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ABSTRACT

Verification is a key bottleneck in improving inference speed while maintain-
ing distribution fidelity in Speculative Decoding. Recent work has shown that
sequence-level verification leads to a higher number of accepted tokens compared
to token-wise verification. However, existing solutions often rely on surrogate
approximations or are constrained by partial information, struggling with joint
intractability. In this work, we propose Hierarchical Speculative Decoding (HSD),
a provably lossless verification method that significantly boosts the expected num-
ber of accepted tokens and overcomes joint intractability by balancing excess and
deficient mass across accessible branches. Through extensive large-scale experi-
ments, we show that HSD consistently improves acceptance rates, especially with
longer draft sequences. Its strong explainability and generality further highlight
the potential for integration into a wide range of speculative decoding frameworks.
Code is available at anonymous repository.

1 INTRODUCTION

Inference speed has become paramount for Large Language Models (LLMs) Achiam et al. (2023);
Touvron et al. (2023); Bai et al. (2023), which generate text auto-regressively. Recent advances
in test-time scaling OpenAI (2024); Guo et al. (2025) have further underscored its importance.
While techniques like pruning Frankle and Carbin (2018); Sun et al. (2023a) and quantization Shen
et al. (2020); Xiao et al. (2023) improve efficiency but sacrifice performance, Speculative Decoding
Leviathan et al. (2023) achieves speedups while preserving the target model’s distribution, making it
a particularly appealing alternative. It adopts a smaller model to make proposals and a larger model to
select from them with a grounded verification strategy. Most approaches prioritize the drafting phase,
but further gains face diminishing returns. Driven by the verification bottleneck, recent methods Cai
et al. (2024); Zhou et al. (2024); Narasimhan et al. (2024) trade off fidelity for speed, relying on
task-specific tuning; their performance typically remains constrained to carefully curated scenarios.

Recent work Sun et al. (2024); Qin et al. (2025) shows that jointly verifying draft tokens can improve
the expected number of accepted tokens, but faces challenges due to joint intractability—the lack
of access to full joint probabilities. To address this, (Qin et al., 2025) uses a lossy fixed acceptance
threshold, while (Sun et al., 2024) proposes Blockwise Verification, which provably recovers the
target distribution. However, it leaves a gap from the ideal case and its underlying mechanism and
compatibility with other methods remain unclear.

In this work, we propose Hierarchical Speculative Decoding (HSD), a provably lossless verifica-
tion method built upon a novel hierarchical branch resampling strategy. In speculative decoding,
resampling is used to statistically recover portions of the target distribution that exceed the draft
probability. As illustrated in Figure 1, HSD employs multiple resampling distributions arranged
hierarchically across successive levels. Each distribution only recovers the partial target distribution
within its accessible branch, and a single resampling is performed immediately after the accepted
token position. This approach ensures that the full target distribution is recovered in expectation.

Particularly, HSD pushes the limits of lossless verification by increasing the expected number of
accepted tokens. To highlight HSD’s advantages, we adopt the toy example with context-independent
binary distributions from Sun et al. (2024) for illustration. Let p(·) and q(·) denote the target and
draft distributions, respectively, we define: p(A)= 1

3 , p(B)= 2
3 , q(A)= 2

3 , q(B)= 1
3 .
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Figure 1: (a) Empirical CCDF of accepted tokens in the binary toy example Sun et al. (2024), draft length
γ = 10. (b) Overview of HSD. HSD accepts the draft Xτ by scanning backward from γ to τ , and then performs
a single resampling at position τ + 1 using the corresponding distribution from the resampling hierarchy.

With a draft length of 10, we run both algorithms for 10,000 iterations and plot the empirical
complementary CDF of the acceptance length in Figure 1. HSD achieves a higher expected number
of accepted tokens, especially due to the higher acceptance rate of longer drafts. This advantage is
also theoretically proven in Section 5.3. Blockwise verification focuses on independent verification
with unclear potential for integration, while our method is designed to easily combine with other
approaches, such as multi-draft setups.

In summary, our contributions are as follows:

• We introduce Hierarchical Speculative Decoding (HSD), a lossless and explainable verifica-
tion method that integrates smoothly with existing speculative decoding frameworks while
remaining largely orthogonal to them.

• HSD delivers a practical advance for inference scaling, with an average 6.7% improvement in
decoding speed across diverse benchmarks and model sizes, while preserving distributional
fidelity. Efficiency gains reach up to 12.3% on individual datasets.

• In multidraft settings, HSD further improves decoding speed by an average of 4.7%, with
gains as high as 11.1%, demonstrating strong potential for integration with complementary
acceleration techniques.

2 RELATED WORK

Research on speculative decoding Leviathan et al. (2023) can be organized into two main phases:
the drafting phase and the verification phase.

Drafting Phase. Drafting methods can be grouped into three categories: (1) Single-draft. Early
SD methods Leviathan et al. (2023) inspired PaSS Monea et al. (2023) and Draft&Verify Zhang
et al. (2024), improving efficiency via multi-token generation or selective layer skipping. GLIDE Du
et al. (2024) (shared KV-cache) and Eagle Li et al. (2024) (second-to-top feature prediction) offer
further speedups but often require task-specific tuning. (2) Retrieval-based. LLM-A Yang et al.
(2023) and ReST He et al. (2023) generate drafts from reference texts, potentially reducing latency,
but face database limitations, distribution gaps, and reliance on greedy decoding. (3) Multi-draft.
Tree-attention frameworks—SpecInfer Miao et al. (2024), Medusa Cai et al. (2024), and Eagle Li
et al. (2024)—expand many branches, quickly exhausting memory. To improve throughput, Medusa
and Eagle tweak the original verification, compromising exact recovery of the target distribution.

Verification Phase. Verification methods trade fidelity for speed. Lossless approaches Sun et al.
(2023b); Yang et al. (2024); Hu et al. (2025) guarantee exact recovery but are costly. Block Verifi-
cation Sun et al. (2024) partially alleviates this bottleneck but offers limited improvement and low
interpretability and integrity. Lossy methods—including BiLD Kim et al. (2023), MTAD Qin et al.
(2025), DistillSpec Zhou et al. (2024), Medusa-2 Cai et al. (2024) and SpecCascade Narasimhan et al.
(2024) increase speed but compromise distribution fidelity and require task-specific tuning.
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3 REVISITING TOKENWISE SPECULATIVE DECODING

In tokenwise speculative sampling Leviathan et al. (2023), each token xt is drafted from q(xt) and
verified against p(xt). It is accepted with probability h(xt) = min{1, p(xt)/q(xt)}, or rejected and
replaced from Pres(xt). Thus the probability that xt is finally produced (“yielded”) is:

P (xt yielded) = P (xt drafted and accepted) + P (x̃t drafted and rejected, xt resampled). (1)

Accept term. If xt is proposed by q and accepted,

P (xt drafted and accepted) = q(xt)h(xt) = q(xt) min{1, p(xt)/q(xt)}. (2)

Resampling term. When a draft x̃t is rejected, the verifier resamples from

Pres(xt) =
p(xt)−min{p(xt), q(xt)}∑

x̃t∈V
(
p(x̃t)−min{p(x̃t), q(x̃t)}

) .
The total probability of rejection is

∑
x̃t∈V q(x̃t)(1− h(x̃t)), giving

P (x̃t drafted and rejected, xt resampled) =
[∑
x̃t∈V

q(x̃t)(1− h(x̃t))
]
Pres(xt). (3)

Final distribution. The sum
∑

x̃t∈V q(x̃t) (1−h(x̃t)) corresponds to the total excess mass assigned
by the draft distribution to tokens where it allocates more probability than the target, while the
denominator of Pres(xt) measures the total deficient mass, i.e., the probability assigned by the
target to tokens where it allocates more than the draft. For tokenwise distributions these match
(DLK(q, p) = DLK(p, q)), so they cancel, yielding

P (xt is yielded) = q(xt)h(xt) +DLK(q, p)
p(xt)− q(xt)h(xt)

DLK(p, q)
= p(xt).

4 THEORETICAL FOUNDATIONS OF HIERARCHICAL SPECULATIVE DECODING

For any lossless speculative decoding, the probability of generating an output decomposes into two
parts: (1) the probability a draft is accepted, becoming the final output, and (2) the probability a draft
is rejected, triggering a corrective resampling step. In token-wise speculative decoding, resampling
is straightforward because each token’s probability is directly accessible. In contrast, full joint
probabilities over sequences are intractable for auto-regressive models. Hierarchical Speculative
Decoding (HSD) overcomes this via hierarchical branch resampling, where multiple resampling
distributions at different levels recover partial target distributions, which together statistically recover
the full distribution. This section formalizes the theoretical foundations.

4.1 RECOVERY OF PARTIAL DISTRIBUTIONS

To guide recovery within accessible subsets, we extend the divergence from Leviathan et al. (2023) to
partial distributions. Let ω be a token or sequence, Ω the full sample space, and p(·), q(·) the target
and draft distributions. For Ω′ ⊆ Ω, define the generalized divergence:
Definition 1. Generalized Divergence. Given two distributions p and q over a sample space Ω, and
a subset Ω′ ⊆ Ω, the generalized divergence over Ω′ is defined as:

DΩ′(p, q) =
∑
ω̃∈Ω′

max{p(ω̃)− q(ω̃), 0}. (4)

The generalized divergence DΩ′(p, q) measures the total deficient mass, i.e., how much probability
mass is missing in the draft q relative to the target p within the subset Ω′. The reverse divergence
DΩ′(q, p) measures the corresponding excess mass. In the whole space Ω, this is symmetric (see
Lemma 2 in Section A.1 ) and reduces to the divergence from Leviathan et al. (2023) (see Lemma 3
in Section A.4), which underpins standard token-wise speculative decoding.

Next, we formalize the condition under which the partial target distribution is fully recoverable:

3
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Theorem 1. Partial Distribution Recovery. A target distribution over Ω′ ⊆ Ω can be fully recovered
via resampling iff DΩ′(p, q) ≤ DΩ′(q, p). (See proof in Section A.2.)

Intuitively, this ensures the "trigger mass" in the draft is sufficient to compensate for the deficit in the
target distribution. Over the full space Ω, symmetry guarantees full recoverability.

4.2 RESAMPLING WITHIN THE ACCESSIBLE BRANCH

With these definitions, we analyze resampling within accessible branches along a draft sequence.
Although computing full joint probabilities is intractable, the probabilities of all next tokens over the
vocabulary V are accessible given any prefix X1:t−1. We define a branch as:

Branch(X1:t−1) = {X1:t = (X1:t−1, x̃t) | x̃t ∈ V}. (5)

Branch divergence will guide redistribution of excess probability mass to correct local deficits.

