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Abstract

Generalization poses a significant challenge in Multi-agent Reinforcement Learn-
ing (MARL). The extent to which unseen co-players influence an agent depends
on the agent’s policy and the specific scenario. A quantitative examination of this
relationship sheds light on how to effectively train agents for diverse scenarios. In
this study, we present the Level of Influence (Lol), a metric quantifying the in-
teraction intensity among agents within a given scenario and environment. We
observe that, generally, a more diverse set of co-play agents during training en-
hances the generalization performance of the ego agent; however, this improvement
varies across distinct scenarios and environments. Lol proves effective in predict-
ing these improvement disparities within specific scenarios. Furthermore, we in-
troduce a Lol-guided resource allocation method tailored to train a set of policies
for diverse scenarios under a constrained budget. Our results demonstrate that
strategic resource allocation based on Lol can achieve higher performance than
uniform allocation under the same computation budget. The code is available at:
https://github.com/ThomasChen98/Level-of-Influence.

1 Introduction

Creating agents capable of effectively interacting with other agents, in particular humans, has been
a longstanding challenge (Bard et al., 2020; Dafoe et al., 2020). Agents trained with model-free
reinforcement learning (RL) have shown the potential to reach or surpass human-level performance
through self-play (SP) in both classical discrete board games (Silver et al., 2017; 2018; Zha et al.,
2021) and continuous domains such as Dota (Berner et al., 2019), Starcraft (Vinyals et al., 2019),
and racing (Fuchs et al., 2021). However, SP agents typically undergo training with replicas of
themselves, resulting in limited adaptability and robustness when interacting with previously unseen
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co-players exhibiting different behaviors (Lowe et al., 2020; Bullard et al., 2020; Strouse et al., 2021;
McKee et al., 2022).

One promising solution to improve the policy robustness is diversifying the co-player distribution. It
has been shown that computationally hard problems like chess and go could benefit from diversifying
agents during training (Zahavy et al., 2023). Prior studies introduced and validated methods for
more complex games, such as population-based training (Jaderberg et al., 2019; Carroll et al., 2019;
Jaderberg et al., 2017), league-based training (Vinyals et al., 2019), fictitious self-play (Heinrich et al.,
2015; Strouse et al., 2021), and diversification of agent hyperparameters (Hu et al., 2020; McKee
et al., 2020). However, it is important to note that a trade-off exists in most of these methods, where
enhancing generalization capabilities comes at the cost of increased training resources and time.

Nevertheless, an important question remains: is diversifying the co-player distribution during train-
ing always worthwhile? In practice, various real-world applications require a set of tailored RL
policies for diverse target scenarios (Lowe et al., 2017; Fuchs et al., 2021). Diversifying the co-player
distribution during training in all the target scenarios comes at a high training cost, with the re-
sulting benefits varying across scenarios. In particular, we argue that the benefits of introducing
diverse co-players depend on how intensive the agents interact in the specific scenario. For instance,
consider training autonomous driving agents. Enhanced generalization does not provide substan-
tial advantages on highways as it does in crowded intersections and roundabouts. On highways,
vehicles focus on lane keeping most of the time, involving fewer interactions. In contrast, in round-
abouts and intersections where agents’ trajectories are highly interdependent, the presence of diverse
surrounding agent behaviors has a much more significant impact on the ego agent policy.

Our key insight is that, by quantifying the interaction intensity, we can assess the necessity of diver-
sifying co-player policy distribution when training the ego agent policy as the effects of environmental
variation, and allocate the training resources strategically to maximize the overall advantage.

To this end, we introduce the Level of Influence (Lol), a metric quantifying the interaction intensity
among agents within a given scenario. We propose to quantify the interaction intensity by how much
the ego agent’s reward is affected by the variation of non-ego agents’ behavior. Formally, inspired
by (Jaques et al., 2019), we define Lol as the conditional mutual information (MI) between the ego
agent’s expected reward and the non-ego agent’s policy selection. We validate the effectiveness of
using Lol for cost-efficient generalization by training a set of policies with co-players of different
levels of diversity for groups of scenarios and environments. We find that the Lol metric is highly
correlated with the benefits of having diverse co-player policy distribution on the generalization of
the ego agent within given scenarios, i.e., a higher Lol value indicates that a larger improvement
can be anticipated in the ego agent’s performance when a more diverse set of co-play agents are
encountered during training. Consequently, we design a Lol-guided resource allocation method
to train a set of policies for diverse scenarios under a limited training budget. We compare the
overall performance between the Lol-guided and uniform allocation schemes, showcasing that the
Lol-guided scheme consistently yields higher average performance across a range of game settings.
We summarize the novel contributions of this paper as follows:

1. We propose a novel metric, Level of Influence (Lol), to quantify the interaction among agents
in general multi-agent reinforcement learning problems.

