison of different algorithm performance on GSM8K with Qwen-2.5. We list the
average and standard deviation across 5 runs with different seeds.

Method Tokenwise Blockwise Ours
Block Efficiency 6.40±0.10 6.51±0.09 6.64±0.04
Decoding Speed 31.52±0.06 31.70±0.05 32.61±0.02

E EXTENDED EXPERIMENTS

Illustration Figure of HSD. In Figure A.1, we showcase an example from GSM8K of our methods
when we set γ = 7. Where the draft model is Qwen-2.5 0.5B and the target model is Qwen-2.5 72B.
Result Robustness To prove the robustness of our experiments and guarantee fair comparison, we
conduct additional experiments with different methods as shown in Table A.1. We observe that our
method demonstrates stable performance and exceeds both tokenwise and blockwise methods on
average.

F PYTHON IMPLEMENTATION

We provide the Python implementation of our Hierarchical Speculative Decoding (HSD) algorithm in
Listing 2, which builds upon the token-wise speculative decoding approach from Hugging Face Wolf
et al. (2020) Transformers v4.46.3, shown in Listing 1 for comparison. Following Hugging Face,
our implementation eliminates the use of an explicit for-loop by leveraging an equivalent masking
mechanism: we perform parallel sampling across all positions to determine whether to accept or
reject subsequences of varying lengths, and then select the longest accepted prefix as the final output.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Listing 1 Tokenwise Speculative Decoding (SD) SD.py

1 import torch
2
3 def SD(candidate_input_ids, candidate_logits, new_logits):
4 """
5 Args:
6 candidate_input_ids (Tensor): Token IDs from the draft model. Shape: [batch_size,

↪→ seq_len]
7 candidate_logits (Tensor): Logits from the draft model. Shape: [batch_size, seq_len,

↪→ vocab_size]
8 new_logits (Tensor): Logits from the target model. Shape: [batch_size, seq_len,

↪→ vocab_size]
9 Returns:

10 n_matches (int): Number of accepted tokens from the draft model.
11 valid_tokens (Tensor): Accepted token prefix with one new token sampled. Shape: [

↪→ batch_size, n_matches+1]
12 """
13
14 # Convert logits to probabilities
15 q = candidate_logits.softmax(dim=-1)
16 p = new_logits.softmax(dim=-1)
17
18 candidate_length = candidate_logits.shape[1]
19 new_candidate_input_ids = candidate_input_ids[:, -candidate_length:]
20
21 # Extract token-wise probabilities for the candidate tokens
22 q_i = q[:, torch.arange(candidate_length), new_candidate_input_ids].squeeze(1)
23 p_i = p[:, torch.arange(candidate_length), new_candidate_input_ids].squeeze(1)
24
25 probability_ratio = p_i / q_i
26 is_accepted = torch.rand_like(probability_ratio) <= probability_ratio
27
28 # assuming batch size = 1
29 n_matches = ((∼is_accepted).cumsum(dim=-1) < 1).sum() # this is ‘n‘ in algorithm 1
30
31 # Next token selection: if there is a rejection, adopt the resampling distribution.
32 if n_matches < candidate_length:
33 p_n_plus_1 = p[:, n_matches, :]
34 q_n_plus_1 = q[:, n_matches, :]
35 p_prime = torch.clamp((p_n_plus_1 - q_n_plus_1), min=0)
36 p_prime.div_(p_prime.sum())
37 else:
38 p_prime = p[:, n_matches, :]
39
40 # Ensure we don’t generate beyond max_len or an EOS token.
41 if is_done_candidate[0] and n_matches == candidate_length:
42
43 # Output length is assumed to be ‘n_matches + 1‘. Since we won’t generate another

↪→ token with the target model
44 # due to acceptance on EOS we fix ‘n_matches‘
45 n_matches -= 1
46 valid_tokens = candidate_input_ids[:, -candidate_length:]
47
48 else:
49 # Next token selection: if there is a rejection, adjust the distribution from the main

↪→ model before sampling.
50 # The selected tokens include the matches (if any) plus the next sampled tokens
51 if n_matches > 0:
52 if n_matches < candidate_length:
53 valid_tokens = candidate_input_ids[:, -candidate_length:n_matches -

↪→ candidate_length]
54 if not stop(valid_tokens, scores=None):
55 t = torch.multinomial(p_prime, num_samples=1)
56 valid_tokens = torch.cat(
57 (valid_tokens, t), dim=-1)
58 else:
59 n_matches = n_matches-1
60 else:
61 valid_tokens = candidate_input_ids[:, -candidate_length:]
62 if not stop(valid_tokens, scores=None):
63 t = torch.multinomial(p_prime, num_samples=1)
64 valid_tokens = torch.cat(
65 (valid_tokens, t), dim=-1)
66 else:
67 n_matches = n_matches -1
68 else:
69 t = torch.multinomial(p_prime, num_samples=1)
70 valid_tokens = t
71
72 return valid_tokens, n_matches