Since only joint probabilities p(X1:t) within a given branch Branch(X1:t−1) are available, we
introduce branch divergence to quantify local deficits in the draft:

Definition 2. Branch Divergence
DBranch(p, q | X1:t−1) =

∑
X1:t∈Branch(X1:t−1)

max{p (X1:t)− q (X1:t) , 0} (6)

Branch divergence captures how much probability mass is missing locally. Unlike total divergence, it
is inherently asymmetric, motivating the definition of branch asymmetry:

Definition 3. Asymmetry of Branch Divergence
∆Branch(X1:t−1) = DBranch(p, q | X1:t−1)−DBranch(q, p | X1:t−1) (7)

Asymmetry essentially reflects the probabilistic imbalance within the current branch. Here, ∆Branch >
0 indicates a deficit that cannot be corrected within the branch alone, while ∆Branch < 0 represents
excess mass available to support other branches. It can be computed as follows:

Theorem 2. Quantifying Asymmetry of Branch Divergence (see proof in Section A.3):
∆Branch(X1:t−1) = p (X1:t−1)− q (X1:t−1) , (8)

From Theorem 1 and Theorem 2, we conclude that resampling can fully recover the target distribution
over a branch whenever the draft has enough probability mass to cover the deficit:

Corollary 3. The target distribution over the Branch(X1:t−1) can be recovered via resampling,
under the following condition:

p(X1:t−1) ≤ q(X1:t−1) or, equivalently, r(X1:t−1) ≤ 1 (9)

where r (X1:t−1) =
p(X1:t−1)
q(X1:t−1)

denotes the probability ratio.

For drafts of length γ, the full target distribution cannot be recovered by applying verification solely
within the accessible Branch(X1:γ−1). However, we observe that the unused probability mass in
certain branches can be leveraged to compensate for the unrecoverable mass in other branches, from
a statistical perspective. This motivates the hierarchical branch resampling approach discussed next.

4.3 RESAMPLING IN A HIERARCHY OF ACCESSIBLE BRANCHES

Accessible branch divergences naturally form a hierarchical structure that enables systematic redistri-
bution of excess probability mass. Specifically:

Theorem 4. Hierarchy of Branch Divergence

The total positive asymmetry of branch divergence across child branches is equal to the parent branch
divergence, and vice versa. Specifically:

∑
∆Branch(X1:t−2,x̃t−1)>0

∆Branch(X1:t−2, x̃t−1) = DBranch(p, q | X1:t−2), and vice versa, (10)

4
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where X1:t−2, x̃t−1 ranges over all possible Branches with the shared prefix X1:t−2, and X1:t−2 is
the accessible branch along the draft sequence. (See Section A.5 for the proof.)

This result guarantees that excess mass from overrepresented branches can be aggregated to offset
deficits in underrepresented branches. Thus, hierarchical branch resampling guarantees exact recovery
of the target distribution, even when individual branches cannot. This provides a rigorous theoretical
foundation for deriving Hierarchical Speculative Decoding.

Algorithm 1 Naive HSD
Require: Target probabilities: {p(·), ..., p(·|X1:γ)}
Require: Draft probabilities: {q(·), ..., q(·|X1:γ−1)}
Require: Draft tokens X1:γ = {x1, ..., xγ}
1: Initialize τ = 0
2: for t in γ : 1 do
3: Sample ηt ∼ U(0, 1)
4: if ht ≥ ηt then
5: Set τ = t #accept X1:t

6: break
7: else
8: Set τ = t− 1 #reject xt

9: continue #step back
10: end if
11: end for
12: if τ = γ then
13: Sample token from p(·|X1:γ) #bonus token
14: else
15: for t in τ : γ − 1 do
16: Sample token from Pres(· | X1:t) #resample
17: end for
18: end if
Ensure: [X1:τ , x̃τ+1, . . . , x̃γ ]

Algorithm 2 HSD
Require: Target probabilities: {p(·), ..., p(·|X1:γ)}
Require: Draft probabilities: {q(·), ..., q(·|X1:γ−1)}
Require: Draft tokens X1:γ = {x1, ..., xγ}
1: Initialize τ = 0
2: for t in γ : 1 do
3: Sample ηt ∼ U(0, 1)
4: if ht ≥ ηt then
5: Set τ = t #accept X1:t

6: break
7: else
8: Set τ = t− 1 #reject xt

9: continue #step back
10: end if
11: end for
12: if τ = γ then
13: Sample token from p(·|X1:γ) #bonus token
14: else
15: Sample token from P ∗

res(· | X1:τ ) #resample
16: end if
Ensure: [X1:τ , token]

5 HIERARCHICAL SPECULATIVE DECODING

Guided by the theoretical foundations, we first develop a naive algorithm (see 5.1) that exactly
recovers the target distribution. The procedure evaluates a candidate sequence X1:γ and scans
backward to identify the longest accepted prefix X1:τ , then recursively resamples positions τ + 1
through γ using the corresponding distributions from the resampling hierarchy.

This naive approach, however, still requires γ − τ + 1 additional calls to the target model, since
the resampled branches are inaccessible. To remove this overhead, we introduce Capped Branch
Resampling, yielding our final Hierarchical Speculative Decoding (HSD). HSD recovers the target
distribution with just one resampling step within the accessible branches. Concretely, after the
resampling step at line 15 in Algorithm 2, HSD only needs to sample from the target distribution to
continue generation until γ, which can be replaced by another speculative decoding step, eliminating
additional target calls.

5.1 NAIVE HIERACHICIAL SPECULATIVE DECODING

Specifically, the acceptance probability is computed according to the following formula:

Acceptance Probability hγ = min{r(X1:γ), 1}, and when t < γ:

ht =
DBranch(p, q | X1:t)

max{DBranch(p, q | X1:t), DBranch(q, p | X1:t)}
, (11)

Branch Resampling Probability (line 17 in Algorithm 1):

Pres (xt | X1:t−1) =
max {p (X1:t)− q (X1:t) , 0}

DBranch(p, q | X1:t−1)
(12)

5
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Branch Divergence DBranch(p, q | X1:t−1) is defined in Definition 2. By construction, the
Branch Resampling Probability is defined within the accessible Branch(X1:t−1), i.e., Pres(X1:t |
Branch(X1:t−1)), which reduces to the token-level form Pres(xt | X1:t−1).

The probability of the Target Model generating a sequence X1:γ can be decomposed into two disjoint
events: (i) full acceptance of the draft, or (ii) at least one rejection followed by resampling:

P
(
X1:γ is yielded

)
= P

(
X1:γ is sampled as draft, X1:γ is accepted

)
+

∑
X̃1:γ ̸=X1:γ

P (X̃1:γ sampled and rejected, X1:γ resampled). (13)

Accept term: probability for the case when X1:γ is sampled as draft and then directly accepted.
P
(
X1:γ is sampled as draft, X1:γ is accepted

)
= q(X1:γ)︸ ︷︷ ︸

sample probability

min{r(X1:γ), 1}︸ ︷︷ ︸
accept probability at γ

(14)

If r(X1:γ) ≤ 1, this equals to the target probability p(X1:γ). Otherwise, it is equal to q(X1:γ), and
the residual probability p(X1:γ)− q(X1:γ) is compensated via resampling.

Resampling term (partially resampled): This term accounts for all cases where X1:γ is obtained by
resampling. Note that the accepted prefix must exactly match the corresponding subsequence of X1:γ

for this contribution to apply. Therefore, we can further decompose it by summing over all possible
positions τ + 1 of the first rejected token, with τ being the length of the longest accepted prefix:

γ∑
τ=0

∑
X̃τ+1:γ

P (X̃1:γ sampled and rejected, X1:γ resampled) =

γ∑
τ=0

∑
X̃τ+1:γ

q(X1:τX̃τ+1:γ) ·
γ∏

t=τ+1

(1− ht) · hτX1:τ ·
γ∏

t=τ+1

Pres(xt)

(15)

Explanation of terms:

1. Sampling: q(X1:τX̃τ+1:γ) is the probability of generating the initial draft sequence.

2. Backward Scan:
∏γ

t=τ+1(1−ht) corresponds to scanning backward from the end, rejecting
tokens until the first accepted prefix is found.

3. Acceptance: hτ is the probability of accepting the longest prefix X1:τ .

4. Resampling:
∏γ

t=τ+1 Pres(xt) resamples the remaining positions to recover exactly the
target probability.

This decomposition defines the procedure underlying Algorithm 1 and provides the basis for its
provable losslessness. The complete proof is given in Section B.2, together with an illustrative
example Section B.1 showing how naive HSD recovers the target distribution.

5.2 HIERARCHICAL SPECULATIVE DECODING WITH CAPPED BRANCH RESAMPLING

To introduce the capped branch sampling, we first define the Maximum Prefix Ratio Index.

Definition 4. Maximum Prefix Ratio Index For candidate tokens X1:t, the Maximum Prefix Ratio
Index m(X1:t) is the position in the prefix X1:t−1 where the joint probability ratio r(X1:i) is
maximized; if no prefix exceeds 1, we set m(X1:t) = 0:

m(X1:t) = arg max
1≤i<t

r(X1:i) or 0 if max
1≤i<t

r(X1:i) ≤ 1.

Based on the Maximum Prefix Ratio Index, we define the Capped Prefix Ratio r∗ as follows:

Definition 5. Capped Prefix Ratio

r∗(X1:t) = min{r(X1:m(X1:t)), 1}r(Xm(X1:t)+1:t). (16)

By Definition 5, we have r(X1:m(X1:t)) > 1, and according to Equation 3, this implies the identity
r∗(X1:t) = r

(
Xm(X1:t)+1:t

)
.

6
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Then we define the Capped Branch Divergence:

Definition 6. Capped Branch Divergence

D∗
Branch (p, q | X1:t−1) =

∑
X1:t∈Branch(X1:t−1);

r∗(X1:t)>1

(r∗ (X1:t)− 1) q (X1:t) (17)

D∗
Branch (q, p | X1:t−1) =

∑
X1:t∈Branch(X1:t−1);

r∗(X1:t)≤1

(1− r∗ (X1:t)) q (X1:t) (18)

Finally, the acceptance probability is computed according to the following formula:

Acceptance Probability hγ = min{r∗(X1:γ), 1}, and when t < γ:

ht =
D∗

Branch(p, q | X1:t)

D∗
Branch(q, p | X1:t)

, (19)

Capped Branch Resampling Probability (line 15 in Algorithm 2):

P ∗
res (xt | X1:t−1) =

max {q (X1:t) (r
∗ (X1:t)− 1) , 0}

D∗
Branch (p, q | X1:t−1)

(20)

We refer to the above strategy as Capped Branch Resampling. It plays a central role in enabling effi-
cient resampling within the hierarchical branch resampling framework. The resampling distribution
in Equation (20) enables recovery of the full target distribution with only a single resampling step for
branches with negative asymmetry. The remaining positions can then be directly sampled from the
target model, aligning with the start of the next speculative decoding step and thus incurring no extra
computational cost.

We briefly clarify the core mechanism by which capping preserves the target joint dis-
tribution. From Definition 5 and Definition 6, it follows that D∗

Branch(p, q | X1:t) =∑
X1:t∈Branch(X1:t−1)

max{q
(
X1:m(X1:t)

)
p
(
Xm(X1:t)+1:t

)
− q (X1:t) , 0}. Through the accep-

tance probability and resampling probability at position t, we essentially guarantee that the probability
of obtaining X1:t is equal to q

(
X1:m(X1:t)

)
p
(
Xm(X1:t)+1:t

)
, partially recovering the probability

of the fragment Xm(X1:t)+1:t. And the deficient probability mass p(X1:m(X1:t))− q(X1:m(X1:t))
is statistically recovered from the resampling distributions in higher hierarchies, which corresponds to
the fragments X̃1:m(X1:t) of other trajectories. An illustrative example in Section C.1 demonstrates
how the algorithm recovers loss over the entire path, with a further explanation of the capped ratio
provided in Section C.3.