2. We demonstrate that the Lol metric is highly correlated with the benefits of having diverse
co-player distribution on the generalization of the ego agent within given scenarios.

3. We propose a Lol-guided resource allocation method and show that it can achieve a higher
average reward than uniform allocation under the same computation budget.

2 Related Work

Ad-hoc Teamwork. Ad-hoc teamwork (AHT) (Stone et al., 2010), also referred to as zero-shot
coordination (ZSC) (Hu et al., 2020), involves training agents to collaborate with co-players they
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have not encountered before. Early approaches primarily focused on game-theoretic analysis within
matrix games (Stone et al., 2009; Agmon & Stone, 2012). Recently, multi-agent reinforcement learn-
ing (MARL) has enabled ad-hoc teamwork in more intricate grid worlds and continuous domains.
Various works have explored hierarchical social intention (Kleiman-Weiner et al., 2016), social con-
ventions (Shih et al., 2021), shared planning (Ho et al., 2016), and theory of mind (Choudhury et al.,
2019) in this context. In MARL, an agent’s learning is influenced by both other co-players and the
environment (Littman, 1994). However, most of the previously mentioned works do not explicitly
evaluate the impacts of environmental variations. Carroll et al. (Carroll et al., 2019) introduce the
game Overcooked and explicitly showcase that the environment configurations affect the robustness
of the trained agents when teamed with unknown human players. Subsequent research includes
diverse layout generation (Fontaine et al., 2021; McKee et al., 2022) and scalable evaluation (Leibo
et al., 2021). Nonetheless, these works only provide qualitative analyses of different environments
and do not quantitatively measure such effects across scenarios.

Generalization in Multi-agent Reinforcement Learning. In the field of MARL, various at-
tempts have been made to enhance agents’ adaptability to new co-players. Jaderberg et al. (Jader-
berg et al., 2017; 2019) introduced population-based training (PBT) to jointly optimize the perfor-
mance of a population of models. Several variations of PBT include the league-based training that
masters the full game of StarCraft IT (Vinyals et al., 2019), the fictitious co-play (FCP) that can reach
human-level performance (Heinrich et al., 2015; Strouse et al., 2021), and heterogeneous populations
training with Social Value Orientation (SVO) (McKee et al., 2020). However, high-performing agents
come at the cost of more expensive training cost. Considering the varying benefits of generalization
across diverse environments, we aim to evaluate if the extra training cost for enhanced generalization
is justified. This area is relatively under-explored in existing research.

Causal Influence. Our work shows a notable connection to Jaques et al. (Jaques et al., 2019),
where a causal influence reward is incorporated as an intrinsic motivation during the training of RL
agents. This reward incentivizes agents to maximize mutual information (MI) between their actions.
The goal of maximizing MI between actions is to encourage more coordinated behavior among the
agents. The causal influence is assessed using counterfactual reasoning (McAllister et al., 2022;
Foerster et al., 2018; Pearl, 2013) where an agent simulates alternate, counterfactual actions that it
could have taken at every time step. In contrast, we measure the mutual information between the
ego agent’s expected reward and the non-ego agent’s policy selection by simulating counterfactual
policies that the non-ego agent would have chosen within given scenarios.

3 Preliminaries

3.1 Multi-agent Markov Decision Process

An n-player partially observable Markov game M (Boutilier, 1996; McKee et al., 2022) is defined by
tuple M = (S,0,{A;}ica, T, {ri}ica), where S is the finite set of states, O: S x {1,...,n} — R%is
the observation function specifying each agent’s d-dimensional view on the state space followed by
their joint observation & = (01,...,0,). Let a be a finite set of agents, A; is a finite set of discrete
actions available to agent i. The joint action is defined as @ = (a1,...,a,) € A3 X -+ X A,. The
stochastic transition function T:S x A; x --- x A, — A(S) determines the discrete probability
distribution over the next state given the current state and the joint action. Fach agent ¢ receives
its real-valued reward defined as r;: S x A; x --- x A, — R.

