Under review as a conference paper at ICLR 2026

OVERCOMING JOINT INTRACTABILITY WITH LOSSLESS
HIERARCHICAL SPECULATIVE DECODING

Anonymous authors
Paper under double-blind review

ABSTRACT

Verification is a key bottleneck in improving inference speed while maintain-
ing distribution fidelity in Speculative Decoding. Recent work has shown that
sequence-level verification leads to a higher number of accepted tokens compared
to token-wise verification. However, existing solutions often rely on surrogate
approximations or are constrained by partial information, struggling with joint
intractability. In this work, we propose Hierarchical Speculative Decoding (HSD),
a provably lossless verification method that significantly boosts the expected num-
ber of accepted tokens and overcomes joint intractability by balancing excess and
deficient mass across accessible branches. Through extensive large-scale experi-
ments, we show that HSD consistently improves acceptance rates, especially with
longer draft sequences. Its strong explainability and generality further highlight
the potential for integration into a wide range of speculative decoding frameworks.
Code is available at anonymous repository.

1 INTRODUCTION

Inference speed has become paramount for Large Language Models (LLMs) Achiam et al. (2023);
Touvron et al. (2023); Bai et al. (2023), which generate text auto-regressively. Recent advances
in test-time scaling OpenAl (2024); Guo et al. (2025) have further underscored its importance.
While techniques like pruning Frankle and Carbin (2018); Sun et al. (2023a) and quantization Shen
et al. (2020); Xiao et al. (2023) improve efficiency but sacrifice performance, Speculative Decoding
Leviathan et al. (2023) achieves speedups while preserving the target model’s distribution, making it
a particularly appealing alternative. It adopts a smaller model to make proposals and a larger model to
select from them with a grounded verification strategy. Most approaches prioritize the drafting phase,
but further gains face diminishing returns. Driven by the verification bottleneck, recent methods Cai
et al. (2024); Zhou et al. (2024); Narasimhan et al. (2024) trade off fidelity for speed, relying on
task-specific tuning; their performance typically remains constrained to carefully curated scenarios.

Recent work Sun et al. (2024); Qin et al. (2025) shows that jointly verifying draft tokens can improve
the expected number of accepted tokens, but faces challenges due to joint intractability—the lack
of access to full joint probabilities. To address this, (Qin et al., 2025) uses a lossy fixed acceptance
threshold, while (Sun et al., 2024) proposes Blockwise Verification, which provably recovers the
target distribution. However, it leaves a gap from the ideal case and its underlying mechanism and
compatibility with other methods remain unclear.

In this work, we propose Hierarchical Speculative Decoding (HSD), a provably lossless verifica-
tion method built upon a novel hierarchical branch resampling strategy. In speculative decoding,
resampling is used to statistically recover portions of the target distribution that exceed the draft
probability. As illustrated in Figure 1, HSD employs multiple resampling distributions arranged
hierarchically across successive levels. Each distribution only recovers the partial target distribution
within its accessible branch, and a single resampling is performed immediately after the accepted
token position. This approach ensures that the full target distribution is recovered in expectation.

Particularly, HSD pushes the limits of lossless verification by increasing the expected number of
accepted tokens. To highlight HSD’s advantages, we adopt the toy example with context-independent
binary distributions from Sun et al. (2024) for illustration. Let p(-) and ¢(-) denote the target and

draft distributions, respectively, we define: p(A)=1, p(B)=%, q(4)=2, q¢(B)=4%.

https://anonymous.4open.science/r/Hierarchical-Speculative-Decoding-D74B

Under review as a conference paper at ICLR 2026

q Next] g
1.0 Hierarchical (Ours) Jointly e |:> Decoding Hlerarcthal C Fr)rﬁft
Blockwise Accept ‘ \ Step Speculative okens
0.8 —— Tokenwise . p DECOdlng Resampled
REN B Token
S L
h = A Xr+1 X
- — 5 Dropped
h ., <7. Path
8 Reject
Xy—l X
A Backward
Acceptance h.<m, NS a(X B Operation
Length _ "/ X
Resample with
01234567 8091011 | h, <n, I the probability
T T r+1 y-1 ¥ of P (IXy,)

. (@) (b)
Figure 1: (a) Empirical CCDF of accepted tokens in the binary toy example Sun et al. (2024), draft length
~v = 10. (b) Overview of HSD. HSD accepts the draft X ~ by scanning backward from -y to 7, and then performs
a single resampling at position 7 4 1 using the corresponding distribution from the resampling hierarchy.

With a draft length of 10, we run both algorithms for 10,000 iterations and plot the empirical
complementary CDF of the acceptance length in Figure 1. HSD achieves a higher expected number
of accepted tokens, especially due to the higher acceptance rate of longer drafts. This advantage is
also theoretically proven in Section 5.3. Blockwise verification focuses on independent verification
with unclear potential for integration, while our method is designed to easily combine with other
approaches, such as multi-draft setups.

In summary, our contributions are as follows:

* We introduce Hierarchical Speculative Decoding (HSD), a lossless and explainable verifica-
tion method that integrates smoothly with existing speculative decoding frameworks while
remaining largely orthogonal to them.

» HSD delivers a practical advance for inference scaling, with an average 6.7% improvement in
decoding speed across diverse benchmarks and model sizes, while preserving distributional
fidelity. Efficiency gains reach up to 12.3% on individual datasets.

¢ In multidraft settings, HSD further improves decoding speed by an average of 4.7%, with
gains as high as 11.1%, demonstrating strong potential for integration with complementary
acceleration techniques.

2 RELATED WORK

Research on speculative decoding Leviathan et al. (2023) can be organized into two main phases:
the drafting phase and the verification phase.

Drafting Phase. Drafting methods can be grouped into three categories: (1) Single-draft. Early
SD methods Leviathan et al. (2023) inspired PaSS Monea et al. (2023) and Draft& Verify Zhang
et al. (2024), improving efficiency via multi-token generation or selective layer skipping. GLIDE Du
et al. (2024) (shared KV-cache) and Eagle Li et al. (2024) (second-to-top feature prediction) offer
further speedups but often require task-specific tuning. (2) Retrieval-based. LLM-A Yang et al.
(2023) and ReST He et al. (2023) generate drafts from reference texts, potentially reducing latency,
but face database limitations, distribution gaps, and reliance on greedy decoding. (3) Multi-draft.
Tree-attention frameworks—SpecInfer Miao et al. (2024), Medusa Cai et al. (2024), and Eagle Li
et al. (2024)—expand many branches, quickly exhausting memory. To improve throughput, Medusa
and Eagle tweak the original verification, compromising exact recovery of the target distribution.

Verification Phase. Verification methods trade fidelity for speed. Lossless approaches Sun et al.
(2023b); Yang et al. (2024); Hu et al. (2025) guarantee exact recovery but are costly. Block Verifi-
cation Sun et al. (2024) partially alleviates this bottleneck but offers limited improvement and low
interpretability and integrity. Lossy methods—including BiLD Kim et al. (2023), MTAD Qin et al.
(2025), DistillSpec Zhou et al. (2024), Medusa-2 Cai et al. (2024) and SpecCascade Narasimhan et al.
(2024) increase speed but compromise distribution fidelity and require task-specific tuning.

Under review as a conference paper at ICLR 2026

3 REVISITING TOKENWISE SPECULATIVE DECODING

In tokenwise speculative sampling Leviathan et al. (2023), each token x; is drafted from ¢(z;) and
verified against p(z;). It is accepted with probability h(x;) = min{1, p(x:)/q(x¢)}, or rejected and
replaced from P (). Thus the probability that x; is finally produced (“yielded”) is:

P(x; yielded) = P(x drafted and accepted) + P(Z; drafted and rejected, x; resampled). (1)

Accept term. If x; is proposed by ¢ and accepted,
P(x drafted and accepted) = q(x¢) h(xy) = q(x¢) min{1, p(x:)/q(z:)}.)

Resampling term. When a draft 7 is rejected, the verifier resamples from

p(x¢) — min{p(z), q(z¢) } '
Zitev (p(ft) — min{p(Z+), Q(fﬁt)})

The total probability of rejectionis) ;. -y, q(Z¢)(1 — h(Z)), giving

Pres (xt) =

P(Z, drafted and rejected, z; resampled) = [Z q(z)(1 — h(i’f)):| Pres(z). 3)
T €V

Final distribution. Thesum) _; ., q(Z+) (1—h(%;)) corresponds to the total excess mass assigned
by the draft distribution to tokens where it allocates more probability than the target, while the
denominator of Ps(x:) measures the total deficient mass, i.e., the probability assigned by the
target to tokens where it allocates more than the draft. For tokenwise distributions these match
(Drk (¢, p) = DLk (p, q)), so they cancel, yielding

p(ze) — q(@e)h(zt)

P(xy is yielded) = q(x)h(z¢) + DLk (¢, p) Dix(p.q) = p(z4).

4 THEORETICAL FOUNDATIONS OF HIERARCHICAL SPECULATIVE DECODING

For any lossless speculative decoding, the probability of generating an output decomposes into two
parts: (1) the probability a draft is accepted, becoming the final output, and (2) the probability a draft
is rejected, triggering a corrective resampling step. In token-wise speculative decoding, resampling
is straightforward because each token’s probability is directly accessible. In contrast, full joint
probabilities over sequences are intractable for auto-regressive models. Hierarchical Speculative
Decoding (HSD) overcomes this via hierarchical branch resampling, where multiple resampling
distributions at different levels recover partial target distributions, which together statistically recover
the full distribution. This section formalizes the theoretical foundations.

4.1 RECOVERY OF PARTIAL DISTRIBUTIONS

To guide recovery within accessible subsets, we extend the divergence from Leviathan et al. (2023) to
partial distributions. Let w be a token or sequence, €2 the full sample space, and p(-), q(-) the target
and draft distributions. For 2’ C (2, define the generalized divergence:

Definition 1. Generalized Divergence. Given two distributions p and g over a sample space €2, and
a subset ' C), the generalized divergence over §)' is defined as:

Do/(p,q) = Y max{p(@) — q(@), 0}. “
oeq
The generalized divergence Dqy(p, q) measures the total deficient mass, i.e., how much probability
mass is missing in the draft ¢ relative to the target p within the subset §)'. The reverse divergence
Dq (g, p) measures the corresponding excess mass. In the whole space (2, this is symmetric (see
Lemma 2 in Section A.1) and reduces to the divergence from Leviathan et al. (2023) (see Lemma 3
in Section A.4), which underpins standard token-wise speculative decoding.

Next, we formalize the condition under which the partial target distribution is fully recoverable:

Under review as a conference paper at ICLR 2026

Theorem 1. Partial Distribution Recovery. A target distribution over ' C § can be fully recovered
via resampling iff Doy (p,q) < Dq:(q,p). (See proofin Section A.2.)

Intuitively, this ensures the "trigger mass" in the draft is sufficient to compensate for the deficit in the
target distribution. Over the full space €2, symmetry guarantees full recoverability.

4.2 RESAMPLING WITHIN THE ACCESSIBLE BRANCH

With these definitions, we analyze resampling within accessible branches along a draft sequence.
Although computing full joint probabilities is intractable, the probabilities of all next tokens over the
vocabulary V are accessible given any prefix X ;.;_;. We define a branch as:

Branch(X 1.t 1) = {X 1.y = (X1:4-1,2¢) | ¢ € V}. Q)
Branch divergence will guide redistribution of excess probability mass to correct local deficits.