5.3 EXPECTED NUMBER OF ACCEPTED TOKENS

We conduct efficiency analysis based on the expected acceptance length E[τ ]. For a given draft length
γ, the expected number of accepted tokens for the tokenwise speculative decoding Leviathan et al.
(2023), blockwise verification Sun et al. (2024), and our HSD are as follows:

Lemma 1. Expected Number of Accepted Tokens (See Section D for proof.)

E[τ ]token =

γ∑
i=1

i∏
k=1

htoken
k ,E[τ ]block =

γ∑
i=1

[
1−

γ∏
k=i

(
1− hblock

k

)]
,E[τ ]branch =

γ∑
i=1

[
1−

γ∏
k=i

(1− hk)

]
(21)

We establish Theorem 5, which guarantees that HSD is more efficient than other lossless methods:

Theorem 5. HSD Achieves Better Expected Number of Accepted Tokens

E[τ ]branch ≥ E[τ ]block ≥ E[τ ]token (22)

where equality holds in both inequalities if and only if γ = 1. (See Section D for proof.)

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 2: The average accep-
tance probability of the entire
draft (τ = γ) on GSM8K.

We reveal that limitations on acceptance probability in each
method directly cause the gap from the ideal case w.r.t.
expected accepted tokens. Let r(xt) = p(xt)

q(xt)
. The

acceptance probability of the entire draft hγ is ideally
min {

∏γ
t=1 r(xt), 1}. In contrast, tokenwise acceptance is

htoken =
∏γ

t=1 min{r(xt), 1}, blockwise adopts hblock =
min{1, rγ , rγ−1rγ , . . . , r1r2 · · · rγ} (see Lemma 11), and HSD uses

hours = min
{
min

{∏m(xγ)
t=1 r(xt), 1

}∏γ
t=m(xγ)+1 r(xt), 1

}
. See

the average acceptance probability hγ on GSM8K in Fig. 2.

6 EXPERIMENTS

In this section, we empirically demonstrate the superiority of HSD with comparison on various
benchmarks and configurations, comprehensive ablation studies, and in-depth analysis of results.

6.1 EXPERIMENT SETTING

Experiments Setup. Experiments are conducted with the widely adopted GPTQ-quantized 8-bit
instruction-tuned Qwen2.5 series Bai et al. (2023). By default, we employ the 0.5B as the draft
model and 72B as the target models, with a temperature of 1. We leverage GSM8K Cobbe et al.
(2021) for mathematical problem-solving, HumanEval Chen et al. (2021) for code generation, and
CNN/DailyMail See et al. (2017) for text summarization. We conduct all experiments on a single
NVIDIA H20 96GB GPU.

Baselines and Metrics. We compare two lossless verification methods—Token-wise Leviathan et al.
(2023) and Block-wise Sun et al. (2024)—using two metrics: Block Efficiency (tokens/step) and
Decoding Speed (tokens/second). Block Efficiency measures the average tokens generated per serial
call to the target model, reflecting intrinsic efficiency independent of hardware. Decoding Speed
indicates tokens produced per second for practical reference, though it depends on hardware and
implementation. Additional details and extended evaluations are in Section E.

6.2 EXPERIMENT RESULTS

Main results. Table 1 summarizes the performance of HSD across datasets and model scales
using the Qwen2.5 suite (0.5B as draft,14B, 32B, and 72B as targets). Overall, HSD consistently
improves both Block Efficiency (BE) and Decoding Speed (DS) relative to Tokenwise and Blockwise
verification. For GSM8K, the gains are stable across scales, with BE improvements of 5.2%–5.4%
at 14B/32B and 3.3% at 72B, accompanied by DS increases of up to 10.7%. On HumanEval,
the effect is more pronounced: BE rises by 9.5% and 12.3% at 14B and 32B, while DS improves

Table 1: Comparison of Block Efficiency (BE) and Decoding Speed (DS) across datasets and model
scales. Values in parentheses show percentage improvement over Tokenwise.

Method Block Efficiency (Token/Step) Decoding Speed (Token/Second)
14B 32B 72B 14B 32B 72B

GSM8K
Tokenwise 5.99 6.14 6.44 82.28 53.87 31.49
Blockwise 6.13 (+2.3%) 6.26 (+2.0%) 6.53 (+1.4%) 86.06 (+4.6%) 54.91 (+1.9%) 31.79 (+1.0%)
HSD (Ours) 6.30 (+5.2%) 6.47 (+5.4%) 6.65 (+3.3%) 91.05 (+10.7%) 57.12 (+6.0%) 32.52 (+3.3%)

HumanEval
Tokenwise 4.83 4.89 5.23 74.21 45.68 26.31
Blockwise 5.11 (+5.8%) 5.15 (+5.3%) 5.34 (+2.1%) 78.14 (+5.3%) 48.15 (+5.4%) 26.96 (+2.5%)
HSD (Ours) 5.29 (+9.5%) 5.49 (+12.3%) 5.40 (+3.3%) 81.09 (+9.3%) 50.88 (+11.4%) 27.48 (+4.4%)

CNN/DailyMail
Tokenwise 2.39 2.36 2.35 37.28 21.89 11.90
Blockwise 2.50 (+4.6%) 2.42 (+2.5%) 2.39 (+1.7%) 38.54 (+3.4%) 22.31 (+1.9%) 12.10 (+1.4%)
HSD (Ours) 2.59 (+8.4%) 2.46 (+4.2%) 2.45 (+4.3%) 39.96 (+7.2%) 22.78 (+4.1%) 12.33 (+3.6%)
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Table 2: Comparison in Multi-draft setting. Hierarchical is compared to Tokenwise, and Hierarchical Multi-draft
is compared to Tokenwise Multi-draft.

Method Block Efficiency (Token/Step) Decoding Speed (Token/Second)
GSM8K HumanEval CNN/DailyMail GSM8K HumanEval CNN/DailyMail

Tokenwise 6.44 5.23 2.35 31.49 26.31 11.90
HSD (Ours) 6.65 (+3.3%) 5.40 (+3.3%) 2.45 (+4.3%) 32.52 (+3.3%) 27.48 (+4.4%) 12.33 (+3.6%)

Tokenwise Multi-draft 8.65 7.96 3.79 37.66 35.72 15.38
HSD Multi-draft (Ours) 8.89 (+2.8%) 8.26 (+3.8%) 4.21 (+11.1%) 38.41 (+2.0%) 36.83 (+3.1%) 16.75 (+8.9%)

Table 3: Evaluation of HSD under multi-draft setup, and ablations on temperature, draft length, and
target model size on GSM8K. Except for the ablation on target model size, we adopt Qwen2.5-0.5B
as the draft model and Qwen2.5-72B as the target model.

(a) Comparison of different sampling temperatures.
The draft length γ is set to 10.

Method Block Efficiency Decoding Speed
t = 0.6 t = 0.8 t = 1 t = 0.6 t = 0.8 t = 1

Tokenwise 6.81 6.70 6.44 32.86 32.18 31.49
Blockwise 6.83 6.74 6.53 33.07 32.33 31.79
Hierarchicial 6.86 6.79 6.65 33.21 32.90 32.52

(b) Comparison of different draft lengths. The temper-
ature is set to 1.

Method Block Efficiency Decoding Speed
γ = 5 γ = 10 γ = 15 γ = 5 γ = 10 γ = 15

Tokenwise 4.48 6.44 7.61 12.01 31.49 51.03
Blockwise 4.52 6.53 7.74 12.14 31.79 51.75
Hierarchical 4.59 6.65 7.88 12.35 32.52 52.95

by 9.3% and 11.4%; even at 72B, HSD maintains positive margins (3.3% BE, 4.5% DS). For
CNN/DailyMail, the improvements are moderate but consistent, with BE gains of 4.2%–8.4% and
DS gains of 3.4%–7.2%. Taken together, these results demonstrate that HSD not only outperforms
Tokenwise verification but also provides consistent advantages over Blockwise verification, yielding
average improvements of approximately 6.2% in BE and 6.7% in DS. The consistency of these
gains across datasets and scales highlights the robustness and scalability of the approach.

Multi-draft. To demonstrate the advantage of HSD, we compare it with token-wise speculative
decoding in a multi-draft setting. For simplicity—and without loss of generality—we adopt Recursive
Reject Sampling (RRS) with replacement Yang et al. (2024) as the baseline for its scalability and
independence from complex tree attention mechanisms. Notably, since it is not straightforward
to extend blockwise verification to the multi-draft setup, we omit it from our comparison. We
evaluated multi-draft generation with 11 candidate drafts in Table 2, and HSD yields an average
5.9% improvement in Block Efficiency and 4.7% improvement in Decoding Speed over token-wise
decoding. These results further underscore the strong potential of HSD to improve performance when
combined with complementary or orthogonal techniques.

Ablation on Temperature. We conduct a systematic evaluation of sampling temperature’s effect
on decoding efficiency, with t ∈ {0.6, 0.8, 1.0} (Table 3(a)). HSD consistently outperforms other
approaches across all temperature settings, demonstrating its robustness to temperature variations.

Ablation on Draft Length. We evaluate draft lengths γ ∈ {5, 10, 15} tokens, where HSD consistently
outperforms baselines with increasing efficiency gains (Table 3(b)). At γ = 15, HSD achieves peak
performance with 7.88 tokens/step in block efficiency and 52.95 steps/second in decoding speed,
representing improvements of 3.58% and 3.88% over Tokenwise, respectively. The consistent
performance advantage across all draft lengths demonstrates HSD’s robust scalability.

7 CONCLUSION

We have introduced Hierarchical Speculative Decoding (HSD), a novel, lossless verification algo-
rithm that significantly boosts the expected number of accepted tokens while preserving the target
distribution. This approach is backed by rigorous theoretical analysis and extensive empirical vali-
dation. HSD’s design is broadly compatible with existing speculative decoding frameworks, and it
demonstrates especially strong scalability benefits for longer draft sequences.
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APPENDIX

A THEORETICAL FOUNDATION

A.1 SYMMETRY OF TOTAL DIVERGENCE

Lemma 2. Symmetry of Total Divergence.
DΩ(p, q) = DΩ(q, p). (A.1)

Proof. From Definition 1, we know:

DΩ(p, q)−DΩ(q, p) =
∑
ω̃∈Ω

max{p(ω̃)− q(ω̃), 0} −
∑
ω̃∈Ω

max{q(ω̃)− p(ω̃), 0}

=
∑
ω̃∈Ω

p(ω̃)≥q(ω̃)

(p(ω̃)− q(ω̃))−
∑
ω̃∈Ω

q(ω̃)>p(ω̃)

(q(ω̃)− p(ω̃))

=
∑
ω̃∈Ω

p(ω̃)−
∑
ω̃∈Ω

q(ω̃)

= 0 (since both p and q sum to 1 over the full sample space Ω)

(A.2)

Thus, DΩ(p, q) = DΩ(q, p), completing the proof.