We assume that each agent learns their policy in a decentralized manner (i.e., independently learns a
policy m;(a;|o;) based on its own observation o; by optimizing its own individual reward ;) without
direct communication. We use 7@ = (m1,...,7T,) to denote the joint policy. Agent i optimizes for a
policy that maximizes the long-term v-discounted payoff (McKee et al., 2022) defined as

o0

Vi (s0) =E Z’Ytri(staf_it)@ ~ @y see1 ~ T (se,dr) | (1)
t=0
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where v denotes the discount factor discounting future rewards.

Algorithm 1 Level of Influence calculation

Input: # Alice policies a, # Bob policies b, # Alice checkpoints per policy m, # Bob checkpoints
per policy n, Alice sampling probability P,, Bob sampling probability Py, # game per Alice-Bob
pair g

1: Train a Alice policies with SP and save checkpoints pool ®;
2: Train b Bob policies with SP and save checkpoints pool ©;
3: Initialize set of index Z + {}
4: for i=1:a do
5: Sample m Alice checkpoints ¢;  ~ ®; with P,
6: for k=1:m do
7 for j=1:b do
8: Sample n Bob checkpoints 0;; ~ ©; with Py
9: Initialize set of distribution P « {}
10: for 1=1:n do
11: PR, ,19=0,,, p=¢., < DISTRIBUTION(¢; , 01, 9)
12: P PUPR, \j9=0,1, p=t1
13: end for
14: PR, o=@, . < MARGINAL_ DISTRIBUTION(P, Py) > Equation 3
15: I; j <+ MUTUAL__INFORMATION (PR, ,|o=g, ,» P) > Equation 4d
16: L+ TUIL
17: end for
18: end for
19: end for
20: I + AVERAGE(Z)
Output:
21: function DISTRIBUTION(¢, 6, g)
22: Initialize set of reward R <« {}
23: for i=1:g do
24: Game between ¢ and 6 to collect reward r
25: R+ RUr
26: end for
27: Pprl9—g,p=¢ < HISTOGRAM(R)
28: return Prjy—g ,—4

29: end function

3.2 Multi-agent Reinforcement Learning

Self-play. Self-play (SP) is an online evolutionary algorithm in which agents learn by playing against
duplicates of themselves. Policies trained via SP have succeeded in a variety of environments and
game settings (Silver et al., 2018; Vinyals et al., 2019; Berner et al., 2019; Zha et al., 2021). In
the SP training, all the agents are initialized with random policies, and we keep updating the ego
agent’s policy while fixing other agents’ policies. Throughout the training phase, the policies of
the ego agent are stored as checkpoints periodically. Subsequently, following each checkpoint save,
all non-ego agents adopt the recently saved checkpoint as their updated policies. (i.e., all non-ego
agents become the latest duplicates of the ego agent). One major drawback of SP is that the learning
agent can not generalize well to new partners deviating from its own policy distribution (Strouse
et al., 2021; Bullard et al., 2020; 2021; Lowe et al., 2020), as agents only learn how to collaborate
with themselves during training.

Population-play. Population-play (PP), on the other hand, keeps a population of agents training
in parallel (Jaderberg et al., 2017). The environment and its agents are initialized with p different
random seeds. A population of p policies is then trained from the p distinct initialization through
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interacting with each other. Specifically, instead of loading the recently saved checkpoints from
the ego agent’s own training history, the non-ego agents are randomly selected from the remaining
p— 1 trained policies’ latest checkpoints. By mutating the non-ego agents across the population, the
trained PP agents acquire better generalization capabilities than SP (Jaderberg et al., 2017; Carroll
et al., 2019; Strouse et al., 2021; McKee et al., 2022).

Training Algorithm. In MARL, agents’ policies are parameterized by neural network models and
can be trained with various deep RL algorithms. In our case, we use Proximal Policy Optimization
(PPO) (Schulman et al., 2017) for model training.

4 Methodology

We aim to study the potential impact of the diversity of co-play agents during training on the
generalization performance as the effects of environmental variation. In MARL, the performance
of a policy is measured by its expected reward when pairing with different co-players, which is
determined by the reward design (i.e., payoff matrix). We refer to games that have distinct reward
designs as environments. Under the same reward design, one can create different variations of the
game by changing the map layout (e.g., size, shape, obstacle locations, etc.). We refer to the games
with distinct map layouts within the same environment as scenarios. We hypothesize that enhanced
generalization yields varied levels of performance improvements for the agent in different scenarios.
Intuitively, this is because agents in different scenarios have different interaction intensities, and the
generalization performance, as measured by the expected reward, depends greatly on the interaction
pattern and frequency. Therefore, we aim to find a metric that quantifies the interaction between
agents and examine it as an indicator of the potential generalization improvement by having a more
diverse set of co-player policies during training.