Since only joint probabilities p(X1.;) within a given branch Branch(X.;,—1) are available, we
introduce branch divergence to quantify local deficits in the draft:
Definition 2. Branch Divergence

DBranch(pa q | Xl:tfl) = Z maX{P (Xlzt) —q (Xlzt) 70} (6)
X 1.1€Branch(X1.4—1)

Branch divergence captures how much probability mass is missing locally. Unlike total divergence, it
is inherently asymmetric, motivating the definition of branch asymmetry:

Definition 3. Asymmetry of Branch Divergence
ABranch()clztfl) = DBranch(pv q ‘ Xl:tfl) - DBranch(Qa p ‘ Xl:tfl) (7)

Asymmetry essentially reflects the probabilistic imbalance within the current branch. Here, Aganen >
0 indicates a deficit that cannot be corrected within the branch alone, while Agp,cn < 0 represents
excess mass available to support other branches. It can be computed as follows:

Theorem 2. Quantifying Asymmetry of Branch Divergence (see proof in Section A.3):

AB’mnch()(lzt—l) :p(Xl:t—l) - q(Xlzt—l) 3 (8)
From Theorem 1 and Theorem 2, we conclude that resampling can fully recover the target distribution
over a branch whenever the draft has enough probability mass to cover the deficit:

Corollary 3. The target distribution over the Branch(X1..—1) can be recovered via resampling,
under the following condition:

P(X1:4-1) < @(X1:4—1) or equivalently, r(X14-1) <1)
wherer (X 1.4-1) = % denotes the probability ratio.

For drafts of length ~, the full target distribution cannot be recovered by applying verification solely
within the accessible Branch(X 1:’1—1)~ However, we observe that the unused probability mass in
certain branches can be leveraged to compensate for the unrecoverable mass in other branches, from
a statistical perspective. This motivates the hierarchical branch resampling approach discussed next.

4.3 RESAMPLING IN A HIERARCHY OF ACCESSIBLE BRANCHES
Accessible branch divergences naturally form a hierarchical structure that enables systematic redistri-
bution of excess probability mass. Specifically:

Theorem 4. Hierarchy of Branch Divergence

The total positive asymmetry of branch divergence across child branches is equal to the parent branch
divergence, and vice versa. Specifically:

> Apranch(X 142, T1-1) = Dpyancn(p, q | X1:4—2), and vice versa, — (10)
Apranch (X 1:4—2,%4—1)>0

Under review as a conference paper at ICLR 2026

where X 1.4_o, T+_1 ranges over all possible Branches with the shared prefix X 1.4_o, and X 1.4_o is
the accessible branch along the draft sequence. (See Section A.5 for the proof.)

This result guarantees that excess mass from overrepresented branches can be aggregated to offset
deficits in underrepresented branches. Thus, hierarchical branch resampling guarantees exact recovery
of the target distribution, even when individual branches cannot. This provides a rigorous theoretical
foundation for deriving Hierarchical Speculative Decoding.

Algorithm 1 Naive HSD Algorithm 2 HSD

Require: Target probabilities: {p() »D(-|X1:4)} Require: Target probabilities: {p(-), ... |X 1)}
Require: Draft probabilities: {q ,q(-|X1:4—1)} Require: Draft probabilities: {¢(-), ..., (Liy—1)}
Require: Draft tokens X 1., = xl, oy Ty Require: Draft tokens X 1.y = {1, ...,z

1: Initialize 7 = 0 1: Initialize 7 =0
2: fortin~vy:1do 2: fortin~y:1do
3: Samplen, ~ U(0,1) 3: Samplen, ~ U(0,1)
4. if hy > n then 4: if hy > n, then
5: Sett =t #accept X 1.+ 5: Sett =1t #accept X 1.+
6: break 6: break
7: else 7: else
8: Setr=t—-1 #reject v+ 8: Setr=t—1 #reject x4
9: continue #step back 9: continue #step back
10: endif 10: endif
11: end for 11: end for
12: if 7 = ~ then 12: if 7 = ~ then
13: Sample token from p(:| X 1.y) #bonus token 13: Sample token from p(-| X 1.4) #bonus token
14: else 14: else
15 fortinT:~v—1do 15: Sample token from Py (- | X1.-) #resample
16: Sample token from Pes(- | X 1.¢) #resample 16: end if
17: end for Ensure: [X ., token]
18: end if
Ensure: [Xi.r,Zr41,...,24]

5 HIERARCHICAL SPECULATIVE DECODING

Guided by the theoretical foundations, we first develop a naive algorithm (see 5.1) that exactly
recovers the target distribution. The procedure evaluates a candidate sequence X 1., and scans
backward to identify the longest accepted prefix X ;.,, then recursively resamples positions 7 + 1
through v using the corresponding distributions from the resampling hierarchy.

This naive approach, however, still requires v — 7 + 1 additional calls to the target model, since
the resampled branches are inaccessible. To remove this overhead, we introduce Capped Branch
Resampling, yielding our final Hierarchical Speculative Decoding (HSD). HSD recovers the target
distribution with just one resampling step within the accessible branches. Concretely, after the
resampling step at line 15 in Algorithm 2, HSD only needs to sample from the target distribution to
continue generation until -y, which can be replaced by another speculative decoding step, eliminating
additional target calls.

5.1 NAIVE HIERACHICIAL SPECULATIVE DECODING
Specifically, the acceptance probability is computed according to the following formula:

Acceptance Probability h, = min{r(X.,), 1}, and when t < ~:
DBra.nch(pa q ‘ Xl:t)

hy = ; (11)
¢ maX{DBranch(p7 q | Xl:t)7 DBranch(qap | Xl:t)}
Branch Resampling Probability (line 17 in Algorithm 1):
X1.4) —q(X14),0
P’r‘es (xt | Xl:tfl) _ max {p(1.15) q(l.t)) } (12)

DBranch(pa q | Xl:t—l)

Under review as a conference paper at ICLR 2026

Branch Divergence Dgpnen(p,q | X1.4—1) is defined in Definition 2. By construction, the
Branch Resampling Probability is defined within the accessible Branch(X1.t—1), i.e., Pres(X1:¢ |
Branch(X1.;—1)), which reduces to the token-level form Pres(z; | X1.0—1).

The probability of the Target Model generating a sequence X ;., can be decomposed into two disjoint
events: (i) full acceptance of the draft, or (ii) at least one rejection followed by resampling:
P (X, is yielded) = P(X.,is sampled as draft, X 1., is accepted)

+ Z P(XM sampled and rejected, X 1., resampled). (13)

X1y #X 11y
Accept term: probability for the case when X ;. is sampled as draft and then directly accepted.
P(X . is sampled as draft, X ., is accepted) = ¢(X1.,) min{r(X1.),1}
—_ —— (14)

sample probability accept probability at
If r(X1.y) < 1, this equals to the target probability p(X .). Otherwise, it is equal to ¢(X1.,), and
the residual probability p(X1.,) — ¢(X1.y) is compensated via resampling.

Resampling term (partially resampled): This term accounts for all cases where X 1., is obtained by
resampling. Note that the accepted prefix must exactly match the corresponding subsequence of X ;.
for this contribution to apply. Therefore, we can further decompose it by summing over all possible
positions 7 4 1 of the first rejected token, with 7 being the length of the longest accepted prefix:

Z Z X 1. sampled and rejected, X 1., resampled) =

™0 X1y
. , (15)
D INEIESINED | TRTSENIE S | Nt
T=0X 1. t=T+1 f=rt

Explanation of terms:

1. Sampling: ¢(X 1+ X r+1:v) is the probability of generating the initial draft sequence.

2. Backward Scan: [],__ 41 (1=hy) corresponds to scanning backward from the end, rejecting
tokens until the first accepted prefix is found.

3. Acceptance: h.; is the probability of accepting the longest prefix X ..
4. Resampling: []__ 11 P.es(z+) resamples the remaining positions to recover exactly the
target probability.

This decomposition defines the procedure underlying Algorithm 1 and provides the basis for its
provable losslessness. The complete proof is given in Section B.2, together with an illustrative
example Section B.1 showing how naive HSD recovers the target distribution.

5.2 HIERARCHICAL SPECULATIVE DECODING WITH CAPPED BRANCH RESAMPLING

To introduce the capped branch sampling, we first define the Maximum Prefix Ratio Index.

Definition 4. Maximum Prefix Ratio Index For candidate tokens X ., the Maximum Prefix Ratio
Index m(X1.;) is the position in the prefix X 1.,—1 where the joint probability ratio r(X.;) is
maximized; if no prefix exceeds 1, we set m(X1.;) = O:

m(X1.) = arg 1H<1ia§tr(X1:i) or 0if 1r£1?§tr(X1:i) <1.

Based on the Maximum Prefix Ratio Index, we define the Capped Prefix Ratio r* as follows:
Definition 5. Capped Prefix Ratio

T*(Xlzt) - min{r(Xl:'rn(Xl;t))7 1}T(X77L(X1:t)+1:t)' (16)

By Definition 5, we have (X 1.,,,(x,.,)) > 1, and according to Equation 3, this implies the identity
(X 1.4) = T(Xm(Xlzt)+1:t)-

Under review as a conference paper at ICLR 2026

Then we define the Capped Branch Divergence:
Definition 6. Capped Branch Divergence

Dhann (020 | X1) = Z (r" (X1:) — 1) q (X 12) (17)
X 1.4€Branch(X1.4-1);
r(X1.e)>1

Diyranen (4,0 | X1:0-1) = > (1 =" (X1:0) ¢ (X 10) (18)
X 1.¢€Branch(X 1.4-1);
r*(X1.4)<1

Finally, the acceptance probability is computed according to the following formula:

s '

Acceptance Probability h, = min{r*(X.,),1}, and when t < ~:

_ Dgrmch(p7q ‘ Xlit)

hy = = , (19)
' DBranch(q’p ‘ Xllt)
Capped Branch Resampling Probability (line 15 in Algorithm 2):
" max X1.4)(r*(Xq14)—1),0
P (20 | X11) = {g(X1:e) (" (X14) —1),0} 20)

Dgranch (p7q | Xl:t—l)

We refer to the above strategy as Capped Branch Resampling. It plays a central role in enabling effi-
cient resampling within the hierarchical branch resampling framework. The resampling distribution
in Equation (20) enables recovery of the full target distribution with only a single resampling step for
branches with negative asymmetry. The remaining positions can then be directly sampled from the
target model, aligning with the start of the next speculative decoding step and thus incurring no extra
computational cost.

We briefly clarify the core mechanism by which capping preserves the target joint dis-
tribution. From Definition 5 and Definition 6, it follows that Dj. .(p,q | Xi4) =

le;teBranch(Xl;t,l) max{q (Xl:m(XM)) P (Xm(XM)_H,t) — q(X1.),0}. Through the accep-
tance probability and resampling probability at position ¢, we essentially guarantee that the probability
of obtaining X 1.; is equal to ¢ (Xl:m(xw)) p (Xm(xm)ﬂ:t) , partially recovering the probability
of the fragment X ,,(x, ,)+1:¢+- And the deficient probability mass p(Xl:m(Xl;t)) - Q(X1:m(X1;t))
is statistically recovered from the resampling distributions in higher hierarchies, which corresponds to
the fragments X ;.,,,(x,) Of other trajectories. An illustrative example in Section C.1 demonstrates
how the algorithm recovers loss over the entire path, with a further explanation of the capped ratio
provided in Section C.3.