A.2 PARTIAL DISTRIBUTION RECOVERY

Proof of Theorem 1. Let P (w is yielded) denote the total probability of producing w ∈ Ω′. By
construction, this can be decomposed as

P (w is yielded) = P (w is drafted & accepted) + P (w is drafted & rejected, w is resampled),
(A.3)
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where acceptance occurs with probability h(w) = min{p(w)/q(w), 1}, and resampling follows the
distribution Pres(· | Ω′) with total trigger mass DΩ′(q, p). Here, the total trigger mass represents the
sum of probabilities of all draft outcomes in Ω′ that are rejected. Hence,

P (w is yielded) = h(w) q(w) +DΩ′(q, p)Pres(w | Ω′). (A.4)

Noting that h(w) q(w) = min{p(w), q(w)}, we have

P (w is yielded) = min{p(w), q(w)}+DΩ′(q, p)Pres(w | Ω′). (A.5)

To match the target distribution exactly (P (w is yielded) = p(w)), we require

Pres(w | Ω′) =
p(w)−min{p(w), q(w)}

DΩ′(q, p)
=

max{p(w)− q(w), 0}
DΩ′(q, p)

. (A.6)

Summing over all w ∈ Ω′ gives ∑
w∈Ω′

Pres(w | Ω′) =
DΩ′(p, q)

DΩ′(q, p)
. (A.7)

For Pres(· | Ω′) to be a valid probability distribution, this sum must not exceed 1. Therefore, the
necessary and sufficient condition is

DΩ′(p, q) ≤ DΩ′(q, p), (A.8)

which completes the proof.

A.3 QUANTIFICATION ANALYSIS OF ASYMMETRY

Proof. From Definition 3 and Definition 2, we obtain:

∆Branch(X1:t−1) =
∑

X1:t∈Branch(X1:t−1)

max {p (X1:t)− q (X1:t) , 0}

−
∑

X1:t∈Branch(X1:t−1)

max {q (X1:t)− p (X1:t) , 0}

=
∑

X1:t∈Branch(X1:t−1)

p (X1:t)−
∑

X1:t∈Branch(X1:t−1)

q (X1:t)

=
∑
xt∈V

p (X1:t−1) p (xt | X1:t−1)−
∑
xt∈V

q (X1:t−1) q (xt | X1:t−1)

= p (X1:t−1)− q (X1:t−1) (since
∑
xt∈V

p(xt | X1:t−1) = 1)

(A.9)

A.4 RELATION TO THE DIVERGENCE IN LEVIATHAN ET AL. (2023)

Lemma 3. The total divergence is equivalent to the divergence defined in Leviathan et al. (2023) for
token distributions over the full sample space.

Proof. Following Leviathan et al. (2023), let x̃ denote a token, and omit conditions in the token
probabilities for simplicity. From Definition 3.2 in Leviathan et al. (2023), we have:

DLK(p, q) =
∑
x̃∈Ω

∣∣∣∣p(x̃)− q(x̃)

2

∣∣∣∣
=

1

2

(∑
x̃∈Ω

max{p(x̃)− q(x̃), 0}+
∑
x̃∈Ω

max{q(x̃)− p(x̃), 0}

) (A.10)
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From Lemma 2, we know that DΩ(p, q) = DΩ(q, p), so we can write:

DΩ(p, q) =
DΩ(p, q) +DΩ(q, p)

2

=
1

2

(∑
x̃∈Ω

max{p(x̃)− q(x̃), 0}+
∑
x̃∈Ω

max{q(x̃)− p(x̃), 0}

) (A.11)

Therefore, DΩ(p, q) = DLK(p, q), completing the proof.

A.5 HIERARCHY OF DIVERGENCE

Proof. Proof of Theorem 4.

From Theorem 2, we recall that:
∆Branch(X1:t−2, x̃t−1) = p(X1:t−2, x̃t−1)− q(X1:t−2, x̃t−1). (A.12)

Therefore, summing over the cases where this difference is positive gives:∑
∆Branch(X1:t−2,x̃t−1)>0

∆Branch(X1:t−2, x̃t−1) =
∑

x̃t−1∈V
max {p(X1:t−2, x̃t−1)− q(X1:t−2, x̃t−1), 0} .

(A.13)

By Definition 2, this is precisely the branch divergence one level higher DBranch(p, q | X1:t−2), thus
completing the proof.

B LOSSLESS OF NAIVE HIERARCHICAL SPECULATIVE DECODING

B.1 ILLUSTRATIVE EXAMPLE

For example, consider the case where r(X1:γ) > 1, r(X1:γ−1) > 1, and r(X1:γ−2) ≤ 1. The
accept term is simply equal to q(X1:γ), so we only need to check whether the resampling term equals
p(X1:γ)− q(X1:γ). According to Equation (12), we know Pres(xγ−2 | X1:γ−1) = 0. Consequently,
contributions from positions earlier than γ − 1 in the sum above vanish, which implies that the
resampling term for X1:γ arises solely from resampling at positions γ and γ − 1 as follows:∑

x̃γ

P
(
sample X1:γ−1x̃γ , reject x̃γ , accept X1:γ−1, resample xγ

)
+

∑
X̃γ−1:γ

P
(
sample X1:γ−2x̃γ−1:γ , reject X̃γ−1:γ , accept X1:γ−2, resample Xγ−1:γ

)
=
∑
x̃γ

q(X1:γ−1x̃γ)︸ ︷︷ ︸
draft probability

· (1− hγ)︸ ︷︷ ︸
reject backwards at τ + 1 = γ

· hγ︸︷︷︸
accept X1:γ−1

· Pres(xt)︸ ︷︷ ︸
resample at τ + 1 = γ

+

∑
x̃γ−1

∑
x̃γ

q(X1:γ−2x̃γ−1x̃γ)︸ ︷︷ ︸
draft probability

· (1− hγ)(1− hγ−1)︸ ︷︷ ︸
reject backwards at τ+1=γ−1

· hγ−2︸ ︷︷ ︸
accept X1:γ−1

·Pres(xγ−1)Pres(xγ)︸ ︷︷ ︸
resample at τ + 1 = γ

(A.14)

From Definition 2 that the excess probability mass that triggers resampling DBranch(q, p | X1:γ−1) =∑
x̃γ

q(X1:γ−1x̃γ)(1− hγ). Then we have:

=DBranch(q, p|X1:γ−1) · 1 ·
p(X1:γ)− q(X1:γ)

DBranch(p, q|X1:γ−1)
+∑

x̃γ−1

DBranch(q, p|X1:γ−2x̃γ−1)(1−
DBranch(p, q|X1:γ−2x̃γ−1)

DBranch(q, p|X1:γ−2x̃γ−1)
)Pres(xγ−1)Pres(xγ)

(A.15)

From Definition 3 and Theorem 4, we know that
∑

x̃γ−1
DBranch(q, p|X1:γ−2x̃γ−1) −

DBranch(p, q|X1:γ−2x̃γ−1) = DBranch(q, p|X1:γ−2). Then we have:

=
DBranch(q, p|X1:γ−1)

DBranch(p, q|X1:γ−1)
· (p(X1:γ)− q(X1:γ))+

DBranch(q, p|X1:γ−2) ·
p(X1:γ−1)− q(X1:γ−1)

DBranch(p, q|X1:γ−2)
· p(X1:γ)− q(X1:γ)

DBranch(p, q|X1:γ−1)

(A.16)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

We know from Definition 3 and Theorem 2 that p(X1:γ) − q(X1:γ) = DBranch(p, q|X1:γ−1) −
DBranch

(
q, p|X1:γ−1

)
. Then we have:

=
DBranch(q, p|X1:γ−1)

DBranch(p, q|X1:γ−1)
· (p(X1:γ)− q(X1:γ))+(

DBranch(p, q | X1:γ−1)−DBranch(q, p | X1:γ−1)
)

DBranch(p, q | X1:γ−1)
· (p(X1:γ)− q(X1:γ))

= p(X1:γ)− q(X1:γ)

(A.17)

∑
x̃γ

P
(
X1:γ−1x̃γ is sampled, x̃γ is rejected,X1:γ−1 is accepted, xγ is resampled

)
+ (A.18)

∑
X′

γ−1:γ

P
(
X1:γ−2X̃γ−1:γ is sampled, X̃γ−1:γ is rejected,X1:γ−2is accepted,Xγ−1:γ is resampled

)
(A.19)

=
∑
x̃γ

q(X1:γ−1x̃γ)︸ ︷︷ ︸
draft probability

· (1− hγ)︸ ︷︷ ︸
reject backwards at τ + 1 = γ

· hγ︸︷︷︸
accept X1:γ−1

· Pres(xt)︸ ︷︷ ︸
resample at τ + 1 = γ

+ (A.20)

∑
x̃γ−1

∑
x̃γ

q(X1:γ−2x̃γ−1x̃γ)︸ ︷︷ ︸
draft probability

· (1− hγ)(1− hγ−1)︸ ︷︷ ︸
reject backwards at τ + 1 = γ − 1

· hγ−2︸ ︷︷ ︸
accept X1:γ−1

·Pres(xγ−1)Pres(xγ)︸ ︷︷ ︸
resample at τ + 1 = γ

(A.21)

From Definition 2 that the excess probability mass that triggers resampling DBranch(q, p | X1:γ−1) =∑
x̃γ

q(X1:γ−1x̃γ)(1− hγ). Then we have

= DBranch(q, p|X1:γ−1) · 1 ·
p(X1:γ)− q(X1:γ)

DBranch(p, q|X1:γ−1)
+ (A.22)∑

x̃γ−1

DBranch(q, p|X1:γ−2x̃γ−1)(1−
DBranch(p, q|X1:γ−2x̃γ−1)

DBranch(q, p|X1:γ−2x̃γ−1)
)Pres(xγ−1)Pres(xγ) (A.23)

From Definition 3 and Theorem 4, we know that
∑

x̃γ−1
DBranch(q, p|X1:γ−2x̃γ−1) −

DBranch(p, q|X1:γ−2x̃γ−1) = DBranch(q, p|X1:γ−2). Then we have

=
DBranch(q, p|X1:γ−1)

DBranch(p, q|X1:γ−1)
· (p(X1:γ)− q(X1:γ))+ (A.24)

DBranch(q, p|X1:γ−2) ·
p(X1:γ−1)− q(X1:γ−1)

DBranch(p, q|X1:γ−2)
· p(X1:γ)− q(X1:γ)

DBranch(p, q|X1:γ−1)
(A.25)

We know from Definition 3 and Theorem 2 that p(X1:γ) − q(X1:γ = DBranch(p, q|X1:γ−1) −
DBranch

(
q, p|X1:γ−1

)
. Then we have

=
DBranch(q, p|X1:γ−1)

DBranch(p, q|X1:γ−1)
· (p(X1:γ)− q(X1:γ))+ (A.26)(

DBranch(p, q | X1:γ−1)−DBranch(q, p | X1:γ−1)
)

DBranch(p, q | X1:γ−1)
· (p(X1:γ)− q(X1:γ)) (A.27)

= p(X1:γ)− q(X1:γ) (A.28)

B.2 GENERAL PROOF

Lemma 4 (Rejection-Resampling Sum Reduction (Tokenwise)). Let 0 < m < γ be such that the
acceptance ratios satisfy:

r(xγ) > 1, r(xγ−1) > 1, . . . , r(xγ−m+1) > 1, r(xγ−m) ≤ 1. (A.29)
Then, the total probability of obtaining the output via resampling over the last m positions is:

m−1∑
i=0

P (xγ−i is rejected)
i∏

j=0

P (X1:γ−j is resampled) = p(X1:γ)− q(X1:γ). (A.30)
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Proof. We begin by defining auxiliary quantities to simplify the notation. For i = 0, 1, . . . ,m, let

∆+
i := DBranch(q, p | X1:γ−i),

∆−
i := DBranch(p, q | X1:γ−i),

(A.31)

where ∆−
i quantifies the probability mass to be corrected due to overestimation by q, and ∆+

i
represents the mass available to be allocated from alternate paths.