4.1 Level of Influence

In order to quantitatively describe the interaction intensity between each agent in a certain scenario
as its intrinsic property, we take inspiration from (Jaques et al., 2019) and define a new metric
named Lewvel of Influence (Lol). For simplicity, consider a symmetric game with two agents named
Alice and Bob. Alice is the algorithm-controlled agent (i.e., ego agent), and Bob can be another
algorithm-controlled agent with an unknown policy or human player (i.e., non-ego agent). We would
like to quantify the expected impact of Bob’s behavior on Alice’s performance within this scenario.

Suppose Alice and Bob are algorithm-controlled agents with policy ¢ € ® and 0 € O, respectively,
where @ is a policy class of size m and O is a policy class of size n. To account for the variations
in the agents’ behaviors, we assume Alice and Bob’s policies are sampled from two distributions
P,(¢) = Plp = ¢] and Py(0) = P} = 6] respectively. Let r € R denote the total reward Alice
receives when paired with Bob. Under the two-agent game setting, Alice’s reward is affected by
both agents’ policy choices, and the conditional reward distribution of Alice given Alice’s policy
@ = ¢ and Bob’s policy ¥ = 6 can be represented as

Prioo(r0,¢) =P[R =r|d = 0,0 = ¢]. (2)

We can then get Alice’s marginal reward distribution as

PR\ap(r|¢) = Z PR,19|50(T’ 0|¢) = Z PR|19,L/7(T|0’ ¢)Pﬁ\tp(9|¢) (3)

0c© 0co

We propose to measure the intensity of interaction between the two agents with the discrepancy be-
tween the marginal reward distribution and the conditional reward distribution Of Alice. Intuitively,
we want the Lol to measure the degree to which Alice’s reward distribution changes induced by Bob’s
policy choice, given Alice’s own policy choice. Therefore, the Lol is defined as the conditional mutual
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information of Alice’s reward and Bob’s policy with respect to Alice’s policy:

I(R;9|¢) = Ey [Dxr (Proojoll PrioPoe)] (4a)
=Y Po(¢)Dxv (Proojg=ol Prip—s Pojo—0) (4b)
ped
= Z Py(¢)Ey [Dxr (Prjo,p=s || Prip=¢)] (4c)
ped
=Y Po(®) Y Po(0)Dxr (Prig=s,p=0/| Prip=0) - (4d)
ped [USS]

It is worth noting that when I(R;¥|y) = 0, Alice’s total reward will not be affected by Bob’s policy
choice at all under the given scenario, thus there is little value for training Alice’s policy with diverse
opponent’s policy. The higher this value becomes, the more significant impact Bob’s policy will have
on Alice’s expected reward; consequently, encountering a more diverse Bob’s policy when training
Alice’s policy can help improve performance when paired with unseen partners and more training
budget is well justified.

4.2 Approximation

To calculate the Lol following Equation 4d, we need to model the policy distribution of each agent,
P,(¢) and Py(0), for a given scenario. Ideally, Py(6) should resemble the group of agents the trained
agent aims to interact with. However, at the training stage, we are not aware of who the trained
agent will interact with in the inference time. To this end, we propose to model P,(¢) and Py(6)
with trained SP policies. Training a convergent SP policy gives us a pool of checkpoints, including
the early-, middle-, and late-stage generations. They resemble a diverse group of agents with various
skill levels and collaborating patterns, so that we can define an informative Lol metric with a small
amount of computational resources. In practice, we train a + b SP policies with distinct random
seeds, choose a of them as Alice’s policies, and the rest b policies as Bob’s policies, randomly. We
choose m checkpoints from the late stage of each Alice policy as a group of Alice with slightly
different skills and choose n checkpoints from all stages of each Bob policy as samples of Bob’s
policy distribution. We summarize our Lol calculation in Algorithm 1.

5 Environments

We adopt DeepMind’s Melting Pot environment (Agapiou et al., 2022) for evaluation. Melting Pot
is a MARL environment with different substrates (i.e., physical environment) of zero-sum, shared-
reward, and general-sum games. We choose the two-agent substrate named “* in the Matriz,” whose
mechanism is introduced in (Vezhnevets et al., 2019). In this game, two agents can move around
the map, collect K different resources, and fire “interaction beams.” Each agent has its inventory
p € RE to track the number of resources picked up since the last re-spawn, i.e., p; denotes the
number of the i*" type of resources in its inventory. The agent’s inventory is only visible to itself.