5.3 EXPECTED NUMBER OF ACCEPTED TOKENS

We conduct efficiency analysis based on the expected acceptance length E[7]. For a given draft length
v, the expected number of accepted tokens for the tokenwise speculative decoding Leviathan et al.
(2023), blockwise verification Sun et al. (2024), and our HSD are as follows:

Lemma 1. Expected Number of Accepted Tokens (See Section D for proof.)
Y A Y Yy Y Yy
E[T]mkcn - Z H h;gken7E[7-]block - Z |:1 - H (1 - hll;l(wk):| 7E[T}hmnch - Z |:1 - H (1 - hk):| (21)
i=1 k=1 =1 k=i i=1 k=1
We establish Theorem 5, which guarantees that HSD is more efficient than other lossless methods:
Theorem 5. HSD Achieves Better Expected Number of Accepted Tokens
E[T]branch 2 E[T]block 2 E[T]z‘oken (22)

where equality holds in both inequalities if and only if v = 1. (See Section D for proof.)

Under review as a conference paper at ICLR 2026

We reveal that limitations on acceptance probability in each 18005
method directly cause the gap from the ideal case w.r.t. 175

expected accepted tokens. Let r(z;) = £ gii; The » 11005
acceptance probability of the entire draft h, is ideally x'®

min {]],_, r(2¢),1}. In contrast, tokenwise acceptance is 050

hioken = [[)_, min{r(z),1}, blockwise adopts hpjock = 0% sieor
min{1,7y,ry_17,..., 7172 - -7} (see Lemma 11), and HSD uses ~ fokenwise blockwise - ours

. . m(z~) 7 Figure 2: The average accep-
hours = min {mm {Ht:l V(@) 1} t=m(zy)+1 r(z), 1}' See tance probability of the entire
the average acceptance probability h- on GSMS8K in Fig. 2. draft (1 = -y) on GSM8K.

6 EXPERIMENTS

In this section, we empirically demonstrate the superiority of HSD with comparison on various
benchmarks and configurations, comprehensive ablation studies, and in-depth analysis of results.

6.1 EXPERIMENT SETTING

Experiments Setup. Experiments are conducted with the widely adopted GPTQ-quantized 8-bit
instruction-tuned Qwen2.5 series Bai et al. (2023). By default, we employ the 0.5B as the draft
model and 72B as the target models, with a temperature of 1. We leverage GSM8K Cobbe et al.
(2021) for mathematical problem-solving, HumanEval Chen et al. (2021) for code generation, and
CNN/DailyMail See et al. (2017) for text summarization. We conduct all experiments on a single
NVIDIA H20 96GB GPU.

Baselines and Metrics. We compare two lossless verification methods—Token-wise Leviathan et al.
(2023) and Block-wise Sun et al. (2024)—using two metrics: Block Efficiency (tokens/step) and
Decoding Speed (tokens/second). Block Efficiency measures the average tokens generated per serial
call to the target model, reflecting intrinsic efficiency independent of hardware. Decoding Speed
indicates tokens produced per second for practical reference, though it depends on hardware and
implementation. Additional details and extended evaluations are in Section E.

6.2 EXPERIMENT RESULTS

Main results. Table 1 summarizes the performance of HSD across datasets and model scales
using the Qwen?2.5 suite (0.5B as draft,14B, 32B, and 72B as targets). Overall, HSD consistently
improves both Block Efficiency (BE) and Decoding Speed (DS) relative to Tokenwise and Blockwise
verification. For GSMS8K, the gains are stable across scales, with BE improvements of 5.2%-5.4%
at 14B/32B and 3.3% at 72B, accompanied by DS increases of up to 10.7%. On HumanEval,
the effect is more pronounced: BE rises by 9.5% and 12.3% at 14B and 32B, while DS improves

Table 1: Comparison of Block Efficiency (BE) and Decoding Speed (DS) across datasets and model
scales. Values in parentheses show percentage improvement over Tokenwise.

Method Block Efficiency (Token/Step) Decoding Speed (Token/Second)

14B 32B 72B 14B 32B 72B

GSMSK
Tokenwise 5.99 6.14 6.44 82.28 53.87 31.49
Blockwise 6.13 (+2.3%) 6.26 (+2.0%) 6.53 (+1.4%) 86.06 (+4.6%) 54.91 (+1.9%) 31.79 (+1.0%)
HSD (Ours) | 6.30 (+5.2%) 6.47 (+5.4%) 6.65 (+3.3%) | 91.05 (+10.7%) 57.12 (+6.0%) 32.52 (+3.3%)
HumanEval
Tokenwise 4.83 4.89 5.23 74.21 45.68 26.31
Blockwise 5.11 (+5.8%) 5.15 (+5.3%) 5.34 (+2.1%) 78.14 (+5.3%) 48.15 (+5.4%) 26.96 (+2.5%)
HSD (Ours) | 529 (+9.5%) 5.49 (+12.3%) 5.40 (+3.3%) 81.09 (+9.3%) 50.88 (+11.4%) 27.48 (+4.4%)
CNN/DailyMail

Tokenwise 2.39 2.36 2.35 37.28 21.89 11.90

Blockwise 250 (+4.6%) 242 (+2.5%) 239 (+1.7%) | 38.54 (+3.4%) 2231 (+1.9%) 12.10 (+1.4%)
HSD (Ours) | 2.59 (+8.4%) 246 (+4.2%) 2.45(+4.3%) | 39.96 (+72%) 2278 (+41%) 12.33 (+3.6%)

Under review as a conference paper at ICLR 2026

Table 2: Comparison in Multi-draft setting. Hierarchical is compared to Tokenwise, and Hierarchical Multi-draft
is compared to Tokenwise Multi-draft.

Block Efficiency (Token/Step) Decoding Speed (Token/Second)

Method GSMBK HumanEval CNN/DailyMail ‘ GSMBK HumanEval CNN/DailyMail
HSD (Ours) 6.65 (+3.3%) 5.40 (+3.3%) 2.45 (+4.3%) 32.52 (+3.3%) 27.48 (+4.4%) 12.33 (+3.6%)

Tokenwise Multi-draft

Tokenwise ‘ 6.44 5.23 2.35 ‘ 31.49 26.31 11.90
HSD Multi-draft (Ours) ‘

8.65 7.96 3.79 ‘ 37.66 35.72 15.38

8.89 (+2.8%) 8.26 (+3.8%) 4.21 (+11.1%) 38.41 (+2.0%) 36.83 (+3.1%) 16.75 (+8.9%)

Table 3: Evaluation of HSD under multi-draft setup, and ablations on temperature, draft length, and
target model size on GSM8K. Except for the ablation on target model size, we adopt Qwen2.5-0.5B
as the draft model and Qwen2.5-72B as the target model.

(a) Comparison of different sampling temperatures. (b) Comparison of different draft lengths. The temper-
The draft length -y is set to 10. ature is set to 1.

Block Efficiency Decoding Speed
t=06t=08t=1t=0.6t=08t=1

Block Efficiency Decoding Speed

Meth
ethod ‘ y=5y=10y=157=5y=10~ = 15

Method ‘

Tokenwise
Blockwise
Hierarchicial

6.81 6.70 6.44 3286 32.18 31.49 Tokenwise
6.83 6.74 6.53 33.07 32.33 31.79 Blockwise
6.86 6.79 6.65 3321 3290 32.52 Hijerarchical

448 644 7.61 1201 3149 51.03
452 6.53 774 12.14 31.79 5175
459 6.65 7.88 1235 3252 5295

by 9.3% and 11.4%; even at 72B, HSD maintains positive margins (3.3% BE, 4.5% DS). For
CNN/DailyMail, the improvements are moderate but consistent, with BE gains of 4.2%-8.4% and
DS gains of 3.4%-7.2% . Taken together, these results demonstrate that HSD not only outperforms
Tokenwise verification but also provides consistent advantages over Blockwise verification, yielding
average improvements of approximately 6.2% in BE and 6.7% in DS. The consistency of these
gains across datasets and scales highlights the robustness and scalability of the approach.

Multi-draft. To demonstrate the advantage of HSD, we compare it with token-wise speculative
decoding in a multi-draft setting. For simplicity—and without loss of generality—we adopt Recursive
Reject Sampling (RRS) with replacement Yang et al. (2024) as the baseline for its scalability and
independence from complex tree attention mechanisms. Notably, since it is not straightforward
to extend blockwise verification to the multi-draft setup, we omit it from our comparison. We
evaluated multi-draft generation with 11 candidate drafts in Table 2, and HSD yields an average
5.9% improvement in Block Efficiency and 4.7% improvement in Decoding Speed over token-wise
decoding. These results further underscore the strong potential of HSD to improve performance when
combined with complementary or orthogonal techniques.

Ablation on Temperature. We conduct a systematic evaluation of sampling temperature’s effect
on decoding efficiency, with ¢ € {0.6,0.8,1.0} (Table 3(a)). HSD consistently outperforms other
approaches across all temperature settings, demonstrating its robustness to temperature variations.

Ablation on Draft Length. We evaluate draft lengths v € {5, 10, 15} tokens, where HSD consistently
outperforms baselines with increasing efficiency gains (Table 3(b)). Aty = 15, HSD achieves peak
performance with 7.88 tokens/step in block efficiency and 52.95 steps/second in decoding speed,
representing improvements of 3.58% and 3.88% over Tokenwise, respectively. The consistent
performance advantage across all draft lengths demonstrates HSD’s robust scalability.

7 CONCLUSION

We have introduced Hierarchical Speculative Decoding (HSD), a novel, lossless verification algo-
rithm that significantly boosts the expected number of accepted tokens while preserving the target
distribution. This approach is backed by rigorous theoretical analysis and extensive empirical vali-
dation. HSD’s design is broadly compatible with existing speculative decoding frameworks, and it
demonstrates especially strong scalability benefits for longer draft sequences.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal ex-
perimentation was involved. All datasets used, including GSM8K, CNN/DailyMail, and Human
Eval, were sourced in compliance with relevant usage guidelines, ensuring no violation of privacy.
We have taken care to avoid any biases or discriminatory outcomes in our research process. No
personally identifiable information was used, and no experiments were conducted that could raise
privacy or security concerns. We are committed to maintaining transparency and integrity throughout
the research process.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. The
experimental setup, model configurations, and hardware details are described in detail in the paper.
We have also provided a full description of HSD to assist others in reproducing our experiments.
Additionally, GSM8K, CNN/DailyMail, and Human Eval are publicly available, ensuring consistent
and reproducible evaluation results. We believe these measures will enable other researchers to
reproduce our work and further advance the field.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri
Dao. Medusa: Simple 1lm inference acceleration framework with multiple decoding heads. In
International Conference on Machine Learning, pages 5209-5235. PMLR, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas
Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher
Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford,
Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language
models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.org/
abs/2110.14168.