Define also the recursive product term:

Pi :=

i∏
j=0

∆+
j −∆−

j

∆+
j+1

, for 0 ≤ i ≤ m− 1. (A.32)

Using these, the rejection-resample contribution becomes:

m−1∑
i=1

P (xγ−i is rejected)
i∏

j=0

P (X1:γ−j is resampled)

=

m−1∑
i=1

∆−
i Pi + (∆+

m−1 −∆−
m−1)Pm−1.

(A.33)

Now observe the recurrence:
∆+

k+1Pk+1 = (∆+
k −∆−

k )Pk, (A.34)

which implies:
(∆+

k −∆−
k )Pk = ∆+

k+1Pk+1. (A.35)

We apply this recurrence in reverse to simplify equation (1) by telescoping the sum:

m−1∑
i=1

∆−
i Pi + (∆+

m−1 −∆−
m−1)Pm−1 =

m−2∑
i=1

∆−
i Pi +∆+

m−1Pm−1

=

m−3∑
i=1

∆−
i Pi +∆+

m−2Pm−2

...

= ∆+
1 P1

= ∆+
0 −∆−

0

= p(X1:γ)− q(X1:γ),

(A.36)

where the final equality follows from the definition:

∆+
0 −∆−

0 = DBranch(q, p | X1:γ)−DBranch(p, q | X1:γ) = p(X1:γ)− q(X1:γ). (A.37)

This completes the proof.

Lemma 5 (No Resampling of Earlier Prefixes (Tokenwise)). Let X1:γ = [x1, x2, . . . , xγ ] be a token
block, and suppose that for some index m, the acceptance ratios satisfy:

r(xγ) > 1, r(xγ−1) > 1, . . . , r(xγ−m+1) > 1, r(xγ−m) ≤ 1. (A.38)

Then for all t ≤ γ −m, the resampling probability satisfies:

P (X1:t is resampled) = 0. (A.39)
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Proof. We use the resampling probability formula:

Pres(X1:t) =
max {p(X1:t)− q(X1:t), 0}

max {DBranch(p, q | X1:t), DBranch(q, p | X1:t)}
. (A.40)

At position t = γ −m, we are given that the acceptance probability

r(xγ−m) = min

{
1,

p(X1:γ−m)

q(X1:γ−m)

}
≤ 1, (A.41)

implying p(X1:γ−m) < q(X1:γ−m). Therefore,

p(X1:γ−m)− q(X1:γ−m) ≤ 0, (A.42)

and hence:

Pres(X1:γ−m) = 0. (A.43)

This completes the proof.

Theorem 6 (Lossless).
P (yield X1:γ) = p(X1:γ). (A.44)

Proof. The total probability is the sum of the acceptance and resampling paths. We analyze two cases
based on the relative probabilities.

Case 1: p(X1:γ) < q(X1:γ) In this case, the acceptance probability for the draft is p(X1:γ)
q(X1:γ)

. The
probability of generating X1:γ via resampling is 0, as there is no probability deficit to recover.

P (yield X1:γ) = P (X1:γ is accepted) + P (X1:γ is resampled)

= q(X1:γ) ·
p(X1:γ)

q(X1:γ)
+ 0

= p(X1:γ).

(A.45)

Case 2: p(X1:γ) ≥ q(X1:γ) Here, the acceptance probability for the draft is 1. The resampling path
must compensate for the probability deficit. Per lemma 4 and lemma 5, the total probability of all
relevant resampling paths is exactly p(X1:γ)− q(X1:γ).

P (yield X1:γ) = P (X1:γ is accepted) + P (X1:γ is resampled)

= q(X1:γ) · 1 +
(
p(X1:γ)− q(X1:γ)

)
= p(X1:γ).

(A.46)

These two cases cover all probability events. In both cases, the total probability correctly recovers
p(X1:γ), proving the method is lossless.

C LOSSLESS OF HIERARCHICAL SPECULATIVE DECODING

C.1 ILLUSTRATIVE EXAMPLE

Let p(·) be the target and q(·) the draft. For a prefix X1:t,

r(X1:t) :=
p(X1:t)

q(X1:t)
, r(Xa+1:b | X1:a) :=

p(Xa+1:b | X1:a)

q(Xa+1:b | X1:a)
,

so r(X1:b) = r(X1:a) r(Xa+1:b | X1:a). Let m be the last (largest) index < γ at which the running
maximum of r(X1:t) is attained and exceeds 1; let n < m be the previous such index (two-peak
case).
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As definition 4, define the capped ratio at the end of the draft as

r∗(X1:γ) := min{r(X1:m), 1} r(Xm+1:γ | X1:m) = r(Xm+1:γ | X1:m) ≤ 1,

and the accept term
Aγ := q(X1:γ) r

∗(X1:γ).

We will also use three resample contributions: Tγ (at level γ), Tm (at level m), and Tn (at level n).

two-peak example: n < m < γ From definition 4, we have r(X1:n) > 1, then r(X1:m) >
r(X1:n), and no larger value occurs in (m, γ). This forces r(Xn+1:m | X1:n) > 1; otherwise m
could not be a new maximum.

Step 1: accept + top-level resample Since r∗(X1:γ) = r(Xm+1:γ | X1:m) ≤ 1,

Aγ = q(X1:γ) r(Xm+1:γ | X1:m) = q(X1:m) p(Xm+1:γ | X1:m), Tγ = 0,

so
H1 := Aγ + Tγ = q(X1:m) p(Xm+1:γ | X1:m).

Intuition. The suffix Xm+1:γ is now under p; the prefix X1:m is still under q.

Step 2: add the m-term Let Rn→m := r(Xn+1:m | X1:n) > 1. The resample at level m
contributes

Tm := q(X1:m) (Rn→m − 1) p(Xm+1:γ | X1:m),

hence

H2 := H1 + Tm = Rn→m q(X1:m) p(Xm+1:γ | X1:m) = q(X1:n) p(Xn+1:γ | X1:n).

Intuition. The block Xn+1:m is converted to p; only X1:n remains under q.

Step 3: add the n-term If r(X1:n) > 1,

Tn := q(X1:n) (r(X1:n)− 1) p(Xn+1:γ | X1:n), H3 := H2 + Tn = p(X1:γ).

If instead r(X1:n) ≤ 1, then Tn = 0 and H2 = p(X1:γ) already.

Intuition. Each nonzero term “tops up” the exact deficit of q on its block until the whole path is
under p. Thus

Aγ + Tγ + Tm + Tn = p(X1:γ)

in this two-peak case, exhibiting the (lossless) invariance of the total probability under the HSD
accept–resample rule.

C.2 GENERAL PROOF

Definition 7 (Sequence of Unique Capping Indices). For a given maximum sequence length γ,
the sequence of maximum prefix ratio indices (m(1),m(2), . . . ,m(γ)) is generated according to
Definition 4. Let U be the set of unique values in the sequence of capping indices:

U = {m(t) | 1 < t ≤ γ} (A.47)

The Sequence of Unique Capping Indices, denoted by M∗, is the ordered sequence of the elements
in U :

M∗ = (m∗
1, . . . ,m

∗
L) (A.48)

where m∗
1 < . . . < m∗

L and L is the total number of unique capping points.

With these definitions, we can now establish the key properties of the prefix-capped joint ratio:

Lemma 6 (Property of r∗(X1:i) between neighboring unique capping indices). Let m∗
l and m∗

l+1
be two consecutive unique capping indices, and suppose

m∗
l < i < m∗

l+1. (A.49)

For every such i, we have r∗(X1:i) ≤ 1.
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Lemma 7 (Property of r∗(X1:m∗
l
) at unique capping indices). Let m∗

l−1 and m∗
l be two consecutive

unique capping indices, we have

r∗(X1:m∗
l
) = r(Xm∗

l−1+1:m∗
l
) > 1

.

We now define the acceptance and resampling probability masses:

Definition 8 (Accepted Probability Mass). The probability mass for accepting the full sequence
X1:γ is:

P (X1:γ is accepted) = min(1, r∗(X1:γ)) q(X1:γ), (A.50)

Definition 9 (Resampling Probability Mass). Let X1:γ be a full sequence of length γ, and let
M∗ = (m∗

1,m
∗
2, . . . ,m

∗
L) be its Sequence of Unique Capping Indices. The total probability mass

under the draft q and target p of generating this sequence can be decomposed as:

Total Generation Probability

P
(
X1:γ is generated

)
= P

(
X1:γ is accepted

)
+ P

(
X1:γ is resampled

)
= min

(
1, r∗(X1:γ)

)
q(X1:γ)

+

L∑
l=1

max
(
0, r(Xm∗

l−1+1:m∗
l
)− 1

)
q(X1:m∗

l
) p(Xm∗

l +1:γ | X1:m∗
l
)

+ max
(
0, r∗(X1:γ)− 1

)
q(X1:γ−1) p(xγ | X1:γ−1)

(A.51)

We now establish the key lemma that characterizes the resampling probability mass:

Lemma 8 (Hierarchical Resampling Probability Mass). The total generation probability can be
decomposed into acceptance and resampling masses as stated in Definition 9. Only unique capping
indices contribute to resampling mass, and the explicit form for the resampling mass at each unique
capping index is:

P
(
X1:m∗

l
is resampled

)
p
(
Xm∗

l +1:γ | X1:m∗
l

)
= max

(
0, r(Xm∗

l−1+1:m∗
l
)− 1

)
q(X1:m∗

l
) p(Xm∗

l +1:γ | X1:m∗
l
)

(A.52)

To prove the lossless property, we introduce the segmented probability function:

Definition 10 (Segmented Probability Function). For each l ∈ {1, . . . , L}, we define the segmented
probability function Fl as:

Fl = q
(
X1:m∗

l

)
p
(
Xm∗

l +1:γ | X1:m∗
l

)
=
[m∗

l∏
i=1

q(xi | X1:i−1)
][ γ∏

i=m∗
l +1

p(xi | X1:i−1)
]
,

(A.53)

This function represents a hybrid probability measure that uses the draft distribution q up to position
m∗

l and the target distribution p for the remaining positions, where X1:0 is equal to the prefix.