An interaction occurs whenever one agent zaps the other agent with their interaction beam. The
interaction is then resolved by a matrix game with the payoff matrix A describing the reward
corresponding to the pure strategies of the matrix game available to each agent. Each kind of
resource maps one-to-one to each pure strategy. During the interaction, each agent executes a mixed
strategy depending on the resources they picked up before the interaction. In particular, an agent
with inventory p plays the mixed strategy with weights v = (v1,...,vk), where v; = pl/(Zf:1 p;j)-
Intuitively, the more resources of a certain kind are picked up by an agent, the more likely this agent
executes the corresponding strategy of that kind of resource. Formally, during the interaction, a pure
strategy is sampled from each player’s mixed strategy distribution defined by v. We represent the
sampled strategies of the row and column players as two one-hot vectors, denoted by rrow, 7col € R¥,
respectively. Afterward, the rewards that the row and column players obtain from the interaction,
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Pure Prisoners Stag
Coordination  Dilemma Hunt

Go) Gy Gy 63

Table 1: Payoff matrices Ao of the two-player * in the Matriz game.

Chicken

(a) Small (b) Medium (c) Large d) Obstacle

Figure 1: We investigate the influence between agents under * in the Matrix game setting across

four distinct 2-player scenarios: (a) Small, (b) Medium, (¢) Large, and (d) Obstacle. Brown hollow
stars denote the random spawn spots for both agents. Single-color blocks (cyan and red) denote the
fixed resource, and mixed-color blocks denote the random resource, which can be changed during
each initialization.

denoted by row and 7o respectively, are assigned via

T T
Trow = VrOWArochola Tcol = VTOWACOIVCOI' (5)

After the interaction, both agents will re-spawn after 5 steps. Each game lasts for 2000 steps.

By changing the underlying payoff matrix, we can change the game property of the substrate. We
define four different environments with various game properties, namely Chicken, Pure Coordination,
Prisoners Dilemma, and Stag Hunt (Agapiou et al., 2022) with payoff matrices defined in Table 1.
All four environments are symmetric with 2 types of resources (K = 2) and we have A o = AcolT.

For each environment, we create four different scenarios by changing the size of the map as well as
the layout of the resource and objects inside (see Figure 1). From Small to Obstacle, the map sizes
are 6 x 6, 7 x 8,9 x 13, and 9 x 13, respectively. We anticipate that different map sizes may lead to
varying levels of interaction intensity among agents. The observation window of each agent is 5 x 5
square centered at the agent itself, which means agents in Small is able to observe all the resource
at any spawn location.

6 Experiments Design
We design a series of experiments to validate the effectiveness of using Lol for cost-efficient general-

ization and demonstrate a useful application of Lol in guiding resource allocation for cost-efficient
policy training. In particular, we would like to examine the following hypotheses.

Hypothesis 1. Lol is strongly correlated with the benefits of having diverse co-player distribution on
the generalization of the ego agent within given scenarios (Section 6.1).

Hypothesis 2. Under the same computation budget, the set of ego agents trained with Lol-guided
resource allocation can achieve higher average performance than uniform allocation (Section 6.2).

6.1 Validating the Level of Influence

As outlined in Section 4.1, our objective is to utilize Lol to predict the benefits of having diverse
co-player distribution during training on the generalization. To validate this idea, we first evaluate
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the impact of different co-player diversities on generalization performance within different scenarios.
We then calculate the Lol of those scenarios, and find the correlation between the performance
improvement and the Lol conditioned on diversity.

Fixed-Bobs Evaluation. First, we evaluate how different levels of co-player diversity impact the
generalization performance within different scenarios. We train a set of policies with different levels
of co-player diversity that we want to compare across all environment-scenario combinations. We
then assess these trained policies against a set of predetermined agents for evaluation. Specifically,
we train one SP policy for 5M steps and save a new checkpoint every 200K steps. We select four
checkpoints at 1.4M, 2.6M, 3.8M, and 5M steps as a fixed group of policies for evaluation, which we
refer to as “Fized-Bobs”.

Afterward, we train 5 instances of SP policies with different random seeds (SP), one set of PP
policies with 3 populations (PP3), and one set of PP policies with 5 populations (PP5). All policies
are trained for 10M steps. We choose the final checkpoint of each SP and each population of PP
(i.e., checkpoints at 10M steps) and pair them with the aforementioned Fixed-Bobs. Each game
lasts for 2000 steps and repeats 10 times. We evaluate each training method and report the average
reward for each policy by aggregating results across all 10 games, four Fixed-Bobs policies, and all
populations (or all seeds in the case of SP). To better compare the performance gap between training
methods across different scenarios, we normalize the previous results by dividing each element by
the corresponding reward value from SP of the same environment and scenario.