Cunxiao Du, Jing Jiang, Xu Yuanchen, Jiawei Wu, Sicheng Yu, Yongqi Li, Shenggui Li, Kai Xu,
Ligiang Nie, Zhaopeng Tu, et al. Glide with a cape: a low-hassle method to accelerate speculative
decoding. In Proceedings of the 41st International Conference on Machine Learning, pages
11704-11720, 2024.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

10

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168

Under review as a conference paper at ICLR 2026

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee, and Di He. Rest: Retrieval-based speculative
decoding. arXiv preprint arXiv:2311.08252, 2023.

Zhengmian Hu, Tong Zheng, Vignesh Viswanathan, Ziyi Chen, Ryan A Rossi, Yihan Wu, Dinesh
Manocha, and Heng Huang. Towards optimal multi-draft speculative decoding. arXiv preprint
arXiv:2502.18779, 2025.

Sehoon Kim, Karttikeya Mangalam, Suhong Moon, Jitendra Malik, Michael W Mahoney, Amir
Gholami, and Kurt Keutzer. Speculative decoding with big little decoder. Advances in Neural
Information Processing Systems, 36:39236-39256, 2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pages 19274—19286. PMLR, 2023.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: speculative sampling requires
rethinking feature uncertainty. In Proceedings of the 41st International Conference on Machine
Learning, pages 2893528948, 2024.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating large
language model serving with tree-based speculative inference and verification. In Proceedings of
the 29th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 3, pages 932-949, 2024.

Giovanni Monea, Armand Joulin, and Edouard Grave. Pass: Parallel speculative sampling. arXiv
preprint arXiv:2311.13581, 2023.

Harikrishna Narasimhan, Wittawat Jitkrittum, Ankit Singh Rawat, Seungyeon Kim, Neha Gupta,
Aditya Krishna Menon, and Sanjiv Kumar. Faster cascades via speculative decoding. arXiv
preprint arXiv:2405.19261, 2024.

OpenAl. Openai ol system card. https://arxiv.org/abs/2412.16720,2024. Accessed:
2025-05-12.

Zongyue Qin, Ziniu Hu, Zifan He, Neha Prakriya, Jason Cong, and Yizhou Sun. Optimized multi-
token joint decoding with auxiliary model for llm inference. In The Thirteenth International
Conference on Learning Representations, 2025.

Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point: Summarization with
pointer-generator networks. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1073—-1083, Vancouver, Canada, July
2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1099. URL https:
//www.aclweb.org/anthology/P17-1099.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W Mahoney,
and Kurt Keutzer. Q-bert: Hessian based ultra low precision quantization of bert. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 34, pages 8815-8821, 2020.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for
large language models. arXiv preprint arXiv:2306.11695, 2023a.

Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami, Himanshu Jain, and Felix
Yu. Spectr: Fast speculative decoding via optimal transport. Advances in Neural Information
Processing Systems, 36:30222-30242, 2023b.

Ziteng Sun, Uri Mendlovic, Yaniv Leviathan, Asaf Aharoni, Ahmad Beirami, Jae Hun Ro, and
Ananda Theertha Suresh. Block verification accelerates speculative decoding. arXiv preprint
arXiv:2403.10444, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay

Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

11

https://arxiv.org/abs/2412.16720
https://www.aclweb.org/anthology/P17-1099
https://www.aclweb.org/anthology/P17-1099

Under review as a conference paper at ICLR 2026

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural language
processing. In Qun Liu and David Schlangen, editors, Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations, pages 38—45, Online,
October 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-demos.6.
URL https://aclanthology.org/2020.emnlp-demos.6/.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pages 38087-38099. PMLR, 2023.

Nan Yang, Tao Ge, Liang Wang, Binxing Jiao, Daxin Jiang, Linjun Yang, Rangan Majumder, and
Furu Wei. Inference with reference: Lossless acceleration of large language models. arXiv preprint
arXiv:2304.04487, 2023.

Sen Yang, Shujian Huang, Xinyu Dai, and Jiajun Chen. Multi-candidate speculative decoding. arXiv
preprint arXiv:2401.06706, 2024.

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen, Gang Chen, and Sharad Mehrotra. Draft&
verify: Lossless large language model acceleration via self-speculative decoding. In Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 11263-11282, 2024.

Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat, Aditya Krishna Menon, Afshin Rostamizadeh, San-
jiv Kumar, Jean-Francois Kagy, and Rishabh Agarwal. Distillspec: Improving speculative decoding

via knowledge distillation. In The Twelfth International Conference on Learning Representations,
2024.

APPENDIX

A THEORETICAL FOUNDATION

A.1 SYMMETRY OF TOTAL DIVERGENCE

Lemma 2. Symmetry of Total Divergence.

Proof. From Definition 1, we know:

Da(p,q) — Dalg,p) = »_ max{p(@) — ¢(&),0} — > _ max{q(&) — p(@),0}

we WEN

= Y @ -d@) - Y (@) - p@))

p(@)Sq(@) (@ Sh@) (A2)
=Y p@) - @)

weN wEN

=0 (since both p and ¢ sum to 1 over the full sample space ()

Thus, Dq(p, q) = Dq(q, p), completing the proof. O

A.2 PARTIAL DISTRIBUTION RECOVERY

Proof of Theorem 1. Let P(w is yielded) denote the total probability of producing w € ©'. By
construction, this can be decomposed as

P(w is yielded) = P(w is drafted & accepted) + P(w is drafted & rejected, w is resampled),
(A3)

12

https://aclanthology.org/2020.emnlp-demos.6/

Under review as a conference paper at ICLR 2026

where acceptance occurs with probability h(w) = min{p(w)/q(w), 1}, and resampling follows the
distribution Pes(- | 2') with total trigger mass Dqy (g, p). Here, the total trigger mass represents the
sum of probabilities of all draft outcomes in 2’ that are rejected. Hence,

P(wis yielded) = h(w) q(w) + Do (¢, p) Pus(w |). (A4)

Noting that h(w) g(w) = min{p(w), ¢(w)}, we have

P(w is yielded) = min{p(w), g(w)} + Do (¢, p) Pres(w |). (A.5)
To match the target distribution exactly (P(w is yielded) = p(w)), we require
—mi _ 0}
P(w | oy = Pw) —min{p(w), q(w)} _ max{p(w) — q(w),0} (A6)
(10|) Dar(q,p) Dav(q,p)

Summing over all w € Q' gives

~n _ Dor(p,q)
Pres Q)= —F"-<. A7
w;z/)= Datan) A

For P(- | ') to be a valid probability distribution, this sum must not exceed 1. Therefore, the
necessary and sufficient condition is

DQ’(p7Q) S DQ'(Q7p)7 (AS)
which completes the proof. O

A.3 QUANTIFICATION ANALYSIS OF ASYMMETRY

Proof. From Definition 3 and Definition 2, we obtain:

ABranch(AXLt—l) - Z max {p (Xl:t) - q(Xl:t) ,O}
X 1.4 €Branch(X1.¢—1)

- > max {q (X 1:¢) — p(X1.) ,0}
X 1.¢€Branch(X1.¢4—-1)

= Z p(X14) — Z q(X1:) (A.9)
X 1.4 €Branch(X1:¢—1) X 1.4 €Branch(X1.¢—1)
= pP(Xue0)p(@e | Xiee1) = D q(Xrao1) q (e | X1aoa)
T €V T €V
=p(X1:4-1) —q(X14-1) (since Z p(xe | X1g—1) =1)
T €V
]

A.4 RELATION TO THE DIVERGENCE IN LEVIATHAN ET AL. (2023)

Lemma 3. The total divergence is equivalent to the divergence defined in Leviathan et al. (2023) for
token distributions over the full sample space.

Proof. Following Leviathan et al. (2023), let £ denote a token, and omit conditions in the token
probabilities for simplicity. From Definition 3.2 in Leviathan et al. (2023), we have:

Dix(p.q) = Y [P0
zeQ
; (A.10)
2 (Z mae{p(£) - o(£), 0} + 3 max{q(3) - p(d). o})
ZeQ =

13

Under review as a conference paper at ICLR 2026

From Lemma 2, we know that Dq (p, q) = Dq(q, p), so we can write:
Da(p,q) + Da(g, p)

Da(p.q) = 5
1 (A.11)
=3 (Z max{p(%) — ¢(%),0} + Y _ max{q(&) — p(%), 0}>
zeQ zeQ
Therefore, Dq(p, ¢) = Dix(p, q), completing the proof. O

A.5 HIERARCHY OF DIVERGENCE

Proof. Proof of Theorem 4.

From Theorem 2, we recall that:

Agranch (X 1:0—2, Tt—1) = p(X 1202, Tt 1) — ¢(X142, T—1). (A.12)
Therefore, summing over the cases where this difference is positive gives:
Z Agranch (X 1:t—2, Tt—1) = Z max {p(X1:4-2,Tt-1) — ¢(X1:4-2,%¢-1),0} .
ABranch(*Xlzt—27fit—1)>0 it—lev
(A.13)

By Definition 2, this is precisely the branch divergence one level higher Dganen(p, ¢ | X 1:t—2), thus
completing the proof. O

B LOSSLESS OF NAIVE HIERARCHICAL SPECULATIVE DECODING

B.1 ILLUSTRATIVE EXAMPLE

For example, consider the case where 7(X1.,) > 1, r(X1.4—1) > 1, and 7(X1.y—2) < 1. The
accept term is simply equal to ¢(X 1.,), so we only need to check whether the resampling term equals
P(X1:4) —q(X1.5). According to Equation (12), we know Pres(2y—2 | X 1.4—1) = 0. Consequently,
contributions from positions earlier than v — 1 in the sum above vanish, which implies that the
resampling term for X ;.. arises solely from resampling at positions v and v — 1 as follows:

Z P(sample X 1.,—1%, reject ., accept X 1.,—1, resample @)+

Ty

Z P(sample X 1., o1, reject X 1., accept X 1.,—2, resample X 1.,

X1y
N A.14
= E q(X1:y-174) (1= hy) : hy : Pres(zt) + ()
— ———— ——— ~— ——

7 draft probability reject backwards at 7 + 1 = v accept X 1.,—1 resampleatT + 1 =~

Z ZQ(XL“/*Q@W*L%“/)' (I =hy)(1 = hy1) - &:3 “Pres (@y-1) Pres ()

Ty—1 T

draft probability reject backwards at 7+1=+—1 accept X 1.1 resampleatT + 1 =~y
From Definition 2 that the excess probability mass that triggers resampling Dg,anch (¢, p | X Liy— 1) =
Z_W ¢(X1.y—1Z)(1 — h.). Then we have:

. p(Xl:'y) B q(Xlry)
DBranch(paQ|X1:'y—1)

=, DBranch(pa Q|X1-7_2i’ﬂ{_1)
DB h Qale: —2T~—1 1 — - —
5; : ranc (| Y ol)(DBranch(QJ)lei’Y*Qx'yfl)
-

From Definition 3 and Theorem 4, we know that Zi%l DBranCh(q,p|X1:.y_25;,y_1) —

:DBranch(Q7 p‘Xlzfyfl) -1

+
(A.15)

)Pres(zv—l)ReS (I’Y)