We establish the telescoping property of resampling mass:

Lemma 9 (Telescoping of Resampling Mass). For each l ∈ {1, . . . , L}, the mass of the resampling
at the unique capping index m∗

l can be expressed as:

P
(
X1:m∗

l
is resampled

)
= Fl−1 − Fl . (A.54)

Proof. we need to show that the resampling mass at the unique capping index m(l) equals Fl−1 −Fl.
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1. EXPRESS Fl−1 IN TERMS OF Fl . We have

P
(
X1:m∗

l
is resampled

)
=
(
r(Xm∗

l−1+1:m∗
l
)− 1

)
q(X1:m∗

l
) p(Xm∗

l +1:γ | X1:m∗
l
)

First note
q
(
X1:m∗

l+1

)
= q
(
X1:m∗

l

)
q
(
Xm∗

l +1:m∗
l+1

| X1:m∗
l

)
,

and
p
(
Xm∗

l +1:m∗
l+1

| X1:m∗
l

)
= r
(
Xm∗

l +1:m∗
l+1

)
q
(
Xm∗

l +1:m∗
l+1

| X1:m∗
l

)
.

Hence

Fl−1 = q
(
X1:m∗

l

)
p
(
Xm∗

l +1:γ | X1:m∗
l

)
= q
(
X1:m∗

l

)
p
(
Xm∗

l +1:m∗
l+1

| X1:m∗
l

)
p
(
Xm∗

l+1+1:γ | X1:m∗
l+1

)
= q
(
X1:m∗

l

) [
r(Xm∗

l +1:m∗
l+1

) q(Xm∗
l +1:m∗

l+1
| X1:m∗

l
)
]
p
(
Xm∗

l+1+1:γ | X1:m∗
l+1

)
= r
(
Xm∗

l +1:m∗
l+1

) [
q(X1:m∗

l
) q(Xm∗

l +1:m∗
l+1

| X1:m∗
l
)
]
p
(
Xm∗

l+1+1:γ | X1:m∗
l+1

)
= r
(
Xm∗

l +1:m∗
l+1

)
q
(
X1:m∗

l+1

)
p
(
Xm∗

l+1+1:γ | X1:m∗
l+1

)
= r
(
Xm∗

l +1:m∗
l+1

)
Fl.

2. COMPUTE THE DIFFERENCE Fl−1 − Fl .

Fl−1 − Fl =
[
r(Xm∗

l +1:m∗
l+1

) Fl

]
− Fl

=
(
r(Xm∗

l +1:m∗
l+1

)− 1
)
Fl

=
(
r(Xm∗

l +1:m∗
l+1

)− 1
)
q
(
X1:m∗

l+1

)
p
(
Xm∗

l+1+1:γ | X1:m∗
l+1

)
=
(
r(Xm∗

l−1+1:m∗
l
)− 1

)
q(X1:m∗

l
) p(Xm∗

l +1:γ | X1:m∗
l
).

This completes the proof that the resampling mass at segment l equals Fl−1 − Fl.

Theorem 7 (Lossless Recovery). Under the prefix-adaptive speculative decoding scheme, the total
probability of generating any sequence X1:γ equals the target distribution probability:

P
(
X1:γ is generated

)
= p(X1:γ). (A.55)

Proof. From Lemma 8, we have the total generation probability decomposition:

P
(
X1:γ is generated

)
= P

(
X1:γ is accepted

)
+ P

(
X1:γ is resampled

)
+ P

(
xγ is resampled

)
= min

(
1, r∗(X1:γ)

)
q(X1:γ)

+

L∑
l=1

max
(
0, r(Xm∗

l−1+1:m∗
l
)− 1

)
q(X1:m∗

l
) p(Xm∗

l +1:γ | X1:m∗
l
)

+ max
(
0, r∗(X1:γ)− 1

)
q(X1:γ−1) p(xγ | X1:γ−1)

(A.56)

From Lemma 9, we know that for each l ∈ {1, . . . , L}:

Fl−1 − Fl =
(
r(Xm∗

l−1+1:m∗
l
)− 1

)
q(X1:m∗

l
) p(Xm∗

l +1:γ | X1:m∗
l
) (A.57)

Therefore, we can rewrite the generation probability as:

P
(
X1:γ is generated

)
= min

(
1, r∗(X1:γ)

)
q(X1:γ)

+

L∑
l=1

(Fl−1 − Fl)

+ max
(
0, r∗(X1:γ)− 1

)
q(X1:γ−1) p(xγ | X1:γ−1)

(A.58)
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Since r∗(X1:γ) = min{r(X1:m∗
L
), 1}r(Xm∗

L+1:γ) and r(X1:m∗
L
) > 1, we have r∗(X1:γ) =

r(Xm∗
L+1:γ).

Case 1: If r(Xm∗
L+1:γ) ≤ 1, then:

min
(
1, r∗(X1:γ)

)
q(X1:γ) + max

(
0, r∗(X1:γ)− 1

)
q(X1:γ−1) p(xγ | X1:γ−1)

= r(Xm∗
L+1:γ) q(X1:γ) + 0

= r(Xm∗
L+1:γ) q(X1:γ)

= q(X1:m∗
L
) p(Xm∗

L+1:γ | X1:m∗
L
)

= FL

(A.59)

Case 2: If r(Xm∗
L+1:γ) > 1, then there would be another unique capping index beyond m∗

L,
contradicting the definition of m∗

L as the last unique capping index. Therefore, we must have
r(Xm∗

L+1:γ) ≤ 1, and thus:

min
(
1, r∗(X1:γ)

)
q(X1:γ) + max

(
0, r∗(X1:γ)− 1

)
q(X1:γ−1) p(xγ | X1:γ−1) = FL (A.60)

Therefore, we have:

P
(
X1:γ is generated

)
= FL +

L∑
l=1

(Fl−1 − Fl)

= FL + (F0 − F1) + (F1 − F2) + · · ·+ (FL−1 − FL)

= FL + F0 − FL

= F0

(A.61)

Now we evaluate F0. From Definition 10, we have:

F0 = q(X1:m∗
0
) p(Xm∗

0+1:γ | X1:m∗
0
) (A.62)

By our convention, m∗
0 = 0, so:

F0 = q(X1:0) p(X1:γ | X1:0) = 1 · p(X1:γ) = p(X1:γ) (A.63)

Therefore:
P
(
X1:γ is generated

)
= p(X1:γ) (A.64)

This completes the proof of lossless recovery.

C.3 A EXTENDED EXPLAINATION OF CAPPED RATIO

Let r(x1), r(x2 | x1), . . . , r(xt | X1:t−1) ∈ R>0 be a sequence of ratios.

Define the cumulative product up to index t as:

r(X1:t) =

t∏
i=1

r(xi | X1:i−1), (A.65)

where X1:0 is equal to the prefix.

Let j∗ be the last index (up to k) such that:

j∗ = max

{
j ≤ k

∣∣∣∣∣ r(xj | X1:j−1) > 1 and
j∏

i=1

r(xi | X1:i−1) > 1

}
(A.66)

Then the capped cumulative product R̃k is given by:

r ∗ (X1:t) =

 j∗∏
i=1

r(xi | X1:i−1)

 ·

 k∏
i=j∗+1

r(xi | X1:i−1)

 (A.67)
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This ensures that the cumulative product is capped at the last index j∗ such that the individual ratio
r(xj∗|X1:j∗−1

) > 1 and the cumulative product up to that point also exceeds 1.

When γ is 3, lets show simplest example to show the recovery of target probability.

P (X1:3 is accepted ) = q(X1:3) (A.68)

P (X1:3 is resampled) =
γ=3∑
i=0

P (xγ , xγ−1, . . . , xγ−i are resampled | Xγ−i+1)

= D∗
Branch (q, p | X1:3) ·

max((r(x3)− 1)q(X1:3), 0)

D∗
Branch (q, p | X1:3)

+D∗
Branch (q, p | X1:2) ·

max((r(x2)− 1)q(X1:2), 0)

D∗
Branch (q, p | X1:2)

· p(x3|X1:2)

+D∗
Branch (q, p | x1) ·

max((r(x1)− 1)q(x1), 0)

D∗
Branch (q, p | x1)

· p(x3|X1:2)p(x2|x1)

(A.69)

Let’s take γ = 3 as an example, only if r(X1:3) > 1, the resampled portion of probability mass is
needed. Suppose r(X1:2) > 1 with r(x1) > 1 and r(x2) < 1:

= p(x3|X1:2)p(x2|x1)q(x1)− q(X1:3) + 0

+ p(x1)p(x2|x1)p(x3|X1:2)− q(x1)p(x2|x1)p(x3|X1:2)

= p(X1:3)− q(X1:3)

(A.70)

D EXPECTED TOKEN LENGTH DERIVATION

Let τ ∈ {0, 1, . . . , γ} denote the number of accepted tokens in a decoding attempt. Since τ is a
non-negative, integer-valued random variable, the tail-sum identity applies with lattice spacing a = 1.

Lemma 10 (Tail Expectation). Let X be a non–negative random variable with values in {na : n =
0, 1, 2, . . . } for some a > 0. Then:

E[X] = a

∞∑
k=1

Pr(X ≥ k). (A.71)

Proof. Start with the right-hand side:

a

∞∑
k=1

Pr(X ≥ ka) = a

∞∑
k=1

∑
ℓ≥k

Pr(X = ℓa)

= a

∞∑
ℓ=1

Pr(X = ℓa)

ℓ∑
k=1

1

=

∞∑
ℓ=1

ℓa · Pr(X = ℓa) = E[X].

(A.72)

TOKEN WISE SPECULATIVE DECODING

Referring to Block-wise Verification Sun et al. (2024), the authors prove that it achieves a longer
expected token length than the token-wise verification Leviathan et al. (2023) (see Appendix B.2 in
Sun et al. (2024)).
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HIERARCHICAL SPECULATIVE DECODING

Let η1, . . . , ηγ ∼ U(0, 1) be the random draws used in verification. The accepted length is defined
as:

τ := max {i ≤ γ : ηi ≤ hi} , (A.73)

where hi is the acceptance probability at step i. By the tail-sum identity:

E[τ ] =
γ∑

i=1

Pr(τ ≥ i). (A.74)

If we define the event Si := {ηi ≤ hi}, and assume independence of the draws, then:

Pr(τ ≥ i) = 1−
γ∏

k=i

(1− hk). (A.75)

Substituting into Equation (A.74), we obtain:

E[τ ] =
γ∑

i=1

[
1−

γ∏
k=i

(1− hk)

]
. (A.76)

BLOCKWISE VERIFICATION

In Algorithm 2 (blockwise decoding), the decoding continues even if some ηi > hblock
i ; the resampling

happens only at the end. Therefore, the token count τ still satisfies the same form.

Let hblock
i be the acceptance probability at step i computed via blockwise rules, and define events:

Si := {ηi ≤ hblock
i }, so Pr(Si) = 1− hblock

i . (A.77)

We then have:

Pr(τ ≥ i) = 1−
γ∏

k=i

(1− hblock
k ), (A.78)

and hence the expected number of accepted tokens under blockwise decoding is:

E[τ ]block =

γ∑
i=1

[
1−

γ∏
k=i

(1− hblock
k )

]
(A.79)

TOKEN LENGTH COMPARISON

We re-express the acceptance probability to compare token length between block-wise speculative
decoding and our method ( Equation (19)). This yields a more precise comparison via the directional
divergence expressions Equation (17) and Equation (18).