Lol Calculation. Second, we estimate the Lol value for each scenario and environment following
Algorithm 1. Specifically, we train 1 Alice policy (a = 1) and 5 Bob policies (b = 5) with different
random seeds. We choose 4 late-stage generations at 3.8M, 4.2M, 4.6M, and 5M steps from Alice’s
checkpoint pool (m = 4) and 9 all-stage generations at 0.2M, 0.6M, 1M, 1.4M, 1.8M, 2.6M, 3.4M,
4.2M, and 5M steps from Bob’s checkpoints pools (n = 9) of every policy. To compute the Lol, we
model the policy distribution of Alice and Bob as a uniform distribution defined over their sampled
checkpoints (i.e., P, = 1/4 and Py = 1/9). We perform 6 games per Alice-Bob pair (g = 6).

Correlation between Lol and Performance Improvement. We then calculate the average
performance improvement between each training method for each environment and scenario. Sup-
pose the average rewards for SP, PP3, and PP5 are r1, r, and r3, respectively, then we compute
the average performance improvement 0 as

To —T1 T3 —T9 rs —T1

=gty = (6)

Last, we find the correlation between the aforementioned Lol and average improvement in four
scenarios within each environment. We apply the Pearson correlation coefficient as the measurement
of linear correlation. Suppose the Lols of four scenarios on the given environment are I; and the
corresponding average improvements are d;. Let I and 6 denote the mean Lol and mean average
improvement over four scenarios, respectively. The correlation coefficient is then calculated as

iy (= 1) (8 =)
’)/ = 2 — n — .
\/Zi:l(li - 1)2\/Zi:1(6i - 5)2

(7)

6.2 Resource Allocation

We now show that we can utilize the proposed Lol for allocating training resource allocation under
a limited computation budget. We would like to train a set of policies for a given environment
(i.e., a given game mechanism and reward design), with each policy tailored to a distinct scenario
while keeping the total computational resource fixed. Without extra information, one may distribute
resources uniformly across all scenarios. If we have access to Lol, which correlates expected perfor-
mance improvement with the additional training expense, we can allocate the resource accordingly,
i.e., training policies with larger populations for scenarios with higher Lol and vice versa.
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Figure 2: Top row: Fixed-Bobs evaluation of agents trained by self-play (SP), population-play p = 3
(PP3), population-play p = 5 (PP5) across four scenarios: Small (S), Medium (M), Large (L), and
Obstacle (O). Each tile is the average over all populations for PP and seeds for SP (5 seeds for
SP), with 10 independent games between each Alice-Bob combination. Bottom row: Normalized
individual reward of ego agents calculated by dividing each row by its first element (SP). Result:
With a growing population, PP gains larger advantages over SP in general. However, the percentage
of increase varies across different scenarios under the same environment, and the overall trend of
improvement varies across different environments.

To demonstrate the proposed allocation strategy, we set a fixed training budget of 120M steps to
train four policies, each handling a specific scenario. In the uniform allocation scenario, we train a
3-population PP policy (PP3) for 10M steps per seed on each scenario, summing up to 120M steps
for all four scenarios. In the resource allocation approach, we calculate the Lol for each scenario (as
outlined in Section 6.1) and devise a heuristic method to allocate resources based on this metric.
By default, we allocate 30M steps for each scenario (equivalent to the cost of training PP3 for 10M
steps) and compute the mean Lol across the four scenarios. Scenarios with Lol greater than one
standard deviation from the mean receive 50M steps (cost of training PP5 for 10M), while those
with Lol less than one standard deviation get 10M steps (cost of training SP for 10M). Adjustments
are made for scenarios with Lol within one standard deviation to maintain the total budget of 120M
steps. For instance, if one scenario uses only 10M steps, the saved 20M steps are reallocated to the
scenario with the highest Lol among the remaining three (see Appendix D for further details). We
apply the Fixed-Bobs evaluation and compare the average normalized rewards (see Section 6.1) over
all four scenarios between uniform allocation and heuristic allocation.