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Listing 2 Hierarchical Speculative Decoding (HSD) HSD.py

1 import torch
2
3 def HSD(candidate_input_ids, candidate_logits, new_logits):
4 """
5 Args:
6 candidate_input_ids (Tensor): Token IDs from the draft model. Shape: [batch_size,

↪→ seq_len]
7 candidate_logits (Tensor): Logits from the draft model. Shape: [batch_size, seq_len,

↪→ vocab_size]
8 new_logits (Tensor): Logits from the target model. Shape: [batch_size, seq_len,

↪→ vocab_size]
9 Returns:

10 n_matches (int): Number of accepted tokens from the draft model.
11 valid_tokens (Tensor): Accepted token prefix with one new token sampled. Shape: [

↪→ batch_size, n_matches+1]
12 """
13
14 # Convert logits to probabilities
15 q = candidate_logits.softmax(dim=-1)
16 p = new_logits.softmax(dim=-1)
17 candidate_length = candidate_logits.shape[1]
18 new_candidate_input_ids = candidate_input_ids[:, -candidate_length:]
19
20 # Extract token-wise probabilities for the candidate tokens
21 q_i = q[:, torch.arange(candidate_length), new_candidate_input_ids].squeeze(1)
22 p_i = p[:, torch.arange(candidate_length), new_candidate_input_ids].squeeze(1)
23
24 # Compute cumulative joint probabilities for draft and target model
25 q_prev = torch.roll(q_i, shifts=1, dims=1)
26 q_prev[:, 0] = 1.0
27 q_cumprod = torch.exp(torch.log(q_prev).cumsum(dim=1)).unsqueeze(-1)
28 q_next = q_cumprod * q[:, :candidate_length]
29 p_prev = torch.roll(p_i, shifts=1, dims=1)
30 p_prev[:, 0] = 1.0
31 p_cumprod = torch.exp(torch.log(p_prev).cumsum(dim=1)).unsqueeze(-1)
32
33 # Constrain p_cumprod with q_cumprod for computing the capped resampling distribution
34 ratio = p_cumprod / q_cumprod
35 previous_max = 1
36 new_p_previous = torch.ones_like(p_cumprod).to(p_cumprod.device)
37 for k in range(candidate_length):
38 if ratio[:, k] > previous_max:
39 previous_max = ratio[:, k]
40 new_p_previous[:, k] = p_cumprod[:, k] / previous_max
41 p_next = new_p_previous * p[:, :candidate_length]
42
43 # Construct resampling distribution p’
44 diffs = p_next - q_next
45 p_plus = torch.clamp(diffs, min=0.0)
46 p_minus = torch.clamp(-diffs, min=0.0)
47 p_primes = p_plus / torch.maximum(p_plus.sum(dim=-1, keepdim=True), p_minus.sum(dim=-1,

↪→ keepdim=True))
48
49 # Step-back probability: reject prefix with 1 - mass of p’
50 step_back_probs = 1 - p_primes.sum(dim=-1)
51 step_back = torch.rand_like(step_back_probs) < step_back_probs
52
53 # Find first position to stop (from the end)
54 if step_back.all():
55 stop_positions = 0
56 else:
57 stop_positions = candidate_length - n_matches - 1 - torch.flip(∼step_back, [-1]).max

↪→ (-1, keepdim=True)[1]
58
59 # Mask to decide which tokens are accepted
60 select = torch.zeros_like(step_back).to(step_back.device)
61
62 # apply cumprod on the ratio instead of the raw probabilities to avoid underflow
63 probability_ratio = (p_i / q_i).cumprod(1).unsqueeze(-1)
64 is_accepted = torch.rand_like(probability_ratio) <= probability_ratio
65
66 # only decide to accept or not at the last position based on the joint probability ratio
67 # assign 0 to all positions when the full draft is rejected, otherwise assign 1 to the

↪→ rest of the positions
68 select[torch.arange(p_primes.shape[0]), stop_positions] = ∼is_accepted[:, -1:]
69 is_accepted = 1 - torch.cumsum(select, dim=-1)
70
71 #### assume batch_size=1 for the current implementation
72 n_matches = is_accepted.sum().item()

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Listing 2 Hierarchical Speculative Decoding HSD.py (cont.)