Capped Branch Divergence Difference The difference of capped branch divergence is calculated
as:

D∗
Branch (p, q | X1:t)−D∗

Branch (q, p | X1:t)

=
∑
xt+1

(r∗(X1:t+1)− 1) q(X1:t)

=
∑
xt+1

(
min{r(X0:m(t+1)), 1}r(Xm(t+1)+1:t+1)− 1

)
q(X0:m(t+1))q(Xm(t+1)+1:t+1)

=
∑
xt+1

(
r(Xm(X1:t+1)+1:t+1)− 1

)
q(X1:t+1) (A.80)
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Branch Acceptance Probability Combine equations (A.80), the acceptance ratio of hierarchical
speculative decoding is:

hbranch
t =

D∗
Branch (p, q | X1:t)

D∗
Branch (q, p | X1:t)

=
D∗

Branch (p, q | X1:t)

D∗
Branch (p, q | X1:t) +

∑
(1− r(Xm(X1:t+1)+1:t+1))q(X1:t+1)

=

∑
[r(Xm(X1:t+1)+1:t+1)− 1]+∑

[r(Xm(X1:t+1)+1:t+1)− 1]+ +
∑

(1− r(Xm(X1:t+1)+1:t+1))

(A.81)

where [a]+ is equal to max{a, 0}

Blockwise Acceptance Ratio Algorithm 2 (blockwise decoding), blockwise keeps an internal
clamp pt = min{pt−1 r(xt|X1:t−1), 1}, which could be simplified based on Suffix–minimum
characterization of pt
Lemma 11 (Suffix–minimum characterization of pt). Let {ri}∞i=1 ⊆ [0,∞) and define the sequence
{pt}t≥0 recursively by

p0 = 1, pt = min
{
pt−1 rt, 1

}
, t ≥ 1. (A.82)

Then for every t ≥ 0

pt = min
0≤s≤t

t∏
i=s+1

ri, (with the empty product for s = t equal to 1). (A.83)

Equivalently,
pt = min

{
1, rt, rt−1rt, . . . , r1r2 · · · rt

}
. (A.84)

Proof. We prove (A.83) by induction on t.

Base case (t = 0). For t = 0 the right–hand side becomes

min
0≤s≤0

(empty product) = 1 = p0, (A.85)

so the claim holds.

Inductive step. Assume (A.83) holds for some t− 1 ≥ 0. Using the recurrence,

pt = min
{
1, pt−1 rt

}
. (A.86)

By the induction hypothesis,

pt−1 = min
0≤s≤t−1

t−1∏
i=s+1

ri. (A.87)

Substituting,

pt = min
{
1,
[

min
0≤s≤t−1

t−1∏
i=s+1

ri
]
rt

}
. (A.88)

Multiplying every candidate product in the inner minimum by rt and then taking the outer minimum
yields exactly all suffix products

t∏
i=s+1

ri (A.89)

for s = 0, . . . , t − 1, together with the empty product 1 for s = t. Hence (A.83) holds for t,
completing the induction. And obviously, pt < r(Xstart:t), where start ∈ (1, t− 1)
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hblock
t =

∑
xt+1

(ptr(xt+1|X1:t)− 1)+ q(xt+1 | X1:t)∑
xt+1

(ptr(xt+1|X1:t)− 1)+ q(xt+1 | X1:t) + 1− pt

=

∑
xt+1

(min
{
r(xt+1),r(Xt:t+1),r(Xt−1:t+1), . . . ,r(X1:t+1)

}
−1)+q(xt+1 |X1:t)∑

xt+1

(min
{
r(xt+1), r(Xt:t+1), r(Xt−1:t+1),. . .,r(X1:t+1)

}
−1)+q(xt+1 |X1:t)+1−pt

(A.90)

Since min
{
r(xt+1), r(Xt:t+1), r(Xt−1:t+1), . . . , r(X1:t+1)

}
≤ r(Xm(X1:t+1)+1:t+1),

hblock
t ≤

∑
xt+1

(r(Xm(X1:t+1)+1:t+1)− 1)+ q(xt+1 | X1:t)∑
xt+1

(r(Xm(X1:t+1)+1:t+1)− 1)+ q(xt+1 | X1:t) + 1− pt

≤

∑
xt+1

(r(Xm(X1:t+1)+1:t+1)− 1)+∑
xt+1

(r(Xm(X1:t+1)+1:t+1)− 1)+ + 1− pt

(A.91)

From equation A.81:∑
xt+1

(1− r(Xm(X1:t+1)+1:t+1)) = q(Xm(t+1)+1:t)− p(Xm(t+1)+1:t)

= (1− r(Xm(t+1)+1:t))q(Xm(t+1)+1:t)

≤ (1− pt)q(Xm(t+1)+1:t)

≤ (1− pt)

(A.92)

Since

hbranch
t =

∑
xt+1

[r(Xm(X1:t+1)+1:t+1)− 1]+∑
xt+1

[r(Xm(X1:t+1)+1:t+1)− 1]+ +
∑

xt+1
(1− r(Xm(X1:t+1)+1:t+1))

≥
∑

xt+1
[r(Xm(X1:t+1)+1:t+1)− 1]+∑

xt+1
[r(Xm(X1:t+1)+1:t+1)− 1]+ + 1− pt

≥ hblock
t

(A.93)
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Question: Argo has 200 toys. He gives 40 toys to Alyssa, 80 to Bonnie, and 30 to Nicky. How many toys does Argo have now?

To determine how many toys ArgoArg

Argo starts with    2 0 0 started

Argo started with    2 0 0 toys..

Argo started with    2 0 0 toys. He gave away - 4    

Argo started with    2 0 0 toys. He gave away    4 0 toys to Alyssa,    

Argo started with    2 0 0 toys. He gave away    4 0 toys to Alyssa,    8 0 toys to Bonnie, and to

Argo started with    2 0 0 toys. He gave away 4 0 toys to Alyssa, 8 0 to Bonnie, and 3 0 to Nick

Argo started with    2 0 0 toys. He gave away 4 0 toys to Alyssa, 8 0 to Bonnie, and 3 0 to Nicky. So, the total number ln

Argo started with 2 0 0 toys. He gave away 4 0 toys to Alyssa, 8 0 to Bonnie, and 3 0 to Nicky. In total, he gave away    4 0

Argo started with 2 0 0 toys. He gave away 4 0 toys to Alyssa, 8 0 to Bonnie, and 3 0 to Nicky. In total, he gave away    4 0 +    8 0 +    3 0

Argo started with 2 0 0 toys. He gave away 4 0 toys to Alyssa, 8 0 to Bonnie, and 3 0 to Nicky. In total, he gave away 4 0 + 8 0 + 3 0 = 1 5 0 toys. Sub

Argo started with 2 0 0 toys. He gave away 4 0 toys to Alyssa, 8 0 to Bonnie, and 3 0 to Nicky. In total, he gave away 4 0 + 8 0 + 3 0 = 1 5 0 toys. Subtracting the number of toys he given

Argo started with 2 0 0 toys. He gave away 4 0 toys to Alyssa, 8 0 to Bonnie, and 3 0 to Nicky. In total, he gave away    4 0 +    8 0 +    3 0 =    1 5 0 toys. Subtracting the given toys from his original count, Ar amount

Argo started with 2 0 0 toys. He gave away 4 0 toys to Alyssa, 8 0 to Bonnie, and 3 0 to Nicky. In total, he gave away    4 0 +    8 0 +    3 0 =    1 5 0 toys. Subtracting the given amount, we get    2 0 0Ar

Argo started with 2 0 0 toys. He gave away 4 0 toys to Alyssa, 8 0 to Bonnie, and 3 0 to Nicky. In total, he gave away 4 0 + 8 0 + 3 0 = 1 5 0 toys. Subtracting the given amount,  Argo has 2 0 0 -

Argo started with 2 0 0 toys. He gave away 4 0 toys to Alyssa, 8 0 to Bonnie, and 3 0 to Nicky. In total, he gave away 4 0 + 8 0 + 3 0 = 1 5 0 toys. Subtracting the given amount,  Argo has 2 0 0 - 1 5 0 = 5 0  toys

Argo started with 2 0 0 toys. He gave away 4 0 toys to Alyssa, 8 0 to Bonnie, and 3 0 to Nicky. In total, he gave away    4 0 +    8 0 +    3 0 =    1 5 0 toys. Subtracting the given amount,  Argo has    2 0 0 - 1 5 0 =    5 0  toys left. The answer is 5 0

Figure A.1: Example of HSD when γ = 7. Each iteration shows the draft model (Qwen-2.5 0.5B),
making suggestions that are either accepted (green tokens) or rejected. When rejected, the target
model (Qwen-2.5 72B) provides corrections (shown as red and blue tokens).

Table A.1: Comparison of different algorithm performance on GSM8K with Qwen-2.5. We list the
average and standard deviation across 5 runs with different seeds.

Method Tokenwise Blockwise Ours
Block Efficiency 6.40±0.10 6.51±0.09 6.64±0.04
Decoding Speed 31.52±0.06 31.70±0.05 32.61±0.02

E EXTENDED EXPERIMENTS

Illustration Figure of HSD. In Figure A.1, we showcase an example from GSM8K of our methods
when we set γ = 7. Where the draft model is Qwen-2.5 0.5B and the target model is Qwen-2.5 72B.
Result Robustness To prove the robustness of our experiments and guarantee fair comparison, we
conduct additional experiments with different methods as shown in Table A.1. We observe that our
method demonstrates stable performance and exceeds both tokenwise and blockwise methods on
average.