7 Experimental Results

7.1 Validating the Level of Influence

Fixed-Bobs Evaluation. The full results of the Fixed-Bobs evaluation are shown in Figure 2. In
all the environments and scenarios, ego agents’ rewards demonstrate an upward trend as the training
population size increases. Notably, we can regard SP as a specialized PP with a population size of 1.
The absolute reward values differ significantly among diverse environments, strongly influenced by
the unique game properties of each environment and the specific payoff matrix (Figure 2, top row).
It suggests that our scenario design gives rise to an appropriate test bed to validate the effectiveness
of the proposed Lol metric. As the maximum achievable reward varies across different scenarios,
we normalize the individual reward of ego agents according to Section 6.1 to better compare the
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Pure Prisoners Stag
Coordination  Dilemma Hunt

Small 1.291 (0.14) 1.117 (0.12) 1.377 (0.11) 1.397 (0.14)
Medium 1.364 (0.09) 1.071 (0.15) 1.385 (0.11) 1.431 (0.13)
Large 1.438 (0.09) 0.976 (0.09) 1.180 (0.09) 1.424 (0.07)
Obstacle 1.227 (0.17) 0.976 (0.18) 1.100 (0.12) 1.063 (0.11)

Chicken

Table 2: Lol (and standard deviations, reported in parentheses) across four scenarios under four
environments. Values are calculated over one Alice set (m = 4) and five Bob sets (n = 9) of different
seeds, 10 independent games between each Alice-Bob combination. Result: Lol exhibits varying
trends across four specified scenarios in different environments.

} Pure Prisoners Stag

Chicken Coordination  Dilemma Hunt

Small 1.4130 1.7986 7.0535 5.1652
Medium 3.8312 1.0248 9.4688 8.0993
Large 4.9293 0.9117 3.7931 5.2341
Obstacle  0.0789 0.3020 3.2389 1.9517

Table 3: Average improvement on ego agents’ rewards between SP, PP3, and PP5 under each scenario
and environment. Result: The advantage of PP over SP varies across different scenarios, and the
correlations between scenario and reward increment vary across different environments.

generalization performance between training methods (Figure 2, bottom row). We observe that the
percentage improvement with increasing co-player diversity during training differs for each scenario
within a specific environment, and the overall improvement trend varies across diverse environments.

We perform the Analysis of Variance (ANOVA) (Edwards, 2005) on the results. The ANOVA method
examines whether there are significant differences in means among two or more groups. We report the
F-statistic and a corresponding p-value with a null hypothesis that there is no noteworthy difference
(See Appendix A Table 6). We confirm that changing the population size (i.e., diversity of co-play
agent’s policy distribution) has a statistically significant effect on the generalization performance
within different scenarios across all four environments. But most importantly, the significance of
such effects varies across different scenarios for a given environment.

Lol Calculation. We calculate the mean Lol and standard deviation for each scenario and en-
vironment, as detailed in Section 6.1. The comprehensive results are presented in Table 2, with
the maximum value in each environment highlighted in bold. It exhibits varying trends across four
scenarios in different environments.

Correlation between Lol and Average Improvement. Based on the ego agents’ rewards in
Figure 2, we calculate the average improvements following Section 6.1. The results are presented
in Table 3, with the highest value in each environment emphasized in bold. It is evident that the
trends in each environment align closely with the Lol outcomes depicted in Table 2, which naturally
sets the stage for the correlation analysis discussed in the subsequent section.

We calculate the correlation coefficient as in Section 6.1, and the results are shown in Table 4.
The correlation coefficient ranges from —1 to 1. An absolute value of 1 indicates a perfect linear
relationship between two groups, with all data points falling on a line. The results highlight a strong
positive correlation between the average improvement of PP over SP (increasing population size) and
Lol across all four environments. Consequently, we can utilize Lol as a reference to predict whether
implementing a more resource-intensive training method (e.g., PP with a large population size) will
yield a substantial improvement in generalization over a more cost-effective training method (e.g.,
SP or PP with a small population size) in a given scenario. Note that this correlation is valid within
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. Pure Prisoners Stag
. Coordination  Dilemma Hunt
Statistic  0.98966 0.86309 0.93888  0.86631

Table 4: Pearson correlation coefficient between average improvement of PP over SP and Lol. Result:
It exhibits a strong correlation between the average improvement of PP over SP and Lol under all
four environments.

. Pure Prisoners  Stag

Chicken Coordination  Dilemma  Hunt

Small 30M 50M 30M 30M
Medium 30M 30M 50M 50M
Large 50M 30M 30M 30M
Obstacle 10M 10M 10M 10M

Table 5: Allocated training resource according to the heuristic method introduced in Section 6.2.
Each column adds up to 120M steps.

a specific environment. Comparing two scenarios across different environments is not meaningful in
this context, since the scale of the reward varies across environments.