1 if is_done_candidate[:] and n_matches == candidate_length:
2 # Output length is assumed to be ‘n_matches + 1‘. Since we won’t generate another

↪→ token with the target model
3 # due to acceptance on EOS we fix ‘n_matches‘
4 n_matches -= 1
5 # valid_tokens = new_candidate_input_ids[:, : n_matches + 1]
6 valid_tokens = candidate_input_ids[:, -candidate_length:]
7
8 else:
9 # Next token selection: if there is a rejection, adjust the distribution from the main

↪→ model before sampling.
10 gamma = candidate_length
11 p_n_plus_1 = p[:, candidate_length, :]
12 if n_matches < gamma:
13 p_prime = p_primes[:, n_matches]
14 p_prime = p_prime/p_prime.sum(-1, keepdim=True)
15 else:
16 p_prime = p_n_plus_1
17
18 # The selected tokens include the matches (if any) plus the next sampled tokens
19 # because if n_matches=0, we add one resampled token for sure, if n_matches=10, we add

↪→ one more for sure
20 # as well, because the previous if checked not stop and n_matches-candidate_length

↪→ will be 0 causing problem
21 if n_matches > 0 and n_matches<candidate_length:
22 valid_tokens = candidate_input_ids[:, -candidate_length:n_matches-candidate_length

↪→]
23 if not stop(candidate_input_ids[:, :n_matches-candidate_length], scores=None):
24 t = torch.multinomial(p_prime, num_samples=1)
25 valid_tokens = torch.cat(
26 (valid_tokens, t), dim=-1)
27 else:
28 n_matches = n_matches-1
29 else:
30 t = torch.multinomial(p_prime, num_samples=1)
31 if n_matches==0:
32 valid_tokens = t
33 else:
34 valid_tokens = candidate_input_ids[:, -candidate_length:]
35 valid_tokens = torch.cat(
36 (valid_tokens, t), dim=-1)
37
38 return valid_tokens, n_matches

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

G INTEGRATION WITH RECURSIVE REJECT SAMPLING IN THE MULTI-DRAFT SETUP

We demonstrate in Algorithm 3 that our HSD algorithm is compatible with existing lossless multi-
draft verification methods, exemplified by Recursive Reject Sampling (RRS) with replacement Yang
et al. (2024). Notably, independently sampled parallel draft sequences do not guarantee the existence
of an additional draft sequence that shares the accepted subsequence as its prefix.

Algorithm 3 Hierarchical Speculative Sampling with Recursive Rejection Sampling for Striped Tree

Require: Draft tokens: Xk
1:t = {xk

1 , ..., x
k
γ}Kk=1;

Target probabilities for all draft tokens: {p(·), ..., p(·|Xk
1:γ)}Kk=1;

Draft probabilities for all draft tokens: {q(·), ..., q(·|Xk
1:γ)}Kk=1;

1: Initialize τ = 0;
2: Initialize {x1

i }
γ
1 ;

3: for k in 1 : K do
4: if X1:τ = Xk

1:τ then
5: for j in τ + 1 : γ do
6: Set xj = xk

j #select draft Xk
τ+1:γ for verification

7: end for
8:
9: for t in γ : τ + 1 do

10: Compute acceptance probability ht from Equation (19) based on the corresponding
probabilities for the draft tokens: {xτ+1, ..., xγ}

11: Sample ηt ∼ U(0, 1)
12: if ht ≥ ηt then
13: Set τ = t
14: break
15: else
16: Set τ = t− 1
17: continue
18: end if
19: end for
20: else
21: continue #skip draft Xk

1:γ due to prefix mismatch
22: end if
23:
24: if τ = γ then
25: Sample token from p(·|X1:γ) #accept the entire selected draft and sample a bonus token
26: break
27: else
28: Compute P ∗

res(· | X1:τ);
29: Set p(·|X1:τ) = P ∗

res(· | X1:τ); #set P ∗
res(· | X1:τ) as new target distribution

Set r(·|X1:τ) =
P∗

res(·|X1:τ)
q(x̃|X1:τ)

#set r(· | X1:τ) as new probability ratio
30: end if
31:
32: end for

Sample token from P ∗
res(· | X1:τ)

Ensure: [X1:τ , token]

H USE OF LLMS

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

the authors. The contributions of the LLM were solely focused on improving the linguistic quality of
the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated or
polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines and
does not contribute to plagiarism or scientific misconduct.

31

	Introduction
	Related Work
	Revisiting Tokenwise Speculative Decoding
	Theoretical Foundations of Hierarchical Speculative Decoding
	Recovery of Partial Distributions
	Resampling within the Accessible Branch
	Resampling in a Hierarchy of Accessible Branches

	Hierarchical Speculative Decoding
	Naive Hierachicial Speculative Decoding
	Hierarchical Speculative Decoding with Capped Branch Resampling
	Expected Number of Accepted Tokens

	Experiments
	Experiment Setting
	Experiment Results

	Conclusion
	Appendix
	Theoretical Foundation
	Symmetry of Total Divergence
	Partial Distribution Recovery
	Quantification Analysis of Asymmetry
	Relation to the Divergence in leviathan2023fast
	Hierarchy of Divergence

	Lossless of Naive Hierarchical Speculative Decoding
	Illustrative Example
	General Proof

	Lossless of Hierarchical Speculative Decoding
	Illustrative Example
	General Proof
	A Extended Explaination of Capped Ratio

	Expected Token Length Derivation
	Extended Experiments
	Python Implementation
	Integration with Recursive Reject Sampling in the Multi-Draft Setup
	Use of LLMs