Daranch (P, ¢| X 1:9—28+~1) = DBrancn(q, p| X 1:y—2). Then we have:
Dgranch (¢, 2| X 1:9-1
_ ranc| (| o) . (p(X1:7) — Q(Xlzv))—i_

DBranch(p7Q|X1:'y—1)
P(X1:y-1) — ¢(X1y-1)) P(X14) — 9(X 1)
DBranch(paq|X1:’y—2) DBranch(pvq‘Xlz'y—l)

(A.16)

Dgranch (¢, p| X 1:4—2) -

14

Under review as a conference paper at ICLR 2026

We know from Definition 3 and Theorem 2 that p(X1.1) — ¢(X1:y) = Dgranch(P, ¢| X 1:9-1) —
Dgranch (q, p\X1;y—1)- Then we have:

DX) e
(DBranch(p7q | X1;771) - DBranch(Q7p | X157*1))
Dgranch(P; ¢ | X1:4-1)
=p(X1) — ¢(X1:)

(A.17)

C(P(X14y) — 4(X 1))

Z P(Xlw,lziv is sampled, Z. is rejected, X 1., _1 is accepted, x, is resampled) + (A.18)

Ty

Z P(Xlw,gjfw,mis sampled, Xﬂ,,mis rejected, X 1. _ois accepted, X ,_1.,1s resampled)
X/

y—1ly
(A.19)
= E q(X 1:y—1T4) - (1- hv)) hy) Pres(w1) + (A.20)
— ——— —— N N
T draft probability reject backwards at 7 + 1 =~ accept X 1., 1 resampleatT +1 =1
§ § A X1y—2Ty—1Z5) - (L =hy)(1—hy1) = hyo - Bes(@y—1)Pres(®y) (A21)
i1 & ~—~
7 v draft probability reject backwardsat 7 + 1 = v — 1 accept X 1., 1 resampleatT + 1 =y

From Definition 2 that the excess probability mass that triggers resampling Dgrancn (¢, p | X1:y-1) =
>z, A(X1:9-124)(1 — hy). Then we have

p(Xl:'y> B q(Xl:'y)
DBranch(pa Q|X1:’y—1)

~ DBranch(paq‘Xl' 72:i 71)
> " Dirancn (¢ p| X 1:9—2F1-1)(1 — —
P Brane (q p‘ Ty 1)(DBranch(Q7p‘X1:'y—2$7—1)
-

= DBranch(Qap‘Xlt'yfl) -1 (A.22)

)‘Pfes(x’yfl)R'es(x'y) (A23)

From Definition 3 and Theorem 4, we know that Ziw_lDanch(q,p|X1w,2i"7,1) -
DBranch(p7Q|X1:772§5'yfl) = DBranch(Q>p|X1:'yf2)- Then we have

DBranch(q,p‘Xlwfl)
) P Xaey) — gl X)) A24
DBranch(p,q‘Xlz,y_l) (p(1 7) q(1 ’Y)) ()

P(X1y-1) — ¢(X1y-1)) p(X14) —q(X1)
DBranch(p7q‘X1:'yf2) DBranch(p7Q|X1:'yfl)

We know from Definition 3 and Theorem 2 that p(X1.,) — ¢(X 1.y = Dgranch(P; ¢| X 1:9-1) —
Dgranch (q, p\X1;y—1)- Then we have

DBranch(Q7p|X1:'y—2) : (A25)

_ DBranCh(Qa p‘Xlz'yfl)
DBranch(p7 q‘Xlz'y—l)

(DBranch(paq | Xl:’y—l) - DBranch(qap | Xl:’y—l))
(p(X1.4) — q(X1, A.27
DBranCh(paq ‘ Xl:'y—l) (p(LW) q(1"\/)) ()

:p(Xlzv) - q(XI:'y) (A28)

B.2 GENERAL PROOF

- (P(X1y) — (X 1:4))+ (A.26)

Lemma 4 (Rejection-Resampling Sum Reduction (Tokenwise)). Let 0 < m < vy be such that the
acceptance ratios satisfy:

r(xy) > 1, r(@y—1) > 1, ..., 7(@y—mt1) > 1, 7r(2y—m) < L. (A.29)
Then, the total probability of obtaining the output via resampling over the last m positions is:
m—1 [
Z P(x_; is rejected) H P(X1.—; is resampled) = p(X1.y) — ¢(X1.4). (A.30)
i=0 j=0

15

Under review as a conference paper at ICLR 2026

Proof. We begin by defining auxiliary quantities to simplify the notation. For i = 0,1,...,m, let

Aj_ = DBranch((Lp | Xli’Y—i)?

_ (A.31)
Ai = DBranch(pa q | Xl:'y—i)a

where A quantifies the probability mass to be corrected due to overestimation by ¢, and A;r
represents the mass available to be allocated from alternate paths.

Define also the recursive product term:
AT AT
P ::H%, for0 <i<m— 1. (A.32)
j=0 Jj+1

Using these, the rejection-resample contribution becomes:

m—1 %
P(z_; is rejected) H P(X1.y—; is resampled)
= =0 (A.33)
m—1
= Z AZ_B + (A;’r_r,—l - A;L—l)P’"L—l-
i=1
Now observe the recurrence:
AL P = (A — APy, (A.34)
which implies:
(Az — A];)Pk = Az+1pk+1. (A.35)
We apply this recurrence in reverse to simplify equation (1) by telescoping the sum:
m—1 m—2
STATP (A = AL)P =Y ATP A Py
i=1 i=1
m—3
= ATP+ A 3P
=1 (A.36)
_AtP
=AJ -4y

= p(Xlr'y) - Q(Xlr'y)v

where the final equality follows from the definition:

Aar - Aa - DBranch(Q7p | Xl:'y) - DBranch(p7 q | Xl:'y) = p(Xl:’y) - q(Xl:’y)- (A37)
This completes the proof. O

Lemma 5 (No Resampling of Earlier Prefixes (Tokenwise)). Let X 1., = [z1,Z2,. .., Zy] be a token
block, and suppose that for some index m, the acceptance ratios satisfy:

r(xy) > 1, r(@y—1) > 1, ..., 7(@y—mg1) > 1, 7r(2y—m) < L (A.38)

Then for allt < v — m, the resampling probability satisfies:
P(X .4 is resampled) = 0. (A.39)

16

Under review as a conference paper at ICLR 2026

Proof. We use the resampling probability formula:
max {p<X1:t) - q(Xl:t)a O}

Poo(X14) = . A.40
reS(Lt) max {DBranch(paq ‘ Xl:t); DBranch(qap ‘ Xl:t)} ()
At position ¢ = v — m, we are given that the acceptance probability
. p(Xlz'yfm) }
r(Ty_p) =min 1, —————= 5 < 1, (A41)
(7) { Q(Xlz'y—m)
implying p(X 1:y—m) < ¢(X1.4—m). Therefore,
p(Xlz'yfm) - q(Xlt'yfm) S 07 (A42)
and hence:
Pres(Xlz'yfm) =0. (A.43)
This completes the proof. O
Theorem 6 (Lossless).
P(yield Xi.) =p(Xi.). (A.44)

Proof. The total probability is the sum of the acceptance and resampling paths. We analyze two cases
based on the relative probabilities.

Case 1: p(X1.4) < ¢(X1.) In this case, the acceptance probability for the draft is zggi”; . The

probability of generating X ;. via resampling is 0, as there is no probability deficit to recover.
P(yield Xi.y) = P(X ., is accepted) + P(X ., is resampled)
p(X1:9)
=q(X1.) - +0 (A45)
(’Y) q(X]_;ﬂy)
=p(X1:).
Case 2: p(X1.,) > q(X1.y) Here, the acceptance probability for the draft is 1. The resampling path

must compensate for the probability deficit. Per lemma 4 and lemma 5, the total probability of all
relevant resampling paths is exactly p(X 1.y) — ¢(X 1.4).

P(yield Xi.,) = P(X. isaccepted) + P(X ., is resampled)
= q(Xlzfy) -1+ (p(Xlz'y) - (](X1:~/)) (A46)
=p(X1:y).

These two cases cover all probability events. In both cases, the total probability correctly recovers
p(X1:y), proving the method is lossless.

O

C LOSSLESS OF HIERARCHICAL SPECULATIVE DECODING

C.1 ILLUSTRATIVE EXAMPLE
Let p(-) be the target and ¢(-) the draft. For a prefix X 1.,

T(Xl:t) — p(Xl:t)’ p(X(H_l;b | Xl:a)’
q(X1.4) (X g1 | X1:a)

$07(X 1) = r(X1.0) "(Xat1: | X1.4). Let m be the last (largest) index < +y at which the running
maximum of r(X.;) is attained and exceeds 1; let n < m be the previous such index (two-peak
case).

T(Xa-‘rl:b | Xl:a) =

17

Under review as a conference paper at ICLR 2026

As definition 4, define the capped ratio at the end of the draft as
r*(Xlz’y) = IIliIl{T‘(Xl;m), 1}T(Xm+1:7 ‘ Xl:m) = T(Xm+1:'y | Xl:m) S 17

and the accept term
Ay = q(Xy) (X)),
We will also use three resample contributions: 7', (at level y), T}, (at level m), and T,, (at level n).

two-peak example: n < m < 7 From definition 4, we have 7(X.,) > 1, then r(X1.,) >
r(X1.,), and no larger value occurs in (m,). This forces (X, +1.m | X1.n) > 1; otherwise m
could not be a new maximum.

Step 1: accept + top-level resample Since (X 1.,) = (X py1y | X1m) < 1,
A'y = q(Xl:'y> T(Xerl:'y ‘ Xl:m) = q(Xlzm)p(Xerl:'y | Xl:m)7 Tv = Oa

SO
Hl = A'y"'T'y = q(Xlzm)p(X'm-i-l:'y ‘ Xl:m)-

Intuition. The suffix X, 1.y is now under p; the prefix X.,, is still under q.

Step 2: add the m-term Let R, ,,, := r(X,11.m | X1.n) > 1. The resample at level m
contributes

Ty = Q(Xlzm) (Rn—>m - 1) p(Xm+1:'y | Xl:M)v
hence
Hy := Hi + Ty = Ry ¢(X1:m) D(X 1oy | X1om) = (X 1n) (X 1y | X1in)-
Intuition. The block X ,, 1.y, i converted to p; only X ., remains under q.
Step 3: add the n-term If (X .,,) > 1,
Th = q(X1:0) (r(X1m) = 1) p(Xng1iy | X1im), Hs == Hy+ T, = p(Xi.).
If instead (X 1.,) < 1, thenT,, = 0 and Hy = p(X.) already.

Intuition. Each nonzero term “tops up” the exact deficit of g on its block until the whole path is
under p. Thus

Ay + Ty + T+ Tn = p(X1y) ‘

in this two-peak case, exhibiting the (lossless) invariance of the total probability under the HSD
accept—resample rule.