7.2 Resource Allocation

We utilize the Lol values provided in Table 2 for the heuristic method described in Section 6.2.
The allocated training resources for each scenario are outlined in Table 5. Specifically, 10M, 30M,
and 50M training steps correspond to SP, PP3, and PP5, respectively. The total steps for each
environment sum up to 120M, adhering to the training budget cap. The comparison of Fixed-Bobs
evaluation between uniform allocation and Lol-guided heuristic allocation is depicted in Figure 3.
Notably, the heuristic allocation demonstrates a substantial improvement in the average performance

across all scenarios in the Chicken, Pure Coordination, and Stag Hunt environments.
We apply the two-sample one-tailed t-test (Student, 1908) for statistical analysis. It compares the

means of two independent groups and determines if one is significantly larger than the other. We
provide the t-statistic and a corresponding p-value with a null hypothesis that there is no noteworthy
difference (See Appendix A Table 7). We affirm that Lol-guided heuristic allocation exhibits a
significant advantage over uniform allocation in all scenarios except for the Prisoners Dilemma,
given the same resource budget cap. In conclusion, leveraging Lol enables us to strategically allocate
resources for training a range of policies designed to handle diverse scenarios, resulting in improved
overall performance within the same resource limit.

It’s important to highlight that the earlier discussed heuristic allocation is based on calculating Lol
using checkpoints from 1 Alice policy and 5 Bob policies, with 5M steps per policy. Consequently,
employing this heuristic resource allocation necessitates an additional 30M steps beyond the 120M
steps budget (25% of the total budget). In Appendix C.2; we show that, while augmenting the
number of Bobs used in Lol computation significantly reduces the estimation variance, the proposed
heuristic resource allocation scheme is less sensitive to the estimation noise. We can achieve com-
parable results as shown in Figure 3 with Lol values estimated using only 1 Alice policy and 1 Bob
policy, which requires only 10M extra training steps (8.33% of the total budget). Nevertheless, we
expect the estimation variance of Lol will matter when it comes to guiding resource allocation in
more complex environments or other applications that require a more accurate estimation of Lol.
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Figure 3: Fixed-Bobs evaluation comparison of the set of agents trained with uniformly allocated
resource and Lol-guided heuristic allocation. Error bars correspond to 95% confidence intervals cal-
culated over all populations across all four scenarios with 10 independent games between each Alice-
Bob combination. Result: The set of agents trained with Lol-guided resource allocation achieves
higher overall performance under the same total resource budget in all four different environments.

8 Discussion

In our study, we introduce the Level of Influence (Lol) metric, a measure that quantifies the interac-
tion intensity between agents across varied scenarios in MARL. Our proposed metric can effectively
predict the potential generalization improvement by having a more diverse set of co-player policy
distribution during training. Our results strongly support the strategic allocation of resources for
training a tailored set of policies across diverse scenarios guided by the Lol metric. This approach
consistently yields higher average performance compared to uniform allocation across different en-
vironments with distinct game properties within a limited computation budget.

Limitations and Future Work. Estimating Lol with self-play policies is susceptible to high
variance. Lol essentially gauges the extent to which the policy distribution of Bob influences Alice’s
performance. We need a diverse set of policies (i.e., diverse Bobs) to cover its potential distribution
as much as possible in computing the Lol, while neither self-play nor population-play can guarantee
such diversity to exist under limited training complexity. Thus, a delicate balance emerges between
the expense of Lol estimation and its accuracy. Although we demonstrate that a high variance in Lol
estimation does not necessarily hinder the effectiveness of the proposed resource allocation scheme,
there may exist other downstream applications of Lol that require Lol estimation with substantially
reduced variance. In future work, we are interested in exploring theoretical grounds and practical
algorithms to generate guaranteed diverse self-play policies with minimal computation cost (Rahman
et al., 2023), so that we can accurately compute Lol in a sample-efficient manner.

Moreover, while Lol serves as a valuable metric to quantify the level of interaction within a set of
scenarios in the same environment, directly comparing the numerical values of Lol across scenarios
from different environments is not meaningful. This is because the variation in reward design,
which underpins the conditional mutual information calculation, affects the interpretation of these
numerical values. In future work, we are interested in extending this idea in a broader context of
meta-learning, where cross-environment comparisons are essential. Subsequent work may include
generalizing the Lol into a comprehensive metric with predefined value ranges and thresholds across
more diverse environments.
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