F PYTHON IMPLEMENTATION

We provide the Python implementation of our Hierarchical Speculative Decoding (HSD) algorithm in
Listing 2, which builds upon the token-wise speculative decoding approach from Hugging Face Wolf
et al. (2020) Transformers v4.46.3, shown in Listing 1 for comparison. Following Hugging Face,
our implementation eliminates the use of an explicit for-loop by leveraging an equivalent masking
mechanism: we perform parallel sampling across all positions to determine whether to accept or
reject subsequences of varying lengths, and then select the longest accepted prefix as the final output.
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Listing 1 Tokenwise Speculative Decoding (SD) SD.py

1 import torch
2
3 def SD(candidate_input_ids, candidate_logits, new_logits):
4 """
5 Args:
6 candidate_input_ids (Tensor): Token IDs from the draft model. Shape: [batch_size,

↪→ seq_len]
7 candidate_logits (Tensor): Logits from the draft model. Shape: [batch_size, seq_len,

↪→ vocab_size]
8 new_logits (Tensor): Logits from the target model. Shape: [batch_size, seq_len,

↪→ vocab_size]
9 Returns:

10 n_matches (int): Number of accepted tokens from the draft model.
11 valid_tokens (Tensor): Accepted token prefix with one new token sampled. Shape: [

↪→ batch_size, n_matches+1]
12 """
13
14 # Convert logits to probabilities
15 q = candidate_logits.softmax(dim=-1)
16 p = new_logits.softmax(dim=-1)
17
18 candidate_length = candidate_logits.shape[1]
19 new_candidate_input_ids = candidate_input_ids[:, -candidate_length:]
20
21 # Extract token-wise probabilities for the candidate tokens
22 q_i = q[:, torch.arange(candidate_length), new_candidate_input_ids].squeeze(1)
23 p_i = p[:, torch.arange(candidate_length), new_candidate_input_ids].squeeze(1)
24
25 probability_ratio = p_i / q_i
26 is_accepted = torch.rand_like(probability_ratio) <= probability_ratio
27
28 # assuming batch size = 1
29 n_matches = ((∼is_accepted).cumsum(dim=-1) < 1).sum() # this is ‘n‘ in algorithm 1
30
31 # Next token selection: if there is a rejection, adopt the resampling distribution.
32 if n_matches < candidate_length:
33 p_n_plus_1 = p[:, n_matches, :]
34 q_n_plus_1 = q[:, n_matches, :]
35 p_prime = torch.clamp((p_n_plus_1 - q_n_plus_1), min=0)
36 p_prime.div_(p_prime.sum())
37 else:
38 p_prime = p[:, n_matches, :]
39
40 # Ensure we don’t generate beyond max_len or an EOS token.
41 if is_done_candidate[0] and n_matches == candidate_length:
42
43 # Output length is assumed to be ‘n_matches + 1‘. Since we won’t generate another

↪→ token with the target model
44 # due to acceptance on EOS we fix ‘n_matches‘
45 n_matches -= 1
46 valid_tokens = candidate_input_ids[:, -candidate_length:]
47
48 else:
49 # Next token selection: if there is a rejection, adjust the distribution from the main

↪→ model before sampling.
50 # The selected tokens include the matches (if any) plus the next sampled tokens
51 if n_matches > 0:
52 if n_matches < candidate_length:
53 valid_tokens = candidate_input_ids[:, -candidate_length:n_matches -

↪→ candidate_length]
54 if not stop(valid_tokens, scores=None):
55 t = torch.multinomial(p_prime, num_samples=1)
56 valid_tokens = torch.cat(
57 (valid_tokens, t), dim=-1)
58 else:
59 n_matches = n_matches-1
60 else:
61 valid_tokens = candidate_input_ids[:, -candidate_length:]
62 if not stop(valid_tokens, scores=None):
63 t = torch.multinomial(p_prime, num_samples=1)
64 valid_tokens = torch.cat(
65 (valid_tokens, t), dim=-1)
66 else:
67 n_matches = n_matches -1
68 else:
69 t = torch.multinomial(p_prime, num_samples=1)
70 valid_tokens = t
71
72 return valid_tokens, n_matches
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Listing 2 Hierarchical Speculative Decoding (HSD) HSD.py

1 import torch
2
3 def HSD(candidate_input_ids, candidate_logits, new_logits):
4 """
5 Args:
6 candidate_input_ids (Tensor): Token IDs from the draft model. Shape: [batch_size,

↪→ seq_len]
7 candidate_logits (Tensor): Logits from the draft model. Shape: [batch_size, seq_len,

↪→ vocab_size]
8 new_logits (Tensor): Logits from the target model. Shape: [batch_size, seq_len,

↪→ vocab_size]
9 Returns:

10 n_matches (int): Number of accepted tokens from the draft model.
11 valid_tokens (Tensor): Accepted token prefix with one new token sampled. Shape: [

↪→ batch_size, n_matches+1]
12 """
13
14 # Convert logits to probabilities
15 q = candidate_logits.softmax(dim=-1)
16 p = new_logits.softmax(dim=-1)
17 candidate_length = candidate_logits.shape[1]
18 new_candidate_input_ids = candidate_input_ids[:, -candidate_length:]
19
20 # Extract token-wise probabilities for the candidate tokens
21 q_i = q[:, torch.arange(candidate_length), new_candidate_input_ids].squeeze(1)
22 p_i = p[:, torch.arange(candidate_length), new_candidate_input_ids].squeeze(1)
23
24 # Compute cumulative joint probabilities for draft and target model
25 q_prev = torch.roll(q_i, shifts=1, dims=1)
26 q_prev[:, 0] = 1.0
27 q_cumprod = torch.exp(torch.log(q_prev).cumsum(dim=1)).unsqueeze(-1)
28 q_next = q_cumprod * q[:, :candidate_length]
29 p_prev = torch.roll(p_i, shifts=1, dims=1)
30 p_prev[:, 0] = 1.0
31 p_cumprod = torch.exp(torch.log(p_prev).cumsum(dim=1)).unsqueeze(-1)
32
33 # Constrain p_cumprod with q_cumprod for computing the capped resampling distribution
34 ratio = p_cumprod / q_cumprod
35 previous_max = 1
36 new_p_previous = torch.ones_like(p_cumprod).to(p_cumprod.device)
37 for k in range(candidate_length):
38 if ratio[:, k] > previous_max:
39 previous_max = ratio[:, k]
40 new_p_previous[:, k] = p_cumprod[:, k] / previous_max
41 p_next = new_p_previous * p[:, :candidate_length]
42
43 # Construct resampling distribution p’
44 diffs = p_next - q_next
45 p_plus = torch.clamp(diffs, min=0.0)
46 p_minus = torch.clamp(-diffs, min=0.0)
47 p_primes = p_plus / torch.maximum(p_plus.sum(dim=-1, keepdim=True), p_minus.sum(dim=-1,

↪→ keepdim=True))
48
49 # Step-back probability: reject prefix with 1 - mass of p’
50 step_back_probs = 1 - p_primes.sum(dim=-1)
51 step_back = torch.rand_like(step_back_probs) < step_back_probs
52
53 # Find first position to stop (from the end)
54 if step_back.all():
55 stop_positions = 0
56 else:
57 stop_positions = candidate_length - n_matches - 1 - torch.flip(∼step_back, [-1]).max

↪→ (-1, keepdim=True)[1]
58
59 # Mask to decide which tokens are accepted
60 select = torch.zeros_like(step_back).to(step_back.device)
61
62 # apply cumprod on the ratio instead of the raw probabilities to avoid underflow
63 probability_ratio = (p_i / q_i).cumprod(1).unsqueeze(-1)
64 is_accepted = torch.rand_like(probability_ratio) <= probability_ratio
65
66 # only decide to accept or not at the last position based on the joint probability ratio
67 # assign 0 to all positions when the full draft is rejected, otherwise assign 1 to the

↪→ rest of the positions
68 select[torch.arange(p_primes.shape[0]), stop_positions] = ∼is_accepted[:, -1:]
69 is_accepted = 1 - torch.cumsum(select, dim=-1)
70
71 #### assume batch_size=1 for the current implementation
72 n_matches = is_accepted.sum().item()
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Listing 2 Hierarchical Speculative Decoding HSD.py (cont.)

1 if is_done_candidate[:] and n_matches == candidate_length:
2 # Output length is assumed to be ‘n_matches + 1‘. Since we won’t generate another

↪→ token with the target model
3 # due to acceptance on EOS we fix ‘n_matches‘
4 n_matches -= 1
5 # valid_tokens = new_candidate_input_ids[:, : n_matches + 1]
6 valid_tokens = candidate_input_ids[:, -candidate_length:]
7
8 else:
9 # Next token selection: if there is a rejection, adjust the distribution from the main

↪→ model before sampling.
10 gamma = candidate_length
11 p_n_plus_1 = p[:, candidate_length, :]
12 if n_matches < gamma:
13 p_prime = p_primes[:, n_matches]
14 p_prime = p_prime/p_prime.sum(-1, keepdim=True)
15 else:
16 p_prime = p_n_plus_1
17
18 # The selected tokens include the matches (if any) plus the next sampled tokens
19 # because if n_matches=0, we add one resampled token for sure, if n_matches=10, we add

↪→ one more for sure
20 # as well, because the previous if checked not stop and n_matches-candidate_length

↪→ will be 0 causing problem
21 if n_matches > 0 and n_matches<candidate_length:
22 valid_tokens = candidate_input_ids[:, -candidate_length:n_matches-candidate_length

↪→ ]
23 if not stop(candidate_input_ids[:, :n_matches-candidate_length], scores=None):
24 t = torch.multinomial(p_prime, num_samples=1)
25 valid_tokens = torch.cat(
26 (valid_tokens, t), dim=-1)
27 else:
28 n_matches = n_matches-1
29 else:
30 t = torch.multinomial(p_prime, num_samples=1)
31 if n_matches==0:
32 valid_tokens = t
33 else:
34 valid_tokens = candidate_input_ids[:, -candidate_length:]
35 valid_tokens = torch.cat(
36 (valid_tokens, t), dim=-1)
37
38 return valid_tokens, n_matches
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G INTEGRATION WITH RECURSIVE REJECT SAMPLING IN THE MULTI-DRAFT SETUP

We demonstrate in Algorithm 3 that our HSD algorithm is compatible with existing lossless multi-
draft verification methods, exemplified by Recursive Reject Sampling (RRS) with replacement Yang
et al. (2024). Notably, independently sampled parallel draft sequences do not guarantee the existence
of an additional draft sequence that shares the accepted subsequence as its prefix.

Algorithm 3 Hierarchical Speculative Sampling with Recursive Rejection Sampling for Striped Tree

Require: Draft tokens: Xk
1:t = {xk

1 , ..., x
k
γ}Kk=1;

Target probabilities for all draft tokens: {p(·), ..., p(·|Xk
1:γ)}Kk=1;

Draft probabilities for all draft tokens: {q(·), ..., q(·|Xk
1:γ)}Kk=1;

1: Initialize τ = 0;
2: Initialize {x1

i }
γ
1 ;

3: for k in 1 : K do
4: if X1:τ = Xk

1:τ then
5: for j in τ + 1 : γ do
6: Set xj = xk

j #select draft Xk
τ+1:γ for verification

7: end for
8:
9: for t in γ : τ + 1 do

10: Compute acceptance probability ht from Equation (19) based on the corresponding
probabilities for the draft tokens: {xτ+1, ..., xγ}

11: Sample ηt ∼ U(0, 1)
12: if ht ≥ ηt then
13: Set τ = t
14: break
15: else
16: Set τ = t− 1
17: continue
18: end if
19: end for
20: else
21: continue #skip draft Xk

1:γ due to prefix mismatch
22: end if
23:
24: if τ = γ then
25: Sample token from p(·|X1:γ) #accept the entire selected draft and sample a bonus token
26: break
27: else
28: Compute P ∗

res(· | X1:τ );
29: Set p(·|X1:τ ) = P ∗

res(· | X1:τ ); #set P ∗
res(· | X1:τ ) as new target distribution

Set r(·|X1:τ ) =
P∗

res(·|X1:τ )
q(x̃|X1:τ )

#set r(· | X1:τ ) as new probability ratio
30: end if
31:
32: end for

Sample token from P ∗
res(· | X1:τ )

Ensure: [X1:τ , token]

H USE OF LLMS

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
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the authors. The contributions of the LLM were solely focused on improving the linguistic quality of
the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated or
polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines and
does not contribute to plagiarism or scientific misconduct.
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