C.2 GENERAL PROOF

Definition 7 (Sequence of Unique Capping Indices). For a given maximum sequence length -,

the sequence of maximum prefix ratio indices (m(1), m(2),...,m(y)) is generated according to
Definition 4. Let I/ be the set of unique values in the sequence of capping indices:
U={m)|1<t <~} (A47)

The Sequence of Unique Capping Indices, denoted by M *, is the ordered sequence of the elements
inU:

M* = (mj,...,m}) (A.48)
where m] < ... < mj and L is the total number of unique capping points.
With these definitions, we can now establish the key properties of the prefix-capped joint ratio:

Lemma 6 (Property of 7*(X.;) between neighboring unique capping indices). Let m] and mj,,
be two consecutive unique capping indices, and suppose

my <i<mi,. (A.49)

For every such i, we have r*(X 1;) < 1.

18

Under review as a conference paper at ICLR 2026

Lemma 7 (Property of r*(X 1.) at unique capping indices). Let mj_; and mj be two consecutive
unique capping indices, we have

T*(Xl:'mf) - T(XTTLT71+127717) >1

We now define the acceptance and resampling probability masses:

Definition 8 (Accepted Probability Mass). The probability mass for accepting the full sequence
Xy, s
P(X.,is accepted) = min(1, r*(X1.4)) ¢(X1.v), (A.50)

Definition 9 (Resampling Probability Mass). Let X ., be a full sequence of length v, and let
M* = (mj,m},...,m}) be its Sequence of Unique Capping Indices. The total probability mass
under the draft ¢ and target p of generating this sequence can be decomposed as:

Total Generation Probability
P(X ., is generated) = P (X 1., is accepted) + P(X 1., is resampled)
= rnin(l7 ’I"*(Xl:,y)) q(X1.y)

L
+ Zmax((), T(me71+1:ml*) - 1) q(Xlzml’f)p(Xm;‘+1:'y | Xl:mz‘)
=1

+ maX(07 r*(Xl:’y) - 1) Q(Xlzfy—l)p(x’y | Xl:’y—l)
(A51)

We now establish the key lemma that characterizes the resampling probability mass:

Lemma 8 (Hierarchical Resampling Probability Mass). The total generation probability can be
decomposed into acceptance and resampling masses as stated in Definition 9. Only unique capping
indices contribute to resampling mass, and the explicit form for the resampling mass at each unique
capping index is:

P(Xhm; is resampled) p(XmZ‘JrlZ’y | X1;m;)

(A.52)
= max(O, T(Xm;llJrl:mZ‘) -]-) q(Xl:mf)p(Xml*Jrlz'y | Xl:mZ‘)

To prove the lossless property, we introduce the segmented probability function:

Definition 10 (Segmented Probability Function). Foreach! € {1,..., L}, we define the segmented
probability function Fj as:

F = q(leZ‘) p(me+1:'y | Xl:mZ‘)
(A.53)

i=1 i=mj+1

This function represents a hybrid probability measure that uses the draft distribution ¢ up to position
m; and the target distribution p for the remaining positions, where X ;. is equal to the prefix.

We establish the telescoping property of resampling mass:

Lemma 9 (Telescoping of Resampling Mass). Foreachl € {1,..., L}, the mass of the resampling
at the unique capping index m; can be expressed as:

P(Xlzml* is resampled) =F_1—F. (A.54)

Proof. we need to show that the resampling mass at the unique capping index m(l) equals F;_; — Fj.

19

Under review as a conference paper at ICLR 2026

1. EXPRESS Fj_1 IN TERMS OF F;. We have
P(Xlzml* iS resampled) = (T(meil-&-l:mz‘) - 1) Q(Xl:ml*)p(Xml*-l-l:'y ‘ Xl:m?)

First note
q(Xlsz‘_H) = q(Xlzmz‘) q(XmZ‘—Q—l:m;‘_H \ Xl:m;),
and
p(sz*+1:m;*+1 | Xl:ml*) - T(Xml*+1zmz‘+l) q()(ml*Jrlzrnl*Jrl | lef)
Hence

Fioy = q(X1mr) p(Xmr 410y | X1y

= q(X1:7rz;‘) p(X7rL;‘+1:m;‘+1 | le;‘) p(Xm;‘+1+1:'y | X1:7rL;‘+1)

- q(X1:7rL;‘) T(Xm2‘+1:m;‘+1) q(Xm;‘+1:7rL;‘+1 ‘ Xl:m;‘):| p(XmZ‘+1+1:’y | Xl:m,;‘+l)

T(Xmi"+1:mf+1) [q(Xl:mf)q(XmZ‘-&-l:m;‘Jrl ‘ le;‘):| p(Xml*Jrl-‘rl:'y | Xl:m7+l)

T(X7rz;‘+1:m;‘+1) q(Xl:m;‘+1) p(Xm;‘+1+1:’y ‘ Xl:m;‘+1)
T(Xm;‘+1:m;‘+1) Fy.

2. COMPUTE THE DIFFERENCE F;_1 — Fj.
F,.—-F= [7"(Xm,*+1:ml*+1 }
= (r(
= (r(Xmi1mz,,) — 1) a(X1 mm) P(Xz, 41y | Ximg,,)
(

= (1 Xmp_ 41:mp) = 1) @(X1mg) P(Xz 4107 | X1amz)-

This completes the proof that the resampling mass at segment [equals F;_; — Fj. O

my+1: m1+1))

Theorem 7 (Lossless Recovery). Under the prefix-adaptive speculative decoding scheme, the total
probability of generating any sequence X 1. equals the target distribution probability:

P(Xlw is generated) =p(X 1) (A.35)

Proof. From Lemma 8, we have the total generation probability decomposition:
P(X., is generated) = P(X., is accepted) + P (X 1., is resampled) + P (. is resampled)
= min(l, r*(Xl,y)) ¢(X 1)

+ Zmax(oa T(sz‘71+1:ml*) - 1) q(Xlzm;“)p(XmZ‘+1:'y | Xl:m?‘)

+ maX(Oa T*(Xl:’y) - 1) q(Xlz'yfl)p(x'y | Xl:'yfl)

(A.56)
From Lemma 9, we know that foreach ! € {1,..., L}:
Fa—F=Xme y1m) = 1) (X 1mr) p(Xz 4107 | X1y (A.57)
Therefore, we can rewrite the generation probability as:
P(Xlw is generated) = min(l7 r*(Xlw)) (X 1)
+> (Fi - R) (A.58)

+ maX(O, T*(-Xlz'\/) - 1) q(Xlz’y—l)p(x'y ‘ Xl:’y—l)

20

Under review as a conference paper at ICLR 2026

Since r*(X1.y) = min{r(X1.m:), 1}7(Xons 11.4) and 7(X 1.2) > 1, we have r*(X1.,) =
T(Xoms 1)

Case 1: If (X s 41:4) < 1, then:

)
mm(l (X 1.4)) q(X1.y) —|—max(0 " (X1.4) —1) ¢(X1y—1)p(zy | X1:9-1)
= (Xm*-i-lv) (le)
=1(Xm; +14) ¢(X1:4) (A.59)
= (X 1m;) P(Xy 410y | X1imy)
—F

Case 2: If r(X m3 +1) > 1, then there would be another unique capping index beyond mj,
contradicting the definition of mj as the last unique capping index. Therefore, we must have
7"(sz+1:7) < 1, and thus:

min(l, r*(Xlw)) q(X14) + max(O7 (X 1y) — 1) ¢(X1y—1)p(zy | X1:9—1) = Fr (A.60)

Therefore, we have:

L
P(X ., is generated) = Fj, + 2:(Fl_1 —F)
=1

=Fp+(Fo—F)+ (P —B)++ (F —F) (A6D
=F, +Fy— Fp
:FO

Now we evaluate Fjy. From Definition 10, we have:

Fy = q(Xlzmo) (Xm*Jrl'y | X1 mo) (A.62)
By our convention, m = 0, so:
Fo=q¢(X1:0)p(X1 | X1:0) =1-p(X1.9) =p(X1.9) (A.63)
Therefore:
P(X ., is generated) = p(X1.) (A.64)
This completes the proof of lossless recovery. O

C.3 A EXTENDED EXPLAINATION OF CAPPED RATIO

Letr(z1),r(z2 | 21),...,7(x¢ | X1.4-1) € Rsg be a sequence of ratios.

Define the cumulative product up to index ¢ as:

¢
r(X)) = [[r@i | X1ao1), (A.65)
i=1

where X 1.9 is equal to the prefix.

Let j* be the last index (up to k) such that:

j*_max{jgk

J
r(z; | X1j-1) > land [[r(zi| X1i1) > 1} (A.66)
i=1
Then the capped cumulative product Ry, is given by:

k

*(X1t) Hr i | X1:a) | - H r(z; | Xii-1) (A.67)
i=j*+1

21

Under review as a conference paper at ICLR 2026

This ensures that the cumulative product is capped at the last index j* such that the individual ratio
7(xj-|x,,,._,) > 1 and the cumulative product up to that point also exceeds 1.

When 7 is 3, lets show simplest example to show the recovery of target probability.

P (X.3is accepted) = ¢(X1.3) (A.68)

y=3
P (X .3 is resampled) = Z P(zy,zy_1,...,2y—; are resampled | X ,_;41)
i=0

max((r(zs) —1)q(X1:3),0)
D]granch (q’p ‘ X1?3) (A69)

. max((r(z2) — 1)g(X1:2),0)
+ D ranc q,p X : : * - plx X .
Branch (¢, P | X 1:2) Di(@p| Xia) (23] X1:2)

max((r(z1) — 1)g(z1),0)
Dgranch (q7p | ‘Tl)

= Dgranch (qap | X1:3) :

+ Dl*Branch (q7p | xl) : 'p($3|X1:2)p($2‘$1)

Let’s take -y = 3 as an example, only if 7(X1.3) > 1, the resampled portion of probability mass is
needed. Suppose r(X1.2) > 1 with r(z1) > 1 and r(z2) < 1:

= p(z3| X 1.2)p(z2|71)q(71) — ¢(X1:3) +0
+ p(x1)p(xa|21)p(23| X 1:2) — q(21)p(22|71)p(23] X 1:2) (A.70)
= p(Xl:?)) - Q(Xlz?»)

D EXPECTED TOKEN LENGTH DERIVATION

Let 7 € {0,1,...,~} denote the number of accepted tokens in a decoding attempt. Since 7 is a
non-negative, integer-valued random variable, the tail-sum identity applies with lattice spacing a = 1.

Lemma 10 (Tail Expectation). Let X be a non—negative random variable with values in {na : n =
0,1,2,...} for some a > 0. Then:

EX]=a) Pr(X >k). (A71)
k=1

Proof. Start with the right-hand side:

aiPr(X > ka) = aiZPr(X = {a)
k=1

k=1 >k
[eS) 14

=a) Pr(X =ta)) 1 (A72)
=1 k=1

TOKEN WISE SPECULATIVE DECODING

Referring to Block-wise Verification Sun et al. (2024), the authors prove that it achieves a longer
expected token length than the token-wise verification Leviathan et al. (2023) (see Appendix B.2 in
Sun et al. (2024)).

22

Under review as a conference paper at ICLR 2026

HIERARCHICAL SPECULATIVE DECODING

Letni,...,n, ~U(0,1) be the random draws used in verification. The accepted length is defined
as:
T:=max{i <~ :n <h}, (A.73)
where h; is the acceptance probability at step <. By the tail-sum identity:
ol
E[r] = Z Pr(r > i). (A.74)
i=1

If we define the event S; := {n; < h;}, and assume independence of the draws, then:
Y
Pr(r > i) =1-[](1 - hx). (A.75)
k=i
Substituting into Equation (A.74), we obtain:
y ¥
=> [(1-— hk)] : (A.76)
=1 k=1
BLOCKWISE VERIFICATION

In Algorithm 2 (blockwise decoding), the decoding continues even if some 7; > hP°°k;

happens only at the end. Therefore, the token count 7 still satisfies the same form

the resampling

Let h?loek be the acceptance probability at step ¢ computed via blockwise rules, and define events:

S;:= {n; <%} so Pr(S;) =1 — hblock, (A.77)
‘We then have:
"
Pr(r >i)=1-[](1 - m°*), (A.78)
k=i

and hence the expected number of accepted tokens under blockwise decoding is:

Y Y
Tlhlock = Y [[T — hfecx 1 (A.79)

i=1 k=1

TOKEN LENGTH COMPARISON

We re-express the acceptance probability to compare token length between block-wise speculative
decoding and our method (Equation (19)). This yields a more precise comparison via the directional
divergence expressions Equation (17) and Equation (18).

Capped Branch Divergence Difference The difference of capped branch divergence is calculated
as:

Dgranch (p7q | Xl't) - Dgranch (Qap ‘ Xllt)
= Z (Xiug1) — 1) g(Xq)

Tt41

= Z (mm{r(Xo :m(t+1)) 1}7”(m(t+1)+1:t+1) - 1)C](XO:m(t+1))Q(Xm(t+1)+1:t+1)
Tt41

= Z (r(Xm(X i) +1:441) — 1) a(X1:41) (A.80)
Tt41

23

Under review as a conference paper at ICLR 2026

Branch Acceptance Probability Combine equations (A.80), the acceptance ratio of hierarchical
speculative decoding is:

h?ranch _ DEranch (pa q ‘ Xl:t)
Dl);ranch (Qap ‘ Xl:t)

_ DEranch(p?q|X11t) (AS])
DEranch (p’ q ‘ Xlit) + Z(l - T(Xm(X1;t+1)+1it+1))q(Xllt‘i‘l) '
Z[T(Xm(xlzt+1)+1it+1) - 1]+

B Z[T(Xm(x1;t+1)+1:t+1) - 1]+ + Z(l - T(Xm(X1;t+1)+1:t+1))

where [a] 4 is equal to max{a, 0}

Blockwise Acceptance Ratio Algorithm 2 (blockwise decoding), blockwise keeps an internal
clamp p; = min{ps—1 r(2+|X1.t—1), 1}, which could be simplified based on Suffix-minimum
characterization of p;

Lemma 11 (Suffix—-minimum characterization of p;). Let {r;}32; C [0, 00) and define the sequence
{pt}e>0 recursively by

po = 1, pr = min{p_q1my, 1}, t>1. (A.82)
Then for everyt > 0
t
pe = min 1:11—1 T4y (with the empty product for s = t equal to 1). (A.83)
Equivalently,
Py = min{ 1, re, o1ty e, r1r2-~-rt}. (A.84)

Proof. We prove (A.83) by induction on ¢.

Base case (¢t = 0). For ¢t = 0 the right-hand side becomes

Ogl;go(empty product) = 1 = py, (A.85)
so the claim holds.

Inductive step. Assume (A.83) holds for some t — 1 > 0. Using the recurrence,

P = min{ 1, pr_1 rt}. (A.86)
By the induction hypothesis,
t—1
Pr-1 = i H i (A.87)
i=s+1
Substituting,
t—1
— mind 1 ' ' } A.
o mm{ , [OSTSI?—l,q_lr]” (A.88)
1=S8

Multiplying every candidate product in the inner minimum by r, and then taking the outer minimum
yields exactly all suffix products

t
IT = (A.89)
1=s+1
for s = 0,...,t — 1, together with the empty product 1 for s = t. Hence (A.83) holds for ¢,
completing the induction. And obviously, p; < r(X start:t), Where start € (1,¢ — 1) O

24

Under review as a conference paper at ICLR 2026

Z(ptr($t+1|X1:t) - 1)+ Q($t+1 ‘ Xl:t)

block_ Tyt
D er(@e| X 1) = Dy q(@epr | Xue) + 1—py
. (A.90)
> in{r(@een) (X o) r (X emvern)s - r (X)} = Dia(@er | X e
_ Tt41
Z (mind 7 (21 (X peern) P(Xirag 1) - (X) b= Dig(@er | X 1) +1-py
T41
Since min{ r(z441), (X pat1), 7(Xi—1a41)s -5 7(X1i41)} S 7(Xn(Xniopn)+1:441)
> (X n(Xpe)+t41) = D ql@esn | Xe)
hl;lock < Tt+1
> (X m(Xupso+t41) = Dy q(@en | X1a) + 1=
o (A91)
Z(T(Xm(xl:t+l)+1:t+l) - 1)+
< Tt41
Z(T(Xm(xlzm)ﬂztﬂ) —Dy + 1=pt
Tt+4+1
From equation A.81:
Z (1= 7(X p(x 1) +1:641)) = A X) +1:t) — P(X me1)+1:¢)
Tt41
= (1 = (X 4 +1::) U X mg1)+1:¢) (A.92)
< (1= po)a(X m(t41)+1:¢)
<(1-p)
Since
hbranch _ Zzﬂ_l [T(Xm(X1:t+1)+1lt+1) - 1]+
! Za:t+1 [T(Xm(Xl:t+1)+1it+1) - 1]+ + th+1 (1 - T(Xm(Xl;t+1)+1it+1))
> Zthrl [T(Xm(X1;t+1)+1it+1) - 1}4‘ (A.93)
- warl [T(Xm(xl:t+1)+1:t+1) - 1]+ +1- Y4
> hltalock

25

Under review as a conference paper at ICLR 2026

Question: Argo has 200 toys. He gives 40 toys to Alyssa, 80 to Bonnie, and 30 to Nicky. How many toys does Argo have now?

To-determine how-many-toys ArgoArg
b i e e o s o
Argo-stasts with—2-00 started
YT T YT

Argo started with 200 toys.

rrrrTT
Argo started with 200 toys. He gave away—4
T Y

Argo started with 200 toys. He gave away 40 (0ys (0 Alyssa,

bt e e e e e e e S N 1
Argo started with 200 toys. He gave away 4 0toys to Alyssa, 80 toys-to-Bonnie and t0

Sn b A i i i ok £ & o el i e e S e s e i
Argo started with 200 toys. He gave away 4 0toys to Alyssa, 801to Bonnie, and 3010 Nick
i a0 % o i e ek B & o el i e e £ 6.6 s e
Argo started with 200 toys. He gave away 4 0toys to Alyssa, 80to Bonnie, and 30 to Nicky. Se- the tota-number I
B e e e e e i i e e e e

Argo started with 200 toys. He gave away 40toys to Alyssa, 80to Bonnie,and 3 0to Nicky. In total, he gave away 40
it S A% 0 s e ade b SR bt s AR S 0 S et ab S B st et e R A

Argo started with 200 toys. He gave away 4 01toys to Alyssa, 80 to Bonnie, and SDmN\cky In total, hegavsaway 40+ 80+ 30

. YT T T YT T T T T A T T T TYTTYTITY

Argo started with 200 toys. He gave away 4 010ys to Alyssa 5010 Bomnie,and 016 Nieky. I ot he gave anay 40+ 80+ 30- 150 10ys. Sub

- YT T T YT T T T T T T T T T YT YT YT v

Argo statted with 2.0 0toys. He gave away 4 0toys (0 Alyssa, 8010 Bonnie,and 3010 Nicky. I otal e gave away 40+ 80+ 30~ 1501oys. Subiracting the mumber offoys he given
B e NS S48 e o s e e S S b s oS f 0t SR S S s et an i s R A AA R SRS R S S S 600 S 0 s S aie my nie d v

Argo started with 200 toys. He gave away 4 0toys to Alyssa, 80to Bonnie,and 30to Nicky. In total, he gave away 40+ 80+ 30= 150toys. Subtracting the given toys from his original-count Ar amount
B e e e e e L SLIGAS S e o an e s i s S AR R SRS SR R A0S0 2o B wi s i ol e e el el s ot s
Argo started with 200 toys. He gave away 40toys to Alyssa, 80to Bonnie,and 3010 Nicky. In total, he gave away 40+ 80+ 30= 150toys. Subtracting the given amount, we get—20-0A1

Lt e e e e B e e e e S RSt e s s e e e RS R SRS S SRR S 0% B o d an s e el el e e S S R SR
Argo started with 200 toys. He gave away 4 01toys to Alyssa, 801to Bonnie,and 3010 Nicky. In total, he gave away 40+ 80+ 30= 150 toys. Subtracting the given amount, Argo has 20
ot 088 on s e s i b A 4 S st e e A b e pe Ae st A 0 Sk e a i pn s e R SO R A SRR RS R S0 % A e b s e s s ne e AR RS A
Argo started with 200 toys. He gave away 4 0toys (0 Alyssa, 801to Bonnie,and 3010 Nicky. In total, he gave away 40+ 80+ 30= 150 toys. Subtracting the given amount, Argo has 200- 150= 50 toys
Ittt S0 0 tn s e ade nb Ao S nb e s a0 S 0 s et ab S St s s s e nde n A0S RS S S SAR RS0 S an de nies mn nte s nf s S e R S SRR SRS SR RS i
Argo started with 200 toys. He gave away 4 0toys to Alyssa, 80to Bonnie,and 3010 Nicky. In total, he gave away 40+ 80+ 30= 150toys. Subtracting the given amount, Argohas 200~ 150= 50 toys left. The answeris 50
- S 00t s o i e e e e AR S e S SR i e e n R AR SR SRS S SRR R A0S o ot nie s nte sl anfies m e e R R e e e A

Figure A.1: Example of HSD when v = 7. Each iteration shows the draft model (Qwen-2.5 0.5B),
making suggestions that are either accepted (green tokens) or rejected. When rejected, the target
model (Qwen-2.5 72B) provides corrections (shown as red and blue tokens).

Table A.1: Comparison of different algorithm performance on GSM8K with Qwen-2.5. We list the
average and standard deviation across 5 runs with different seeds.

Method Tokenwise Blockwise Ours
Block Efficiency | 6.40£0.10 | 6.51£0.09 | 6.64+0.04
Decoding Speed | 31.52+0.06 | 31.70+0.05 | 32.61+0.02

E EXTENDED EXPERIMENTS

Illustration Figure of HSD. In Figure A.1, we showcase an example from GSMS8K of our methods
when we set v = 7. Where the draft model is Qwen-2.5 0.5B and the target model is Qwen-2.5 72B.
Result Robustness To prove the robustness of our experiments and guarantee fair comparison, we
conduct additional experiments with different methods as shown in Table A.1. We observe that our
method demonstrates stable performance and exceeds both tokenwise and blockwise methods on
average.

F PYTHON IMPLEMENTATION

We provide the Python implementation of our Hierarchical Speculative Decoding (HSD) algorithm in
Listing 2, which builds upon the token-wise speculative decoding approach from Hugging Face Wolf
et al. (2020) Transformers v4.46.3, shown in Listing 1 for comparison. Following Hugging Face,
our implementation eliminates the use of an explicit for-loop by leveraging an equivalent masking
mechanism: we perform parallel sampling across all positions to determine whether to accept or
reject subsequences of varying lengths, and then select the longest accepted prefix as the final output.

26

(o Y R S

44
45
46
47

49

Under review as a conference paper at ICLR 2026

Listing 1 Tokenwise Speculative Decoding (SD) SD. py

import torch

def SD(candidate_input_ids, candidate_logits, new_logits):

nun

Convert logits to probabilities
= candidate_logits.softmax (dim=-1)
= new_logits.softmax (dim=-1)

T \Q

candidate_length = candidate_logits.shape[1l]
new_candidate_input_ids = candidate_input_ids[:, -candidate_length:]

Extract token-wise probabilities for the candidate tokens
g_i = g[:, torch.arange(candidate_length), new_candidate_input_ids].squeeze (1
p_1 = pl:, torch.arange(candidate_length), new_candidate_input_ids].squeeze (1

probability_ratio = p_i / q_i
is_accepted = torch.rand_like (probability_ratio) <= probability_ratio

assuming batch size = 1
n_matches = ((~is_accepted).cumsum(dim=-1) < 1).sum() # this is 'n' in algorithm 1

Next token selection: if there is a rejection, adopt the resampling distribution.
if n_matches < candidate_length:

p_n_plus_1 = p[:, n_matches, :]

g n_plus_1 = g[:, n_matches, :]

p_prime = torch.clamp ((p_n_plus_1 - g n_plus_1), min=0)

p_prime.div_ (p_prime.sum())
else:

p_prime = p[:, n_matches, :]

Ensure we don’t generate beyond max_len or an EOS token.
if is_done_candidate[0] and n_matches == candidate_length:
Output length is assumed to be ‘n_matches + 1‘. Since we won’t generate another
< token with the target model
due to acceptance on EOS we fix ‘n_matches®
n_matches -= 1
valid_tokens = candidate_input_ids[:, -candidate_length:]
else:

Next token selection: if there is a rejection, adjust the distribution from the main
— model before sampling.
The selected tokens include the matches (if any) plus the next sampled tokens
if n_matches > 0:
if n_matches < candidate_length:
valid_tokens = candidate_input_ids[:, -candidate_length:n_matches -
< candidate_length]
if not stop(valid_tokens, scores=None):
t = torch.multinomial (p_prime, num_samples=1)
valid_tokens = torch.cat(
(valid_tokens, t), dim=-1)
else:
n_matches = n_matches-1
else:
valid_tokens = candidate_input_ids[:, -candidate_length:]
if not stop(valid_tokens, scores=None) :
t = torch.multinomial (p_prime, num_samples=1)
valid_tokens = torch.cat (
(valid_tokens, t), dim=-1)
else:
n_matches = n_matches -1
else:
t = torch.multinomial (p_prime, num_samples=1)
valid_tokens = t

return valid_tokens, n_matches

27

(o Y R S

Under review as a conference paper at ICLR 2026

Listing 2 Hierarchical Speculative Decoding (HSD) HSD . py

import torch

def HSD (candidate_input_ids, candidate_logits, new_logits):

nun

Convert logits to probabilities

= candidate_logits.softmax (dim=-1)

= new_logits.softmax (dim=-1)

candidate_length = candidate_logits.shape[1]

new_candidate_input_ids = candidate_input_ids[:, -candidate_length:]

#
Et
P

Extract token-wise probabilities for the candidate tokens

g i = gl:, torch.arange (candidate_length), new_candidate_input_ids].squeeze (1
p_1i = pl:, torch.arange(candidate_length), new_candidate_input_ids].squeeze (1
Compute cumulative joint probabilities for draft and target model

q_prev = torch.roll(g i, shifts=1, dims=1)

g _prev[:, 0] = 1.0

g_cumprod = torch.exp(torch.log(g_prev) .cumsum(dim=1)) .unsqueeze (-1)
g_next = g_cumprod * g[:, :candidate_length]

p_prev = torch.roll(p_i, shifts=1, dims=1)

p_prev(:, 0] = 1.0

p_cumprod = torch.exp (torch.log(p_prev).cumsum(dim=1)) .unsqueeze (-1)

Constrain p_cumprod with g_cumprod for computing the capped resampling distribution
ratio = p_cumprod / g_cumprod

previous_max = 1

new_p_previous = torch.ones_like (p_cumprod) .to (p_cumprod.device)

for k in range(candidate_length) :

if ratio[:, k] > previous_max:
previous_max = ratio[:, k]
new_p_previous[:, k] = p_cumprod([:, k] / previous_max

p_next = new_p_previous * p[:, :candidate_length]

Construct resampling distribution p’

diffs = p_next - g_next

p_plus = torch.clamp(diffs, min=0.0)

p_minus = torch.clamp(-diffs, min=0.0)

p_primes = p_plus / torch.maximum(p_plus.sum(dim=-1, keepdim=True), p_minus.sum(dim=-1,
— keepdim=True))

Step-back probability: reject prefix with 1 - mass of p’
step_back_probs = 1 - p_primes.sum(dim=-1)
step_back = torch.rand_like (step_back_probs) < step_back_probs

Find first position to stop (from the end)
if step_back.all():
stop_positions = 0
else:
stop_positions = candidate_length - n_matches - 1 - torch.flip(~step_back, [-1]).max

— (-1, keepdim=True) [1]

Mask to decide which tokens are accepted

select = torch.zeros_like (step_back) .to(step_back.device)
apply cumprod on the ratio instead of the raw probabilities to avoid underflow
probability_ratio = (p_i / g_1i).cumprod(l) .unsqueeze (-1)

is_accepted = torch.rand_like (probability_ratio) <= probability_ratio

only decide to accept or not at the last position based on the joint probability ratio
assign 0 to all positions when the full draft is rejected, otherwise assign 1 to the
< rest of the positions

select [torch.arange (p_primes.shape[0]), stop_positions] = ~is_accepted[:, -1:]
is_accepted = 1 - torch.cumsum(select, dim=-1)

assume batch_size=1 for the current implementation
n_matches = is_accepted.sum() .item()

28

20

21
22

Under review as a conference paper at ICLR 2026

Listing 2 Hierarchical Speculative Decoding HSD . py (cont.)

if is_done_candidate[:] and n_matches == candidate_length:

Output length is assumed to be ‘n_matches + 1'. Since we won’t generate another
<~ token with the target model

due to acceptance on EOS we fix ‘n_matches®

n_matches -= 1
valid_tokens = new_candidate_input_ids[:, : n_matches + 1
valid_tokens = candidate_input_ids[:, -candidate_length:]

else:
Next token selection: if there is a rejection, adjust the distribution from the main
— model before sampling.
gamma = candidate_length
p_n_plus_1 = p[:, candidate_length, :]
if n_matches < gamma:
p_prime = p_primes[:, n_matches]
p_prime = p_prime/p_prime.sum(-1, keepdim=True)
else:
p_prime = p_n_plus_1

Th include the matches (if any) plus the next sampled tokens
because if n_matches=0, we add one resampled token for sure, if n_matches=10, we add
<~ one more for sure
as well, because the previous if checked not stop and n_matches-candidate_length
— will be O using problem
if n_matches > 0 and n_matches<candidate_length:
valid_tokens = candidate_input_ids[:, -candidate_length:n_matches-candidate_length

— 1]

if not stop(candidate_input_ids[:, :n_matches-candidate_length], scores=None):
t = torch.multinomial (p_prime, num_samples=1)
valid_tokens = torch.cat(

(valid_tokens, t), dim=-1)

else:

n_matches = n_matches-1
else:

t = torch.multinomial (p_prime, num_samples=1)

if n_matches==0:
valid_tokens = t

else:
valid_tokens = candidate_input_ids[:, -candidate_length:]

valid_tokens = torch.cat (
(valid_tokens, t), dim=-1)

return valid_tokens, n_matches

29

Under review as a conference paper at ICLR 2026

G INTEGRATION WITH RECURSIVE REJECT SAMPLING IN THE MULTI-DRAFT SETUP

We demonstrate in Algorithm 3 that our HSD algorithm is compatible with existing lossless multi-
draft verification methods, exemplified by Recursive Reject Sampling (RRS) with replacement Yang
et al. (2024). Notably, independently sampled parallel draft sequences do not guarantee the existence
of an additional draft sequence that shares the accepted subsequence as its prefix.

Algorithm 3 Hierarchical Speculative Sampling with Recursive Rejection Sampling for Striped Tree

Require: Draft tokens: X7, = {af, .., a8} ;

Target probabilities for all draft tokens: {p(+), ...,p(~|X’f:,y)}kK:1;
Draft probabilities for all draft tokens: {q(-), ..., g(-| X §.,) H< 1

1: Initialize 7 = 0;
2: Initialize {z}}7;
3: forkinl: K do
4 if X1, = X% then
5: forjinT+1:vdo
6: Set z; = x? #select draft X]:H:v for verification
7: end for
8:
9: fortiny:7+1do
10: Compute acceptance probability h; from Equation (19) based on the corresponding
probabilities for the draft tokens: {z,y1,..., 2}
11: Sample n; ~ U(0, 1)
12: if ht > m then
13: SetT =1
14: break
15: else
16: Setr=¢t—1
17: continue
18: end if
19: end for
20: else
21: continue #skip draft X ’f,{ due to prefix mismatch
22: endif
23:
24: if 7 = ~y then
25: Sample token from p(-| X 1.,) #accept the entire selected draft and sample a bonus token
26: break
27: else
28: Compute P (- | X1.-);
29: Set p(-| X 1.-) = P | X1.0); #set P (- | X1.,) as new target distribution
Set r(-| X1.;) = 712335('%15) #set (- | X 1.r) as new probability ratio
30: endif
31:
32: end for

Sample token from P (- | X1.7)
Ensure: [X.,,token]

H USE oF LLMS

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by

30

Under review as a conference paper at ICLR 2026

the authors. The contributions of the LLM were solely focused on improving the linguistic quality of
the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated or
polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines and
does not contribute to plagiarism or scientific misconduct.

31

	Introduction
	Related Work
	Revisiting Tokenwise Speculative Decoding
	Theoretical Foundations of Hierarchical Speculative Decoding
	Recovery of Partial Distributions
	Resampling within the Accessible Branch
	Resampling in a Hierarchy of Accessible Branches

	Hierarchical Speculative Decoding
	Naive Hierachicial Speculative Decoding
	Hierarchical Speculative Decoding with Capped Branch Resampling
	Expected Number of Accepted Tokens

	Experiments
	Experiment Setting
	Experiment Results

	Conclusion
	Appendix
	Theoretical Foundation
	Symmetry of Total Divergence
	Partial Distribution Recovery
	Quantification Analysis of Asymmetry
	Relation to the Divergence in leviathan2023fast
	Hierarchy of Divergence

	Lossless of Naive Hierarchical Speculative Decoding
	Illustrative Example
	General Proof

	Lossless of Hierarchical Speculative Decoding
	Illustrative Example
	General Proof
	A Extended Explaination of Capped Ratio

	Expected Token Length Derivation
	Extended Experiments
	Python Implementation
	Integration with Recursive Reject Sampling in the Multi-Draft Setup
	Use of LLMs

